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Abstract— We consider a scenario where the aim of a group
of agents is to perform the optimal coverage of a region ac-
cording to a sensory function. In particular, centroidal Voronoi
partitions have to be computed. The difficulty of the task is that
the sensory function is unknown and has to be reconstructed on
line from noisy measurements. Hence, estimation and coverage
needs to be performed at the same time. We cast the problem in
a Bayesian regression framework, where the sensory function
is seen as a Gaussian random field. Then, we design a set
of control inputs which try to find a good balance between
coverage and estimation, also discussing convergence properties
of the algorithm. Numerical experiments show the effectiveness
of the new approach.

I. INTRODUCTION

The continuous progress on hardware and software is
allowing the appearance of compact and relatively inexpen-
sive autonomous vehicles embedded with multiple sensors
(inertial systems, cameras, radars, environmental monitor-
ing sensors), high-bandwidth wireless communication and
powerful computational resources. While previously limited
to military applications, nowadays the use of cooperating
vehicles for autonomous monitoring of large environment,
even for civilian applications, is becoming a reality. Although
robotics research has obtained tremendous achievements with
single vehicles, the trend of adopting multiple vehicles that
cooperate to achieve a common goal is still very challenging
and open problem.

In particular, an area that has attracted considerable at-
tention for its practical relevance is the problem of envi-
ronmental partitioning problem and coverage control whose
objective is to partition an area of interest into subregions
each monitored by a different robot trying to optimize some
global cost function that measures the quality of service
provided by the monitoring robots.

The “centering and partitioning” algorithm originally pro-
posed by Lloyd [1] and elegantly reviewed in the survey
[2] is a classic approach to environmental partitioning prob-
lems and coverage control problems. The Lloyd algorithm
computes Centroidal Voronoi partitions as optimal configu-
rations of an important class of objective functions called
coverage functions. The Lloyd approach was first adapted
for distributed coverage in the robotic multiagent literature
control in [3]; see also the text [4] (Chapter 5 and literature
notes in Section 5.4) for a comprehensive treatment. Since
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this beginning, similar algorithms have been applied to
non-convex environments [5], [6], to dynamic routing with
equitable partitioning [7], to robotic networks with limited
anisotropic sensory [8] and to coverage with communication
constraints [9].

Most of the works cited above assume that a global
sensory cost function is known a priori by each agent.
Therefore, the focus is limited to the distributed coverage
control problem. However, it is often unrealistic to assume
such function to be known. For instance, consider a group
of underwater vehicles whose main goal is to monitor
areas which present a higher concentration of pollution. The
distribution of pollution is not known in advance, but vehicles
are provided with sensors that can take noisy measurements
of it. In this context, coverage control is much harder since
the vehicles has to simultaneously explore the environment
to estimate pollution distribution and to move to areas with
higher pollution concentrations. This is a classical robotic
task often referred to as coverage-estimation problem. In
[10], an adaptive strategy is proposed to solve it but the
agents are assumed to take an uncountable number of noise-
less measurements. Moreover, the authors used a parametric
approach with the assumption that the true function belongs
to such class. More recently, [11] proposed a non parametric
approach based on Markov Random Fields for adaptive
sampling and function estimation. This approach has the
advantage to provide better approximation of the underlying
sensory function as well confidence bounds on the estimate.

The novelty of this work is to consider a Bayesian non
parametric learning scheme where, under the framework of
Gaussian regression [12], the unknown function is modeled
as a zero-mean Gaussian random field. Robot coordination
control is guaranteed to incrementally improve the estimate
of the sensory function and simultaneously achieve asymp-
totic optimal coverage control. Although robot motion is
generated by a centralized station, this work provides a start-
ing point to design coordination algorithm for simultaneous
estimation and coverage. Note however that the robot to base
station communication model adopted in this paper already
finds application for ocean gliders interfaces communicating
with a tower [13], [14], UAV data mules that periodically
visit ground robots [15], or cost-mindful use of satellite or
cellular communication.

