Available online at www.sciencedirect.com

IFAC “*ic

CONFERENCE PAPER ARCHIVE

ScienceDirect

IFAC-PapersOnLine 48-22 (2015) 126—-131

A Robust Block-Jacobi Algorithm for
Quadratic Programming under Lossy
Communications
M. Todescato* G. Cavraro™ R. Carli* L. Schenato *

* Department of Information Engineering, Padova, 35131, Italy.
(e-mail: todescat|cavraro| carlirug|schenato @ dei.unipd.it).

Abstract: We address the problem distributed quadratic programming under lossy commu-
nications where the global cost function is the sum of coupled local cost functions, typical in
localization problems and partition-based state estimation. We propose a novel solution based
on a generalized gradient descent strategy, namely a Block-Jacobi descent algorithm, which
is amenable for a distributed implementation and which is provably robust to communication
failure if the step size is sufficiently small. Interestingly, robustness to packet loss, implies also
robustness of the algorithm to broadcast communication protocols, asynchronous computation
and bounded random communication delays. The theoretical analysis relies on the separation of
time scales and singular perturbation theory. Our algorithm is numerically studied in the context
of partition-based state estimation in smart grids based on the IEEE 123 nodes distribution
feeder benchmark. The proposed algorithm is observed to exhibit a similar convergence rate
when compared with the well known ADMM algorithm with no packet losses, while it has
considerably better performance when including moderate packet losses.

© 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Multi-agent systems. Distributed optimization. Packet loss. Quadratic
programming. Asynchronous. Broadcast. Singular perturbation Theory.

1. INTRODUCTION

The proliferation of wireless and the IP interconnection
of smart electronic devices is creating large-scale cyber-
physical systems which promise a new revolution in many
fields. However, these systems require the development of
new engineering design and computation paradigms due to
the sheer amount of devices and data to be managed. For
example, many problems have been shown to be cast as
optimization problems. As so there has been a growing at-
tention in the last years to distributed optimization tools.
Distributed optimization has become so important for two
different reasons: the first reason is that with the advent
of Big Data, it is unconceivable to run optimization algo-
rithms on a single (super)-computer, but it is necessary to
parallelise computation among many processors. The sec-
ond reason is that many optimization problems are sparse
by nature since correlation between data is local. One of
the major difficulty to deal with distributed optimization
using multiple processing units is to guarantee reliable
synchronisation and communication since communication
can be wireless and CPU execution times might not be
known in advance as in the context of cloud-computing.
Although distributed optimization algorithms have a long
history in the parallel and distributed computation litera-
ture, see, e.g. Bertsekas and Tsitsiklis (1989), it has mainly
focused on synchronous algorithms. However, in the past
years it has been reconsidered in a new peer-to-peer set-
up which is more suitable for today’s problems. The first
class of algorithms appearing in this new literature relies
on primal sub-gradient or descent iterations as in Nedic
and Ozdaglar (2009); Nedic et al. (2010); Marelli and Fu
(2015) which have the advantage to be easy to implement
and suitable for asynchronous computation. In order to
induce robustness in the computation and improve conver-
gence speed, augmented lagrangian algorithms such as the

Alternating Direction Methods of Multipliers (ADMM)
have been recently proposed. A first distributed ADMM
algorithm was proposed in Schizas et al. (2008); Kekatos
and Giannakis (2013); Bolognani et al. (2014), while a
survey on this technique is Boyd et al. (2011). A common
drawback of this technique, is that each node must store
in its local memory a copy of the entire state vector. To
avoid this problem, a recent partition-based and scalable
approach applied to the ADMM algorithm is presented in
Erseghe (2012), while to comply with asynchronous com-
putation, suitable modification of the ADMM algorithm
have been proposed in Tutzeler et al. (2013); Bianchi et al.
(2014). Finally, distributed algorithms based on Newton
methods have been proposed to speed-up the computation
(Zargham et al., 2014; Zanella et al., 2011).

