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Abstract: In this work we propose a novel asynchronous algorithm to solve the problem of
optimal estimating the position of each agent in a network from relative noisy vectorial distances
with its neighbours. This algorithm is based on the combination of two asynchronous algorithms
which have been recently proposed in the literature for localization problems. Specifically, we
analyze various switching strategies from an asynchronous algorithm which exhibits a fast
transient but does not convergence to an optimal solution, to another asynchronous algorithm
which is slower in the transient but reaches an optimal solution exponentially. We provide a
large set of simulations to compare the different switching strategies and to verify which one
performs better.
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1. INTRODUCTION

The proliferation of relatively inexpensive devices capable
of communicating, computing, sensing, interacting with
the environment and storing information is promising an
unprecedented number of novel applications throughout
the cooperation of these devices toward a common goal.
These applications include swarm robotics, wireless sen-
sor networks, smart energy grids, smart traffic networks,
smart camera networks. These applications also pose new
challenges, of which scalability is one of the major ones.
Scalability is intended as the ability for an application to
continue functioning without any dramatic performance
degradation even if the number of devices involved keep
increasing. In particular, an application is scalable if it is
not necessary to increase either HW or SW resources in
each device even if the total number of devices increases.

In this work we address the problem of designing algo-
rithms that are capable to reconstruct the optimal es-
timate of the location of a device from noisy relative
measurements from its neighbors in a connected network.
In particular, combining two existing algorithms we want
to design a novel distributed strategy that, exploiting their
main features, allows each device to reconstruct its own
position only from exchanging information with its neigh-
bors, regardless of the size of the network. Moreover, this
novel algorithm must be scalable, i.e. its computational
complexity, bandwidth and memory requirements should
be independent of the network size. This algorithm will be
obtained as the solution of an optimization problem.

Distributed optimization has been attracting ever growing
attention in the past years since many problems in large
scale network have been cast as convex optimization prob-
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lem. In particular, a large class of problem can be cast as
the solution of the following optimization problem

x∗ = argminx1,...,xN

N∑

i=1

fi(xi)

s.t. xi = xj , ∀i, j

(1)

where N is the number of nodes, xi ∈ Rm, and fi are
convex functions. The function fi represents local cost of
each agent i, but each agent must compute the minimizer
x∗ of the sum all local costs. The local cost functions
are separable but the additional contraint that all local
variables xi must be the same, makes the optimization
problem coupled. Many problems can be cast in this terms
such as distributed least squares (Xiao et al. [2005], Bolog-
nani et al. [2010]), map building (Schwager et al. [2009]),
network utility maximization (Johansson et al. [2006]),
distributed learning and support vector machines (Boyd
et al. [2011]). Several approaches have been proposed such
as the distributed subgradient methods (SDMs) (Nedic
and Ozdaglar [2009]), the alternating direction method
of multipliers (ADMM)(Boyd et al. [2011]), the Newton-
Raphson consensus (Zanella et al. [2011]) and the control-
based methods (Wang and Elia [2010]).

The problem at hand in this work is of a different type and
can be cast as the following unconstrained optimization
problem:

min
x1,...,xN

|E|
∑

(i,j)∈E

fij(xi − xj) (2)

where xi ∈ Rℓ, E represents all the pair of nodes for
which are available relative measurements and fij are con-
vex functions. Differently from the previous optimization
problem, the local variables are unconstrained, but the
cost functions are now not separable, and therefore the
problem is once again coupled. Many problems can be
cast in this framework such as sensor localization (Barooah
and Hespanha [2005], Barooah [2007]), sensor calibration
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(Bolognani et al. [2010]), clock synchronization (Solis et al.
[2006]) and camera localization (Borra et al. [2012], Tron
and Vidal [2009]). For example, in the context of localiza-
tion from vectorial relative distance in a plane, the cost
function fij are given by:

