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An Asynchronous Consensus-Based Algorithm for
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Abstract—In this paper, we address the problem of optimal
estimating the position of each agent in a network from relative
noisy vectorial distances with its neighbors by means of only local
communication and bounded complexity, independent of network
size and topology. We propose a consensus-based algorithm with
the use of local memory variables which allows asynchronous
implementation, has guaranteed exponential convergence to the
optimal solution under simple deterministic and randomized com-
munication protocols, and requires minimal packet transmission.
In the randomized scenario, we then study the rate of convergence
in expectation of the estimation error and we argue that it can be
used to obtain upper and lower bound for the rate of converge in
mean square. In particular, we show that for regular graphs, such
as Cayley, Ramanujan, and complete graphs, the convergence rate
in expectation has the same asymptotic degradation of memoryless
asynchronous consensus algorithms in terms of network size. In
addition, we show that the asynchronous implementation is also
robust to delays and communication failures. We finally com-
plement the analytical results with some numerical simulations,
comparing the proposed strategy with other algorithms which
have been recently proposed in the literature.

Index Terms—Wireless-sensor networks (WSNs), distributed
localization algorithms, consensus algorithms.

I. INTRODUCTION

THE proliferation of relatively inexpensive devices capa-
ble of communicating, computing, sensing, interacting

with the environment, and storing information is promising
an unprecedented number of novel applications throughout the
cooperation of these devices toward a common goal. These
applications include swarm robotics, wireless-sensor networks
(WSNs), smart energy grids, smart traffic networks, and smart
camera networks. These applications also pose new challenges,
of which scalability is one of the major ones. Scalability is
intended as the ability for an application to continue functioning
without any dramatic performance degradation even if the
number of devices involved keeps increasing. In particular, an
application is scalable if it is not necessary to increase hardware
resources nor to adopt more complex software algorithms in
each device even if the total number of devices increases.
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In this paper, we address the problem of designing algorithms
that are capable of reconstructing the optimal estimate of the
location of a device based on noisy relative measurements with
respect to its neighbors in a connected network. In particular,
we want to design distributed algorithms that allow each device
to reconstruct its own position only from exchanging informa-
tion with its neighbors, regardless of the size of the network.
Moreover, these algorithms must be scalable, that is, their com-
putational complexity, bandwidth, and memory requirements
should be independent of the network size. Finally, the estimate
provided should asymptotically converge to the solution of a
centralized optimization problem.

Distributed optimization has being attracting ever-growing
attention in the past years since many problems in the large-
scale network have been cast as convex optimization problems.
In particular, the problem at hand in this paper can be cast as
the following unconstrained optimization problem:

min
x1,...,xN

|E|∑
(i,j)∈E

fij(xi − xj) (1)

where xi ∈ R
�, E represents all of the pairs of nodes for

which relative measurements are available and fij are convex
functions. Many problems can be written in this framework,
such as sensor localization [1], [2], sensor calibration [3],
clock synchronization [4], and camera localization [5], [6]. For
example, in the context of localization from vectorial relative
distances in a plane, the cost functions fij are given by

fij(xi − xj) = ‖xi − xj − zij‖2

where zij ∈ R
� is the noisy measurement of the relative (vec-

tor) distance of node i from node j. As a consequence, the
optimization problem in (1) becomes a distributed least-square
problem. Several scalable distributed solutions to this prob-
lem are already available in the literature. In [1] and [2],
the authors propose a distributed Jacobi solution based on
a synchronous implementation, which was later extended to
account for asynchronous communication and packet losses [7].
The same approach has been independently proposed in [8]
in the context of distributed time synchronization in WSNs.
Differently, in [3], a broadcast consensus-based algorithm,
which is suitable for asynchronous implementation, is proposed
but the local estimates do not converge and exhibit oscillatory
behavior around the optimal value. A similar approach has been
proposed in [9] and [10], where the local ergodic average of
the gossip asynchronous algorithm is proved to converge to
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the optimal value as 1/k, where k is the number of iterations.
An alternative approach based on the Kaczmarz method for
the solution of general linear systems has been suggested in
[11]; however, a practical asynchronous implementation for
distributed localization from relative measurements, which sat-
isfies the specific edge and node activation probabilities dictated
by the algorithm, is not given; moreover, no robustness analysis
in terms of delays is provided.

The main contribution of this paper is to propose a novel
asynchronous algorithm whose main idea consists of casting the
estimation problem as a consensus problem under some suitable
changes of coordinates, and then to add some extra memory
variables at each node to keep track of the estimated location
of its neighbors, that is, the nodes from which they collected
the relative distance measurements. Estimates of these local
variables eventually converge to the estimates of the neighbors,
thus guaranteeing the convergence of the entire algorithm, at the
price of some delay. This strategy has several relevant advan-
tages, namely: 1) it is scalable; 2) it has proven the exponential
rate of convergence under mild assumptions; 3) is robust to
packet losses and delays; and 4) requires the transmission of
a single communication packet per iteration. This last feature is
particularly relevant for WSN applications since agents have a
limited energy budget and communication is more expensive
than computation from an energy standpoint. We also study
the performance of the proposed algorithm in terms of the
convergence rate. This task is particularly challenging since the
proposed algorithm turns out to be a higher order consensus
algorithm, for which little analytic tools are available. In fact,
the few works available in the literature, which address the
rate of convergence of randomized higher order consensus
algorithms, are limited to the convergence in expectation [12].
In this paper, we exactly compute the rate of convergence in
expectation of our algorithm for regular graphs, and through
extensive numerical simulations, we conjecture that it also
provides an upper bound for the rate of convergence in mean
square. Moreover, we show that, asymptotically, for many types
of regular graphs, such as Cayley, Ramanujan, and complete
graphs, such a rate of convergence in expectation is reduced by
a factor N , where N is the number of nodes, which is the same
of standard memoryless asynchronous consensus algorithms,
thus implying that asymptotically in N , the reduction of rate
of convergence due to memory is negligible.

We also prove the convergence of the proposed algorithm
when bounded delays and packet losses are present, thus mak-
ing it particularly suitable for applications using lossy wireless
communication. We finally complement the theoretical results
with some numerical simulations which show that the proposed
algorithm has performance in terms of the rate of convergence
per iteration which is slightly slower than the fastest algorithms
available in the literature. However, it greatly outperforms them
if the rate of convergence is computed in terms of the number
of exchanged messages, that is, the estimation error obtained
by sending a fixed number of packets is much lower for our
proposed algorithm than the other algorithms available in the
literature.

This paper is organized as follows. In Section II, we formu-
late the problem. In Section III, we introduce the synchronous

consensus-based algorithm (denoted as s-CL). In Section IV,
we propose a more realistic asynchronous implementation of
the s-CL algorithm (denoted as a-CL). In Section V, we es-
tablish the convergence of the a-CL algorithm and we provide
some bounds on the rate of convergence in mean square. In
Section VI, we show that the a-CL algorithm is robust to delays
and communication failures. In Section VII, we provide some
numerical results comparing the a-CL algorithm to other strate-
gies recently proposed in the literature. Finally, in Section VIII,
we gather our conclusions.

A. Mathematical Preliminaries

Before proceeding, we collect some useful definitions and
notations. In this paper, G = (V, E) denotes a directed graph,
where V = {1, . . . , N} is the set of vertices and E is the set of
directed edges, that is, a subset of V × V . More precisely, the
edge (i, j) is incident on node i and node j and is assumed to
be directed away from i and directed toward j. The graph G is
said to be bidirected if (i, j) ∈ E implies (j, i) ∈ E .