In this paper we propose a strategy to implement an
algorithm for distributed optimization based on a mod-
ified version of the generalized gradient descent method
where the cost function is quadratic and exhibit a specific
structure that can be solved by partitioning the state-
space as in Schizas et al. (2008); Kekatos and Giannakis
(2013); Bolognani et al. (2014). In particular, we focus on a
class of quadratic optimization problems which can be en-
countered on a large variety of application such as electric
grid state estimation (Bolognani et al. (2014)), multi-robot
localization (Carron et al. (2014)) and Network Utility
Maximization (Palomar and Chiang (2006)). The main
contribution of the paper is a provably convergent and
distributed algorithm, under suitable assumptions on the
step size, which is robust to the presence of packet losses
in the communication channel. To the best of the authors
knowledge, this is one of the first provably convergent
algorithms in the presence of packet losses, since both
ADMM algorithms and distributed sub gradient meth-
ods (DSM) require reliable communication. Interestingly,

2405-8963 © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/ifacol.2015.10.318

M. Todescato et al. / IFAC-PapersOnLine 48-22 (2015) 126-131 127

the proposed algorithm is also suitable for fully parallel
computation, i.e. multiple agents can communicate and
update their local variable simultaneously, and for broad-
cast communication, i.e. nodes do not need to enforce a
bidirectional communication such as in gossip algorithms,
therefore very attractive from a practical point of view.

1.1 Mathematical Preliminaries

In this paper, G (V,&) denotes a directed graph where
V = {1,...,N} is the set of vertices and £ is the set of
directed edges, i.e., a subset of V x V. More precisely
the edge (i,7) is incident on node i and node j and is
assumed to be directed away from 7 and directed toward
j. The graph G is said to be bidirected if (¢,7) € £ implies
(j,4) € &. Given a directed graph G (V,€), a directed
path in G consists of a sequence of vertices (i1, 42, ..., i)
such that (i;,i; +1) € & for every j € {1,...,r—1}.
The directed graph G is said to be strongly connected
if for any pair of vertices (i,j) there exists a directed
path connecting 7 to j. Given the directed graph G, the
set of neighbors of node 4, denoted by N, is given by
N; = {j € V|(i,j) € E}. Moreover, N;t = N Ui. Given
a directed graph G (V, &) with |E] = M let the incidence
matriz A € RM*N of G be defined as A = [a.;], where
ae; = 1,—1,0, if edge e is incident on node i and directed
away from it, is incident on node 7 and directed toward it,
or is not incident on node i, respectively. Given a vector v
with v” we denote its transpose. Moreover, we denote with
Ay the adjacency matriz or laplacian matriz of the graph
which is defined as Ay := AT A, which has the property
that [Ag];; # 0 if and only if (4,5) € £. If we associate to
each edge a weight different from one, then it is possible to
define the weighted laplacian matriz as £ = ATW A where
W € RM*M yepresents the diagonal matrix containing in
its /-th element the weight associated to the /-th edge.
Given a vector v with the symbols R(v) and I(v) we
denote its real and imaginary parts, respectively. Finally,
with the symbols E and P we denote, respectively, the
expectation operator and the probability of an event.

2. PROBLEM FORMULATION

Consider the set of N agents V = {1,...,N}, where
each agent ¢ is described by its state vector z; € R™:.
Assume the agents can communicate among themselves
through a bidirected strongly connected communication
graph G(V,E). Assume each agent collects a set of mea-
surements b; € R™: which are noisy linear combinations
of its own state and those of its neighboring agents, i.e.,

bi= Y Ayzj+wi=Auzi+ Y Az +w;
FENT JEN:

where A;; € R™*™ and where w; is white noise of zero
mean and variance R; independent of the other w;. We
consider the problem of estimating the entire state of the
network from the knowledge of the noisy measurements.
By collecting all the agents state and measurements in the
vectors z = [z],...,2%]T € R™ (where n =), n;) and
b:=[bf,...,by] € R™ (where m = Y m;), respectively,
it is possible to formulate the problem as a classical
weighted least square problem. That is

min J (), 1)

where 1
J(z) = i(Ax —b)"'R™(Az —b). (2)

The matrix A € R™*™ represents the measurements

matrix, whose ij-th block is simply defined as [A];; = A,

while R € R"™*™ is the block diagonal matrix defined as
R = blkdiag {R1,..., RN},

which represents the noise variance.

