
1

Convergence of the partition-based ADMM for a
separable quadratic cost function

Saverio Bolognani, Ruggero Carli and Marco Todescato

I. PROBLEM SETUP

Consider a network with set of nodes V = {1, . . . , s} and
fixed undirected communication graph G = (V, E). Let Ni
denote the set of neighbors of node i, that is, Ni = {j ∈
V | (i, j) ∈ E}. The graph G is assumed to be connected.
Consider the minimization of a separable cost function

min
x

s∑
i=1

Ji(x) (1)

where each Ji : RN → R is a strictly convex function and it
is known only to node i.

We make the following assumption.

Assumption 1. There exists a unique solution x∗ to the
problem in (1).

In this section we consider problems as in (1) with a specific
structure, that is a partition-based structure, that we next
describe. Let the vector x be partitioned as

x =
[
xT1 , . . . , x

T
s

]T
where, for i ∈ {1, . . . , s}, xi ∈ Rmi for some mi ∈ N such
that

∑s
i=1mi = N 1. The sub-vector xi represents the relevant

information at node i, referred to, hereafter, as the state of node
i. Additionally, let us assume that the local objective functions
have the same sparsity as the communication graph, namely,
for i ∈ {1, . . . , s}, the function Ji depend only on the state of
node i and on its neighbors, that is, on {xj , j ∈ Ni ∪ {i}}.
Then the problem we aim at solving distributively is

min
x

s∑
i=1

Ji(xi, {xj}j∈Ni) (2)

where the notation Ji(xi, {xj}j∈Ni
) means that Ji : RN → R

is in fact a function of xi and xj , j ∈ Ni.
To solve (2), in the next subsection we propose an iterative

algorithm with the following two features
• it can be implemented in a distributed way, namely, each

node needs to communicate only with its neighbors; and
• it has a partition-based structure, namely, each node keeps

in memory only a copy of its own state and copies of the
states of its neighbors.

S. Bolognani is with the Laboratory on Information and Decision Sys-
tems, Massachusetts Institute of Technology, Cambridge (MA), USA email:
saverio@mit.edu.

R. Carli and M. Todescato are with Department of Information Engi-
neering, University of Padova, Padova (PD), Italy email {carlirug |
todescat}@dei.unipd.it

1According to the above partition-based structure also the optimal solution
x∗ is partitioned as x∗ =

[
(x∗

1)
T , . . . , (x∗

s)
T
]T

In the sequel, with the notation x
(i)
j we denote the copy of

state xj stored in memory by node i.
Motivated by real applications where the optimization prob-

lems can be cast as linear least square estimation problems,
in the sequel we restrict our attention to the case where the
functions Ji have the following specific quadratic form,

Ji(xi, {xj}j∈Ni
) = (3)zi −Aiixi − ∑
j∈Ni

Aijxj

T

Qi

zi −Aiixi − ∑
j∈Ni

Aijxj

where zi ∈ Rri×mi , Aii ∈ Rri×mi , Aij ∈ Rri×mj (for j ∈
Ni), and Qi ∈ Rri×ri , Qi > 0 are given.

II. A PARTITION-BASED ADMM ALGORITHM

The method we propose in this subsection is a partition-
based version of the classical ADMM method which exploits
the equivalence between problem in (2) and the following
problem

min
x
(i)
i ,{x(i)

j }j∈Ni
, i∈V

s∑
i=1

Ji(x
(i)
i , {x(i)j }j∈Ni)

subject to x
(i)
i = z

(i,j)
i ; x

(i)
j = z

(i,j)
j

x
(i)
i = z

(j,i)
i ; x

(i)
j = z

(j,i)
j , ∀ j ∈ Ni.

(4)

Observe that the connectedness of the graph G and the
presence of the bridge variables z′s ensures that the optimal
solution of (4) is given by x(i)i = x∗i and x(i)j = x∗j .

The redundant constraints added in problem (4) with the
respect to problem (2), allow to find the optimal solution
through a distributed, iterative, partition-based implementation
that we next describe.

