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Abstract— In this work we consider a multidimensional
distributed optimization technique that is suitable for multi-
agents systems subject to limited communication connectivity.
In particular, we consider a convex unconstrained additive
problem, i.e. a case where the global convex unconstrained
multidimensional cost function is given by the sum of local
cost functions available only to the specific owning agents. We
show how, by exploiting the separation of time-scales principle,
the multidimensional consensus-based strategy approximates a
Newton-Raphson descent algorithm. We propose two alternative
optimization strategies corresponding to approximations of
the main procedure. These approximations introduce tradeoffs
between the required communication bandwidth and the con-
vergence speed/accuracy of the results. We provide analytical
proofs of convergence and numerical simulations supporting
the intuitions developed through the paper.

Index Terms— multidimensional distributed optimization,
multidimensional convex optimization, consensus algorithms,
multi-agent systems, Newton-Raphson methods

I. INTRODUCTION

To cope with the growing mankind demands, humanity is
building greater and greater systems. But, since big central-
ized systems suffer small structural flexibility and robustness
to failures, nowadays trends are to shift towards distributed
services and structures. Brilliant examples are the (current)
principal source of information - Internet, and the (future)
network of renewable energy sources - wind farms, wave
parks and home solar systems. But, to operate at their best,
these networks are required to distributedly solve complex
optimization problems. Computations should thus require
minimal coordination efforts, small computational and mem-
ory requirements, and do not rely on central processing units.

Development and study of such algorithms are major
research topics in the area of control and system theory [1],
[2], and have lead up to now to numerous contributions.
These can be roughly divided into three main categories:
methods based on primal decompositions, methods based on
dual decomposition, and heuristic methods.

Primal decomposition methods operate manipulating the
primal variables, often through subgradient methods, [3] and
references therein. Despite they are widely applicable, they
are easy to implement and they require mild assumptions on
the objective functions, they may be rather slow and may
not progress at each iteration [4, Chap. 6]. Implementations
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can be based on incremental gradients methods [5] with
deterministic [6] or randomized [7] approaches, and they
may use opportune projection steps to account for possible
constraints [8].

Decomposition methods instead operate manipulating the
dual problem, usually splitting it into simpler sub-tasks that
require the agents to own local copies of the to-be-updated
variables. Convergence to the global optimum is ensured
constraining the local variables to converge to a common
value [9]. In the class of dual decomposition methods, a par-
ticularly popular strategy is the Alternating Direction Method
of Multipliers (ADMM) developed in [1, pp. 253-261] and
recently proposed in various distributed contexts [10], [11].

An other interesting approach, suitable only for particular
optimization problems, is to use the so-called Fast-Lipschitz
methods [12], [13]. These exploit particular structures of the
objective functions and constraints to increase the conver-
gence speed. Alternative distributed optimization approaches
are based on heuristics like swarm optimization [14] or
genetic algorithms [15]. However their convergence and
performance properties are difficult to be studied analytically.

Statement of contribution: here we focus on the uncon-
strained minimization of a sum of multidimensional convex
functions, where each component of the global function is a
private local cost available only to a specific agent. We thus
offer a distributed algorithm that approximatively operates as
a Newton-Raphson minimization procedure, and then derive
two approximated versions that trade-off between the re-
quired communication bandwidth and the convergence speed
/ accuracy of the results. For these strategies we provide
convergence proofs and analysis on the robustness on initial
conditions of the algorithms, under the assumptions that
local cost functions are convex and smooth, and that com-
munication schemes are synchronous. The main algorithm
is an extension of what has been proposed in [16], while
the approximated versions are completely novel. We notice
that communications between agents are based on classical
average-consensus algorithms [17]. The offered algorithms
inherit thus the good properties of consensus algorithms,
namely their simplicity, their potential implementation with
asynchronous communication schemes, and their ability to
adapt to time-varying network topologies.

Structure of the paper: in Sec. II we formulate the
problem from a mathematical point of view. In Sec. III we
derive the main generic distributed algorithm, from which we
derive three different and specific instances in Sections IV, V
and VI. In Sec. VII we briefly discuss the properties of these
algorithms, and then in Sec. VIII we show their effectiveness



by means of numerical examples. Finally in Sec. IX we draw
some concluding remarks. For ease of readability, all the
proofs are collected in appendix.