From now on, we assume that n < m and that A is full

rank. Under these assumptions, it is well known that the

solution of (1) is unique and given by

v = (ATRTA)TATR . (3)

To compute the value of z* directly as in (3), one needs
all the measurements, the matrix A and the noise variance
R, i.e., full knowledge of the network is required. On the
contrary, we aim at solving Problem (1) in a distributed
fashion. To this end, note that it is possible to rewrite
Problem (1) as

T1y--TN £

min Z Ji(zi, {xj}ien:) (4)

where
Ji(xia {xJ}JENz) =

1
5(1411%1 + Z Aile'j - bZ)TRZ_l(Anl’Z + Z Aij(Ej — bl)
JEN; JEN;

The above equation highlights the local dependence of
each cost function J; on information regarding only agent
i and its neighbors j € N;. In next section, we present
a distributed algorithm to solve optimization problems in
the separable quadratic form (4). Firstly, we review an im-
plementation which requires synchronous communications
among the agents and basically coincides with a Block-
Jacobi algorithm. Secondly, we present a modified version
which is amenable for a distributed implementation and is
robust to the presence of packet losses in the communica-
tion channel. We will compare the proposed algorithm with
the classical ADMM algorithm (Kekatos and Giannakis,
2013; Bolognani et al., 2014) which we briefly review in
Section 4.

3. BLOCK JACOBI ALGORITHM
8.1 Distributed Block Jacobi Algorithm

Consider the generalized gradient descent strategy
z(t+1) =x(t) — eD VI (2(t)) (5)
where V.J(z(t)) is the gradient of J, ie., VJ(x(t)) =
[0.J(x(t))/0x]", D is a generic positive definite matrix and
€ a suitable positive constant, usually referred as step size.

The algorithm we propose is a particular case of (5), where
D is a block diagonal matrix whose i-th diagonal block is

defined as

Di= Y ALR;'Aj. (6)

JENTT

With a little abuse of notation, let us denote the Hessian
of the cost function as V2J(z). From standard algebraic
computations, it follows that V2J(z) = ATR™1A. The
matrix V2J(x) can be partitioned as an N x N block
matrix, where the i, j-th block [VZJ(JS)L,J, is given by

ai{g;)j. One can see that the block [V2.J(z)];; is different

from zero either if j € N or if i and j are two step
neighbors (i.e. there exists a agent k such that k is neighbor
of both ¢ and j). Furthermore, it can be shown that

128 M. Todescato et al. / IFAC-PapersOnLine 48-22 (2015) 126-131

D; = [V2J(x)];; is the i-th diagonal block of the cost
function Hessian.
From (2), we can compute the gradient of the cost function

VJ(z(t)) = ATR_l(Ax(t) —b), (7)
whose cornponent associated with the i-th agent is
[V.J = > ALR 'm(t+1) (8)
JENT
where the variable n;(t + 1) is defined as

= > Ajan(t) 9)

keN;

nJ (t+1)

By plugging (6), (8) into (5), we can write the updating
step performed by agent ¢ as
x;(t+1) =z;(t) —eD; ZA Ry Tnj(t + 1),
JEN
which, in vector form, leads to
z(t+1) =T —eD'ATR™Y A)a(t) +eD7TATR™ b, (11)
Observe that agent i, in order to perform (10), needs
information coming from the neighbours of its neighbors,
i.e. the two-step neighbours. As so, to each iteration of the
algorithm it is necessary to perform two communications,
the first to compute the n;(t+1)’s and the second to com-
pute the z;(t+1)’s. The distributed Block Jacobi algorithm
(denoted hereafter as the BJ algorithm) for quadratic
functions is formally described as in Algorithm 1. Next, the
convergence properties of the BJ algorithm are established.

Lemma 1. Consider Problem (1) and the BJ algorithm.
Assume 5

S 1 1 *
|ID~2ATR-1AD~z||
Then, for any z(0) € R™, the trajectory z(t), generated

by the BJ algorithm, converges exponentially fast to the
minimizer of Problem (1), i.e.,

la(t) — 2*|| < Cp’
for some constants C' > 0 and 0 < p < 1.

Remark 2. Tt is worth noticing that to compute the step
size upper bound of Eq.12 one needs complete knowledge
of the network. It will be part of future research to find a
possible distributed implementation of Eq.12.

(10)

(12)

In the interest of space, the proof can be found in technical
report Todescato et al. (2015).

Algorithm 1 Distributed Block Jacobi algorithm.