fij(xi − xj) = ||xi − xj − zij ||
2

where zij ∈ Rℓ is the noisy measurement of the relative
(vector) distance of node i from node j. As a conse-
quence, the optimization problem in Eqn. (2) becomes a
distributed least-square problem that in principle could be
cast as the optimization problem in Eqn. (2). However, in
this case, each node will need to compute the location of
all other nodes, i.e. the size of the local variable becomes of
size m = Nℓ, which according to our objective is not scal-
able. There exist alternative approaches that try to exploit
the special structure of the problem, but they either show
oscillatory behavior as in consensus-based with constant
weights (Bolognani et al. [2010]), or the convergence rate
decreases only as 1/k as in the Randomized Kaczmarz
with Under-Relaxation (Freris and Zouzias [2012]). This
slow convergence rate is mainly due to the fact that these
algorithms adopt asynchronous gradient-based algorithms
whose step-size decreases to zero as progress.

The contribution of this work is to provide an adaptive
strategy based on two asynchronous algorithms recently
proposed in the literature. The first, based on a modified
implementation of the algorithm proposed in Bolognani
et al. [2010], presents a fast transient, but it does not
converge to the optimal estimate. The second, presented
in Carli et al. [2013], on the contrary, presents a relatively
slow transient, but it converges to an optimal estimate
exponentially. The aim will be to appropriately combine
the algorithms to ensure an higher performances strategy.

2. MATHEMATICAL PRELIMINARIES

We introduce now some preliminary notations. The sym-
bols RN and RM×N denote the vector space of N dimen-
sional column vectors and M × N matrices respectively,
where all the entries are real.
With the superscript T we denote the transpose of a
matrix. The symbol 1 represents a column vector where
all the entries are equal to one, whereas ei, i = {1, . . . , N}
denotes the column vector in RN having all entries equal
to zero except a 1 in postion i. The symbol I represents
the identity matrix. We denote with the symbol ‖ · ‖ the
2-norm on RN and the induced norm in RN×N . Given a
matrix A ∈ RN×N the symbol sr(A) denotes the spectral
radius of A. Given a stochastic matrix P ∈ RN×N the
symbol esr(P ) denotes the essential spectral radius of P ,
i.e., its second largest eigenvalue in absolute value.
A directed graph G is defined as a pair (V, E) where
V = {1, . . . , N} and E ⊆ V × V . The set V is called
set of vertices and the set E is called the set of edges.
If E is such that (i, j) ∈ E then also (j, i) ∈ E , the
associated graph is called bidirected. With | E |= M we
denote the cardinality of the set E . We also introduce the
incidence matrix A ∈ RM×N defined as A = [aei], where
aei = 1,−1, 0, if edge e is incident on node i and directed
away from i, is incident on node i and directed toward it,
or is not incident on node i, respectively. Given a directed
graph, a path from a node to another node that does not
respect the orientation of the edges is called an undirected
path. A directed graph is said to be weakly connected if
there is a undirected path form any node to any other
node. The expectation operator is denoted with the symbol

E. Given a set A with a finite number of elements, by | A |
we denote its cardinality.

3. PROBLEM FORMULATION

The problem we aim at solving is that of estimating N
variables x1, . . . , xN from relative measurements of the
form

zij := xi − xj + nij , i, j ∈ {1, . . . , N}, (3)

corrupted by zero-mean measurement noise, nij . In this
paper we assume that xi ∈ R, i ∈ {1, . . . , N}, though the
variables are often vector-valued.

It is natural to associate this estimation problem with a
measurement graph G = (V ; E) whose the vertex set V
consists of the set of nodes V = {1, . . . , N} where N is the
number of nodes, while its edge set E consists of all of the
ordered pairs of nodes (i, j) such that a noisy measurement
of the form (3) between i and j is available to node i.
The measurement errors on distinct edges are assumed
uncorrelated. Moreover, the measurement graph G is a
directed graph because the measurements zij and zji are
available at both the nodes i and j, and the measurements
are in general different.