II. PROBLEM FORMULATION

We assume that S agents, each endowed with the local N -
dimensional and strictly convex cost function fi : RN 7→
R, aim to collaborate in order to minimize the global cost
function

f : RN 7→ R f (x) =
1

S

S∑
i=1

fi (x) (1)

where x := [x1 · · · xN ]
T is the generic element in RN .

Agents thus want to distributedly compute

x∗ := arg min
x
f (x) (2)

exploiting low-complexity distributed optimization algo-
rithms. As in [16], we model the communication network
as a graph G = (V, E) whose vertexes V = {1, 2, . . . , S}
represent the agents and the edges (i, j) ∈ E represent the
available communication links. We assume that the graph is
undirected and connected. We say that a stochastic matrix
P ∈ RS×S , i.e. a matrix whose elements are non-negative
and P1S = 1S , where 1S := [1 1 · · · 1]

T ∈ RS , is
consistent with a graph G if Pij > 0 only if (i, j) ∈ E .
If P is also symmetric and includes all edges, i.e. Pij > 0
if (i, j) ∈ E , then limk→∞ P k = 1

S1S1
T
S . Such matrix P is

also often referred as a consensus matrix.
In the following we use xi(k) := [xi,1(k) · · · xi,N (k)]

T

to indicate the input location of agent i at time k, and
operator ∇ to indicate differentiation w.r.t. x, i.e.

∇fi (xi(k)) :=

[
∂fi
∂x1

∣∣∣∣
xi(k)

· · · ∂fi
∂xN

∣∣∣∣
xi(k)

]T
(3)

∇2fi (xi(k)) :=

 ∂2fi
∂xm∂xn

∣∣∣∣
xi(k)

 . (4)

In general we use the fraction bar to indicate the Hadamard
division, i.e. the component-wise division of vectors a,b ∈
RN

a

b
:=

[
a1
b1
, · · · , aN

bN

]T
. (5)

In general we use bold fonts to indicate vectorial quantities
or functions which range is vectorial, plain italic fonts to
indicate scalar quantities or functions which range is a scalar.
We use capital italic fonts to indicate matrix quantities
and capital bold fonts to indicate matrix quantities derived
stacking other matrix quantities. As in [16], to simplify the
proofs we exploit the following assumption, implying that
x∗ is unique:

Assumption 1. Local functions fi belongs to C2,∀i, i.e.
they are continuous up to the second partial derivatives, their
second partial derivatives are strictly positive, bounded, and

they are defined for all x ∈ RN . Moreover each scalar
component of the global minimizer x∗ does not take value
on the extended values ±∞.

We notice that from the strict convexity assumptions it
follows that x∗ is unique. Moreover the assumption that each
scalar component of x∗ does not take value on the extended
values is to obtain convergence proofs that do not require
modifications of the standard multi-time-scales approaches
for singular perturbation model analysis [18], [19, Chap. 11].
We also notice that these smoothness assumptions, despite re-
strictive, have been used also by other authors, see e.g. [20],
[21].

A. Notation for Multidimensional Consensus Algorithms

Assume

Ai =


a
(i)
11 · · · a

(i)
1M

...
...

a
(i)
N1 · · · a

(i)
NM

 i = 1, . . . , S

to be S generic N × M matrices associated to agents
1, . . . , S, and that these agents want to distributedly compute
1
S

∑S
i=1Ai by means of the double-stochastic communica-

tion matrix P . In the following sections, to indicate the whole
set of the single component-wise steps

a
(1)
pq (k + 1)

...
a
(S)
pq (k + 1)

 = P


a
(1)
pq (k)

...
a
(S)
pq (k)

 p = 1, . . . , N
q = 1, . . . ,M

(6)
we use the equivalent matricial notation A1(k + 1)

...
AS(k + 1)

 = (P ⊗ IN )

 A1(k)
...

AS(k)

 (7)

where IN is the identity in RN×N and ⊗ is the Kronecker
product. Notice that the notation is suited also for vectorial
quantities, e.g. Ai ∈ RN .

