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1. INTRODUCTION

Nowadays, large-scale and distributed cyber-physical sys-
tems, consisting of a multitude of sensors and “smart
agents” equipped with mild computational, communica-
tion and actuation capabilities, permeate our lives. Be-
cause of the size of the systems, low-cost sensors are
typically used. However the latter are more prone to ran-
dom failures, and consequently, one important challenge
to face is the systematic quantitative monitoring of the
system. Indeed, by affecting the collected measurements,
these failures eventually compromise the knowledge of the
system’ state, usually used for management and control.
In order to avoid this issue, two strategies can be followed:
(i) the development of suitable fault diagnosis algorithms
(see Paradis and Han (2007) for a survey on the topic),
consisting in detection, isolation and identification of the
fault; (ii) the design of fault resilient state estimation
procedures which are able to produce accurate outcomes
by automatically filtering out the outliers. These two ap-
proaches, which may eventually complement each other,
become necessary to implement reliable systems. However,
the possibly large scale of these systems makes central
monitoring strategies difficult and sometimes impossible to
implement. Thus, distributed solutions must be addressed.

Fault detection and bad data analysis have been largely
studied in the past. A lot of work has been done on the
static analysis of faults. The main idea behind static anal-
ysis is to process the measurements residuals through suit-
able hypothesis tests in order to detect the source of the
fault. In Chen et al. (2006) a distributed belief propagation
approach is proposed for WSN. With specific applications
to electrical power systems, in Korres (2011) a distributed
bad data analysis and detection procedure is shown, which
is based on the normalized residual test. Choi and Xie
(2011) propose a reduced model for distributed wide area
monitoring and a bad data analysis based on the χ2-test.
A more recent branch of research regards the development
of fault diagnosis strategies for general networks of dy-
namical systems using sensors networks. In Franco et al.
(2006) a distributed hypothesis testing method, based on
a belief consensus technique to perform fault diagnosis, is
presented. Consensus is exploited in Boem et al. (2011)

as well, where the authors propose a distributed strategy
which is based on the combination of local fault estimators
to reach a common agreement on the fault detection. More
recently, Boem et al. (2013) propose a method based on
Pareto optimization. Finally, in Keliris et al. (2015) the
authors present a distributed scheme for the detection of
process and sensors faults for a certain class of nonlinear
discrete-time systems.

Regarding distributed state estimation, a vast amount of
literature can be found. However, historically, state esti-
mation does not deal with the presence of outliers. In order
to deal with bad data analysis, the standard approach
consists of two iterative steps: first, state estimation is
performed; second, hypothesis tests on the measurements
residuals are applied as done in Korres (2011); Choi and
Xie (2011). If a bad datum is detected, this is deleted
from the data-set and state estimation is performed again.
Hypothesis test on the new residuals can confirm or belie
the detection. In this sense, this approach iteratively com-
bines standard state estimation with static fault detection
procedures, to eventually lead to a fault resilient state
estimator.
A different approach is followed in Kekatos and Giannakis
(2013), where the authors propose an iterative distributed
strategy based on the classical ADMM algorithm to simul-
taneously solve the state estimation and the fault localiza-
tion in power systems.

In this work we are interested in developing a fault re-
silient state estimator rather than a fault detection scheme.
Conversely to what is done in Kekatos and Giannakis
(2013), where the problem is solved using a least square
approach with the introduction of an additional variable
to take into account the presence of outliers, we exploit
ideas coming from robust statistical analysis (Bloomfield
and Steiger, 2012; Huber, 2011) to formulate a suitable
convex problem. In particular, the choice of a “1−norm”-
based cost function, let us automatically filter out poten-
tial outliers in the measurements caused by sensors faults.
Inspired by the recent result in Todescato et al. (2015),
we provide a distributed algorithm to solve the problem.
Starting from a synchronous algorithm which assumes
perfect and ideal communications among sensor nodes,
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we modify it to deal with communication non idealities.
This is an important aspect since, in real-world large-scale
systems, ideal synchronous communications are not likely.
The algorithm we propose is based on an asynchronous
broadcast communication protocol. Numerically, the al-
gorithm is shown to be robust to communication non-
idealities. Under additional mild assumptions on the type
of communication non-idealities and on the curvature of
our prescribed cost function, convergence of the algorithm
is theoretically proven.