We firstly introduce some preliminary definitions. Now,
let x ∈ RN , z ∈ RM and n ∈ RM be the vector
obtained stacking together all the variables x1, . . . , xN ,
i.e., x = [x1, . . . , xN ]T , all the measurements zij and all the
noises nij , respectively. Additionally, we denote as Rij > 0
the covariance of the zero mean error nij , i.e., Rij = E[n2

ij ],

and let R ∈ RM×M be the diagonal matrix collecting in
its diagonal the covariances of the noises nij , (i, j) ∈ E ,
i.e., R = E[nnT].

Observe that equation (3) can be rewritten in a vector
form as

z = Ax+ n

Define the set

χ := argmin
x∈RN

(z−Ax)TR−1(z−Ax).

The goal is to construct an optimal estimate x∗ of x in a
least square sense, namely, to compute

x∗ ∈ χ (4)

Assume the measurement graph G to be weakly connected,
then it is well known (see Barooah [2007]) that

χ =
{(

ATR−1A
)†

ATR−1
z+ α1

}

.

Moreover let

x∗
opt =

(
ATR−1A

)†
ATR−1

z,

then x∗
opt is the minimum norm solution of (4), i.e.,

x∗
opt = min

x∗∈χ
‖ x∗ ‖

Remark 3.1. Observe that, just with relative measure-
ments, determining the x′

is is only possible up to an
additive constant. This ambiguity might be avoided by
assuming that a node (say node 1) is used as reference
node, i.e., x1 = 0.

4. ASYNCHRONOUS DISTRIBUTED CONSENSUS
ALGORITHMS

To compute an optimal estimate x∗, one needs all the mea-
surements and their covariances (z,R), and the topology
of the measurement graph G. In this paper we consider
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algorithms that compute an optimal solution in a dis-
tributed fashion, employing only local communication. In
particular we assume that a node i and another node j
can communicate with each other if either (i, j) ∈ E or
(j, i) ∈ E . Accordingly a node i is said to be a neighbor
of node j (and vicecersa) if either (i, j) ∈ E or (j, i) ∈ E .
For i ∈ {1, . . . , N}, by Ni we denote the set of neighbors
of node i, namely

Ni = {j ∈ V such that either (i, j) ∈ E or (j, i) ∈ E} .

In this section we review two asynchronous algorithms
which are based on a standard consensus strategy. In these
algorithms the nodes are assumed to communicate with
each other through an asymmetric broadcast communi-
cation protocol ; more precisely, at each iteration of the
algorithms, there is only one node which wakes up and
communicates its estimate to all its neighbors that, based
on the received information, perform their state update.
The transmitting node is selected in a randomly way. In
particular in the rest of the paper we refer to the scenario
described by the following definition.

Definition 4.1. A network of N nodes is said to be a
randomly persistent communicating network if there exists
a N -upla of probabilities (β1, . . . , βN ) such that βi > 0, for

all i ∈ {1, . . . , N}, and
∑N

i=1 βi = 1, and such that, for all
k ∈ N,

P [the transmitting node at iteration k is node i] = βi.

4.1 Memory-less asynchronous consensus algorithm

The first algorithm we review is based on a slightly mod-
ification of the algorithm proposed in Bolognani et al.
[2010]. In Bolognani et al. [2010] the authors adopted a
symmetric gossip communication protocol in place of a
asymmetric broadcast communication protocol. This algo-
rithm is a memory-less algorithm (denoted hereafter as
ML-alg), in the sense that, each node keeps in memory
only an estimate of its own position and not a copy of the
estimates of other nodes. A formal description of the ML-
alg, adopting an asymmetric broadcast communication
protocol, is provided in Algorithm 1.

Remark 4.2. As stressed by the authors in Bolognani et al.
[2010] and supported by several simulations, the trajectory
of x̂ does not converge to an optimal solution x∗ but just
exhibits an oscillatory behavior around x∗. However, the
ML-alg exhibits a fast transient after which it starts to
oscillate within a neighborhood of x∗.