III. DISTRIBUTED MULTIDIMENSIONAL
CONSENSUS-BASED OPTIMIZATION

Assume the local cost functions to be quadratic, i.e.

fi (x) =
1

2
(x− bi)

T
Ai (x− bi)

where Ai > 0. Straightforward computations show that the
unique minimizer of f is given by

x∗ =

(
1

S

S∑
i=1

Ai

)−1(
1

S

S∑
i=1

Aibi

)
and can thus be computed using the output of two average
consensus algorithms. Defining the local variables

yi(0) := Aibi ∈ RN Zi(0) := Ai ∈ RN×N



and the corresponding compact forms

Y (k) :=

y1(k)
...

yS(k)

∈ RNS Z(k) :=

Z1(k)
...

ZS(k)

∈ RNS×N

then the algorithm

Y (k + 1) =
(
P ⊗ IN

)
Y (k) (8)

Z(k + 1) =
(
P ⊗ IN

)
Z(k) (9)

xi(k) = (Zi(k))
−1

yi(k) i = 1, . . . , S (10)

alternates average-consensus steps (i.e. (8) and (9), given the
considerations in Sec. II-A) with local updates (i.e. (10)),
and is s.t. limk→∞ xi(k) = x∗. The element xi(k) can thus
be considered the local estimate of the global minimizer x∗

at time k. If the cost functions are not quadratic, then the
previous strategy cannot be applied as it is but needs to be
modified using the guidelines:

1) in general

yi(0) = ∇2fi (xi(0))xi(0) Zi(0) = ∇2fi (xi(0)) .

For quadratic scenarios these two quantities are in fact
independent of xi, but this does not happen in the
general case. Consensus steps (8)-(9) should then be
performed considering that the xi(k)’s change over
time. This requires to appropriately design the update
rules for yi and Zi;

2) (10) might lead to estimates that change too rapidly.
This requires to take smaller steps towards the estimated
minimum (Zi(k))

−1
yi(k).

To this aim, we propose the following general Alg. 1.
Notice that it depends on quantities that have not yet been
defined, namely gi(k) and Hi(k), i = 1, . . . , S.

The importance of this algorithm is given by the fact that,
under opportune hypotheses, the temporal evolution of the
average state x := 1

S

∑S
i=1 xi approximatively follows the

update rule

ẋ(t) = −x(t) +

(
1

S

S∑
i=1

Hi (x(t))

)−1(
1

S

S∑
i=1

gi (x(t))

)
(see proof of Prop. 2). In the following we show that this
property is appealing since, exploiting proper choices of
gi(k) and Hi(k), we can obtain distributed optimization
algorithms with desirable properties such as convergence
to the global optimum and small communication bandwidth
requirements.

IV. DISTRIBUTED MULTIDIMENSIONAL
NEWTON-RAPHSON

Consider the following Alg. 2, based on the general
layout given by Alg. 1. We show now how it corresponds
to the multidimensional extension of the distributed scalar
optimizer described in [16], and that it distributedly computes
the global optimum x∗. We notice that initializations given in
line 5 are critical for the convergence to the global minimizer;
lines 8-9 are local operations assuring the Newton-Raphson

computation to be based on the current local estimates xi(k);
lines 10-11 perform the consensus operations, and operations
in line 13 are again local operations performing convex
combinations between the past and new estimates.

Algorithm 1 Distributed Optimization - General Layout
(variables)

1: xi(k),yi(k),gi(k) ∈ RN ; Zi(k), Hi(k) ∈ RN×N for
i = 1, . . . , S and k = 1, 2, . . .
(notice: gi and Hi defined in Alg. 2, Alg. 3, Alg. 4)

(parameters)
2: P ∈ RS×S , consensus matrix
3: ε ∈ (0, 1)

(initialization)
4: for i = 1, . . . , S do

5:

set: yi(0) = gi (−1) = 0
Zi(0) = Hi (−1) = 0
xi(0) = 0

(main algorithm)
6: for k = 1, 2, . . . do

(local updates)
7: for i = 1, . . . , S do
8: yi(k) = yi(k − 1) + gi (k − 1)− gi (k − 2)
9: Zi(k) = Zi(k − 1) +Hi (k − 1)−Hi (k − 2)

(multidimensional average consensus step)
10: Y (k) =

(
P ⊗ IN

)
Y (k)

11: Z(k) =
(
P ⊗ IN

)
Z(k)