We apply the proposed algorithm in the framework of
sensors networks localization, even if the strategy applies
to a more general setup. Because of the well known perfor-
mance of the ADMM algorithm, we decide to compare the
algorithm with the strategy recently proposed in Kekatos
and Giannakis (2013). Since neither asynchronous nor
robust implementation of the algorithm in Kekatos and
Giannakis (2013) is provided, we suggest one. As shown by
the numerical simulations, compared to the ADMM, our
robust algorithm has the following features: (i) comparable
steady state estimation accuracy; (ii) in scenarios of highly
connected graphs, the algorithm is characterized by a
faster behavior for both the asymptotic and the transient
convergence rate; (iii) in general, conversely to the ADMM,
the transient evolution of our algorithm is monotonically
decreasing.

1.1 Mathematical Preliminaries

In this paper, G (V, E) denotes a directed graph, where
V = {1, . . . , N} is the set of vertices and E ⊆ V × V
is the set of directed edges. The graph G is said to be
bidirected if (i, j) ∈ E implies (j, i) ∈ E . An undirected
path in G consists of a sequence of vertices (i1, i2, . . . , ir)
such that either (ij , ij+1) ∈ E or (ij+1, ij) ∈ E for every
j ∈ {1, . . . , r − 1}. The bidirected graph G is said to
be connected if for any pair of vertices (i, j) there exists
a undirected path connecting i to j. Given the directed
graph G, the set of neighbors of node i, denoted by Ni, is
given by Ni = {j ∈ V | (i, j) ∈ E}. Moreover, N+

i = Ni ∪
{i}. Given a directed graph G (V, E) with |E| = M , let
the incidence matrix A ∈ RM×N of G be defined as
A = [aei], where aei = 1,−1, 0, if edge e is incident on
node i and directed away from it, is incident on node
i and directed toward it, or is not incident on node i,
respectively. Given a vector v, with vT we denote its
transpose and with diag(v) the diagonal matrix where the
i-th diagonal element corresponds to the i-th element of
the vector v. The symbol I denotes the identity matrix of
suitable dimension.

2. PROBLEM FORMULATION

In the following, we consider a localization-type problem in
Sensor Networks (Mao et al., 2007) where, starting from a
set of noisy measurements, the agents’ goal is to estimate
their absolute positions. We want to develop a distributed
strategy where the agents are allowed to exchange in-
formation locally, i.e., between neighbors. Moreover, for
real-world applications, the algorithm must be robust to
communication non idealities, e.g., packet dropouts, while
being resilient to faulty measurements due to possible
sensors failures.
Consider a set of N agents/sensors V = {1, . . . , N}, where
each agent is described by a state vector xi ∈ Rni . For our
purpose and for ease of notation, we restrict the analysis
to the scalar case where ni = 1, ∀i ∈ V.By exploiting
graph theoretical tools, we model the SN by means of a

bidirected connected measurement graph G(V, E).
In the following we introduce the measurement model used
and we formally state the problem at hand.

2.1 Measurement Model & Fault Resilient Estimation

Assume that each agent collects a certain number of mea-
surements according to the measurement graph G. More
specifically, only two types of measurements can be col-
lected. The first are noisy relative distance measurements
with respect to neighboring agents, that is, for each i ∈ V
and j ∈ Ni, node i measures

bij = xi − xj + wij , wij ∼ N (0, σ2
ij) .

where σ2
ij denotes the relative measurement noise variance.

The second type of measurements is a noisy absolute
measurement of the form

bi = xi + wi , wi ∼ N (0, σ2
i ) .

where σ2
i is the absolute measurement noise variance.

By collecting all the state variables in the vector x :=
[x1, . . . , xN ]T and by defining the measurement matrix
H and the vectors of measurements, b, and noises, w,
respectively as

H :=
[
I
A
]
, b :=

[
{bi}i∈V

{bij}(i,j)∈E

]
, w :=

[
{wi}i∈V

{wij}(i,j)∈E

]
,

the overall measurement model 1 can be rewritten in
compact form as

b = Hx+w , w ∼ N (0, R) , (1)

where R := diag({σ2
i }i∈V , {σ2

ij}(i,j)∈E) denotes the noise
variance matrix.
In presence of outliers, however, some of the measurements
may be corrupted by an extra term, which has a prob-
ability distribution that highly differs from that of the
expected gaussian noise. By collecting these outliers in the
sparse vector o, the measurement model (1) becomes

b = Hx+w + o. (2)

Remark 1. (Measurement model). We underline that the
more general case of multidimensional positions can be
easily derived assuming independent measurements along
each dimension. Moreover, all the following analysis seam-
lessly applies to more general measurement model in which
the measurements are linear combinations of the states of
neighboring nodes. For instance, this is the case for the
state estimation in smart electric grids.