Require: Vi € V, store A;;, Aji, R;,7 € N;T.
1: for t € Neach i € V do

2: sends z;(t) to j € Nj;

3 receives x;(t) from j € Nj;

4: updates n;(t) by using (9)

5: sends n;(t) to j € Ny;

6:

7

8:

receives n;(t) from j € N;
updates z;(t) by using (10)
end for

3.2 Robust Block Jacobi Algorithm

Algorithm 1 has been designed for the ideal case with
no lossy communication. In the following, we generalize
Algorithm 1 for the case with lossy communication, e.g.
agent 7 could not receive information sent by some of its

neighbors, due to communication failures. The modifica-
tion of the algorithm is apparently naive, since we simply
perform the same algorithm by using the last received data
from its neighbours if a packet is not received.

To model the packet losses, it is convenient to introduce
the indicator function

(4) (t) = 1 if ¢ received the information sent by j
75 0 otherwise.

with the assumption that fyi(i)(t) = 1, since node i has

always access to its local variables n;(t) and x;(t). We
assume the following property.

Assumption 3. There exists a constant T" such that, for all
t >0, for all i € V and for all j € N,

P (1), 2t + T = {0,...,0}] = 0.

Roughly speaking, Assumption 3 states that agent i re-
ceives, at least once, information coming from agent j
within any window of T iterations of the algorithm. Ob-
serve that, if agent ¢ does not receive some of the packets
transmitted by its neighbors, then it does not have the
necessary information to perform the updates (9) and (10).

To overcome this fact, we assume agent ¢ stores in memory
the auxiliary variables my) g), j € N;, which are equal,

respectively, to the last packets z; and n; received by agent

¢ from agent j; specifically, the dynamics of ch-i), ng.i) are

0 [t it =1
n; (t+1)= { ny)) if ’Y(i)(t) _o (13)
i xi(t) if (Z) =1

As mentioned in the previous section, Algorithm 1 requires
two communication rounds every iteration. In a lossy
environment, in order to reduce the communication burden
and the number of communication failures, we modify
Algorithm 1 by letting the agents to communicate just
once every iteration, transmitting together the z;’s and

the n;’s. Agents i exploit x()(t) and n(z)(t) to update n;

and x; as
nit+1) =Y Azl (t) - b, (15)
JENT
zi(t+1) =a;(t) —eD7V Y ALRTWO () (16)

JGN;
As so, even in the scenario with no packet losses, this
new algorithm does not exactly coincide with Algorithm 1,
since a one-step delay is introduced in the computation
of the variables n;(t). The robust block Jacobi algorithm
(hereafter referred to as r-BJ algorithm) for quadratic
functions is formally described as in Algorithm 2. The
left panel of Figure 1 provides a pictorial representation
of the stored and communicated variables by each node.

The convergence properties of the r-BJ algorithm are next
established.

Theorem 4. Let Assumption 3 hold. Consider Problem
(1) and the r-BJ algorithm. There exists € such that, if
0 < € < g, then, for any z(0) € R", the trajectory z(¢),
generated by the BJ algorithm, converges exponentially
fast to the minimizer of Problem (1), i.e.,

l2(t) — 2| < Cp'
for some constants C' > 0 and 0 < p < 1.

M. Todescato et al. / IFAC-PapersOnLine 48-22 (2015) 126-131 129

Algorithm 2 Robust Block Jacobi algorithm.

Require: Vi € V, store AU, Aji, Rj,j €N
1: for t € N each i € V do
2: sends x;(t),n;(t) to j € Ni;
3 if fy(l)(t) =1 then
4 receives z;(t) and n;(t) from j € N;
5: end if

6: updates nz() by using (15)

7

8

9

10:

) by using (13)

updates n (
updates x l)(t) by using (14)

: updates xz(t) by using (16)
end for

Agent j

Agent g

r-BJ algorithm naive ADMM algorithm
Fig. 1. Communication scheme for the BJ algorithm (left) and for
the ADMM algorithm (right).

The proof of Theorem 4 can be found in Todescato et al.
(2015), and basically relies on separation of time scales
principle between the dynamics of the states x;’s and the
auxiliary variables xg-z) ’s, n;’s and né—l) ’s. Loosely speaking,
if the update step-size parameter € is small enough, the
variation of the true states x;’s is so slow that, despite
the lossy communication, the values of the copies x(g

and nj 's are essentially equal to the z;’s and the n;’s,
respectively.