(local updates)
12: for i = 1, . . . , S do
13: xi(k) = (1− ε)xi(k − 1) + ε (Zi(k))

−1
yi(k)

The convergence properties can be proved exploiting a
state augmentation, recognizing the existence of a two-
time scales dynamical system regulated by the parameter
ε, and then considering that, for small ε, the fluctuations
induced by the fast subsystem exponentially vanish while the
dynamics of the slow subsystem correspond to continuous-
time Newton-Raphson algorithm that converges to the global
optimum given the previously posed Assumption 1. For this
purpose it is useful to define the shorthands

G (k) :=

g1(k)
...

gS(k)

∈ RNS H (k) :=

H1(k)
...

HS(k)

∈ RNS×N

Algorithm 2 Distributed Newton-Raphson
Execute Alg. 1 with definitions

gi (k) := ∇2fi (xi(k))xi(k)−∇fi (xi(k))∈ RN

Hi (k) := ∇2fi (xi(k))∈ RN×N .

The first step is then to introduce the additional variables
V (k) = G(k−1) and W(k) = H(k−1) and rewrite Alg. 2



as

V (k) = G(k − 1)
W(k) = H(k − 1)
Y (k) = (P⊗IN )

(
Y (k−1)+G(k−1)−V (k−1)

)
Z(k) = (P⊗IN )

(
Z(k−1)+H(k−1)−W(k−1)

)
xi(k) = (1−ε)xi(k − 1)+ε (Zi(k))

−1
yi(k)

(11)
from which it is possible to recognize the tracking of the
quantities xi(k) plus the consensus step (1st to 4th rows) and
the local smooth updates (5th row). (11) can be considered
the Euler discretization, with time interval T = ε, of the
continuous time system

εV̇ (t) = −V (t) +G (t)

εẆ(t) = −W(t) + H (t)

εẎ (t) = −KY (t) + (INS −K) [G (t)− V (t)]

εŻ(t) = −KZ(t) + (INS −K) [H (t)−W(t)]

ẋi(t) = −xi(t) + (Zi(t))
−1

yi(t)

(12)

with K := INS−(P⊗IN ). It is immediate to show that K is
positive semidefinite, its kernel is generated by 1NS , and that
its eigenvalues satisfy 0 = λ1 < Re [λ2] ≤ · · · ≤ Re [λNS ] <
2, where Re [λ] indicates the real part of λ. (12) is constituted
by two dynamical subsystems with different time-scales, one
of which is regulated by the parameter ε. Exploiting classical
time-separation techniques [19, Chap. 11], splitting the dy-
namics in the two time scales and studying them separately
for sufficiently small ε, it follows that the fast dynamics, i.e.
the first four equations of (12), are s.t. xi(t) ≈ x(t), where
x(t) := 1

S

∑S
i=1 xi(t), and moreover x(t) evolves with good

approximation following the ordinary differential equation

ẋ(t) = −
[
∇2f (x(t))

]−1∇f (x(t)) (13)

corresponding to a continuous Newton-Raphson algorithm1

that we will prove to be always convergent to the global
optimum x∗. These observations are formally stated in the
following (proof in Appendix):

Proposition 2. Consider Alg. 2, equivalent to system (11)
with initial conditions V (0) = Y (0) = 0 and W(0) =
Z(0) = 0. If Assumption 1 holds true, then there ex-
ists an ε ∈ R+ s.t. if ε < ε then Alg. 2 distributedly
and asymptotically computes the global optimum x∗, i.e.
limk→+∞ xi(k) = x∗ for all i.

V. DISTRIBUTED MULTIDIMENSIONAL JACOBI

Implementation of Alg. 2 requires agents to exchange infor-
mation on about O

(
N2
)

scalars. This could be prohibitive
in multidimensional scenarios with serious communication
bandwidth constraints and large N . In these cases, to min-
imize the amount of information to be exchanged it is
meaningful to let Hi(k) be not the whole Hessian matrix
∇2fi (xi(k)), but only its diagonal. The corresponding al-
gorithm, that we call Jacobi due to the underlying diago-
nalization process, is offered in Alg. 3. We notice that this

1Asymptotic properties of the scalar and continuous time Newton-
Raphson method can be found e.g. in [22], [23].

diagonalization process has already been used in literature,
e.g., see [24], [25], even if in conjunction with different
communication structures.

