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APPENDIX

In this paper we describe the technical proofs for the
results presented in [1].

A. Derivation of Algorithm 1

First of all we derive the augmented Lagrangian (9) for
problem (24), and obtain

Lρ(x, y;w) =

N∑
i=1

fi(xi) + ι(I−P )(y)+

− w>(Ax+ y) +
ρ

2
‖Ax+ y‖2,

(A1)

where ‖Ax + y‖2 = ‖Ax‖2 + ‖y‖2 + 2〈Ax, y〉. We can
now proceed to derive equations (19)–(21) for the problem
at hand.

1) Equation (19): By (A1) and discarding the terms that
do not depend on y we get

y(k + 1) = arg min
y

{
ι(I−P )(y)− w>(k)y +

ρ

2
‖y‖2

+ 2αρ〈Ax(k), y〉+ ρ(2α− 1)〈y, y(k)〉
}

where we summed the terms with the inner product
〈Ax(k), y〉. Therefore we need to solve the problem

y(k + 1) = arg min
y=Py

{
− w>(k)y +

ρ

2
‖y‖2

+ 2αρ〈Ax(k), y〉+ ρ(2α− 1)〈y, y(k)〉
}

that for simplicity we can write as

y(k + 1) = arg min
y=Py

{hα,ρ(y;x(k), w(k))}. (A2)

We apply now the Karush-Kuhn-Tucker (KKT) conditions
[2] to problem (A2) and obtain the system

∇
[
hα,ρ(y;x(k), w(k))− ν>(I − P )y

∣∣∣
y(k+1),ν∗

= 0 (A3)

y(k + 1) = Py(k + 1) (A4)

where ν∗ is the optimal value of the Lagrange multipliers of
the problem.
By computing the gradient in (A3) we obtain

y(k + 1) =
1

ρ

[
w(k)− 2αρAx(k)

− ρ(2α− 1)y(k) + (I − P )ν∗
]
.

(A5)
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We substitute this formula for y(k+1) in the right-hand side
of (A4) which results in

y(k + 1) =
1

ρ

[
Pw(k)− 2αρPAx(k)

− ρ(2α− 1)Py(k)− (I − P )ν∗
] (A6)

for the fact that P 2 = I and hence P (I − P ) = −(I − P ).
We sum now equations (A5) and (A6) and obtain

y(k + 1) =
1

2ρ
(I + P )

[
w(k)− 2αρAx(k)− ρ(2α− 1)y(k)

]
.

(A7)

Finally noting that, given a vector t of dimension equal to
that of y, the ij-th element of (I +P )t is equal to tij + tji,
then the update for yij(k + 1) follows.

2) Equation (20): By equation (20) and (A7) we can write

w(k + 1) =w(k)− 2αρAx(k)− ρ(2α− 1)y(k)+

− 1

2
(I + P )[w(k)− 2αρAx(k)− ρ(2α− 1)y(k)]

=
1

2
(I − P )[w(k)− 2αρAx(k)− ρ(2α− 1)y(k)]

and by the definition of I − P we get the update equation
for wij(k + 1) stated in Algorithm 1.

3) Equation (21): Finally we apply equation (21) to the
problem at hand, which means that we need to solve

x(k + 1) = arg min
x

{
N∑
i=1

fi(xi)+

−
(
w(k + 1)− ρy(k + 1)

)>
Ax+

ρ

2
‖Ax‖2

}
.

We know that each variable xi appears in |Ni| constraints
and therefore ‖Ax‖2 =

∑N
i=1 |Ni|‖xi‖2. Moreover, given a

vector t with the same size as y, we have

t>Ax =
[
· · · t>ji · · · t>ji · · ·

]


...
−xi

...
−xj

...


=

∑
(i,j)∈E

(
t>jixi + t>ijxj

)

=

N∑
i=1

∑
j∈Ni

t>ji

xi.



and we get the update equation for xi(k + 1) substituting(
w(k + 1) − ρy(k + 1)

)
to t. Notice that by the results

obtained above we have(
w(k + 1)−ρy(k + 1)

)
=

= −P [w(k)− 2αρAx(k)− ρ(2α− 1)y(k)]

which means that x(k + 1) can be computed as a function
of the x, y and w variables at time k only. �

B. Proof of Proposition 1

1) Equations (14): The following derivation shares some
points with the derivation described in the section above.
Indeed, applying the first equation of (14) to the problem at
hand requires that we solve

y(k) = arg min
y=Py

{
−z>(k)y +

ρ

2
‖y‖2

}
,

which can be done by solving the system of KKT conditions
of the problem as performed above. The result is

y(k) =
1

2ρ
(I + P )z(k). (A8)

It easily follows from (A8) that ψ(k) = 1
2 (I − P )z(k).

2) Equations (15): First of all we have (2ψ(k)−z(k)) =
−Pz(k), hence according to the same reasoning employed
above to derive the expression for x(k + 1) we find (25).
Moreover, we have ξ(k) = −Pz(k)− ρAx(k).