Remark 5. We would like to emphasize that this general
model of packet losses includes as special cases asyn-
chronous updates. In fact, asynchronous updates where
only one node ¢ updates its local variables based on the
information received form its neighbours can be recovered
by our algorithm assuming that all packets are lost except
those from the neighbours of node ¢ to node 7 itself. Also,
our algorithm allows for multiple agents to communicate
and perform updates at the same time, thus requiring
no coordination. Finally, broadcast communication can be
used since nodes do not need to establish reliable bidirec-
tional communication as in gossip protocols.

4. ADMM ALGORITHM

In this section we briefly review the ADMM algorithm
which was first presented in the mid 70’s and later re-
viewed in Bertsekas (2014); Boyd et al. (2011). The algo-
rithm has then been adapted for distributed optimization
(Kekatos and Giannakis, 2013). Here we recall a partition
based implementation of the algorithm which is specific
for quadratic cost function and has been presented in
Bolognani et al. (2014). It is well known that the ADMM
algorithm is widely used for its good convergence prop-
erties. However, to the best of our knowledge, no imple-
mentation of the ADMM with theoretical guarantees has
been presented in the literature to deal with the presence
of unreliable communications.

4.1 Partition Based ADMM Algorithm

In this section we shortly review a partition-based version
of the ADMM algorithm for quadratic functions of the
type considered in this paper. We use the same notation
used in Bolognani et al. (2014) to which we refer the
reader. Let us consider agent ¢ and, without loss of

generality, assume N; = {jl, A } Then let
(@)

@) x;
XV = 2@
T Jjen:

;A=A Ay, A

M, = diag{ I SN } .
Additionally let
ot 20 B
dl O B
GO = s L PO = j.l , B® = ?1 7
. @) (@)
GJ\N | Fjw | BJW |

where G17, F{V, BY) € R™ and G\, F\) B & R™n.
It turns out that A; € R™*7% M, € R’“X%
i i i ; _ |V

GO FO BO ¢ RY where v fni+zh 1M, -

The partition-based ADMM algorithm (which hereafter
we refer to as ADMM) for quadratic functions is formally
described in Algorithm 3. The standing assumption is that
all the matrices AT R;'A; + M;, i € V are invertible. As

and

Algorithm 3 Partitioned Based ADMM algorithm.
Require: Vi € VD,
X0 g Fp@) B6),

: forteNeachicV do
sends 27 (1), 247 (¢) to j € Ni;

1
2 s J
3: receives x(J)(t), ;J)() from j € N;;
4.

updates the memory and the estimate as

@=L >3 ()(t))

store and initialize to 0

JGN
o =5 ()0 - x;z;h><t>), 1< h< N
F(Z(t+1) F)(t) + GO (t)
BO(t+1) = 2pM; XD () — GO (t) — 2FO (¢ + 1)
XO@t41) =

[ATRY A+ M)t [AfRilbi + %B(i)(t - 1)}

5: end for

shown in Bolognani et al. (2014) and reference therein,
the algorithm is provably convergent for quadratic cost
functions for any value of the parameter p.

4.2 Partition Based ADMM Algorithm with packet losses

To the best of our knowledge there is no ADMM conver-
gent implementation in presence of communication fail-
ures. We propose here a possible naive implementation of
the ADMM algorithm to deal with packet losses which
adopt the very simple idea used in r-BJ algorithm pro-
posed in Section 3.2. More precisely, we simply use the last
received information from a node if a packet loss occurs.
To do so, we equip each agent with additional slots of

130 M. Todescato et al. / IFAC-PapersOnLine 48-22 (2015) 126-131

Fig. 2. IEEE 123 node split into 28 non overlapping areas.

memory. Specifically, agent ¢, for j € N;, stores in memory
(j<—j) w(jej)
) Py

the additional variables x
as follows:

, which are updated

o) if ~ () =
Tt =1) if () =0
g';(‘i{_j)(t) _ (zfx)(t) if ’YJ(:; (t) =1) (18)
J z; Pt —1) if 7,7 (t) =0

By exploiting these additional variables, it is possible to
modify Algorithm 3 by updating G\ (t) and G;l) (t) as

=2 (o1 -2l w).

JEN;
@Dy P (i+=3)
G; (t)—§(xj —)

while the remaining part of the algorithm is the same as
before. The right panel of Figure 1 provides a pictorial
representation of the stored and communicated variables
by each node for this modified algorithm that we refer to
as naive ADMM.