Algorithm 3 Distributed Jacobi
Execute Alg. 1 with definitions

gi (k) := Hi (k)xi(k)−∇fi (xi(k))∈ RN

Hi (k) :=


∂2fi
∂x2

1

∣∣∣
xi(k)

0

. . .

0 ∂2fi
∂x2

N

∣∣∣
xi(k)

∈ RN×N .

Possible interpretations of the proposed approximation are:
• agents perform modified second-order Taylor approxi-

mations of the local functions;
• agents choose a steepest descent direction in a simplified

norm;
• ellipsoids corresponding to the various Hessians ∇2fi

are approximated with ellipsoids having axes that are
parallel with the current coordinate system.

It is easy to show that this approximated strategy is
invariant over affine transformations T : RN×N 7→
RN×N , T invertible and s.t. fnew(x) = f(Tx), as classical
Newton-Raphson algorithms are [26, Sec. 9.5]. It is moreover
possible to prove that also Alg. 3 ensures the convergence
to the global optimum, i.e. to prove the following (proof in
Appendix):

Proposition 3. If Assumption 1 holds true, then there exists
an ε′ ∈ R+ s.t. if ε < ε′ then Alg. 3 distributedly
and asymptotically computes the global optimum x∗, i.e.
limk→+∞ xi(k) = x∗ for all i.

Analytical characterization of the convergence speed of
Alg. 2 and Alg. 3 is left as a future work.

VI. DISTRIBUTED MULTIDIMENSIONAL GRADIENT
DESCENT

We notice now that the distributed Jacobi relieves the com-
putational requirements of the distributed Newton-Raphson,
since the inversion of Hi (xi(k)) corresponds to the inversion
of N scalars, but nonetheless agents still have to compute
the local second derivatives ∂2fi

∂x2
n

∣∣∣
xi(k)

. If this task is still too

consuming, e.g. in cases where nodes have severe computa-
tional constraints, it is possible to redefine Hi(k) in Alg. 1
in a way that it reduces to a gradient-descent procedure, as
did in the following algorithm.

Algorithm 4 Distributed gradient-descent
Execute Alg. 1 with definitions

gi (k) := xi(k)−∇fi (xi(k))∈ RN

Hi (k) := IN ∈ RN×N .



VII. DISCUSSION ON THE PREVIOUS ALGORITHMS

The costs associated to the previously proposed strategies
are summarized in Tab. I.

Algorithm 2 3 4

Computational Cost O
(
N3

)
O (N) O (N)

Communication Cost O
(
N2

)
O (N) O (N)

Memory Cost O
(
N2

)
O (N) O (N)

TABLE I
COMPUTATIONAL, COMMUNICATION AND MEMORY COSTS OF

ALGORITHMS 2, 3, AND 4 PER SINGLE UNIT AND SINGLE STEP (LINES 6
TO 13 OF ALGORITHM 1).

We notice that the approximation of the Hessian by
neglecting the off-diagonal terms has been already proposed
in centralized approaches, e.g. [27]. Intuitively, the effect of
this diagonal approximation is the following: the full Newton
method perform both scaling and rotation of the steepest
descent step. The diagonal modified Newton method only
scales the descent step in each direction, thus the more the
directions of the maximal and minimal curvatures are aligned
with the axes, the more the approximated method captures
the curvature information and performs better.

A final remark is that the analytic Hessian can be ap-
proximated in several ways, but in general it is necessary
to consider only approximations that maintain symmetry
and positive definiteness. In cases where this definiteness is
lacking, or matrices are bad conditioned, modifications are
usually performed e.g. through Cholesky factorizations [28].