As above mentioned, we are willing to design a distributed
state estimation procedure which is fault resilient, that is
which is able to produce a reliable estimation by automati-
cally filtering out the outliers. Conversely to classical least
squares estimation, where the objective is to minimize the
weighted squared norm of the residuals, here we follow an
approach which is inspired from robust statistical analysis
(Bloomfield and Steiger, 2012; Huber, 2011), i.e., least
absolute estimation. The main idea is to make use of
suitable convex costs which, differently to the classical
quadratic costs, are locally quadratic only around the
origin while they become linear away from it. Thanks
to this, small residuals are weighted quadratically as in
the classical least squares. On the contrary, big residuals,
which usually identify the presence of sensors faults, are
weighted linearly. Consequently, the estimator weights and
“trusts” more the measurements corresponding to small
1 We underline the fact that we do not require all the nodes to
collect absolute positioning measurements. However, for absolute
positioning we require that at least one agent measures it. Conversely,
only relative localization is performed.
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residuals. Precisely, we consider a modified 1-norm defined
as (Argaez et al., 2011)

‖ · ‖1,ε : Rn �→ R : x �→ ‖x‖1,ε :=
n∑

i=1

√
x2
i + ε , (3)

where the parameter ε is used to tune the point where
the function changes its behavior from quadratic to linear.
Observe that this modified 1-norm is differentiable and
thus suitable for gradient based approaches.
By making use of the modified 1-norm (3), we are now
ready to formulate our problem of interest. This reads as

P1 : min
x∈RN

‖(b−Hx)‖1,ε︸ ︷︷ ︸
J(x)

. (4)

Observe that efficient convex solvers might be used to
solve P1. However, these require global knowledge of the
network model as well as of the measurements.
In the next section, before presenting the proposed al-
gorithm, we briefly recall the particular communication
architecture exploited.

2.2 Partition-based Communication Architecture

We assume the network is partitioned into p non-
overlapping areas Ah, where h ∈ Vc := {1, . . . , p}. Each
area contains a certain number sh of agents i ∈ V and
is monitored by a local master node which has complete
knowledge of the intra-area communications and measure-
ment model. This node collects all the intra-area states,
can collect all the intra-area measurements, can process
the data, and can communicate with the master nodes
in charge to monitor the neighboring areas. According
to this partitioning, it is possible to define a new bidi-
rected communication graph Gc(Vc, Ec), where the edge set
Ec ⊆ Vc × Vc consists of the pairs (h, k) for which there
exist agent i ∈ Ah and agent j ∈ Ak such that (i, j) ∈ E .
Moreover, it is possible to block partition the state, the
measurement, the noise vectors as well as the measurement
matrix as

x =



x1
...
xp


 , b =



b1
...
bp


 , w =



w1
...

wp


 , H =



H11 · · · H1p

. . .
Hp1 · · · Hpp


 ,

where, for h ∈ Vc, xh ∈ Rsh is the intra-area state vector,
while bh,wh ∈ Rmh (mh =

∑
i∈Ah

|N+
i |) contain the

measurements and noises of the agents owned by area Ah.
Similarly, the blockHhk ∈ Rmh×sk consists of the elements
of the matrix H connecting the agents contained in area
Ah with those contained in area Ak. Observe that Hhk �= 0
if and only if (h, k) ∈ Ec. Finally, the noise variance matrix
becomes R = blkdiag(R1, . . . , Rp), Rh ∈ Rmh×mh .
Observe that, according to the partition-based architec-
ture, it is possible to rewrite Problem P1 as

P1 : min
x1,...,xp

∑
h∈Vc

‖bh −
∑

k∈N+
h

Hhkxk‖1,ε

︸ ︷︷ ︸
Jh(xh,{xk}k∈Nh

)

, (5)

highlighting the separability structure of the cost function,
which is now written as sum of “local” costs.