5. SIMULATIONS

In this section we compare the Block Jacobi and the
ADMM algorithms in the ideal synchronous implementa-
tion with no packet losses and in the more realistic scenario
with random packet losses.

The algorithms have been tested on the IEEE 123 nodes
distribution grid benchmark (see Bolognani et al. (2014)).
For our purpose, the feeder has been divided into non
overlapping areas as shown in Figure 2. The areas identify
the agents of the communication graph G. In particular, we
assume there exists, for each area, a smart monitor able
to sense the physical part of the grid which it has been
assigned to, and to communicate with the monitors of the
areas which are physically connected to it.

Here, the algorithms presented in Sections 3 and 4 are
exploited to estimate the state of the electric grid which
consists in the voltage real and imaginary parts at every
node of the grid. We assume each node v of the grid
is described by its bus voltage u, € C and its injected
current i, € C. Let us stack together all the voltages and

all the currents in the vectors u = [uy,...,un,,]T and

~--BJ
-1 — ADMM

Il Il
0 50 100 150 200 250
Iteration

Fig. 3. Comparison between the optimized BJ algorithm and the
ADMM with no packet losses, i.e. ¥ = 0.

i = [i1,...,in.,]T, respectively, where N, is the number
of nodes. Then, thanks to Kirchhoff’s current and voltage
laws, the relation among currents and voltages is

(19)
where L. is the electrical Laplacian of the grid which
depends on the impedances of the electric lines connecting

the nodes. Equation (19) can be expanded into its real and
imaginary parts leading to

R(E)| [R(Ler) —=S(Ler)| | R(uw)

S| [S(Lee) R(Ler) | [S(u)]

We assume to have at our disposal noisy measurements
of the real and imaginary parts of voltage and current at
every node of the grid. These are retrieved with phasor
measurement units (PMUs) placed at each node. By defin-

ing the measurements vector b, the observation matrix A
and the state vector x, respectively, as

= ,Cegu.

b (u) I 0
breiy | TARLe) —S(Lee)| 0 T TS|
3() S(Lee) R(Ler)

the measurements model reads as

b= Az +w, (21)

where w is the noise vector and R = T is its
correlation matrix.

For a detailed analysis, we refer the interested reader to
Bolognani et al. (2014) where an exhaustive modeling of
the grid and of the measurements is given.

We partition A, b, x, w according to the splitting showed in
Figure 2 and we formulate the state estimation problem
as in (4). Next, we compare the performance of the Block-
Jacobi algorithm with the performance of the ADMM
algorithm. In particular, we compare the algorithms in
terms of the evolution of the normalized distance of the
cost function from its minimal value, i.e.,

’J(x(t)) — J(z")
J(2(0))

E[lww

(22)

where
J(a(t)) = %(A:c(t) — BT R (Az(t) — b)

being x(t) the estimated state at iteration ¢ obtained by
either the Block Jacobi or the ADMM algorithm. In Fig-
ure 3, we depict the behavior of the two algorithms in the
ideal scenario of reliable communications, i.e., no packet
losses occur. The results reported have been obtained
optimizing the performance of both algorithms over the
parameters p and e. We can see that the performance of
the ADMM and BJ algorithms are comparable.

M. Todescato et al. / IFAC-PapersOnLine 48-22 (2015) 126-131 131

=1
\
AR
B .
B S Ik e
G5 | N M ST T NI B
N
Sl -5k
& - --1BJ, 7=10%
l==-1-BJ, 3= 60%
——naive ADMM, 5= 10%
5 50 100 150 200 250

Iteration

Fig. 4. Comparison between the r-BJ and the naive ADMM
algorithm for different packet loss probabilities 7.

Instead, in Figure 4 we compare the two algorithms in
the lossy scenario. The parameters ¢ and p have been
again manually optimised for best performance in both
algorithms. In particular we assume that for all i,57 € V
and for allt >0
Dy — 11 — =

Phy; () =1 =1-7,
where 4 denotes the failure probability in the communi-
cation channel. Note that, according to the above proba-
bilistic model, Assumption 3 is not necessarily satisfied,
since we cannot ensure that within every T iterations
every agent receives at least one packet from each of its
neighbors. Nonetheless, the r-BJ algorithm still exhibit
exponential convergence to the optimal solution even for
high packet loss rates (60%). Differently, the ADMM fails
to converge to the optimal point already in the presence
of a moderate packet loss (10%).