For ρ > 0, let the augmented Lagrangian be defined as

L =

s∑
i=1

Ji(x(i)i , {x(i)j }j∈Ni
) +

∑
j∈Ni

[
λ
(i,j)
i

(
x
(i)
i − z

(i,j)
i

)
+λ

(i,j)
j

(
x
(i)
j − z

(i,j)
j

)]
+
∑
j∈Ni

[
µ
(i,j)
i

(
x
(i)
i − z

(j,i)
i

)
+µ

(i,j)
j

(
x
(i)
j − z

(j,i)
j

)]
+
ρ

2

∑
j∈Ni

[
‖x(i)i − z

(i,j)
i ‖2

+‖x(i)j − z
(i,j)
j ‖2 + ‖x(i)i − z

(j,i)
i ‖2 + ‖x(i)j − z

(j,i)
j ‖2

]}
In our setup, we have that node i stores in memory and
updates the following four vectors which contain only local

2

information

X(i) =

 x
(i)
i{

x
(i)
j

}
j∈Ni

 ; Z(i) =

{
z
(i,j)
i

}
j∈Ni{

z
(i,j)
j

}
j∈Ni

 ;

Λ(i) =

{(

λ
(i,j)
i

)T}
j∈Ni{(

λ
(i,j)
j

)T}
j∈Ni

 ,

and

M(i) =

{(

µ
(i,j)
i

)T}
j∈Ni{(

µ
(i,j)
j

)T}
j∈Ni

 .

Let t denote the iteration index, then the ADMM cycles
through three steps:
(i) Dual ascent step on the Λ′s and M′s variables: Node i
updates the variables Λ(i) andM(i) through a gradient ascent
of L with step size ρ; precisely,

λ
(i,j)
i (t+ 1) = λ

(i,j)
i (t) + ρ

(
x
(i)
i (t)− z(i,j)i (t)

)
λ
(i,j)
j (t+ 1) = λ

(i,j)
j (t) + ρ

(
x
(i)
j (t)− z(i,j)j (t)

)
µ
(i,j)
i (t+ 1) = µ

(i,j)
i (t) + ρ

(
x
(i)
i (t)− z(j,i)i (t)

)
µ
(i,j)
j (t+ 1) = µ

(i,j)
j (t) + ρ

(
x
(i)
j (t)− z(j,i)j (t)

)
(ii) Update of X ′s variables: Node i updates the variable
X(i) minimizing the augmented Lagrangian while keeping all
the other variables fixed, namely,

X(i)(t+ 1) = argmin
X(i)

{
Ji

(
x
(i)
i , {x(i)j }j∈Ni

)
+
∑
j∈Ni

[
λ
(i,j)
i (t+ 1)

(
x
(i)
i − z

(i,j)
i (t)

)
+λ

(i,j)
j (t+ 1)

(
x
(i)
j − z

(i,j)
j (t)

)]
+
∑
j∈Ni

[
µ
(i,j)
i (t+ 1)

(
x
(i)
i − z

(j,i)
i (t)

)
+µ

(i,j)
j (t+ 1)

(
x
(i)
j − z

(j,i)
j (t)

)]
+
ρ

2

∑
j∈Ni

[
‖x(i)i − z

(i,j)
i (t)‖2 + ‖x(i)j − z

(i,j)
j (t)‖2

+‖x(i)i − z
(j,i)
i (t)‖2 + ‖x(i)j − z

(j,i)
j (t)‖2

]}
(iii) Update of Z ′s variables: Node i updates the variable
Z(i) minimizing the augmented Lagrangian while keeping all

the other variables fixed, namely,

Z(i)(t+ 1) =

argmin
Z(i)

∑
j∈Ni

[
λ
(i,j)
i (t+ 1)

(
x
(i)
i (t+ 1)− z(i,j)i

)
+λ

(i,j)
j (t+ 1)

(
x
(i)
j (t+ 1)− z(i,j)j

)]
+
∑
j∈Ni

[
µ
(j,i)
j (t+ 1)

(
x
(j)
j (t+ 1)− z(i,j)j

)
+µ

(j,i)
i (t+ 1)

(
x
(j)
i (t+ 1)− z(i,j)i

)]
+
ρ

2

∑
j∈Ni

[
‖x(i)i (t+ 1)− z(i,j)i ‖2 + ‖x(i)j (t+ 1)− z(i,j)j ‖2

+‖x(j)j (t+ 1)− z(i,j)j ‖2 + ‖x(j)i (t+ 1)− z(i,j)i ‖2
]}

Proposition 1. Consider the partition-based ADMM algo-
rithm described above. Let ρ be any real number. Then
the trajectory t →

{
X(i)(t)

}
converge exponentially to the

optimal solution, namely, for i ∈ {1, . . . , n}, x(i)j (t)→ x∗j for
all j ∈ Ni and, in particular,

x
(i)
i (t)→ x∗i .