3) Equation (7): By the results derived above we can
easily compute

z(k + 1) = (1− α)z(k)− αPz(k)− 2αρAx(k)

which gives equations (26).

Notice that to compute the variables y(k), ψ(k), x(k) and
ξ(k) we need only the variables z(k). Moreover, to update
z we require only z(k) and x(k). Hence the five update
equations reduce to the updates for x and z only. �

C. Proof of Proposition 2

To prove convergence of the R-ADMM in the two imple-
mentations of Algorithms 1 and 2, we resort to the following
result, adapted from [3, Corollary 27.4].

Proposition 1 ([3, Corollary 27.4]): Consider problem
(2) and assume that it has solution; let α ∈ (0, 1), ρ > 0,
and x(0) ∈ X . Assume to apply equations (5)–(7) to the
problem. Then there exists z∗ such that
• x∗ = proxρg(z

∗) ∈ arg minx{f(x) + g(x)}, and
• {z(k)}k∈N converges weakly to z∗.

�
We need to show now that this result applies to the dual

problem of problem (24). First of all, by formulation of
the problem we have that f is convex and proper (and
also closed). Moreover, by [3, Example 8.3] we know that
the indicator function of a convex set is convex (and, by
definition, proper). But the set of vectors y that satisfy
(I − P )y = 0 is indeed convex, hence also g is convex
and proper.

Now [4, Theorem 12.2] states that the convex conjugate of
a convex and proper function is closed, convex and proper.
Therefore both df and dg are closed, convex and proper,
which means that we can apply the convergence result in
Proposition 1 to the dual problem of (24).
Therefore we have that w∗ = proxρdg (z∗) is indeed a
solution of the dual problem and {z(k)}k∈N converges to
z∗. But since the duality gap is zero, then when we attain
the optimum of the dual problem we have obtained that of
the primal as well. �

D. Proof of Proposition 3

In order to prove the convergence of Algorithm 3 we
need to introduce a probabilistic framework in which to
reformulate the KM update. For this stochastic version of
the KM iteration we can state a convergence result adapted
from [5, Theorem 3] and show that indeed Algorithm 3 is
represented by this formulation.

We are therefore interested in altering the standard KM it-
eration (1) in order to include a stochastic selection of which
coordinates in I = {1, . . . ,M} to update at each instant.
To do so we introduce the operator T̂ (ξ) : X → X whose
i-th coordinate is given by T̂

(ξ)
i x = Tix if the coordinate

is to be updated (i ∈ ξ), T̂ (ξ)
i x = xi otherwise (i 6∈ ξ). In

general the subset of coordinates to be updated changes from
one instant to the next. Therefore, on a probability space
(Ω,F ,P), we define the random i.i.d. sequence {ξk}k∈N,
with ξk : Ω → 2I , to keep track of which coordinates are
updated at each instant. The stochastic KM iteration is finally
defined as

x(k + 1) = (1− α)x(k) + αT̂ (ξk+1)x(k) (A9)

and consists of the α-averaging of a stochastic operator.
The stochastic iteration satisfies the following convergence

result, which is particularized from [5] using the fact that
a nonexpansive operator is 1-averaged, and a constant step
size.

Proposition 2 ([5, Theorem 3]): Let T be a nonexpansive
operator with at least a fixed point, and let the step size be
α ∈ (0, 1). Let {ξk}k∈N be a random i.i.d. sequence on 2I

such that

∀i ∈ I, ∃I ∈ 2I s.t. i ∈ I and P[ξ1 = I] > 0.

Then for any deterministic initial condition x(0) the stochas-
tic KM iteration (A9) converges almost surely to a random
variable with support in the set of fixed points of T . �

We turn now to the distributed optimization problem,
in which the stochastic KM iteration is performed on the
auxiliary variables z. In particular we assume that the packet
loss occurs with probability p, and that in the case of packet
loss the relative variable is not updated. As shown in the
main paper, this update rule can be compactly written as

T̂ (ξk+1)z(k) = Lkz(k) + (I − Lk)Tz(k) (A10)

where Lk is the diagonal matrix with elements the realiza-
tions of the binary random variables that model the packet



loss at time k. Recall that these variables take value 1 if the
packet is lost.
Substituting now the operator (A10) into (A9) we get the
update equation

z(k + 1) = (1− α)z(k) + α [Lkz(k) + (I − Lk)Tz(k)]
(A11)

which conforms to the stochastic KM iteration for which the
convergence result is stated.
Finally, notice that in the main article the α-averaging is
applied before the stochastic coordinate selection, that is the
update is given by

z(k + 1) = Lkz(k) + (I − Lk) [(1− α)z(k) + αTz(k)] .
(A12)

However it can be easily shown that (A11) and (A12)
do indeed coincide, hence proving the convergence of our
update scheme. �
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