Classical learning problem consists of estimating a func-
tion from examples collected on input locations drawn
from a fixed probability density function (pdf) [16], [17].
Recent extensions also replace such pdf with a convergent
sequence of probability measures [18]. When performing
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coverage, the stochastic mechanism underlying the input
locations establishes how the agents move inside the domain
of interest. The peculiarity of our algorithm is that such
pdf is allowed to vary over time, depending also on the
current estimate of the function. Hence, agents locations
consist of a non Markovian process, leading to a learning
problem where stochastic adaption may happen infinitely
often (with no guarantee of convergence to a limiting pdf).
Under this complex scenario, we will derive conditions that
ensure statistical consistency of the function estimator both
assuming that the Bayesian prior is correct. The paper is
so organized. After giving some mathematical preliminaries
in Section II, problem statement is reported in Section III.
The proposed algorithm is presented in Section IV, with its
convergence propriety discussed in Section V. In Section VI
some simulations results are reported. Conclusions then end
the paper.

II. MATHEMATICAL PRELIMINARIES

Let X be a compact and convex polygon in R2 an let ‖·‖
denote the Euclidean distance function. Let µ : X →R>0 be
a distribution density function defined over X . Within the
context of this paper, a partition of X is a collection of
N polygons W = (W1, . . . ,WN) with disjoint interiors whose
union is X . Given the list of N points in X , x=(x1, . . . ,xN),
we define the Voronoi partition V (x) = {V1(x), . . . ,VN(x)}
generated by x as

Vi(x) =
{

q ∈X | ‖q− xi‖ ≤ ‖q− x j‖, ∀ j 6= i
}
.

For each region Vi, i∈ {1, . . . ,N}, we define its centroid with
the respect to the density function µ as

ci(Vi(x)) =
(∫

Vi(x)
µ(q)dq

)−1 ∫
Vi(x)

qµ(q)dq.

We denote by

c(V (x)) = (c1(V1(x)), . . . ,cN(VN(x)))

the vector of regions centroids corresponding to the Voronoi
partition generated by x = (x1, . . . ,xN). A partition is said to
be a Centroidal Voronoi partition of the pair (X ,µ) if , for
i ∈ {1, . . . ,N}, the point xi is the centroid of Vi(x).

Given x = (x1, . . . ,xN) and a density function µ we intro-
duce the Coverage function H(x; µ) defined as

H(x; µ) =
N

∑
i=1

∫
Vi(x)
‖q− ci(Vi(x))‖2

µ(q)dq

For a fixed density function µ , it can be shown that the set
of local minima of H(x; µ) is composed by the points x =
(x1, . . . ,xN), which are such that x1, . . . ,xN are the centroids
of the corresponding regions V1(x), . . . ,VN(x), i.e, V (x) is a
Centroidal Voronoi partition.

A. Coverage Control Algorithm

Let X be a convex and closed polygon in R2 and let µ be
a density function defined over X . Consider the following
optimization problem

min
x∈QN

H(x; µ).

The coverage algorithm we consider is a version of the
classic Lloyd algorithm based on ”centering and partitioning”
for the computation of Centroidal Voronoi partitions. Given
an initial condition x(0) the algorithm cycles iteratively the
following two steps:

1) computing the Voronoi partition corresponding to the
current value of x, namely, computing V (x);

2) updating x to the vector c(V (x)).
In mathematical terms, for k ∈N, the algorithm is described
as

x(k+1) = c(V (x(k))). (1)

It can be shown [3] that the function H(x; µ) is monotoni-
cally non-increasing along the solutions of (1) and that all
the solutions of (1) converge asymptotically to the set of
configurations that generate centroidal Voronoi partitions. It
is well known [3] that the set of centroidal Voronoi partitions
of the pair (X ,µ) are the critical points of the coverage
function H(x; µ).

III. PROBLEM FORMULATION

Let µ : X → R be an unknown function modeled as
the realization of a zero-mean Gaussian random field with
covariance K : X ×X → R. We restrict our attention to
radial kernels, i.e. K(a,b) = h(‖ a− b ‖), such that if ‖
a− b ‖≤‖ c− d ‖ then h(‖ a− b ‖) ≤ h(‖ c− d ‖) and
K(x,x) = λ , ∀x ∈X .