Given a directed graph G = (V, E), a directed path in G
consists of a sequence of vertices (i1, i2, . . . , ir) such that
(ij+1) ∈ E for every j ∈ {1, . . . , r − 1}. An undirected path in
G consists of a sequence of vertices (i1, i2, . . . , ir) such that ei-
ther (ij , ij+1) ∈ E or (ij+1, ij) ∈ E for every j ∈ {1, . . . , r −
1}.1 The directed graph G is said to be strongly connected
(respectively, weakly connected) if for any pair of vertices (i, j)
a directed path (respectively, an undirected path) exists, con-
necting i to j. Given the directed graph G, the set of neighbors
of node i, denoted by Ni, is given by Ni = {j ∈ V | (i, j) ∈
E}. A directed graph is said to be regular if all of the nodes
have the same number of neighbors.

Given a directed graph G = (V, E) with |E| = M , let the
incidence matrix A ∈ R

M×N of G be defined as A = [aei],
where aei = 1, −1, 0, if edge e is incident on node i and
directed away from it, is incident on node i and directed toward
it, or is not incident on node i, respectively.

Let 1N be the N -dimensional column vector with all com-
ponents equal to one. If there is no risk of confusion, we will
drop the subscript N . Given a matrix B, we denote with B†

its pseudoinverse. Given a vector v with vT , we denote its
transpose. A matrix P ∈ R

N×N is said to be stochastic if all
of its elements are non-negative and P1 = 1. Moreover, it is
said to be doubly stochastic if it is stochastic and, in addition,
1TP = 1T . A stochastic matrix P is primitive if it has only
one eigenvalue equal to 1 and all other eigenvalues are strictly
inside the unitary circle. With the symbol ρess(P ), we denote
the essential spectral radius of P (see [13]), namely, the second
largest eigenvalue of P in absolute value.

The symbol E denotes the expectation operator. Given
two functions f, g : N �−→ R, we say that f ∈ o(g) if
limn→∞(f(n)/g(n)) = 0.

1Basically, an undirected path is a path from a node to another node that does
not respect the orientation of the edges.
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II. PROBLEM FORMULATION

The problem we deal with is that of estimating N variables
x1, . . . , xN from noisy measurements of the form

zij := xi − xj + nij , i, j ∈ {1, . . . , N} (2)

where nij is its zero-mean measurement noise. Although
all results in this work apply to general vector-valued vari-
ables, for the sake of simplicity, in this paper, we assume
that xi ∈ R, i ∈ {1, . . . , N}. This estimation problem can be
naturally associated with a measurement graph Gm = (V ; Em).
The vertex set V of the measurement graph consists of the set
of nodes V = {1, . . . , N}, where N is the number of nodes,
while its edge set Em consists of all of the ordered pairs of
nodes (i, j) such that a noisy measurement of the form (2)
between i and j is available to node i. The measurement errors
on distinct edges are assumed uncorrelated. The measurement
graph Gm is a directed graph since (i, j) ∈ Em implies that
the measurement zij is available to node i, while (j, i) ∈ Em
implies the measurement zji is available to node j, and these
two are, in general, distinct.

Next, we formally state the problem we aim at solving. Let
x ∈ R

N be the vector obtained by stacking together all of the
variables x1, . . . , xN , that is, x = [x1, . . . , xN ]T , and let z ∈
R

M and n ∈ R
M , where M = |Em| are the vectors obtained

by stacking all of the measurements together zij and the noises
nij , respectively. In addition, let Rij > 0 denote the covariance
of the zero mean error nij , that is, Rij = E[n2

ij ], and let R ∈
R

M×M be the diagonal matrix collecting in its diagonal the
covariances of the noises nij , (i, j) ∈ Em, that is, R = E[nnT ].
Observe that (2) can be rewritten in a vector form as

z = Ax+ n.

Now define the set

χ := argmin
x∈RN

(z−Ax)TR−1(z−Ax).

The goal is to construct an optimal estimate xopt of x in a least
square sense, namely, to compute

xopt ∈ χ. (3)

Assume the measurement graph Gm to be weakly connected,
then it is well known (see [2]) that

χ =
{
(ATR−1A)

†
ATR−1z+ α1

}
.

Moreover let

x∗
opt = (ATR−1A)

†
ATR−1z

then x∗
opt is the minimum norm solution of (3), i.e.,

x∗
opt = min

xopt∈χ
‖xopt‖.

The matrix ATR−1A is called in literature the Weighted Gen-
eralized Grounded Laplacian [2].

Remark II.1: Observe that just with relative measurements,
determining the x′

is is only possible up to an additive constant.

This ambiguity might be avoided by assuming that a node (say
node 1) is used as reference node, i.e., x1 = 0.

III. SYNCHRONOUS DISTRIBUTED

CONSENSUS-BASED SOLUTION

To compute an optimal estimate xopt directly, one needs
all of the measurements and their covariances (z, R), and the
topology of the measurement graph Gm. In this section, the
goal is to compute the optimal solution in a distributed fashion,
employing only local communications. In particular, we assume
that a node i and another node j can communicate with each
other if either (i, j) ∈ Em or (j, i) ∈ Em. Accordingly, we in-
troduce the communication graph Gc(V, Ec), where (i, j) ∈ Ec
if either (i, j) ∈ Em or (j, i) ∈ Em. Observe that, if (i, j) ∈ Ec,
then also (j, i) ∈ Ec, namely, Gc is a bidirected graph. From
now on, Ni denotes the set of neighbors of node i in the
communication graph Gc(V, Ec).

In what follows, we introduce a distributed solution which is
based on a standard linear consensus algorithm. A discussion
of the linear consensus algorithm can be found in the review
papers [14], [15]; hence, we refrain from describing it here. In-
stead, we make the presentation of the algorithm self-contained.
First, we assume that the communications among the nodes
are synchronous, namely, all nodes perform their transmissions
and updates at the same instant, and design the algorithm for
this scenario. We refer to this algorithm as the synchronous
consensus-based localization algorithm (denoted hereafter as
a s-CL algorithm). In Section IV, we will modify the s-CL al-
gorithm to make it suitable for asynchronous communications.
We assume that before running the s-CL algorithm, the nodes
exchange with their neighbors their relative measurements as
well as the associated covariances. So every node has access to
the measurements on the edges that are incident to it, whether
the edge is directed to or away from it. Each node uses the
measurements obtained initially for all future computations.
The s-CL algorithm is formally described as follows.
Processor states: For i ∈ {1, . . . , N}, node i stores in mem-

ory the measurements {zij , (i, j) ∈ Em}, and {zji, (j, i) ∈
Em}, and the associated covariances {Rij , (i, j) ∈ Em}
and {Rji, (j, i) ∈ Em}. Moreover, node i stores in memory
an estimate x̂i of xi.

Initialization: For i ∈ {1, . . . , N}, node i initializes its esti-
mate x̂i(0) to any arbitrary value.

Transmission iteration: For k ∈ N, at the start of the (k + 1)th
iteration of the algorithm, node i transmits its estimate
x̂i(k) to all of its neighbors. It also gathers the kth esti-
mates of its neighbors x̂j(k), j ∈ Ni.