3. DISTRIBUTED SOLUTIONS

3.1 Synchronous Fault Resilient Estimation

Here, we present a distributed solution for Problem (5)
which exploits the partition-based communciation archi-
tecture of Section 2.2. This algorithm represents the start-
ing point for an asynchronous robust version which will

be presented in the next section. The proposed algorithm,
which we refer to as Distributed Fault Resilient Estimation
algorithm (hereafter denoted as DFRE), is inspired on the
Block Jacobi Algorithm recently developed in Todescato
et al. (2015). The algorithm is essentially a generalized
gradient descent of the type

x(t+ 1) = x(t)− ρD−1(t)∇J(t) ,

where, at iteration t, ∇J(t) is the gradient of the cost
function evaluated in the current state estimate x(t), D(t)
is a block diagonal matrix which is used to accelerate the
convergence of the algorithm and ρ is the gradient step
size. In particular, from the cost in (5), we have that the
h-th block of the gradient vector, computed by the master
node of area Ah is equal to

[∇J(t)]h = −
∑

k∈N+
h

HT
kh

(
(diag(zk(t)))

2
+ εI

)−1/2

zk(t)
︸ ︷︷ ︸

gk(t)

,

(6)
where zh(t) := bh −

∑
k∈N+

h
Hhkxk(t) represents the

vector of current estimation residuals. Observe that to
compute zh(t), the master node h has to receive the states
xk from nodes k ∈ Nh, and then to compute (6) it needs to
receive the vector gk(t) from k ∈ Nh. Regarding the D(t)
matrix, as done in Todescato et al. (2015), the idea is to
use the second order information of the cost. In particular,
we set the h-th diagonal block of D(t) equal to the h-th
diagonal block of the cost Hessian. In the aforementioned
paper, the adoption of a quadratic cost function led to a
constant second derivative term, that is D(t) = D̄, ∀t ≥ 0.
However, in our case, D(t) changes over time and is state
dependent. Precisely, the h-th block of D(t) is equal to

Dh(t) = εHT
hh

(
(diag(zh(t)))

2
+ εI

)−3/2

Hhh , (7)

and can be computed by the master node h using only
intra-area information. Finally, each master node can
update its current estimate as

xh(t+ 1) = xh(t)− ρD−1
h (t)[∇J(t)]h . (8)

Algorithm 1 formally describes the DRFE algorithm. Note
that, in order to compute the g’s and update the x’s, Algo-
rithm 1 requires two communication rounds per iteration.

Algorithm 1 DFRE

1: for t ∈ N each h ∈ Vc do
2: sends xh(t− 1) to k ∈ Nh;
3: receives xk(t− 1) from j ∈ Nk;
4: computes gh(t) as defined in (6);
5: sends gh(t) to k ∈ Nh;
6: receives gk(t) from k ∈ Nk;
7: computes xh(t) by using (8);
8: end for

Remark 2. (On the gradient computation).
Observe that to compute the gradient and, in particular,
zh, h ∈ Vc, the exchange of {xk}k∈Nh

among neighbors is
required. However, it is worth noticing that only the entries
of xk corresponding to columns of Hhk which are different
from the vector of all zeros, are needed. Consequently, the
information exchange can be reduced.

3.2 Asynchronous, Robust, Fault Resilient Estimation

Algorithm 1 is designed for the scenario of synchronous
ideal communications where neither packet losses nor de-
lays occur. Here, inspired on the Robust Block Jacobi algo-
rithm proposed in Todescato et al. (2015), we eventually
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generalize Algorithm 1 to the case of asynchronous and
non ideal lossy communications. We refer to this modified
version as Robust Distributed Fault Resilient Estimation
algorithm (denoted hereafter as r-DFRE). In particular,
we exploit an asynchronous broadcast communication pro-
tocol where one master node, say h ∈ Vc, wakes up,
updates its variables and, at the end of the computations,
sends them to all its neighbors. Observe that the protocol
requires only one communication round per iteration since,
conversely to DFRE, we can send at the same time the
state xh and its gradient-related variable gh. However, in
order to perform its local updates, it is necessary that each
node stores in its local memory the following variables:

• xh: estimate of its state;

• x
(h)
k , k ∈ Nh: local estimate of the state of the

neighboring area k (note that x
(h)
h ≡ xh);

• gh: gradient-related variable regarding intra-area h
information;

• g
(h)
k , k ∈ Nh: gradient-related variable regarding

neighboring k information (note that g
(h)
h ≡ gh).