VIII. NUMERICAL EXAMPLES

We consider a ring communication graph, where agents
can communicate only to their left and right neighbors, and
thus the symmetric circulant communication matrix

P =


0.5 0.25 0.25
0.25 0.5 0.25

. . . . . . . . .
0.25 0.5 0.25

0.25 0.25 0.5

 . (14)

We consider S = 15, N = 2, and local objective functions
randomly generated as

fi (x) = exp
(

(x− bi)
T
Ai (x− bi)

)
, i = 1, . . . , S

where bi ∼ [U [−5, 5] , U [−5, 5]]
T , Ai = DiD

T
i > 0, and

Di :=

[
d11 d12
d21 d22

]
∈ R2×2 . (15)

We compare the performances of the previous algorithms
in the following three different scenarios:

S1 :


d11 = d22 ∼ U [−0.08, 0.08] R [−1, 1]

d12 ∼ U [−0.08, 0.08] R [−0.25, 0.5]

d21 ∼ U [−0.08, 0.08] R [−0.5, 0.25]

(16)

where the R-distribution as:

R [c, d] :=

{
c with probability 1/2
d with probability 1/2

i.e. the axes of each contour plot are randomly oriented in
the 2-D plane.

S2 :


d11 ∼ U [−0.08, 0.08]

d12 = d21 = 0

d22 = 2 d11

(17)

i.e. the axes of all the contour plots of the fi surfaces are
aligned with the axes of the natural reference system.

S3 :


d11 ∼ U [−0.08, 0.08]

d12 = d21 = −0.01

d22 ∼ R [0.9, 1.1] d11

(18)

i.e. the axes of each contour plot are randomly oriented along
the bisection of the first and third quadrant.

The contour plots of the global cost functions f̄ ’s gener-
ated using (16), (17) and (18), and the evolution of the local
states xi for the three algorithms are shown in Fig. 1.

We notice that Alg. 2 and Alg. 3 have qualitatively the
same behavior for the scenarios (16) and (17). This is
because the approximation introduced in Alg. 3 is actually a
good approximation of the analytical Hessians ∇2fi (xi(k)).
Conversely, Alg. 4 presents a remarkably slower convergence
rate. Since the computational time of Alg. 3 and 4 are
comparable, Alg. 3 seems to represent the best choice among
all the presented solutions.

IX. CONCLUSIONS AND FUTURE WORKS

Starting from [16], we offered a multidimensional dis-
tributed convex optimization algorithm that behaves approxi-
matively as a Newton-Raphson procedure. We then proposed
two approximated versions of the main algorithm to take
into account the possible computational, communication and
memory constraints that may arise in practical scenarios.
We produced proofs of convergence under the assumptions
of dealing with smooth convex functions, and numerical
simulations to compare the performances of the proposed
algorithms.

Currently there are many open future research directions.
A first branch is about the analytical characterization of the
speeds of convergence of the proposed strategies, while an
other one is about the application of quasi-Newton methods
to avoid the computation of the Hessians and the use of
trust region methods. Finally, an important future extension
is to allow the strategy to be implemented in asynchronous
communication frameworks.
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Fig. 1. First column on the left, contours plot of global function f̄ ’s for scenarios S1, S2, S3, respectively (from top to bottom). Black dots indicate
the positions of the global minima x∗. Second, third and fourth columns, temporal evolutions of the first components of the local states x1, for the case
ε = 0.25 and N = 15. In particular: second column, distributed Newton-Raphson (Alg. 2). Third column, distributed Jacobi (Alg. 3). Fourth column,
distributed gradient descent (Alg. 4). First row, scenario S1. Second row, scenario S2. Third row, scenario S3. The black dashed lines indicate the first
components of the global optima x∗. Notice that we show a bigger number of time steps for the gradient descent algorithm (fourth column).

APPENDIX

We exploit the following additional definitions:

Π‖ :=
1S1

T
S

S
⊗ IN ∈ RNS×NS

Π⊥ :=

(
IS −

1S1
T
S

S

)
⊗ IN ∈ RNS×NS

X(k) :=
[
x1(k)T · · · xS(k)T

]T ∈ RNS

X‖(k) := Π‖X(k) ∈ RNS

X⊥(k) := Π⊥X(k) ∈ RNS

Moreover, we need to extend the definitions of gi(k) and
Hi(k) proper of Alg. 2, introducing the shorthands

x(k) :=
1

S

S∑
i=1

xi(k) ∈ RN

g (x(k)) :=
1

S

S∑
i=1

(
∇2fi (x (k))·x (k)−∇fi (x (k))

)
= ∇2f (x(k))x(k)−∇f (x(k))

g (X(k)) :=
1

S

S∑
i=1

(
∇2fi (xi (k))·xi (k)−∇fi (xi (k))