Update iteration: For k ∈ N, node i, i ∈ {1, . . . , N}, based
on the information received from its neighbors, updates its
estimate as follows:

x̂i(k + 1) := piix̂i(k) +
∑
j∈Ni

pij x̂j(k) + bi

where

bi = ε
∑

(i,j)∈Em

R−1
ij zij − ε

∑
(j,i)∈Em

R−1
ji zji
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and where

pij =

⎧⎪⎨
⎪⎩

ε
(
R−1

ij +R−1
ji

)
, if (i, j) ∈ Em and (j, i) ∈ Em

εR−1
ij , if (i, j) ∈ Em and (j, i) 	∈ Em

εR−1
ji , if (j, i) ∈ Em and (i, j) 	∈ Em

and

pii = 1−
∑
j∈Ni

pij

with ε being a positive constant a priori assigned to the
nodes.

Now, let P ∈ RN×N be the matrix defined by the weights pij
introduced before. One can see that this matrix P is equal to

P = I − εATR−1A.

Moreover, let

b = εATR−1z

and let x̂(k) = [x̂1(k), . . . , x̂N (k)]T . Then, the s-CL algorithm
can be written in a compact form as

x̂(k + 1) = P x̂(k) + b.

To characterize the convergence properties of the s-CL algo-
rithm, we next introduce two definitions and a crucial property
of the matrix P . First, let dmax = max{|Ni|, i ∈ {1, . . . , N}}.
Second, let Rmin = min{Rij , (i, j) ∈ Em}. Observe that if 0 <
ε < 1/(2dmaxR

−1
min), then the matrix P is stochastic. If, in

addition, the measurement graph Gm is weakly connected and,
consequently, if communication graph Gc is strongly connected,
then the matrix P is primitive. Under these assumptions, we
have the following Proposition:

Proposition III.1: Consider the s-CL algorithm running over
a weakly connected measurement graph Gm. Let ε be such that
0 < ε < 1/(2dmaxR

−1
min). Moreover, let x̂i, i ∈ {1, . . . , N} be

initialized to any real number. Then, the following two facts
hold true:

• the evolution k → x̂(k) asymptotically converges to an
optimal estimate xopt ∈ χ, that is, there exists α ∈ R,
such that

lim
k→∞

x̂(k) = x∗
opt + α1

where α linearly depends on x̂(0).
• the convergence is exponential, namely, there exists C >
0, ρess < 1 such that

‖x̂(k)−
(
x∗
opt + α1

)
‖ ≤ Cρkess(P )‖x̂(0)−

(
x∗
opt + α1

)
‖.

Proof: We start by proving item i). Let us define the
change of variable ξ = x̂− x∗

opt. Since x∗
opt = Px∗

opt + b, it
is possible to write

x̂(k + 1)− x∗
opt =P x̂(k) + b− x∗

opt

=P x̂(k) + b−
(
Px∗

opt + b
)

=P
(
x̂(k)− x∗

opt

)

and, in turn, ξ(k + 1) = Pξ(k). This equation describes the
iteration of the classical consensus algorithm. Since P is a
primitive doubly stochastic matrix, we have that

ξ(k) → 11T

N
ξ(0)

where ξ(0) = x̂(0)− x∗
opt. This implies that

x̂(k) → x∗
opt +

11T

N
x̂(0)− 11T

N
x∗
opt.

The fact that (11T /N)x∗
opt = 0 concludes the proof of item i).

Concerning item ii), it is well known [13] that the con-
vergence rate of a consensus algorithm ruled by a primitive
matrix P is exponential, whose delay coefficient is given by
the essential spectral radius ρess(P ). �

Remark III.2: The s-CL algorithm is similar to the algorithm
proposed in [9]. However, in [9], the measurement graph is
assumed to be undirected, namely, both measurements zij and
zji are available to node i and j under the additional assumption
that zij = −zji.

Remark III.3: The authors in [16] solved the problem for-
mulated in (3) by proposing a synchronous algorithm that
implements the Jacobi iterative method. The performance of
this algorithm, in terms of the rate of convergence to the optimal
solution, is similar for many families of measurement graphs, to
the performance of the synchronous consensus-based algorithm
introduced in this section.

IV. ASYNCHRONOUS IMPLEMENTATION OF THE

DISTRIBUTED CONSENSUS-BASED SOLUTION

The distributed algorithm illustrated in the previous section
has an important limitation: it is applicable only to sensor net-
works with synchronized and reliable communication. Indeed,
the s-CL algorithm requires that there exists a predetermined
common communication schedule for all nodes and, at each
communication round, each node must simultaneously and
reliably communicate its information. The aim of this section
is to reduce the communication requirements of the s-CL algo-
rithm, in particular, in terms of synchronization. To do so, we
next introduce the asynchronous Consensus-based Localization
algorithm (denoted as a-CL hereafter). This algorithm is based
on an asymmetric broadcast communication protocol. Different
from the s-CL, at each iteration of the a-CL, there is only one
node transmitting information to all of its neighbors. Since
the actual value of neighboring estimates is not available at
each iteration, we assume that each node stores in its local
memory a copy of the neighbors’ variables recorded from the
last communication received. For j ∈ Ni, we denote by x̂

(i)
j (k)

the estimate of xj kept in i’s local memory at the end of the
kth iteration. If node j performed its last transmission to node i
during the hth iteration, h ≤ k, then x̂

(i)
j (k) = x̂j(h).

The a-CL algorithm is formally described as follows.
Processor states: For i ∈ {1, . . . , N}, node i stores in memory

the measurements zij , zji and the covariances Rij , Rji for
all j ∈ Ni. Moreover, node i stores in memory also the
estimate x̂i of xi and, for j ∈ Ni, an estimate x̂

(i)
j of x̂j .
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Initialization: Every node i initializes its estimate x̂i and the
variables x̂(i)

j , j ∈ Ni to arbitrary values.
Transmission iteration: For k ∈ N, at the start of the (k + 1)th

iteration of the algorithm, there is only one node, say i,
which transmits information to its neighbors; pre-
cisely, node i sends the value of its estimate x̂i(k) to
node j, j ∈ Ni.

Update iteration: For j ∈ Ni, node j performs the following
actions in order

i) it sets x̂
(j)
i (k + 1) = x̂i(k), while for s ∈ Nj \ {i},

x̂
(j)
s is left unchanged, that is, x̂(j)

s (k + 1) = x̂
(j)
s (k);

ii) it updates x̂j as

x̂j(k + 1) := pjj x̂j(k) +
∑
h∈Nj

pjhx̂
(j)
h (k + 1) + bj . (4)

Clearly for s 	∈ Ni, x̂s is left unchanged during the
(k + 1)th iteration of the algorithm, that is, x̂s(k + 1) =
x̂s(k).

Remark IV.1: Observe that the aforementioned algorithm has
been described assuming that the communication channels are
reliable, that is, no packet losses occur, and that the commu-
nication delays are negligible, that is, when node i performs
a transmission, the estimate x̂i is instantaneously used by
its neighbors. We will come back on these nonidealities in
Section VI.

Next, we rewrite the updating step of the a-CL in a more
compact way. Observe preliminarily that under the assumption
of reliable communications and by denoting k̄ as the first
iteration after which all nodes have transmitted at least once,
then the estimate of node xi stored in the neighbors of node i
is always the same, that is, for all k ≥ k̄ and �, j ∈ Ni, we have
x̂
(�)
i (k) = x̂

(j)
i (k). Moreover, if we denote t′i(k) as the iteration

during which node i has performed its last transmission up to
iteration k of the a-CL (that is, x̂i(t

′
i(k)) is the value of x̂i

at its last communication round), then for j ∈ Ni, x̂
(j)
i (t′′) =

x̂i(t
′
i(k)) for all t′′ such that t′i(k) < t′′ ≤ k.