Thanks to this additional memory not only we can use
an asynchronous communication protocol, but we are also
able to deal with packet losses in the communication. The
latter can be conveniently modeled using the indicator
function

γ
(h)
k (t) =

{
1 if h received the packet from k
0 otherwise

as done in Todescato et al. (2015). Indeed, if node k ∈ Nh
does not receive the packet that node h sends to it, then
it simply does not update its memory. Namely,

x
(k)
h (t) =

{
xh(t) if γ

(k)
h = 1

x
(k)
h (t− 1) otherwise

g
(k)
h (t) =

{
gh(t) if γ

(k)
h = 1

g
(k)
h (t− 1) otherwise

(9)

Consequently, when node k will wake up, it will use
information regarding node h which are possibly out of
date. Specifically Eq.(6) becomes

[∇J(t)]h = −
∑

k∈N+
h

g
(h)
k (t) . (10)

This algorithm, which uses memory, is our r-DFRE algo-
rithm. Its formal description can be found in Algorithm 2.

Algorithm 2 r-DFRE

1: for t ∈ N do
2: assume node h ∈ Vc wakes up;
3: using (7) and (10), updates xh(t) as in (8);
4: computes gh(t);
5: sends xh(t),gh(t) to k ∈ Nh;

6: if γ
(k)
h (t) = 1 then node k

7: receives xh(t) and gh(t);

8: updates x
(k)
h (t) and g

(k)
h (t) as in (9);

9: end if
10: end for

3.3 Convergence Analysis of the r-DFRE Alogirthm

Here we present a convergence result regarding the r-
DFRE algorithm described in Algorithm 2. In order to
state our result, which is based on the convergence analysis

of partially asynchronous algorithms provided in Bertsekas
and Tsitsiklis (1989), we introduce the following assump-
tions concerning our overall communication system.

Assumption 3. (Persistent activation).
There exists a positive integer D such that each master
node h ∈ Vc wakes up and performs its update at least
once within any interval [t, t+D].

Assumption 4. (Bounded packet-losses).
There exists a positive integer L such that the number of
consecutive communication failures between every pair of
neighboring nodes in the communication graph Gc is less
than L.

Finally, since we need a technical assumption on the
curvature of the prescribed cost function, we consider a
slightly modified cost, that is

‖x‖1,ε :=
∑

i∈S

√
x2
i + ε+

∑
i∈S

(αx2
i + γ) (11)

where S := {i ∈ Vc : |xi| > x} with x an arbitrary large
scalar which acts as “saturation” point, S := Vc/S and α
and γ are chosen to ensure twice continuous differentiabil-
ity of the cost at x.

Basically, by choosing the cost of Eq.(11), we ensure the
function to be strongly convex. Observe that, from a
practical point of view, the saturation value x can be any
arbitrarily large finite value. Thus, this modification does
not practically influence the r-DFRE algorithm.
The next proposition characterizes the convergence 2 of
Algorithm 2.

Proposition 5. (Convergence of r-DFRE algorithm).
Consider Problem 5 with the cost function of Equa-
tion (11), solved using the r-DFRE Algorithm 2. Let
Assumptions 3 and 4 hold. Then, there exists ρ such that,
for all 0 < ρ < ρ, it holds limt→∞ ∇J(x(t)) = 0.

The proof can be found in Bof et al. (2016a).

4. SIMULATIONS

In this section we compare the r-DFRE algorithm with a
“robustified” version of the ADMM algorithm proposed
in Kekatos and Giannakis (2013), for which we use an
asynchronous broadcast communication protocol and we
assume that each master node can store in memory the
last received information from its neighbors, similarly to
what is done in Section 3.2. We consider a one dimensional
environment of length L = 200[m] equally partitioned
in p = 20 areas, each of them supervised by a master
node. In each area the number of agents varies from 5 to
10. Inside each area, we assume the nodes are positioned
and connected according to a bidirected random geometric
measurement graph G(V, E) with connectivity radius r.
Moreover we assume that each node is able to measure
its absolute position as well. Regarding the inter-area
connections, since we are working on a line, we assume that
Nh = {h− 1, h+1} for h ∈ {2, . . . , p− 1}, while N1 = {2}
and Np = {p − 1}. To enforce connectivity, for each pair
of adjacent areas we take m relative measurements corre-
sponding to the m closest pairs of nodes. We assume the
measurements are characterized by the same prior distri-
bution. In particular, we set σi = σij = σ = 0.1[m], ∀i ∈ V,
2 Interestingly, assuming the presence of bounded delays in the
communication, the r-DFRE algorithm remains provably convergent.
Indeed, this is true since the presence of bounded delays, together
with the specific broadcast communication protocol chosen, implies
the persistent activation of each node.
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r-DFRE ADMM LS