)
H (x(k)) :=

1

S

S∑
i=1

(
∇2fi (x (k))

)
∈ RN×N

= ∇2f (x(k))

H (X(k)) :=
1

S

S∑
i=1

(
∇2fi (xi (k))

)
∈ RN×N

Proof of Prop. 2. If ε is sufficiently small, then the dis-
cretized time system (11) inherits the same stability prop-
erties of the original continuous time system (12) [29].
Therefore it is sufficient to prove that, for sufficiently small ε,
system (12) has the property that limt→∞ xi(t) = x∗ for all
i. Characterization of system (12) can be performed through
classical multi-time-scales approaches for standard singular
perturbation model analysis [18], [19, Chap. 11]. The aim
is then to prove the proposition exploiting Theorem 11.4
in [19].

Changes of variables: The change of variables D(t) :=
Y (t)−V (t) implies that Ẏ (t) = Ḋ(t) + Ẏ (t), and thus that

ε
(
Ḋ(t)+V̇ (t)

)
=

= −K (D(t)+V (t))+(INS−K) (G(t)−V (t)) .

Since εV̇ (t) = −V (t) +G(t), we can conclude that

εḊ(t) = −K
(
D(t) +G(t)

)
. (19)

Now, exploiting

Π‖K =

(
1S1

T
S

S
⊗ IN

)
−
(
1S1

T
S

S
⊗ IN

)
(P ⊗ IN )

and the general rule (A1⊗B1)(A2⊗B2) = A1A2⊗B1B2,
we obtain Π‖K = 0 and thus Π⊥K = KΠ⊥ = K. If we
define the decomposition

D(t) = Π‖D(t) + Π⊥D(t) =: D‖(t) +D⊥(t)

we can also decompose (19) as follows:

εḊ‖(t) = 0 (20)
εḊ⊥(t) = −K

[
D⊥(t) +G(t)

]
(21)



We notice that (20) implies that

D‖(t) = D‖(0) = Π‖ (V (0)− Y (0)) = 0

since we set V (0) = Y (0) = 0. Similarly, considering
the variable B(t) := Z(t) −W(t), and applying similar
considerations to B, Z and W, system (12) becomes

εV̇ (t) = −V (t) +G(t)

εẆ(t) = −W(t) + H(t)

εḊ⊥(t) = −K
[
D⊥(t) +G(t)

]
εḂ⊥(t) = −K

[
B⊥(t) + H(t)

]
ẋi(t) = −xi(t)

+
([
B⊥(t)+W(t)

]
i

)−1[
D⊥(t)+V (t)

]
i
(22)

∀i ∈ V , and where with the notation [ · ]i we indicate the
submatrix of the operand that is relative to agent i.

Analysis of the boundary layer system: assume xi(t) =
xi for i = 1, . . . , S, so that we can write, with a little abuse
of notation, X(t) = X , G(t) = G(X) and H(t) = H(X)
with X constant in time. Consider then the system

εV̇ (t) = −V (t) +G(X)

εẆ(t) = −W(t) + H(X)

εḊ⊥(t) = −K
[
D⊥(t) +G(X)

]
εḂ⊥(t) = −K

[
B⊥(t) + H(X)

] (23)

Applying the changes of variables induced by the isolated
root of (23), namely

Ṽ (t) := V (t)−G(X), W̃(t) := W(t)−H(X)

D̃⊥(t) := D⊥(t)+Π⊥G(X), B̃⊥(t) := B⊥(t)+Π⊥H(X)

τ =
t

ε
⇒ dτ

dt
=

1

ε

we obtain the boundary layer system
˙̃
V (τ) = −Ṽ (τ)
˙̃
W(τ) = −W̃(τ)
˙̃
D⊥(τ) = −KD̃⊥(τ)
˙̃
B⊥(τ) = −KB̃⊥(τ)

that is exponentially stable. This property is clear for the
dynamics of the first two equations, but it is less obvious
for the last two equations since the matrix −K is only
negative semidefinite. However, the dynamics of D̃⊥ and
B̃⊥ are restricted to the subspace defined by the projection
operator Π⊥, therefore the dynamics are exponentially stable.
To see this consider for example the Lyapunov function

V
(
D̃⊥
)

= 1
2

∥∥∥D̃⊥∥∥∥2 and its time derivative V̇
(
D̃⊥
)

=

−
(
D̃⊥
)T

KD̃⊥ ≤ −λ2
∥∥∥D̃⊥∥∥∥2 ≤ −λ2V (D̃⊥), where

λ2 > 0 is the smallest non-zero eigenvalue of the matrix K.
This implies that limt→∞ D̃⊥(t) = 0. Similar considerations
hold also for the variable B̃⊥.