Now let us define x′
i(k) = x̂i(k) and x′′

i (k) = x̂i(t
′
i(k))

and, accordingly, let x′(k)=[x′
1(k), . . . , x

′
N (k)]T and x′′(k)=

[x′′
1(k), . . . , x

′′
N (k)]T . Moreover, let Qi ∈ R

2N×2N be de-
fined as

Qi =

[
Q

(i)
11 Q

(i)
12

Q
(i)
21 Q

(i)
22

]
(5)

where

Q
(i)
11 =

∑
h 	∈Ni

ehe
T
h +

∑
j∈Ni

(
pjjeje

T
j + pjieje

T
i

)

Q
(i)
12 =

∑
j∈Ni

ej

⎛
⎝ ∑

h∈Nj/i

pjhe
T
h

⎞
⎠

Q
(i)
21 = eie

T
i

Q
(i)
22 = I − eie

T
i

with e�, � ∈ {1, . . . , N} being the N -dimensional vector hav-
ing all of the components equal to zero except the �th compo-
nent which is equal to 1. Observe that for i ∈ {1, . . . , N}, Qi

is a 2N -dimensional stochastic matrix. Finally, let

Bi =

[∑
j∈Ni

eTj b

0N

]
.

Assume, w.l.o.g., that node i is the node performing the trans-
mission during the (k + 1)th iteration of the a-CL. Hence, the
updating step of a-CL can be written in vector form as

[
x′(k + 1)

x′′(k + 1)

]
= Qi

[
x′(k)

x′′(k)

]
+Bi, k ≥ k̄. (6)

Now let us introduce the auxiliary variable

ξ(k) =

[
x′(k)

x′′(k)

]
−
[
x∗
opt

x∗
opt

]
.

By exploiting the fact that, for i ∈ {1, . . . , N}
[
x∗
opt

x∗
opt

]
= Qi

[
x∗
opt

x∗
opt

]
+Bi (7)

we have that the variable ξ satisfies the following 2N -
dimensional recursive equation

ξ(k + 1) = Qiξ(k). (8)

Observe that x̂(k) → x∗
opt + α1 if and only if ξ(k) → α1.

Moreover, since Qi is a stochastic matrix for any i ∈
{1, . . . , N}, we have that (8) represents a 2N -dimensional
time-varying consensus algorithm.

In the following sections, we analyze the convergence prop-
erties and the robustness to delays and packet losses of the a-CL
algorithm by studying system (8) resorting to the mathematical
tools developed in the literature of the consensus algorithms.
In particular, we will provide our results considering two dif-
ferent scenarios which are formally described in the following
definitions.

Definition IV.2 (Randomly Persistent Communicating Net-
work): A network of N nodes is said to be a randomly
persistent communicating network if there exists a N -upla
(β1, . . . , βN ) such that βi > 0, for all i ∈ {1, . . . , N}, and∑N

i=1 βi = 1, and such that, for all k ∈ N

P[the transmitting node at iteration k is node i] = βi.

Definition IV.3 (Uniformly Persistent Communicating Net-
work): A network of N nodes is said to be a uniformly per-
sistent communicating network if there exists a positive integer
number τ such that, for all k ∈ N, each node transmits the value
of its estimate to its neighbors at least once within the time
interval [k, k + τ).
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V. PERFORMANCE ANALYSIS OF A-CL ALGORITHM

UNDER RANDOMLY PERSISTENT COMMUNICATIONS

The following result characterizes the convergence prop-
erties of the a-CL when the network is randomly persistent
communicating.

Proposition V.1: Consider a randomly persistent communi-
cating network of N nodes running the a-CL algorithm over a
weakly connected measurement graph Gm. Let ε be such that
0 < ε < 1/(2dmaxR

−1
min). Moreover, let x̂i, i ∈ {1, . . . , N},

x̂
(i)
j , j ∈ Ni, be initialized to any real number. Then the fol-

lowing facts hold true
i) the evolution k → x̂(k) converges almost surely to an

optimal solution xopt ∈ χ, that is, there exists α ∈ R

such that

P

[
lim
k→∞

x̂(k) = x∗
opt + α1

]
= 1

ii) the evolution k → x̂(k) is exponentially convergent in
the mean-square sense, that is, there exists C > 0 and
0 ≤ ρ < 1 such that

lim
k→∞

E

[∥∥x̂(k)− (
x∗
opt + α1

)∥∥2]
≤ CρkE

[∥∥x̂(0)− (
x∗
opt + α1

)∥∥2] .
Proof: The proof of Proposition V.1 is based on proving

the convergence to a consensus of (8) using the mathematical
tools developed in [17]. Let σ be the random process such that
σ(k) denotes the node performing the transmission action at the
beginning of the k + 1th iteration. Clearly, in the randomized
scenario we are considering, we have that, for i ∈ {1, . . . , N},
P[σ(k) = i] = βi for all k. Let

S(k) =

k∏
h=0

Qσ(h).

Observe that S(k) inherits the same block structure of the
matrices {Qi}Ni=1; namely, we can write

S(k) =

[
S11(k) S12(k)
S21(k) S22(k)

]
.

As a consequence of [17, Theor. 3.1] the a-CL reaches almost
surely consensus if and only if, for every i and j in V

P[Eij ] = 1 (9)

where

Eij = {∃�,∃k|Si�(k)Sj�(k) > 0} .

Now observe that since the measurement graph is weakly
connected, then the communication graph is a connected undi-
rected graph. This fact, together with the fact that the diagonal
elements of Q(i)

11 are all positive for any i ∈ {1, . . . , N}, implies
that there exists almost surely k̄ such that, for all k′ ≥ k̄,
all elements of the matrix S11(k

′) are strictly greater than 0.
Assume now, without loss of generality, that σ(k′) = i, for

k′ ≥ k. Then, since the ith row of S21(k
′ + 1) is equal to

eie
T
i S11(k

′), it turns out that all elements of the ith row of
S21(k

′ + 1) are strictly greater than 0. Moreover, it is easy to
see that they will remain strictly greater than 0 also for any
k′′ ≥ k′. Hence, we can argue that there exists almost surely,
also a k̄′ such that for all k′ ≥ k̄′, all of the elements of the
matrix S21(k

′) are strictly greater than 0. It follows that the
property stated in (9) is satisfied for any k ≥ k̄′ and for any
� ∈ {1, . . . , N}. This concludes the proof of item i).

Concerning item ii), we again resort to the results in [17]. Let
Ω = I − (1/2N)11T where in this expression we assume that
I is the 2N -dimensional identity matrix and the vector 1 is 2N -
dimensional. From the results in [17], it follows that to study
the rate of convergence of E[‖ξ(k)− α1‖2], it is equivalent to
study the convergence rate of E‖Ωξ(k)‖2 and, in particular, of
the linear recursive system

Δ(t+ 1) = E

[
QT

σ(0)Δ(t)Qσ(0)

]
where Δ(0) = Ω. Observe that Δ(t) is the evolution of a linear
dynamical system which can be written in the form

Δ(t+ 1) = L (Δ(t))

where L : R2N×2N → R
2N×2N is given by

L(M) = E

[
QT

σ(0)MQσ(0)

]
.