Assume we are given a central base-station, and N robotic
agents each moving in the space X . The function µ is
assumed to be unknown to both the agents and the central
unit. Each agent i ∈ {1, . . . ,N} is required to have the
following basic computation, communication and sensing
capabilities:

(C1) agent i can identify itself to the base station and can
send information to the base station;

(C2) agent i can sense the function µ in the position it
occupies; specifically, if xi denotes its current position,
it can take the noisy measurement

y(xi) = µ(xi)+νi,

where ν v N (0,σ2), independent of the unknown
function µ , and all mutually independent.

The base station must have the following capabilities
(C3) it can store all the measurements taken by all the agents;
(C4) it can perform computations of partitions of X ;
(C5) it can send information to each robot;
(C6) it can store an estimate µ̂ of the function µ and of the

posterior variance.
The ultimate goal of the group of agents and central base-
station is twofold:
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1) to explore the environment X through the agents,
namely, to provide an accurate estimate µ̂ of the
function µ exploiting the measurements taken by the
agents;

2) to compute a good partitioning of X using the esti-
mate µ̂ .

IV. THE ALGORITHM

To achieve the above goal the following Estimation +
Coverage algorithm (denoted hereafter as EC algorithm) is
employed.

Algorithm 1 EC
Require: The central base station (CBS) stores in memory

all the measurements.
1: for k = 1,2,. . . do
2: Measurements collection: For i ∈ {1, . . . ,N}, agent i

takes the measurement yi,k and sends it to CBS.

3: Estimate update: Based on xk,xk−1, . . . ,x0 and
{y1,s, . . . ,yN,s}k

s=0 CBS computes µ̂k and its posterior.

4: Trajectory update: Based on µ̂k CBS computes uk
and sends it to agents. Agents update position as
xk+1 = xk +uk.

5: end for

Now, introducing the dynamic, we have that for each k∈N
the central base-station stores in memory a partition Wk =
(W1,k, . . . ,WN,k) of X , the corresponding list of centroids
ck = (c1,k, . . . ,cN,k), the positions of the robots (x1,k, . . . ,xN,k)
and all the measurements received up to k by the agents.
For k ∈ N, agent i, i ∈ {1, . . . ,N}, moves according to the
following first-order discrete-time dynamics

xi,k+1 = xi,k +ui,k

where the input ui,k is assigned to agent i by the central base-
station. As soon as agent i reaches the new position xi,k+1,
it senses the function µ in xi,k+1 taking the measurement
yi,k+1 = µ(xi,k+1)+νi,k and it sends yi,k+1 to the central base-
station. The central base-station, based on the new measure-
ments gathered

{
yi,k+1

}N
i=1 and on the past measurements,

computes a new estimate µ̂k+1 of µ; additionally it updates
the partition Wk, setting Wk+1 = V (x1,k+1, . . . ,xN,k+1).

The goal is to iteratively update the position of the agents
in such a way that, in a suitable metric, µ̂ → µ and the
coverage function assumes values as small as possible.

In next subsections we will explain how the central base-
station updates the estimate µ̂ based on the measurements
collected from the agents, and how it designs the control
inputs to drive the trajectories of the agents. It is quite
intuitive that in order to have a better and better estimate of
the function µ , the measurements have to be taken to reduce
as much as possible a functional of the posterior variance,
in particular we will adopt the maximum of the posterior
variance. To do so, in the first phase of the EC algorithm the

agents will be spurred to explore the environment toward
the regions which have been less visited. When the error-
covariance of the estimate µ̂ is small enough everywhere, the
central base-station will update the agents’ position to reduce
as much as possible the value of the coverage function.

To simplify the notation let us introduce

zi,k = {xi,k,yi,k}, i = 1, . . . ,N.