Therefore, we can claim that system (23) admits a globally
exponentially stable equilibrium s.t.

lim
t→∞


V (t)
W(t)
D⊥(t)
B⊥(t)

 =


G(X)
H(X)

−Π⊥G(X)
−Π⊥H(X)

 (24)

for each initial condition and set of input locations X .
Analysis of the reduced system: Through this section

we highlight the dependence of G and H on the whole state
X(t) writing G(X(t)) and H(X(t)) instead of G(t) and
H(t).

Given the analysis of the boundary layer system above, if
we substitute (24) into the last equation of system (22) we
obtain the reduced system

ẋi(t) = −xi(t) +
([

Π‖H(X(t))
]
i

)−1 [
Π‖G(X(t))

]
i
(25)

where we used the facts

Π‖H(X(t)) = −Π⊥H(X(t)) + H(X(t)) (26)
Π‖G(X(t)) = −Π⊥G(X(t)) +G(X(t)) . (27)

Notice that, despite the operator [ · ]i, the evolution for xi

depends on the whole X(t) (and thus also on the other xj’s)
through Π‖. Considering now the equivalence

Π‖H(X(t)) = H(X(t))⊗ 1S

=

(
1

S

S∑
i=1

∇2fi (xi (k))

)
⊗ 1S

and the similar result Π‖G(X(t)) = g(X(t))⊗ 1S , we can
rewrite (25) as

ẋi(t) = −xi(t) +H(X(t))−1g(X(t)) i = 1, . . . , S (28)

and thus, in a compacted form, as

Ẋ(t) = −X(t) +H(X(t))−1g(X(t))⊗ 1S .

We now want to address the stability of this dynamical
system by decomposing the dynamics along the projections
given by Π⊥ and Π‖. For this reason we introduce

X‖(t) := Π‖X(t) X⊥(t) := Π⊥X(t)

from which we obtain

Ẋ‖(t) = −X‖(t) +[
H
(
X‖(t)+X⊥(t)

)−1
g
(
X‖(t)+X⊥(t)

)]
⊗1S

Ẋ⊥(t) = −X⊥(t)
(29)

where we implicitly used the fact that Π⊥ (A⊗ 1S) = 0 for
all A ∈ RN×N . It immediately follows that the dynamics
of X⊥(t) is independent of X‖(t) and it is exponentially
stable with respect to the origin. Considering that X‖(t) =
x(t) ⊗ 1S , we can write the dynamics of the average x(t)
as

ẋ(t) = −x(t) +H (x(t))
−1

g (x(t)) . (30)



Considering the definitions of H (x(t)) and g (x(t)) (30)
reduces to

ẋ(t) = −
[
∇2f (x(t))

]−1∇f (x(t)) (31)

which corresponds to a continuous-time Newton-Raphson
method. It is immediate to check that V (x) := f(x)−f(x∗)
is a Lyapunov function for (31), leading to the conclusion
that x(t) globally and exponentially converges to x∗. Now,
since the hypotheses of Theorem 1 in [30] are satisfied, we
can claim that, under the previous assumptions, also xi(t)
globally and exponentially converges to x∗.

According to the derivations above, then hypotheses for
Theorem 11.4 in [19] are satisfied, which guarantee the
claims of Prop. 2.

Proof of Prop. 3. Derivation of (30) does not depend on the
definition of gi(k) and Hi(k), and is still valid for the current
proposition. We thus immediately obtain the dynamics

ẋ(t) = −


∂2f
∂x2

1

∣∣∣
x(t)

0

. . .

0 ∂2f
∂x2

N

∣∣∣
x(t)


−1

∇f (x(t)) . (32)

Since V (x) := f(x)−f(x∗) is a Lyapunov function for (32),
x(t) globally and exponentially converges to x∗ as in Prop. 2.
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