Proof: Let X , Z, Λ and M be the vectors obtained
by stacking together the vectors

{
X(i)

}
i∈V ,

{
Z(i)

}
i∈V ,{

Λ(i)
}
i∈V and

{
M(i)

}
i∈V , respectively, namely,

X =

X(1)

X(2)

...
X(s)

 , Z =

Z(1)

Z(2)

...
Z(s)

 ,

Λ =

Λ(1)

Λ(2)

...
Λ(s)

 , M =

M(1)

M(2)

...
M(s)

 .
Now consider constraints in (4). From their linear structure of
Equations in (4), it follows that there exists suitable matrices
A and B such that they can be rewritten as

AX +BZ = 0,

where the mtrix A is such that ATA is invertible.
Hence problem in (4) can be equivalently formulated as

min
X

F (X)

subject to AX +BZ = 0
(5)

where F (X) =
∑s
i=1 Ji(X

(i)) is a convex function in X .
Observe that, from Assumption 1 and from the connectness
of the graph G, it follows that Problem in 5 admits an unique
solution X̄ such that x̄(i)i = x̄

(i)
i , for all j ∈ Ni, i ∈ V .

Problem in (5) can be solved by the standard ADMM
algorithm illustrated in [1] which consists on the following
three steps
(i) Dual ascent step on the Λ and M variables:[

Λ(t+ 1)
M(t+ 1)

]
=

[
Λ(t)
M(t)

]
+ ρ (AX(t) +BZ(t))

3

(ii) Update of X variable:

X(t+ 1) = argmin
X

{F (X)+

+
[
ΛT (t+ 1) MT (t+ 1)

]
(AX +BZ(t))

}
(iii) Update of Z variable:

Z(t+ 1) =

argmin
Z

{[
ΛT (t+ 1) MT (t+ 1)

]
(AX(t+ 1) +BZ)

}
It is easy to see that the above steps correspond to the steps (i),
(ii), (iii) of the partition-based ADMM algorithm previously
described.

Proposition 4.2 in [1] guarantees, that under the assumptions
that F is convex and the matrix ATA is invertible, the
trajectory t → X(t) converges to the optimal solution X̄ .
This concludes the proof.

Observe that, in order to perform step (i) and
step (ii), node i has to receive from its neighbors
the information

{
Z(j)(t)

}
j∈Ni

, while, in order to
perform step (iii), it has to receive the information{
X(j)(t+ 1),Λ(j)(t+ 1),M(j)(t+ 1)

}
j∈Ni

. Specifically,
during each iteration of the partition-based ADMM scheme
above described, two communication rounds between
neighboring nodes have to take place in order to complete
the updating actions, one before updating the multipliers Λ′s,
M′s and the X ′s variables and the other before updating the
Z ′s variables.

III. A PARTITION-BASED ADMM ALGORITHM FOR
QUADRATIC FUNCTIONS

However, for the case where the functions J ′is have the
particular quadratic structure illustrated in (3), the above
iterations can be greatly simplified. Indeed in this case the
partition-based ADMM algorithm reduces to a linear algorithm
requiring, during each iteration of its implementation, only
one communication round involving the X ′s variables. To
show that, we need to introduce some auxiliary variables.
Consider node i and, without loss of generality, assume
Ni =

{
j1, . . . , j|Ni|

}
. Then let

Ai =
[
Aii Aij1 . . . Aij|Ni|

]
,

Mi = diag
{
|Ni| Imi

, Imj1
, . . . , Imj|Ni|

}

G(i) =

G

(i)
i

G
(i)
j1
...

G
(i)
j|Ni|

 , F (i) =

F

(i)
i

F
(i)
j1
...

F
(i)
j|Ni|

 , B(i) =

B

(i)
i

B
(i)
j1
...

B
(i)
j|Ni|

where G(i)

i , F
(i)
i , B

(i)
i ∈ Rmi and G

(i)
jh
, F

(i)
jh
, B

(i)
jh
∈ Rmjh .