One of the key aspects of the algorithm is related to the
agents movement, which establishes how positions xi,k are
generated. In particular, as clear in the sequel, each xi,k is a
non Markovian process, depending on the whole past history
zi,1, . . . ,zi,k−1, i = 1, . . . ,N. It is useful to describe first the
function estimator, then detailing the agent dynamics.

A. Function estimate and posterior variance

Hereby, we use ZN,t to denote the set {zi,k} with i =
1, . . . ,N and k = 1, . . . , t. The agents movements are assumed
to be regulated by probability densities fully defined by ZN,t .
It comes [19], [20] that the minimum variance estimate of
µ given ZN,t is

µ̂t(x) = E [µ(x)|ZN,t ]

=
N

∑
i=1

t

∑
k=1

ciK(xi,k, ·) (2)

where c1
...

cN

= (K̄ +σ
2I)−1

y1,1
...

yN,t


and

K̄ =

K(x1,1,x1,1) . . . K(x1,1,xN,t)
...

...
K(xN,t ,x1,1) . . . K(xN,t ,xN,t)

 .
The a posteriori variance of the estimate, in a generic input
location x ∈X , is

V (x) = Var [µ(x)|ZN,t ] = K(x,x)−

[
K(x1,1,x) . . . K(xN,t ,x)

]
(K̄ +σ

2I)−1

K(x1,1,x)
...

K(xN,t ,x)

 .
(3)

B. Description of agents dynamics

The generation of the control input can be divided in
two phases: in the first, estimation and coverage are carried
out together, while, when the estimate is good enough, i.e.
the posterior variance is uniformly small, automatically the
control switches to the second phase, where the standard
coverage control algorithm reviewed in Section II-A is
deployed.
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1) Phase I: Let

ui,k =

[
ℜe(ρie jθi)
ℑm(ρie jθi)

]
i = 1, . . . ,N (4)

then the agents dynamics, for i = 1, . . . ,N, are defined by

xi,k+1 =

{
xi,k +ui,k if xi,k +ui,k ∈X

xi,k if xi,k +ui,k /∈X

Hence, variation of the agent’s position is given by the
random vector ρie jθi , where θi is a random variable on
[0,2π], determining the movement’s direction, while ρi is
another random variable establishing the step length. The
peculiarities of our approach are the following ones:
• the statistics of (θi,ρi) vary over time and depend on

the past history through the estimate µ̂k and a function
a(·) of the maximum of its posterior variance, i.e.

a
(

max
x∈X

V (x)
)
.

Note that a varies over time since it depends on the
posterior variance which also varies over time as the
agents move over X . Hereby, to simplify notation,
we use a(k) to stress this dependence. In this way,
at every k, a suitable trade-off is established between
centroids targeting, which are never perfectly known,
being function of µ , and the need of reducing their
uncertainty. These two goals are called exploration and
exploitation in [10];

• the probability densities of θi and ρi are assumed to be
uniformly bounded below. This means that, irrespective
of the particular agent’s position and instant k, there
exists ε` > 0 such that every set of Lebesgue measure
`> 0 can be reached in one step with probability greater
than `ε`.

Example 1: We provide a concrete example by describing
the specific update rule adopted during the numerical exper-
iments reported in section VI. The random variable ρi is a
truncated Gaussian, constrained to assume positive values,
while θi is a bimodal Gaussian with support limited to the
interval [0,2π]. More specifically, for i= 1, . . . ,N, the density
of θi is

p(θi)=

 1−a(k)
bi(k)

e
−

(θi−θCi
(k))2

σ2
Ci + a(k)

ci(k)
e
−

(θi−θ∆i
(k))2

σ2
∆i , θi ∈ [0,2π]

0, θi /∈ [0,2π]

where

bi(k)=
∫ 2π

0
e
−

(θi−θCi
(k))2

σ2
Ci dθi , ci(k)=

∫ 2π

0
e
−

(θi−θ∆i
(k))2

σ2
∆i dθi

where
• θCi(k) determines the direction to follow at instant k to

reach the current estimate of the Voronoi centroid of the
agent i computed using µ̂k as defined in (2);