4.2 Memory-based asynchronous consensus algorithm

The second algorithm we review is a memory based asyn-
chronous algorithm (denoted as MB-alg hereafter) that has
been first proposed in Carli et al. [2013]. It is mainly based
on the idea that since the actual values of neighboring
estimates are not always available, each node stores in its
local memory a copy of the neighbors’ variables recorded
from the last communication its neighbors performed.

Specifically, for j ∈ Ni, we denote by x̂
(i)
j (k) the estimate

of xj kept in i’s local memory at the end of the k-th
iteration. If node j performed its last transmission to node

i during h-th iteration, h ≤ k, then x̂
(i)
j (k) = x̂j(h).

The MB-alg is formally described in algorithm 2

where
bi = δ

∑

(i,j)∈E

R−1
ij zij − δ

∑

(j,i)∈E

R−1
ji zji

Algorithm 1 ML-alg

Require: ∀i ∈ V : node i stores in memory the
measurements {zij , zji; Rij , Rji; j ∈ Ni} with
associated covariances. Moreover initializes an
estimate x̂i(0) of xi.

Transmission

2: for k = 1,2,. . . do

one node, say i, with probability βi wakes up and
transmits its estimate to all its neighbors j ∈ Ni

4: end for

Update

6: for j ∈ V do

if j ∈ Ni then

8: node j updated its state as follows:

x̂j(k + 1) =
1

2
(x̂i(k) + x̂j(k))+

1

4

(
R−1

ij zij −R−1
ji zji

)
(5)

else

10: ∀j /∈ Ni node j remains unchanged, i.e.

x̂j(k + 1) = x̂j(k)

end if

12: end for

Algorithm 2 MB-alg

Require: ∀i ∈ {1, . . . , N} every node i stores in
memory the measurements {zij , Rij ; (i, j) ∈ E} and
{zji, Rji; (j, i) ∈ E} with the associeted covariances.
Moreover node i stores also an estimate x̂i of xi

and, for j ∈ Ni, an estimate x̂
(i)
j of x̂j initialized to

arbitrary values.

Transmission

2: for k = 1, 2, . . . do

only one node, say i, with probability βi transmits
its estimate x̂i(k) to all its neighbors j ∈ Ni.

4: end for

Update

6: for j ∈ Ni do

node j performs the following actions in order:

(i) it sets x̂
(i)
i (k + 1) = x̂i(k)

(ii) it leaves x̂
(j)
s (k + 1) = x̂

(j)
s (k) ∀s ∈ Nj/{i}

(iii) it updates x̂j as follows

x̂j(k+1) := pjj x̂j(k)+
∑

h∈Nj

pjhx̂
(j)
h (k+1)+ bj

(6)
8: end for

for s /∈ Ni do

10: node s left unchanged, i.e. x̂s(k + 1) = x̂s(k)
end for

and where

pij =







δ(R−1
ij +R−1

ji ) if (i, j) ∈ E and (j, i) ∈ E

δR−1
ij if (i, j) ∈ E and (j, i) /∈ E

δR−1
ji if (j, i) ∈ E and (i, j) /∈ E

and

pii = 1−
∑

j∈Ni

pij
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being δ a positive constant a-priori assigned to the nodes.
Now, let P ∈ RN×N be the matrix defined by the weights
pij above introduced. One can see the matrix P is equal
to

P = I − δATR−1A

For sufficiently small values of δ, P is a stochastic matrix.

Remark 4.3. The MB-alg is shown to converge exponen-
tially to an optimal solution x∗, (the proof of this fact can
be found in Carli et al. [2013]) provided that the following
two conditions are satisfied:

(i) the measurements graph G is weakly connected,
(ii) 0 < δ < 1/(2dmaxR

−1
min),

where dmax = max{| Ni |, i ∈ {1, . . . , N}} and let
Rmin = min{Rij , (i, j) ∈ E}.