It turns out that Ai ∈ Rri×γi , Mi ∈ Rγi×γi and
G(i), F (i), B(i) ∈ Rγi , where γi = mi +

∑|Ni|
h=1mjh .

The partition-based ADMM algorithm for quadratic func-
tions is formally described as follows. The standing assump-
tion is that all the matrices ATi QiAi+Mi, i ∈ {1, . . . , n} are
invertible.

Processor states: For i ∈ {1, . . . , s}, node i stores a copy of
the variables X(i), G(i), F (i), B(i).

Initialization: Every node initializes the variables it stores in
memory to 0.

Transmission iteration: For t ∈ N, at the start of the t-th
iteration of the algorithm, node i transmits to node j,
j ∈ Ni, its estimates x(i)i (t), x(i)j (t). It also gathers the
t-th estimates of its neighbors, x(j)j (t), x(j)i (t), j ∈ Ni.

Update iteration: For t ∈ N, node i, i ∈ {1, . . . , s}, based
on the information received from its neighbors, perform
the following actions in order:
1) it computes G(i)(t+ 1) by setting

G
(i)
i (t) =

ρ

2

∑
j∈Ni

(
x
(i)
i (t)− x(j)i (t)

)
G

(i)
jh

(t) =
ρ

2

(
x
(i)
jh
− x(jh)jh

)
, 1 ≤ h ≤ |Ni|

2) it computes F (i)(t+ 1) by

F (i)(t+ 1) = F (i)(t) +G(i)(t)

3) it computes B(i)(t+ 1) by

B(i)(t+1) = 2ρMiX
(i)(t)−G(i)(t+1)−2F (i)(t+1)

4) it updates X(i) as follows

X(i)(t+ 1) =[
ATi QiAi +Mi

]−1 [
ATi Qizi +

1

2
B(i)(t+ 1)

]
The following proposition characterizes the performance of

the above algorithm.

Proposition 2. Consider the partition-based ADMM algo-
rithm described above. Let ρ be any real number. Assume that
the matrices ATi QiAi + Mi, i ∈ {1, . . . , s}, are invertible.
Then the trajectory t →

{
X(i)(t)

}
converge exponentially to

the optimal solution, namely, for i ∈ {1, . . . , n}, x(i)j (t)→ x∗j
for all j ∈ Ni and, in particular,

x
(i)
i (t)→ x∗i .

The proof is based on proving that the simplified ADMM
partition-based algorithm illustrated above is equivalent to the
partition-based ADMM algorithm described in Section II. To
do so, we next introduce the following lemmas.

Lemma 1. The update of the variable z(i,j)k , k ∈ {i, j}, is
given by

z
(i,j)
k (t+ 1) =

(
λ
(i,j)
k (t+ 1)

)T
+
(
µ
(j,i)
k (t+ 1)

)T
2ρ

+
x
(i)
k (t+ 1) + x

(j)
k (t+ 1)

2

Proof: Without loss of generality assume that k = i. The
value z(i,j)i (t+ 1) is computed by setting to zero the gradient

4

of the function

f(z
(i,j)
i)

= λ
(i,j)
i (t+ 1)

(
x
(i)
i (t+ 1)− z(i,j)i

)
+

+ µ
(j,i)
i (t+ 1)

(
x
(j)
i (t+ 1)− z(i,j)i

)
+

+
ρ

2
‖x(i)i (t+ 1)− z(i,j)i ‖2 +

ρ

2
‖x(j)i (t+ 1)− z(i,j)i ‖2.

We have

∂f(z
(i,j)
i)

∂z
(i,j)
i

= −λ(i,j)i (t+ 1)− µ(j,i)
i (t+ 1)

− ρ
(
x
(i)
i (t+ 1)− z(i,j)i

)
− ρ

(
x
(j)
i (t+ 1)− z(i,j)i

)
From ∂f(z

(i,j)
i)

∂z
(i,j)
i

= 0 we get the statement of the Lemma.

Lemma 2. If λ(i,j)k (0) = −µ(j,i)
k (0), k ∈ {i, j}, then

λ
(i,j)
k (t) = −µ(j,i)

k (t),

for t > 0.