As highlighted in [17], the linear operator L can be repre-
sented by the matrix L = E[Qσ(0) ⊗Qσ(0)]

T , where ⊗ denotes
the Kronecker product of matrices. Following the proof of
[17, Prop. 4.3], one can see that LT is a primitive stochas-
tic matrix which, therefore, has the eigenvalue 1 with al-
gebraic multiplicity 1. Moreover, LT (1⊗ 1) = (1⊗ 1) and
(1⊗ 1)(Ω⊗ Ω) = 0, from which it follows that E‖Ωξ(k)‖2 ≤
Cρess(L

T )E‖Ωξ(0)‖2, where ρess(L
T ) denotes the essential

spectral radius of LT . �

A. Bounds on the Convergence Rate of the a-CL Algorithm

In this section, we provide some insights on the convergence
rate of the a-CL algorithm in the randomly persistent communi-
cating scenario. To do so, we consider (8), whose performance
in terms of rate of convergence to the consensus can be analyzed
by following again the treatment in [17]. Typically, one would
like to study the convergence rate of a randomized consensus
algorithm by providing a mean-square analysis of the behavior
of the distance between the state and the asymptotic consensus
point, namely, by analyzing the rate of convergence of the
quantity E[‖ξ − α1‖2]. Unfortunately, this is not a trivial task
in general. To overcome this difficulty, we study the evolution
of Ωξ. The first consequence of the results obtained in [17] is
that the quantities E[‖ξ − α1‖2] and E[‖Ωξ‖2] have the same
exponential convergence rate to zero, or, more formally, given
any initial condition ξ(0)

lim sup
k→∞

E

[
‖ξ(k)− α1‖2

] 1
k

= lim sup
k→∞

E

[
‖Ωξ(k)‖2

] 1
k

.
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For this reason, in what follows, we study the right-hand
expression, which turns out to be simpler to analyze. In order to
have a single performance metric not dependent on the initial
condition, we focus on this worst case exponential rate of
convergence

R = sup
ξ(0)

lim sup
k→∞

E

[
‖Ωξ(k)‖2

] 1
k

.

It has been proved in [17, Prop. 4.4] that[
ρess(Q̄)

]2 ≤ R ≤ sr
(
E
(
QT

i ΩQi

))
(10)

where Q̄ is the average consensus matrix, namely, Q̄ =
E[Qi] =

∑N
i=1 βiQi and where sr(E(QT

i ΩQi)) denotes the
spectral radius of the semidefinite positive matrix E(QT

i ΩQi),
that is, its largest eigenvalue. Unfortunately, it turns out from a
numerical inspection over significant families of graphs, such as
Cayley graphs (see [13]) and random geometric graphs, that the
upper bound sr(E(QT

i ΩQi)) is greater than 1, that is, it is not
informative for our analysis. However, we have run a number
of MonteCarlo simulations randomized over graphs of different
topology and size and over different initial conditions, and
it always resulted that lim supk→∞ E[‖Ωξ(k)‖2]1/k ≤ ρess(Q̄).
Based on this experimental evidence, we formulate the follow-
ing conjecture.

Conjecture V.2: The quantity ρess(Q̄) is an upper bound for
the exponential convergence rate R, i.e.,

R ≤ ρess(Q̄).

The aforementioned conjecture and the fact that [ρess(Q̄)]2 ≤
R motivates to study ρess(Q̄).

Remark V.3: Notice that (8) describes a higher order con-
sensus algorithm, for which few analytic tools are available.
In fact, the few works available in the literature which address
the rate of convergence of randomized higher order consensus
algorithms are limited to the convergence in expectation [12].

B. Rate Analysis of a-CL Algorithm for Regular Graphs

In this section, we assume that the measurements graph
Gm = (V, Em) is a strongly connected bidirected regular graph
such that for i ∈ {1, . . . , N}, |Ni| = ν. Moreover, we assume
the following properties.

Assumption V.4: We have that:
i) the error measurements covariances are all identical, that

is, Rij = R for all (i, j) ∈ Em;
ii) ε = R/(2(ν + 1));

iii) the probabilities {β1, . . . , βN} are uniform, that is, β1 =
. . . = βN = 1/N .

Observe that, from properties i) and ii) of Assumption V.4,
it turns out that the matrix P = I − εATR−1A, associ-

ated with the s-CL algorithm, is symmetric and such that
Pij = 1/(ν + 1) for j ∈ Ni ∪ {i}. Let λ1(P ) = 1 > λ2(P ) ≥
. . . ≥ λN (P ) be the eigenvalues of P . Then, ρess(P ) =
max{|λ2(P )|, |λN (P )|}. The following Lemma illustrates how
the 2N eigenvalues of Q̄ are related to those of P .

Lemma V.5: Consider the a-CL algorithm running over
a bidirected regular graph Gm = (V, Em) such that, for i ∈
{1, . . . , N}, |Ni| = ν. Assume Assumption V.4 holds true.
Then, the 2N eigenvalues of Q̄ are the solutions of the follow-
ing N second-order equations:

f(s;λi, N, ν) = s2 + (a+ b)s+ (ab+ c) (11)

where

a = −
[
N − ν

N
+

λi

N
+

ν − 1

N(ν + 1)

]

b = −N − 1

N
, c = −ν − 1

N2

(
λi −

1

ν + 1

)
.

Now let s(i)1 and s
(i)
2 denote the two solutions of f(s;λi, N, ν).

It easy to see that s(1)1 = 1 and s
(1)
2 = 1− ((ν2 + 1)/N(ν +

1)). The following result restricts the search of ρess(Q̄) among
the values |s(2)1 |, |s(2)2 |, and 1− ((ν2 + 1)/N(ν + 1)).

Theorem V.6: Consider the a-CL algorithm running on
a bidirected regular graph Gm = (V, Em) such that for i ∈
{1, . . . , N}, |Ni| = ν. Assume Assumption V.4 holds true.
Moreover let, as shown in the equation at the bottom of the
page, then

i) if 1− ρess(P ) ≤ γ∗ =⇒ ρess(Q̄) = max(|s(2)1 |, |s(2)2 |);
ii) if 1− ρess(P ) > γ∗ =⇒ ρess(Q̄) = s

(1)
2 = 1−((ν2 +

1)/N(ν + 1)).
The proofs of Lemma V.5 and Theorem V.6 follow from

standard algebraic manipulations. Due to space constraints, we
do not include them here, but we refer the interested reader to
the document [18].

We provide now an asymptotic result on ρess(Q̄). To
do so, consider a sequence of connected undirected regular
graphs GN of increasing size N , and fixed degree ν. Assume
Assumption V.4 holds true for any GN . Then, to any GN , we can
associate a stochastic matrix PN such that (PN )ij = 1/(ν + 1)
for all j ∈ Ni ∪ {i}. Let us assume the following property.

Assumption V.7: Consider the sequence of matrices PN as-
sociated with the sequence of graphs GN that were described
before and assume that

ρess(PN ) = 1− ε(N) + o (ε(N)) (12)

where ε : N → R is a positive function such that ε(N) → 0
as N → ∞.

Important families of matrices satisfying the above assump-
tion (12) are given by the matrices built over the d-dimensional

γ∗ =
ν − 1 +N(ν + 1)−

√
N2(ν + 1)2 − 2N(ν3 + ν + 2) + (ν − 1)2 + (ν2 + 1)2

ν + 1
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tori and the Cayley graphs (see [13]). It is worth remarking
that the tori and the Cayley graphs have been shown to ex-
hibit important spectral similarities with the random geometric
graphs [19], which is a family of graphs that during the last
few years, and have been successfully used to model wireless
communication in many applications [20]. Now, let the matrix
Q̄N represent the average matrix associated with the a-CL
algorithm running over GN . The following result characterizes
the asymptotic behavior of ρess(Q̄N ), with respect to ρess(PN ).