0.0612 0.0594 0.2290

Table 1. Steady state estimation accuracy. Values
of ARMSE, computed over M = 1000 Monte Carlo
runs, for the solutions of problems P1, P2 and of LS,
respectively, for fixed values of r = 3[m] and m = 5.

∀(i, j) ∈ E . Concerning the outliers, we assume that 10%
of the measurements are corrupted by an additive noise,
whose absolute amplitude is uniformly distributed in the
range [1.5, 2][m]. For consistency, in case the outlier cor-
rupts a relative distance measure among agents of the same
area, the measurement is saturated to the communication
radius r characterizing the intra-areas random geometric
graph G. A similar approach is followed for the case of cor-
rupted inter-areas relative measurements. Concerning ε, its
value influences the robustness of ‖ · ‖1,ε to the presence
of outliers and eventually the accuracy of the solution,
but at the same time, by controlling the smoothness of
‖ · ‖1,ε, it also influences the rate of convergence of our
proposed gradient-based algorithm. In the next simula-
tions, we heuristically set ε = 1

4σ
8/3, which enforces the

cost function ‖·‖1,ε to behave quadratically within [−σ, σ].
Preliminary simulations show that this value represents a
good trade-off between accuracy and rate of convergence.
For the choice of λ, following Kekatos and Giannakis
(2013), we set λ = 1.34σ. 3

We compare the two algorithms in terms of averaged root
mean squared error (ARMSE). Given M Monte Carlo
runs for different graph realizations, denote with x{i}(t)
the estimate at time t given by one of the two algorithms
in the i−th Monte Carlo run. Then, ARMSE reads as

ARMSE(t) :=
1

M

M∑
i=1

RMSE(x{i}(t)) , (12)

where RMSE(x) := ‖x − xtrue‖/
√
N represents the root

mean squared error between the true nodes positions,
xtrue, and the estimate, x. We first use ARMSE to compare
the steady state accuracy of the estimates obtained with
the r-DFRE and the ADMM, that is we evaluate ARMSE
as t → ∞. Moreover, we also compare the algorithm
with the classical least squares approach (LS) to verify its
effectiveness. Table 1 highlights the complete inaccuracy of
LS. Conversely, the other two approaches are fault resilient
and comparable, even though ADMM gives, in general,
slightly better results.
We also compare the r-DFRE and the ADMM with

respect to their convergence rate 4 . To do so, we need to
choose the parameters ρ for the r-DFRE and c for the
ADMM (which represents the penalty in the augmented
Lagrangian). We follow the common approach of selecting
the values ρ = ρ∗ and c = c∗, respectively, corresponding
to the fastest asymptotic convergence rate 5 . This is done
in order to minimize the number of iterations to converge
toward to optimal solution of the corresponding problem.
Figure 1 shows, in the upper panel, the evolution of the
ARMSE between the solution of the algorithms at time t,
x(t), and the solution of the respective problem, while, in
the lower panel, it shows the ARMSE between x(t) and the
true positions xtrue. For the ADMM, it is useful to report

3 In Kekatos and Giannakis (2013), λ = 1.34 since the measurements
are normalized by their standard deviation. Equivalently σ = 1.
4 In all these simulations, both algorithms are initialized to the same
initial conditions, which correspond to the absolute measurements.
5 To give a quantitative idea, in all the simulation performed, the
order of magnitude of ρ∗ and c∗ are −4 and −2, respectively.
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Fig. 1. Upper panel: ARMSE, over M = 100 Monte Carlo runs,
with respect to the optimal solution of the respective problem.
Lower panel: ARMSE with respect to the true positions. The
parameter used for the simulations are m = 5 and r = 3 [m].