6. CONCLUSIONS AND FUTURE DIRECTION

In this work we addressed the problem of distributed
quadratic programming in presence of communication fail-
ure. We presented a modified version of the Block Jacobi
algorithm which is robust to packet losses in the com-
munication channel if the step-size is sufficiently small.
We compared the algorithm with the well known ADMM
algorithm in the context of smart grid state estimation
based on the IEEE 123 nodes distribution feeder bench-
mark, showing comparable or better performance.

As possible future research directions, we intend to extend
the algorithm to general smooth convex cost functions
and to estimate the critical step-size for stability of the
algorithm and possibly to optimize it for best convergence
speed.

REFERENCES

Bertsekas, D.P. (2014). Constrained optimization and
Lagrange multiplier methods. Academic press.

Bertsekas, D.P. and Tsitsiklis, J.N. (1989). Parallel and
Distributed Computation: Numerical Methods. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA.

Bianchi, P., Hachem, W., and Iutzeler, F. (2014). A
stochastic coordinate descent primal-dual algorithm
and applications to large-scale composite optimization.
arXiv preprint arXiv:1407.0898.

Bolognani, S., Carli, R., and Todescato, M. (2014). State
estimation in power distribution networks with poorly
synchronized measurements. In Decision and Control
(CDC), 2014 IEEE 53rd Annual Conference on, 2579—
2584.

Boyd, S., Parikh, N.; Chu, E., Peleato, B., and Eckstein, J.
(2011). Distributed optimization and statistical learning

via the alternating direction method of multipliers.
Foundations and Trends® in Machine Learning, 3(1),
1-122.

Carron, A., Todescato, M., Carli, R., and Schenato, L.
(2014). An asynchronous consensus-based algorithm
for estimation from noisy relative measurements. IEEE
Transactions on Control of Network Systems, 1(3), 283
- 295.

Erseghe, T. (2012). A distributed and scalable processing
method based upon admm. Signal Processing Letters,
IEEFE, 19(9), 563-566.

Tutzeler, F., Bianchi, P., Ciblat, P., and Hachem, W.
(2013). Asynchronous distributed optimization using a
randomized alternating direction method of multipliers.
In Decision and Control (CDC), 2013 IEEE 52nd An-
nual Conference on, 3671-3676. IEEE.

Kekatos, V. and Giannakis, G.B. (2013). Distributed
robust power system state estimation. Power Systems,
IEEE Transactions on, 28(2), 1617-1626.

Marelli, D.E. and Fu, M. (2015). Distributed weighted
least-squares estimation with fast convergence for large-
scale systems. Automatica, 51, 27-39.

Nedic, A. and Ozdaglar, A. (2009). Distributed subgra-
dient methods for multi-agent optimization. Automatic
Control, IEEE Transactions on, 54(1), 48—61.

Nedic, A., Ozdaglar, A., and Parrilo, P.A. (2010). Con-
strained consensus and optimization in multi-agent net-
works. Automatic Control, IEEE Transactions on,
55(4), 922-938.

Palomar, D.P. and Chiang, M. (2006). A tutorial on de-
composition methods for network utility maximization.
Selected Areas in Communications, IEEE Journal on,
24(8), 1439-1451.

Schizas, I.D., Ribeiro, A., and Giannakis, G.B. (2008).
Consensus in ad hoc wsns with noisy linkspart i: Dis-
tributed estimation of deterministic signals. Signal Pro-
cessing, IEEE Transactions on, 56(1), 350-364.

Todescato, M., Cavraro, G., Carli, R., and Schenato,
L. (2015). Convergence of the robust block jacobi
algorithm in presence of packet losses. Technical report.
URL http://automatica.dei.unipd.it/people/
todescato/publications.html.

Zanella, F., Varagnolo, D., Cenedese, A., Pillonetto, G.,
and Schenato, L. (2011). Newton-raphson consensus
for distributed convex optimization. In Decision and
Control and European Control Conference (CDC-ECC),
2011 50th IEEE Conference on, 5917-5922. IEEE.

Zargham, M., Ribeiro, A., Ozdaglar, A., and Jadbabaie,
A. (2014). Accelerated dual descent for network flow
optimization. Automatic Control, IEEE Transactions
on, 59(4), 905-920.