• θ∆i determines the direction given by the gradient of
the posterior variance (3) computed at the input location
occupied by the i− th agent at the instant k;

• a(k) ∈ [0,1] is a control parameter that establishes
the trade-off between exploration and exploitation at
instant k. In the next section an automatic way to tune
this parameter based on the posterior variance will be
presented;

• σ2
Ci
,σ2

∆i
determine the level of dispersion of the density

around the directions given by θCi and θ∆i .
A simple heuristic that allows to automatically determine

the value of a is based on the maximum of the posterior vari-
ance, with the constraint that a has to satisfy the following
conditions:

1) a(k) has to be continuous as function of the maximum
of the posterior,

2) a(k) has to be monotonically increasing with the
maximum of the posterior,

3) if maxx∈X V (x) = λ then a(k) = 1 ,
4) if maxx∈X V (x) = 0 then a(k) = 0.

Two examples are reported in Figure 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.8

0.9

1

max Var[µ (x) |ZN , t ]

a

Fig. 1. Here are reported two examples of a(k). In this case the
maxx∈X V (x) = λ = 1.

At the beginning, being the posterior variance large,
a(k) will be close to 1 and the agents will just explore
the domain. Thanks to the monotonicity of a(k), while the
maximum of the posterior will be reduced, also a(k) will
be reduced and consequently the agents will privilege the
coverage. �

2) Phase II: When a(k) is under a certain threshold, i.e.
the posterior variance is uniformly low, the control input
switches from the update rule described in section IV-B.1
to ui,k = −(xi,k− ci,k), so the agents will directly reach the
estimated centroids. In other words, in this phase the Lloyd’s
algorithm is performed with the unknown function set to the
estimate obtained at the end of the first phase.

V. CONVERGENCE PROPERTIES OF THE ALGORITHM

It is important to verify that (in probability) the posterior
variance can be reduced as much as we want. Indeed, this
fact implies that (with probability one) the agents dynamics
will switch from phase I to phase II. The following result
holds.

Proposition 2: Let µ be a zero-mean Gaussian random
field of radial covariance K. Then, ∀ε ≥ 0,∀δ ∈ (0,1] there
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exists t0 such that, ∀t ≥ t0, one has:

Pr
[

max
x∈X

Var (µ(x)|ZN,t)≤ ε

]
≥ 1−δ

Proof: Consider the following inequality

λ − (λ −α)2

λ + σ2

m

≤ ε.

Then, we can always choose a pair ᾱ and m̄ such that the
previous inequality holds. By the continuity of the kernel,
there exists a partition, function of ᾱ , given by all the subset
D j ⊆ X such that K(x,x∗) ≥ λ − ᾱ, ∀x,x∗ ∈ D j. For a
sufficiently large t, with a probability greater then 1− δ ,
we can collect m̄ or more measurements in each D j. In fact,
∀A ⊆ X and ∀x1 ∈ X , Pr [x(k+1) ∈ A|x(k) = x1] ≥ ε`A,
where `A is the Lebesgue measure of A, since the probability
densities of θi and ρi are bounded below.
Now it is not restrictive consider only m̄ measurements
falling in D j, which are denoted by z j

1, . . . ,z
j
m̄ and collected

on the input locations x j
1, . . . ,x

j
m̄. Calling K̄ j the sampled

kernel in the input location falling in D j and thanks to the
fact that Tr(K̄ j) = ∑Λ(K̄ j) = mλ (where Λ(K̄ j) is the set
of eigenvalues of K̄ j) and that all the eigenvalues of K̄ j are
real and non negative (K̄ j is symmetric and semi positive
definite), it holds that K̄ j � m̄λ I so that

(K̄ j +σ
2)� (m̄λ +σ

2)I⇒ (K̄ j +σ
2)−1 � (m̄λ +σ

2)−1I.

So with probability greater then 1−δ it is true that

Var
[
µ(x)|z j

i , . . . ,z
j
m̄

]
= K(x,x)−

[
K(x j

1,x) . . . K(x j
m̄,x)

]
(K̄ j +σ

2I)−1

K(x j
1,x)
...