Proposition V.8: Consider the sequence of graphs GN de-
scribed before. Consider the a-CL algorithm running over GN .
Assume Assumption V.4 and Assumption V.7 hold true. Then

ρess(Q̄N ) = 1− ν(ν + 1)

N(ν2 + 1)
ε(N) + o

(
ε(N)

N

)
. (13)

Proof: Let γi = 1− λi, then we can rewrite (11) as

f(s;λi, N, ν) = d(s;N, ν) + γin(s;N, ν)
Δ
= g(s; γi, N, ν)

so that g is an explicit function of γi, where

d(s;N, ν)=s2 − 2N(ν + 1)− (ν2 + 1)

N(ν + 1)
s+ 1− ν2 + 1

N(ν + 1)

n(s; sN, ν)=
s

N
+

ν −N

N2
.

Note that

lim
N→∞

γ∗(ν,N) =
ν2 + 1

(ν + 1)2
.

Therefore, according to Theorem V.6 and assumption V.7,
for N sufficiently large, ρess(Q̄N ) is given by i). Since
γ2 = 1− λ2 + ε(N) + o(ε(N)), then s

(2)
1 = s̄

(2)
1 + αε(N) +

o(ε(N)) and s
(2)
2 = s̄

(2)
2 + βε(N) + o(ε(N)) for some scalar

α, β, where λ2 = ρess(PN ) and s̄
(2)
1 , s̄

(2)
2 are the solutions of

second-order equation g(s; 0, N, ν) = 0. It is easy to verify that
s̄
(2)
1 = 1 and s̄

(2)
2 = 1− ((ν2 + 1)/N(ν + 1)). Since |s̄(2)1 | >

|s̄(2)2 |, then for N sufficiently large and by continuity, we have

ρess(Q̄N ) = |s(2)1 |. We are therefore interested in explicitly
computing the scalar α. Since{

g(1; 0, N, ν) = 0
∂g
∂s

∣∣∣
(1,0,N,ν)

	= 0

it is possible to exploit the implicit function theorem that allows
us to write

s
(2)
1 =1− ∂g

∂γi

(
∂g

∂s

)−1
∣∣∣∣∣
(1,0,N,ν)

(ε(N) + o (ε(N)))

= 1− ν(ν + 1)

N(ν2 + 1)
ε(N) + o

(
ε(N)

N

)

which means that ρess(Q̄) can be expressed as

ρess(Q̄) = 1− ν(ν + 1)

N(ν2 + 1)
ε(N) + o

(
ε(N)

N

)
. (14)

�

Thanks to [17], we know that the rates of convergence are
lower bounded by ρess(Q̄N )2, while we recall we conjecture
that R ≤ ρess(Q̄N ). From the aforementioned proposition, we
can obtain the following result which compares the convergence
rate R of the a-CL algorithm with respect to the convergence
rate of the s-CL algorithm.

Corollary V.9: Consider a sequence of graphs GN as in
Proposition V.8. Consider the a-CL algorithm running over GN .
Assume Assumption V.4 and Assumption V.7 hold true. Then,
for N � 1

1− ρess(Q̄N )

1− ρess(PN )
� ν(ν + 1)

N(ν2 + 1)

and

1−
[
ρess(Q̄N )

]2
1− ρess(PN )

� 2
ν(ν + 1)

N(ν2 + 1)
.

Namely, assuming Conjecture V.2 holds true, the a-CL algo-
rithm slows down of a factor 1/N with respect to the syn-
chronous implementation.

Observe the fact that the rate of convergence in expectation
is reduced by a factor N , and it is not surprising because in the
a-CL, there is only one node transmitting information at each
iteration.

Remark V.10: It is worth remarking that also standard mem-
oryless asynchronous consensus algorithms based on asym-
metric broadcast communication protocols, slow down their
convergence rate by a factor 1/N with respect to the standard
synchronous consensus implementations, see [21]. In other
words, the presence of memory storage in the a-CL does not
further deteriorate the convergence rate with respect to standard
memoryless asynchronous consensus algorithms.

Remark V.11: Similar analysis can be provided also for other
relevant families of regular graphs, such as the complete graphs
and more, in general, the Ramanujan graphs [22]. Let us recall
the asymptotic lower bound proved by Alon and Boppana
for doubly stochastic matrices built over ν-regular bidirected
graphs. Specifically, if A denotes the adjacency matrix of a
ν-regular bidirected graph, let P be the doubly stochastic
matrix defined as P = ν−1A, then

lim inf
N→∞

ρess(P ) ≥ 2
√
ν − 1

ν

where the lim inf is taken along the family of all ν-regular
bidirected graphs having N vertices. Ramanujan graphs are
those ν-regular bidirected graphs which achieves the previous
bound, that is, such that ρess(P ) = 2

√
ν − 1/ν. Hence, through

the Ramanujan graphs, it is possible to keep the essential
spectral radius bounded away from 1, while keeping the degree
fixed. Exploiting Theorem V.6, it is possible to prove that for
the a-CL algorithm running over Ramanujan graphs, it holds
ρess(Q̄) = 1− α(ν)/N , where α(ν) ≤ 1 depends only on the
degree ν, and, in turn

1− ρess(Q̄)

1− ρess(P )
� α(ν)ν

N
√
ν + 1

.
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In other words also for the Ramanujan graphs, the a-CL al-
gorithm is slowed down by a factor of 1/N with the respect
to the synchronous implementation. Concerning the complete
graphs, we have ρess(P ) = 0 and, again from Theorem V.6,
that ρess(Q̄) = 2(N − 1)/N . Hence, it follows that for N � 1

1− ρess(Q̄)

1− ρess(P )
� 1.

Namely, the a-CL algorithm is not slowed down by a factor N .
This is due to the fact that when a complete graph is employed,
the number of neighbors of each node linearly increases with
the size of the graph. Due to space constraints, we do not
include here all of the details of the analysis related to the
Ramanujan graphs which, however, can be found in [18].

It is worth remarking that even though there are plenty of
Ramanujan graphs, it is still an open problem if for any pair
N and ν there exist Ramanujan graphs with N vertices and
of degree ν. Moreover, even if they exist, their construction is
quite complex, thus making them of marginal interest from an
application standpoint.

Remark V.12: Following Remark III.3, it is worth stressing
that also the Jacobi-like strategy introduced in [2] is amenable
of asynchronous implementation, see [7]. However, to the best
of our knowledge, no theoretical analysis of the rate of conver-
gence of the asynchronous version, introduced in [7], has been
proposed in the literature.

VI. ROBUSTNESS PROPERTIES OF THE A-CL ALGORITHM

WITH RESPECT TO PACKET LOSSES AND DELAYS

In Section IV, we have introduced the a-CL algorithm as-
suming that the communication channels are reliable, that is,
no packet losses occur, and that the transmission delays are
negligible. In this section, we relax these assumptions and we
show that the a-CL algorithm still converges, provided that the
network is uniformly persistent communicating and the trans-
mission delays and the frequencies of communication failures
satisfy mild conditions which we formally describe next.

Assumption VI.1 (Bounded Packet Losses): There exists a
positive integer L such that the number of consecutive com-
munication failures between every pair of neighboring nodes in
the communication graph Gc is less than L.

Assumption VI.2 (Bounded Delay): Assume node i broad-
casts its estimate to its neighbors at the beginning of iteration
k and assume that the communication link (i, j) does not fail.
Then, there exists a positive integer D such that the information
x̂i(k) is used by node j to perform its local update no later than
iteration k +D.