m = 5 r = 3[m] r = 5[m] r = 8[m]

r-DFRE 2593 1089 811

ADMM 0.1c∗ 1643 1597 1526

ADMM c∗ 4361 4886 4896

Table 2. Number of iterations, averaged overM = 100
runs, required to reach a 95% accuracy from the opti-
mal solution, for increasing intra-area communication

radius r and for m = 5 inter-area connections.

the simulations obtained not only for c = c∗ but also for
c = c∗/10. This choice is due to the different convergence
behavior of the ADMM. Indeed, from the upper panel of
Figure 1 it can be seen that, by choosing c = c∗, the
ADMM is characterized by an undesirable transient but
converges to its corresponding optimum faster than the
r-DFRE. Conversely, by choosing c = c∗/10, the ADMM
shows a better transient but slows down its asymptotic
behavior, becoming even slower than the r-DFRE. How-
ever, by comparing the algorithms in terms of estimation
accuracy with respect to the true positions, as shown in the
lower panel of Figure 1, a different behavior emerges. In
particular, for c = c∗ the ADMM is much slower than the
r-DFRE to reach the same level of accuracy. Conversely,
by choosing c = c∗/10, the ADMM and the r-DFRE
are characterized by a similar behavior both in terms of
transient and asymptotic evolution. A final remarkable
feature of the r-DFRE compared to the ADMM, is that
the transient evolution is monotonically decreasing.
We recall that the possible discrepancy between transient
and asymptotic behavior is a known fact, see Fagnani and
Zampieri (2008). As highlighted by the previous analysis,
this translates in a non trivial procedure to find the opti-
mal value of c for the ADMM. Conversely, for the r-DFRE,
the extensive simulations performed suggest the fact that
the optimal ρ leads to an optimal transient and asymptotic
behavior simultaneously.
To highlight the dependency of the algorithms on the
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Fig. 2. ARMSE, averaged over M = 100 runs, between the estimate
of the positions of the agents and their true positions, with
a packet loss probability of 50%. The parameter used for the
simulations are m = 5 and r = 3 [m].

sensors network connectivity, we perform simulations for
different values of intra-area communication radius r. Ta-
ble 2 shows, for a number m = 5 of inter-area connections
and increasing values of the communication radius r, the
number of iterations needed to reach an estimate withing
a 95% level of accuracy from the optimal solution of the
corresponding problem. Observe that increasing r, the
r-DFRE highly improves, the ADMM corresponding to
c = c∗/10 slightly improves while for c = c∗ moderately
degrades. The analysis just performed suggests that the
connectivity of the underlying graph affects the behavior
of the algorithm and in general it is a quantity that must
be taken into account. Remarkably, even if in a totally dif-
ferent scenario, the connection between highly connected
graphs and deteriorating performance of ADMM (as hap-
pens when choosing c∗) has been shown in the recent Bof
et al. (2016b) as well.
Finally, Figure 2 shows a simulation in the presence of
packet losses. In particular, a packet loss probability of
50% is chosen. The plot shows that both algorithms are
robust to packet losses. However, as stated in Proposi-
tion 5, convergence of the r-DFRE is theoretically proven.
Conversely, a similar rigorous result for the ADMM is not
available.

5. CONCLUSIONS AND FUTURE DIRECTIONS

In this work we presented an asynchronous and robust
algorithm which can be used to perform fault resilient
estimation in presence of outliers. We applied it to a
localization-type problem and showed that its results, in
terms of accuracy and convergence behavior, are compa-
rable with those of a (slightly modified) ADMM algo-
rithm recently proposed by Kekatos and Giannakis (2013).
Through simulations, we showed that both the parameters
choices and the connectivity of the underlying graph play a
fundamental role in the convergence behavior of the algo-
rithms. In particular, our algorithm behaves consistently
in the transient and in steady state, thus alleviating the
parameter tuning phase, and for highly connected graphs,
our solution outperforms the ADMM.
As future directions, we are interested in better under-
standing the dependencies of the algorithm on the param-
eter choice as well as on the graph connectivity related
quantities. Moreover, a deeper analysis on the robustness
of the algorithm represent an interesting research avenue.
Finally, detection of faults and extensions to general non-
linear measurements models are interesting topics.
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