5. HYBRID STRATEGY

In this section we introduce an hybrid algorithm (denoted
hereafter as H-alg) which is based on the combination
of MB-alg and ML-alg. The idea is to exploit the bet-
ter transient performance of ML-alg and the asymptotic
exponential convergence of MB-alg. Loosely speaking, the
main features of the H-alg are the following two:

(i) For i ∈ {1, . . . , N}, node i runs ML-alg during the
transient;

(ii) For i ∈ {1, . . . , N}, node i opportunely switches from
ML-alg to MB-alg as soon as its estimate x̂i starts to
exhibit oscillating behavior.

We stress that, in the distributed scenario we deal with,
the H-alg assumes every node to work standalone. In other
words, every node will switch from the ML-alg to the MB-
alg independently from all the other nodes. Recall line 9
of algorithm 1 and line 7 of algorithm 2. Then the H-alg
updating law is defined as follows

x̂j(k + 1) =
wj(k)

2

(

x̂i(k) + x̂j(k) +
1

2

(
R−1

ij zij −R−1
ji zji

)
)

+ (1− wj(k))
(

pjj x̂j(k) +
∑

h∈Nj

pjhx̂
(j)
h (k + 1) + bj

)

(7)

where wj(k) ∈ [0, 1] represents the chosen weight for
combining the two strategy at the k-th iteration.

The H-alg is formally described in Algorithm 3.

Now we propose three strategies for choosing {w(k)}k∈N
.

Heuristic 1: Let M̄ = E[Mi] =
∑N

i=1 βiMi the average
ML-alg matrix. As shown in Carli et al. [2013], M̄ is a
stochastic matrix. Since the algorithm has an exponential
transient evolution one can approximate it as e−

t

τ where
the time constant τ is equal to

τ = −
1

log(ρ)

where ρ = esr(E[M̄ ]). The strategy requires all nodes
to store in their memories the value of τ . Moreover, for
i ∈ {1, . . . , N}, node i keeps in memory also a counter ci(k)
which counts how many updates node i has performed
up to the k-th iteration of the H-alg. As soon as ci(k) >
τ |Ni|/N , node i switches from the ML-alg to the MB-alg,
namely, wi is set definitively equal to 0.

Algorithm 3 H-alg

Require: ∀i ∈ {1, . . . , N} every node i stores in
memory the measurements {zij , Rij ; (i, j) ∈ E} and
{zji, Rji; (j, i) ∈ E} with the associated covariances.
Moreover node i stores also an estimate x̂i of xi

and, for j ∈ Ni, an estimate x̂
(i)
j of x̂j initialized to

arbitrary values.

Transmission

2: for k = 1, 2, . . . do

only one node, say i, transmits its estimate x̂i(k) to
all its neighbors j ∈ Ni.

4: end for

Update

6: for k = 1, 2, . . . do

if j ∈ Ni then

8: Choose heuristic 1, 2 or 3 and check it, and accord-
ingly assign the value to wj(k) then, opportunely
update x̂j(k + 1) according to equation (7).

else

10: ∀s /∈ Ni node s remains unchanged, i.e.

x̂s(k + 1) = x̂s(k)

end if

12: end for

Heuristic 1 Hard Switch
Require: Given a node i ∈ {1, . . . , N}, the weight wi(k)

is initialized to one.
1: if ci(k) > τ |Ni|/N then

2: wi(k) = 0
3: end if

Remark 5.1. Observe that, if the probabilities βi, i ∈
{1, . . . , N}, are uniform, i.e., β1 = . . . = βN = 1/N , then
the nodes will switch around the same iteration.

Remark 5.2. The computation of τ require an a priori
knowledge of the network which could not be ensure.

Heuristic 2: Observe that, in the previous heuristic, the
parameters wi abruptly changes from 1 to 0. Instead in
this heuristic we assume that wi is a smooth decreasing

function of the counter ci(k); specifically wi(k) = e
−

ci(k)N

τ|Ni| ,
where, again, τ = − 1

log(ρ) .