Loosely speaking, Assumption VI.1 implies that there can be
no more than L consecutive packet losses between any pair of
nodes i, j belonging to the communication graph. Differently,
Assumption VI.2 considers the scenario where the received
packets are not used instantaneously, but are subject to some
delay no greater than D iterations.

Clearly, in this more realistic scenario, it turns out that the
implementation of the a-CL is slightly different from the de-
scription provided in Section IV. Specifically, consider the kth
iteration of the a-CL algorithm and, without loss of generality,

assume node i is the transmitting node during this iteration.
Due to the presence of packet losses and delays, the set of
updating nodes might be, in general, different from the set Ni.
In fact, for j ∈ Ni, node j does not perform any update since
the packet x̂i(k) from node i is lost or simply because the
update is delayed. Moreover, there might be a node h 	∈ Ni

which, during iteration k, decides to perform an update since
it received a packet x̂s, s ∈ Nh, within the last D iterations.
This scenario can be formally represented by the set of nodes
V ′(k) ⊆ V which decide to perform an update at iteration k.
Then (4) can be rewritten as

x̂j(k + 1) := pjj x̂j(k) +
∑
h∈Nj

pjhx̂h (k
′
h) + bj (15)

for all j ∈ V ′(k), where k − (τL+D) ≤ k′h ≤ k, thta is,
loosely speaking when an update is performed, the local esti-
mate of the neighboring nodes cannot be older than τL+D
iterations.2 Indeed, if L = D = 0, then we recover the standard
a-CL algorithm where V ′(k) = Ni.

The following result characterizes the convergence proper-
ties of the a-CL in the presence of delays, packet losses, and
when the network is uniformly persistent communicating.

Proposition VI.3: Consider a uniformly persistent com-
municating network of N nodes running the a-CL algo-
rithm over a weakly connected measurement graph Gm. Let
Assumptions VI.1 and VI.2 be satisfied. Let ε be such that 0 <

ε < 1/(2dmaxR
−1
min). Moreover, let x̂i, i ∈ {1, . . . , N}, x̂

(i)
j ,

j ∈ Ni be initialized to any real number. Then, the following
facts hold true:

i) the evolution k → x̂(k) asymptotically converges to an
optimal estimate xopt ∈ χ, that is, there exists α ∈ R

such that

lim
k→∞

x̂(k) = x∗
opt + α1;

ii) the convergence is exponential, namely, C > 0 and 0 ≤
ρ < 1 exists such that∥∥x̂(k)− (

x∗
opt + α1

)∥∥ ≤ Cρk
∥∥x̂(0)− (

x∗
opt + α1

)∥∥ .
Proof: The proof follows from the statement of

[23, Prop. 1] which for convenience has been reported in
the Appendix as Proposition A.5. To apply Proposition A.5,
we show that the a-CL algorithm in the presence of delays and
packet losses can be rewritten as a consensus with delays that
satisfies Assumptions A.1, A.2, A.3, and A.4 reported in the
Appendix.

To this aim, let δj(k) = x̂j(k)− [x∗
opt]j , where [x∗

opt]j de-
notes the jth component of the vector x∗

opt. Recalling that
x∗
opt = Px∗

opt + b and, according to (15), we have that, if j ∈
V ′(k)

δj(k + 1) := pjjδj(k) +
∑
h∈Nj

pjhδh (k
′
h) . (16)

2Recall that we are assuming the network is uniformly persistent commu-
nicating, namely, for all k ∈ N, each node performs at least one transmission
within the time interval [k, k + τ).
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Otherwise

δj(k + 1) = δj(k).

The above equations describe a consensus algorithm on the
variables δ1, . . . , δN which satisfies Assumptions A.1, A.2,
A.3, A.4 reported in the Appendix. Indeed, Assumption A.1
on the weights is trivially satisfied. Assumption A.2 follows
from the facts that the communication graph Gc is con-
nected, the network is uniformly persistent communicating and
Assumptions VI.1 and VI.2. Assumption A.3 is a consequence
of the fact that the network is uniformly persistent communi-
cating and Assumption VI.1; in our setup, we have B = Lτ .
Finally, Assumption A.4 follows from Assumption VI.2 and
(16). Hence, the variables δ1, . . . , δN converge exponentially
to a consensus value α which, in turn, implies that x̂ converges
exponentially to x∗

opt + α1. �
Remark VI.4: We believe that the analysis of the robustness

to packet losses of the a-CL algorithm might be performed also
in the randomized scenario considered in Section V assuming
that each transmitted packet might be lost with a certain prob-
ability. We leave this analysis as future research. However, in
the numerical section, specifically in Example VII.1, we show
the effectiveness of the a-CL algorithm also in the presence of
random communication failures when the network is randomly
persistent communicating.

Remark VI.5: Also, the Jacobi-like strategy has been shown
to be robust to packet losses, see [7]. Instead, concerning the
other algorithms recently proposed in the literature, see [8] and
[11]. To the best of our knowledge, no analysis considering the
nonidealities introduced in this section has been proposed in the
literature.

VII. NUMERICAL RESULTS

In this section, we provide some simulations implementing
the localization consensus-based strategy introduced in this
paper.

Example VII.1: In this example, we consider a random geo-
metric graph generated by choosing N = 100 points randomly
placed in the interval [0,1]. Two nodes are connected and
take measurements if they are sufficiently close, that is, more
specifically, measurements zij and zji are available provided
that |xi − xj | ≤ 0.15. This choice resulted in networks with
an average number of neighbors per node of about 7. Every
measurement was corrupted by Gaussian noise with covariance
σ2 = 10−4. In this example, we assumed that the network is
randomly persistent communicating with uniform communi-
cation probabilities (β1, . . . , βN ), namely, β1 = . . . = βN =
1/N . Moreover, the possibility of communication failure is
taken into account. Specifically, supposing node i is transmit-
ting, each node j ∈ Ni with a certain probability, that is, pf ,
cannot receive the sent packet.

In Fig. 1, we plotted the behavior of the error

J(k) = log (‖A (x̂(k)− x∗)‖)

for different values of the failure probability pf .

Fig. 1. Behavior of J for a randomly persistent communicating network in a
random geometric graph, for different values of the probability failure pf .

Fig. 2. Trend of the rate of convergence, of the esr(Q̄)2, and of the esr(Q̄)
for 2− d torus (top panel) and for random geometric graphs (bottom panel) of
increasing size N .

The plot reported is the result of the average of more than
1000 Monte Carlo runs, randomized with respect to the mea-
surement graph3 and the initial conditions. Observe that the
trajectory of J decreases exponentially.

Example VII.2: In this example, we tested the validity of
conject. V.2. In Fig. 2 (top panel) the simulation considering a
set of 2-D torus graphs of increasing size N is shown, while in
Fig. 2 (bottom panel) the simulation is performed considering
a family of random geometric graphs. What we show is a
comparison between the empirical rate of convergence of the
algorithm, its lower bound, represented by esr(Q̄)2, and the
esr(Q̄).

Example VII.3: In this example, we provide a numerical
comparison with some well-known algorithms proposed in
the literature which, for the sake of completeness, we briefly
recall (Table I). The first algorithm considered, hereafter called

3In performing our average, we kept only the random geometric graphs
which resulted in being connected.
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TABLE I
ALGORITHMS COMPARISON

a-GL algorithm, is proposed in [3]. Similar to the a-CL
algorithm, during its kth iteration one node, say h transmits its
variable x̂h to all of its neighbors. For l ∈ Nh, node l, based on
the information received from node h, performs the following
update:

x̂l(k + 1) =1/2 (x̂l(k) + x̂h(k) + 1/2(zlh − zhl))
= x̂l(k) + 1/2 (x̂l(k)− x̂h(k) + 1/2(zlh − zhl))

while for l 	∈ Nh, the state remains unchanged, that is, x̂l(k +
1) = x̂l(k). Note that just one packet is transmitted at each
iteration. Moreover, since this algorithm is known to reach
mean square convergence [9], then its ergodic mean has been
proposed as a possible estimator of the state.