Proof: The statement of the Lemma can be proved by
induction. Let λ(i,j)k (`) = −µ(j,i)

k (`), for ` = 0, . . . , t − 1.
Then the updates take the form

λ
(i,j)
k (t)

= λ
(i,j)
k (t− 1) + ρ

(
x
(i)
k (t− 1)− z(i,j)k (t− 1)

)T
= λ

(i,j)
k (t− 1)+

ρ

((
x
(i)
k (t− 1)

)T
−
λ
(i,j)
k (t− 1) + µ

(j,i)
k (t− 1)

2ρ

−

(
xik(t− 1) + x

(j)
k (t− 1)

)T
2

= λ

(i,j)
k (t− 1) + ρ

(
xik(t− 1)− x(j)k (t− 1)

)T
2

where the second equality follows from the previous Lemma,
while the second equality comes from the inductive hypothe-
sis. In a similar way one can obtain

µ
(j,i)
k (t) = µ

(j,i)
k (t− 1) + ρ

(
xjk(t− 1)− x(i)k (t− 1)

)T
2

,

that, together with the inductive hypothesis, implies that
λ
(i,j)
k (t) = −µ(j,i)

k (t).

Lemma 3. If λ(i,j)k (0) = −µ(j,i)
k (0), k ∈ {i, j}, then

z
(i,j)
k (t) = z

(j,i)
k (t),

for t ≥ 0.

Proof: From Lemma 1 and Lemma 2, we have

z
(i,j)
k (t) =

(
λ
(i,j)
k (t)

)T
+
(
µ
(j,i)
k (t)

)T
2ρ

+
x
(i)
k (t) + x

(j)
k (t)

2

=
x
(i)
k (t) + x

(j)
k (t)

2
= z

(j,i)
k (t)

Lemma 4. If λ(i,j)k (0) = µ
(i,j)
k (0), k ∈ {i, j}, then

λ
(i,j)
k (t) = µ

(i,j)
k (t),

for t ≥ 0.

Proof: The Lemma can be prove by induction. Let us
assume that λ(i,j)k (`) = µ

(i,j)
k (`) for ` = 0, . . . , t − 1. From

Lemma 1 and Lemma 2, we have that

z
(i,j)
k (t) =

x
(i)
k (t) + x

(j)
k (t)

2
and, in turn, that

λ
(i,j)
k (t) =λ

(i,j)
k (t− 1)+

+ ρ

(
x
(i)
k (t− 1)−

x
(i)
k (t− 1) + x

(j)
k (t− 1)

2

)T
µ
(i,j)
k (t) =µ

(i,j)
k (t− 1)+

+ ρ

(
x
(i)
k (t− 1)−

x
(j)
k (t− 1) + x

(i)
k (t− 1)

2

)T

From Lemmas 1 and 2 we get the following corollary.

Corollary 1. If for t ≥ 0, λ(i,j)k (t) = −µ(j,i)
k (t) = µ

(i,j)
k (t) =

−λ(j,i)k (t), k ∈ {i, j}, then

z
(i,j)
k (t+ 1) = z

(j,i)
k (t+ 1) =

x
(i)
k (t+ 1) + x

(j)
k (t+ 1)

2
;

λ
(i,j)
k (t+ 1) = λ

(i,j)
k (t) +

ρ

2

(
x
(i)
k − x

(j)
k

)
.

The above Lemmas allow us to simplify the expression of
the augmented Lagragian and, precisely, we can write that

L =

s∑
i=1

{
Ji(x

(i)
i , {x(i)j }j∈Ni)+

+
∑
j∈Ni

[
2λ

(i,j)
i

(
x
(i)
i − z

(i,j)
i

)
+ 2λ

(i,j)
j

(
x
(i)
j − z

(i,j)
j

)]

+ρ
∑
j∈Ni

[
‖x(i)i − z

(i,j)
i ‖2 + ‖x(i)j − z

(i,j)
j ‖2

]
We have the following Lemma.

Lemma 5. The minimization over the vector X(i) is given by

X
(i)
i (t+ 1) = argmin

X(i)

{
Ji(X

(i)) + ρ
(
X(i)

)T
MiX

(i)+

−
(
X(i)

)T
B(i)(t+ 1)

}

5

where B(i)(t+ 1) and Mi are defined as in the description of
the algorithm.