Heuristic 2 Smooth Switch
Require: Given a node i ∈ {1, . . . , N}, the weight wi(k)

is initialized to one.

1: wi(k) = e
−

ci(k)N

τ|Ni|

In this heuristic, as in the previous one, the parameter τ ,
represents an appropriate time constant of the network,
tries to “predict” the behaviour of the state convergence.

Heuristic 3: The final strategy we present is based on a
statistical behavior of the state evolution. Given n ∈ N,
assume that, for i ∈ {1, . . . , N}, node i keeps in memory
the values of the last 2n updates of its own estimate it
has performed. Without loss of generality, assume that
these updates have occured during iterations k1 < k2 <

. . . < k2n. Let us define x̄inew
= 1

n

∑k2n

t=kn+1
xi(t), x̄iold =

1
n

∑kn

t=k1
xi(t) and σ̂i =

√
1
n

∑k2n

t=kn+1
(xi(t)− x̄inew

)2. Ob-

serve that x̄inew
and x̄iold represent the sample mean of the

state update over the two windows of length n, [k1, kn] and
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[kn+1, k2n], respectively, while σ̂i represents the sample
standard deviation over [kn+1, k2n]. Then, if the difference
between x̄inew

and x̄iold is less than the normalized sample
standard deviation σ̂i/

√
n, the node switches from the ML-

alg to the MB-alg.

Heuristic 3 Statistical Switch
Require: ∀ node i ∈ {1, . . . , N}, initialize the weight

wi(k) to one. Moreover a window of dimension n is
given.

1: x̄inew
= 1

n

∑k2n

t=kn+1
xi(t)

2: x̄iold = 1
n

∑kn

t=k1
xi(t)

3: σ̂i =
√

1
n

∑k2n

t=kn+1
(xi(t)− x̄inew

)2

4: if |x̄inew
− x̄iold | < σ̂i/

√
n then

5: wi(k) = 0
6: end if

This strategy take advantage of the fact that the oscilla-
tory behavior of the state within a neighbor of an optimal
solution suggests the process to be steady state stationary.
Moreover it does not require any a priori knowledge of the
network.

Remark 5.3. Note that all the strategies are completely
local since every node does not need any global counter.

6. SIMULATION RESULTS

Now we show some simulation results to show how the
different switches strategy affect the hybrid implementa-
tion. All simulations are carried out over a random geo-
metric bidirected connected graph of 50 nodes uniformly
distributed in a squared area of side

√
50. Specifically,

nodes i, j ∈ V are considered connected if their relative
distance is less than or equal to 1.8 , i.e. |xi − xj | ≤ 1.8.
In the simulations have been taken into account only
configurations where the generated graphs resulted to be
connected. Relative measurements are corrupted with zero
mean gaussian noise with standard deviation equal to 0.01.
The simulations report the behavior of the cost function

J(k) = log(‖ Ax̂(k)−Ax∗
opt ‖)

All the numerical results we report have been obtained

implementing the randomized scenario of definition 4.1
with uniform probability namely, β1 = . . . = βN = 1/N .

Example 6.1. In this example we show a typical behav-
ior of the H-alg’s using the “Hard” switching strategy.
Figure 1 shows how, for ci(k) > τ |Ni|/N , the H-alg
abruptly switches from the ML-alg to the MB-alg, causing
an evident change in the convergence. The plot reports
three realizations of the H-alg for different values of τ ,
specifically for τ , 0.1τ and 10τ . As previously mentioned,
the strategy needs an a priori knowledge of the network
to compute τ . Since this could not be the case, one can
estimate or approximate it within a certain range. The
plot shows that the strategy is not robust to change of the
parameter and that needs to be tuned appropriately.

Example 6.2. In this example we report the H-alg’s be-
havior corresponding to the “Smooth” switching strategy.
Thanks to the combination weight, the algorithm gradu-
ally switches between the two algorithms.