The second algorithm, denoted hereafter as the BC algo-
rithm, is proposed in [8]. It requires a coordinated broadcast
communication protocol meaning that during the kth iteration,
one node, say h, asks the variable x̂l to all of its neighbors
l ∈ Nh. When it receives the current state values, it performs
the following greedy local optimization based on the current
status of the network:

x̂h(k + 1) := argminx̂h

|E|∑
(i,j)∈E

‖x̂i(k)− x̂j(k)− zij‖2

=
1

2|Nh|
∑
l∈Nh

(2x̂l(k)− zlh + zhl) .

Note that the number of communications performed during one
iteration are |Nh|+ 1, since there is a broadcast packet sent by
node h, and |Nh| packets sent by all of its neighbors. We stress
the fact that the Jacobi-like algorithm proposed [7] is indeed
the same algorithm proposed in [8]. The last algorithm that we
considered is the Randomized Extended Kaczmarz, hereafter
called REK algorithm, presented in [11], consisting of two
different update steps. The first step is an orthogonal projection
of the noisy measurements onto the column space of the inci-
dence matrix A in order to bound the measurements error. The
second step is similar to the standard Kaczmarz update. Since a
distributed implementation is not formally presented in [11], we
propose the following algorithm. More specifically, let s ∈ R

M

be the current projection of the noisy measurements onto the
column space of A. Similarly as before, we denote with a little
abuse of notation the eth entry of s with the corresponding edge,
that is, se = sij . Then, the REK algorithm proposed in [11]
for general least-squares problems, reduces in our setting to
randomly and independently select a node h and an edge (i, j)
at each iteration k according to the following probabilities:

ph =
|Nh|+ 1

2M
; pij =

1

M

Fig. 3. Comparison of various algorithms considering the number of iteration
(top panel) and number of sent packets (bottom panel).

and then to perform the following local updates:

s�h(k + 1)=s�h(k)+

∑
m∈Nh

(shm(k)− smh(k))

|Nh|+ 1
, ∀�∈Nh

sh�(k + 1)=sh�(k)−
∑

m∈Nh
(shm(k)− smh(k))

|Nh|+ 1
, ∀�∈Nh

x̂i(k + 1)=x̂i(k) +
zij − sij(k)− (x̂i(k)− x̂j(k))

2

x̂j(k + 1)=x̂j(k)−
zij − sij(k)− (x̂i(k)− x̂j(k))

2
.

We point out that since in the updating step only local
information is required, the algorithm is implemented
in a distributed fashion and it exactly requires |Nj |+ 5
communication rounds to perform an iteration. Specifically,
the first |Nj |+ 2 are due to the update of the variable s and the
last three are needed to update x̂.

In this example, we consider a random geometric measure-
ment graph G built as in the previous example. In Fig. 3, we plot
the behavior of J with respect to the number of iterations and
sent packets. From these simulations, we observe that from an
energy point of view, the a-CL algorithm is the most convenient
since the effective number of sent packets to achieve a certain
estimation error is lower. On the other hand, if no energy
constraint is imposed, then BC is the fastest algorithm, although
not substantially faster than REK and a-CL.

As observed in [3], the local estimates of the a-GL algorithm
do not converge to the optimal solution, but they oscillate
around it. However, a-GL exhibits the fastest transient among
all algorithms and it is also energetically efficient. In our recent
work, we thus propose combining the a-CL algorithm with
the a-GL algorithm in order to have fast transients as well
as guaranteed exponential asymptotic convergence by using
suitable switching strategies [24].
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VIII. CONCLUSION

In this paper, we introduced a consensus-based strategy to
solve the problem of optimally estimating the position of each
agent in a network from relative noisy vector distances with its
neighbors. We first introduced the algorithm in its synchronous
version showing that it exponentially converges to the optimal
centralized least-squares solution. We then proposed a more
realistic asynchronous implementation which is still shown
to be exponentially convergent under simple communication
protocols. In the randomized scenario, we performed a the-
oretical analysis of the rate of convergence in mean square,
providing general lower and upper bounds. A more detailed
analysis has been performed that is restricted to communication
graphs which are regular graphs. In addition, we showed that
our novel asynchronous algorithm is robust to packet losses
and delays. Finally, through numerical simulations, we tested
the effectiveness of our approach compared to other strategies
recently proposed in the literature.

APPENDIX

CONSENSUS PROTOCOLS IN THE PRESENCE OF DELAYS

In this appendix, we review the result stated in [23, Prop. 1].
In [23], the authors consider the following consensus algorithm
with delays4

xi(k + 1) =

m∑
j=1

aij(k)x
j
(
k − tij(k)

)
(17)

where xi denotes the state of node i, i ∈ {1, . . . ,M}, the scalar
tij(k) is non-negative and it represents the delay of a message
from agent j to agent i, while the scalar aij(k) is a non-negative
weight that agent i assigns to a delayed estimate xj(s) arriving
from agent j at time k. It is assumed that the weights aij(k)
satisfy the following assumption.

Assumption A.1: There exists a scalar η, 0 < η < 1 such
that

i) aii(k) ≥ η for all k ≥ 0;
ii) aij(k) ≥ η for all k ≥ 0, and all agents j whose (poten-

tially delayed) information xj(s) reaches agent i during
the kth iteration;

iii) aij(k) = 0 for all k ≥ 0 and j otherwise;
iv)

∑m
j=1 a

i
j(k) = 1 for all i and k.

For any k, let the information exchange among the agents
may be represented by a directed graph (V, Ek), where V =
{1, . . . ,m} with the set Ek of directed edges given by Ek =
{(j, i)|aij(k) > 0}. The authors impose a connectivity assump-
tion on the agent system, which is stated as follows.

Assumption A.2: The graph (V, E∞) is connected, where E∞
is the set of edges (j, i) representing agent pairs communicating
directly infinitely many times, that is, E∞ = {(j, i)|(j, i) ∈
Ek for infinitely many indices k}.

In addition, it is assumed that the intercommunication inter-
vals are bounded for those agents that communicate directly.
Specifically:

4We adopt the notations of paper [23].

Assumption A.3: There exists an integer B ≥ 1 such that for
every (j, i) ∈ E∞, agent j sends information to its neighbor i at
least once every B consecutive iterations.

Finally, it is assumed that the delays tij(k) in delivering
a message from an agent j to any neighboring agent i are
uniformly bounded at all times. Formally:

Assumption A.4: Let the following hold:

i) tii(k) = 0 for all agents i and all k ≥ 0.
ii) tij(k) = 0 for all agents j communicating with agent i

directly and whose estimates xj are not available to agent
i during the kth iteration.

iii) There is an integer B1 such that 0 ≤ tij(k) ≤ B1 − 1 for
all agents i, j, and all k.

The result illustrated in [23, Prop. 1] is recalled in the
following proposition.

Proposition A.5: Let Assumption A.1, A.2, A.3, and A.4
hold. Then, the sequences {x(i)(k)}, i = 1, . . . ,m, generated
by (17) converge exponentially to a consensus.
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