Proof:

argmin
X(i)

{
Ji(X

(i)
i)+

+
∑
j∈Ni

[
2λ

(i,j)
i

(
x
(i)
i − z

(i,j)
i

)
+ 2λ

(i,j)
j

(
x
(i)
j − z

(i,j)
j

)]

+ρ
∑
j∈Ni

[
‖x(i)i − z

(i,j)
i ‖2 + ‖x(i)j − z

(i,j)
j ‖2

] =

argmin
X(i)

{
Ji(X

(i)) + 2
(
F (i)(t+ 1)

)T
X(i)+

+ ρ |Ni| ‖x(i)i ‖
2 + ρ

∑
j∈Ni

‖x(i)j ‖
2+

−2ρ
(
x
(i)
i

) ∑
j∈Ni

z
(i,j)
i (t)− 2ρ

∑
j∈Ni

(
x
(i)
j

)T
z
(i,j)
j (t)

where

F (i)(t) =

(∑
j∈Ni

λ
(i,j)
i (t)

)T(
λ
(j1,i)
j1

(t)
)T

...(
λ
(j|Ni|,i)

j|Ni|
(t)
)T

Let

Mi = diag
{
|Ni| Imi

, Imj1
, . . . , Imj|Ni|

}
.

We have that

Ji(X
(i)) + 2

(
F (i)(t+ 1)

)T
X(i)+

+ ρ |Ni| ‖x(i)i ‖
2 + ρ

∑
j∈Ni

‖x(i)j ‖
2+

− 2ρ
(
x
(i)
i

) ∑
j∈Ni

z
(i,j)
i (t)− 2ρ

∑
j∈Ni

(
x
(i)
j

)T
z
(i,j)
j (t) =

Ji(X
(i)) + 2

(
F (i)(t+ 1)

)T
X(i) + ρ

(
X(i)

)T
MiX

(i)+

− 2ρ
(
x
(i)
i

)T ∑
j∈Ni

x
(i)
i (t) + x

(j)
i (t)

2
+

− 2ρ
∑
j∈Ni

(
x
(i)
j

)T x(i)j (t) + x
(j)
j (t)

2

We can write

− 2ρ
(
x
(i)
i

) ∑
j∈Ni

x
(i)
i (t) + x

(j)
i (t)

2
+

− 2ρ
∑
j∈Ni

(
x
(i)
j

)T x(i)i (t) + x
(j)
i (t)

2
=

− ρ
(
X(i)

)T
MiX

(i)(t)− ρ
(
x
(i)
i

)T ∑
j∈Ni

x
(j)
i (t)+

− ρ
∑
j∈Ni

(
x
(i)
j

)T
x
(j)
j (t) =

− 2ρ
(
X(i)

)T
MiX

(i)(t)+

− ρ
(
x
(i)
i

)T ∑
j∈Ni

(
x
(j)
i (t)− x(i)i (t)

)
+

− ρ
∑
j∈Ni

(
x
(i)
j

)T (
x
(j)
j (t)− x(i)j (t)

)
=

− 2ρ
(
X(i)

)T
MiX

(i)(t) +
(
X

(i)
i

)T
G(i)(t)

where G(i) is defined as

G
(i)
i (t) = ρ

∑
j∈Ni

(
x
(i)
i (t)− x(j)i (t)

)
G

(i)
jh

(t) = ρ
(
x
(i)
jh

(t)− x(jh)(t)jh

)
, 1 ≤ h ≤ |Ni|

Summarizing we have that

X
(i)
i (t+ 1) = argmin

X(i)

{
Ji(X

(i)) + ρ
(
X(i)

)T
MiX

(i)+

+
(

2F (i)(t+ 1)
)T

X(i) − 2ρ
(
X(i)

)T
MiX

(i)(t)+

+
(
X

(i)
i

)T
G(i)(t)

}
.

Hence

X
(i)
i (t+ 1) = argmin

X(i)

{
Ji(X

(i)) + ρ
(
X(i)

)T
MiX

(i)+

−
(
X(i)

)T
B(i)(t+ 1)

}
where

B(i)(t+ 1) = 2ρMiX
(i)(t)−G(i)(t)− 2F (i)(t+ 1)

REFERENCES

[1] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods. Athena Scientific, 1997.