K(x j
m̄,x)


≤ λ − ∑

m̄
h=1 K(x j

h,x)
2

m̄λ +σ2 ≤ λ − m̄(λ − ᾱ)2

m̄λ +σ2 = λ − (λ − ᾱ)2

λ + σ2

m̄

≤ ε

thus proving the statement.
The consequence of Proposition 2 is that with probability

one there exists a time k̄ such that the agents dynamics switch
from phase I to phase II, namely the agents dynamics will
be ruled by

xk+1 = c(V (x(k))) (5)

for k > k̄, where the centroids are computed according to the
estimate µ̂k̄.

Proposition 3: The trajectory generated by 5 converges
to the set of configurations that generate centroidal Voronoi
partitions of the pair (X , µ̂k̄).

VI. NUMERICAL RESULTS

In this section, we provide some simulations implementing
the new estimation and coverage algorithm. We consider a
team of N = 8 agents placed, with a random initial position,
in the domain X = [0,1]× [0,1]. Moreover, we use the
Gaussian kernel

K(x,x′) = e−
‖x−x′‖2

0.02

with the estimator and the posterior variance given by (2)
and (3), respectively. The unknown sensory function µ is a
combination of four bi-dimensional Gaussian:

µ(x)= 20
(

e
−‖x−µ1‖

2
0.04 + e

‖x−µ2‖
2

0.04

)
+5
(

e−
‖x−µ3‖

2

0.04 + e−
‖x−µ4‖

2
0.04

)
,

where

µ1 =

[
0.2
0.2

]
µ2 =

[
0.8
0.8

]
µ3 =

[
0.8
0.2

]
µ4 =

[
0.2
0.8

]
.

For computational reasons, the function µ and the posterior
variance are evaluated over a grid of step 0.05. The two
parameters σ2

∆i
and σ2

Ci
are both set to 0.1 and the threshold

that allows to switch from phase I to phase II is equal to 0.3.
The adopted a(k) is as described in Example 1. This means
that, when the maximum of the posterior is large, the value
of a(k) is also large to allow a good estimation. Instead,
when the maximum of the posterior variance becomes small,
also the value of a(k) is reduced to favor agents movement
towards the centroids.
An example is in Figure 2 which displays the posterior
variance (contour plot), the gradient (quiver plot) and the
agents (red diamonds). The figure illustrates results from the
first iteration (just because the plot is more clear).
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Fig. 2. Contour plot of the posterior variance with the directions of the
gradient. The red diamonds are the agents.

Figure 3 plots the profile of the maximum, the average and
the minimum of the posterior, as a function of the number
of iterations. Finally, Figure VI reports the Voronoi regions
associated with the agents, as well as the estimated function
µ̂(x) (contour plot). The final agents positions (red circles)
are close to the ideal agents positions, computed using the
true sensory function µ (black circles).

VII. CONCLUSIONS

We have proposed a new algorithm to perform simultane-
ously estimation and coverage. The sensory function is seen
as a Gaussian random field which has to be reconstructed in
an on line manner. A set of control inputs establish the agents
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Fig. 3. Evolution of the maximum, the average
(

1∫
X dx
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X V (x)dx

)
and

the minimum of the posterior over the time.
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Fig. 4. Voronoi regions of the agents with contour plot of the density
function. The red circles are the agents positions, the black circles are the
centroids positions computed using µ instead of µ̂k̄ .

movement, trying to balance coverage and estimation. We
have seen that the resulting problem is also an instance of a
non standard function learning problem where input locations
follow a non Markovian process with stochastic adaption
allowed to happen infinitely often. Numerical experiments
show good performance. Even if the centralized algorithm
finds many applications in different fields, such as [13] and
[15], we are also working on a distributed version. The
core of the algorithm is based on the on-line non-parametric
regression studied in [21]. In addition, we also plan to
provide a distributed algorithm possibly also accounting for
time variance of the sensory function.
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