Figure 2 shows three realizations corresponding to 0.1τ ,
τ and 10τ . The strategy, similarly to the “Hard” switch,
needs, for τ ’s computation, an a priori knowledge. The plot
highlights the performance’s variability due to parameter

0 0.5 1 1.5 2

x 10
4

−6

−4

−2

0

2

Iterations

J

 

 

MB−alg

ML−alg

0.1 τ

τ

10 τ

Fig. 1. Comparison between the ML-alg (red solid line),
the MB-alg (blue dashed line) and the H-alg (orange-
magenta-green lines) with “Hard” switching strategy

0 0.5 1 1.5 2

x 10
4

−6

−4

−2

0

2

Iterations

J

 

 

MB−alg

ML−alg

0.1 τ

τ

10 τ

Fig. 2. Comparison between the ML-alg (red solid line),
the MB-alg (blue dashed line) and the H-alg (orange-
magenta-green lines) with “Smooth” switching strat-
egy

bad approximations. Note that for the overestimated pa-
rameter 10τ the H-alg almost follows the ML-alg for too
many iterations.

Example 6.3. In this example we present the last heuristic
based on the “Statistical” switching strategy. We plot two
different simulations each of which reporting three real-
izations corresponding to a parameter variation. Specif-
ically, Figure 3 shows the realizations corresponding to
0.1(σ̂i/

√
n), σ̂i/

√
n and 10(σ̂i/

√
n). In Figure 4 is reported

the simulation for different dimension of the iteration
window, in particular n = 1, 10, 100.

0 0.5 1 1.5 2

x 10
4

−6

−4

−2

0

2

Iterations

J

 

 

MB−alg
ML−alg
(0.1)
(nominal)
(10)

Fig. 3. Comparison between the ML-alg (red solid line),
the MB-alg (blue dashed line) and the H-alg (orange-
magenta-green lines) with “Statistical” switching
strategy for different values of 0.1(σ̂i/

√
n), σ̂i/

√
n and

10(σ̂i/
√
n)

It comes clear from the first image that the realizations are
almost equivalent suggesting the robustness of the strategy
wrt the threshold variation. On the contrary, Figure 4
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Fig. 4. Comparison between the ML-alg (red solid
line), the MB-alg (blue dashed line) and the H-alg
(orange-magenta-green marked lines) with “Statisti-
cal” switching strategy for n = 1, 10, 100.

shows that the method is affected by large values of the
window’ size.
Example 6.4. Finally, we present a brief comparison of the
different hybrid strategies corresponding to nominal values
of the parameter.
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MB−alg
Hard Switch
Smooth Switch
Statistical Switch

Fig. 5. Comparison between the different hybrid strategies:
“Hard” (diamonds line), “Smooth” (squared line),
“Statistical” (triangled line)

Figure 5 shows the averaging over 100 MonteCarlo runs.
It appears that the three strategies have the same average
behavior. Anyway, if there is not some a priori knowledge
of the network, the “Statistical” Switching heuristic can
be the best choice because it is easily tunable.
Remark 6.5. Notice that for networks with a small number
of neighbours, the difference in performance between the
ML-alg and the MB-alg are almost negligible and since
the MB-alg converges to the optimal solution it is recom-
mended to straightforward used the MB-alg.

7. CONCLUSION

In this work we studied the behaviour of various hybrid
algorithms that combine the algorithm in Bolognani et al.
[2010], also called ML-alg along the article, and the re-
cently proposed randomized asynchronous algorithm pre-
sented in Carli et al. [2013], also called MB-alg. Three
switching strategies have been proposed: two of them,
heuristics (1) and (2), are easy to implement and tune,
but an a priori knowledge on the communication graph
is needed, to be more precise, the essential spectral ra-
dius of the communication matrix has to be known. The
other strategy, (3), more complicated to implement, it
is insensible to the graph parameters variations and it
is not largely affected by a parameter variation. Future
works are directed in proving the convergence of the hybrid
algorithm with the various switching strategies.
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