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Abstract— We address the problem of power system state
estimation based on information coming from ubiquitous power
demand time series and a limited number of PMUs. The pres-
ence of time synchronization error in the PMU measurements
is explicitly considered. It is shown how incorrect modeling of
synchronization errors easily lead to incorrect results, ruining
the estimation performance of standard approaches. Resorting
to a novel linear approximation for the power flow equations,
we propose a Kalman based algorithm for the simultaneous
estimation of system state and synchronization error param-
eters. Compelling numerical simulations, based on the IEEE
C37.118.1 standard on PMUs, validate the proposed approach.

Index Terms— Power Systems State Estimation, Smart Grids,
Time Synchronization, PMU, Kalman Filter.

I. INTRODUCTION

In recent years, the increasing penetration of variable
energy and the transition from passive to active and non-
linear loads, e.g. electrical-vehicle, have made monitoring
and control operations of electric grids more challenging.
Thus, in order to optimally plan and operate, a real-time
knowledge of the system state is required at both the
transmission and distribution level [1]. Because of different
modeling assumptions and types of available information,
till now, State Estimation (SE) at the transmission and
distribution level has been addressed separately.
Extensive literature exists for transmission systems, mainly
characterized by high line reactance/resistance (X/R) ratio,
meshed topology and a large number of measurement points
providing active and reactive power, voltage at buses and
current flows along the branches [2]. Conversely, distribution
systems, characterized by low X/R ratio, radial topology,
unbalanced loads and a high number of nodes usually un-
monitored, have traditionally lacked the situation awareness
typically seen in transmission systems. However, increasing
DER penetration has necessitated DSO’s to improve system
observability, usually in the form of SE [3]. In this context a
central role is played by Phasor Measurement Units (PMUs)
able to provide phasors of electrical waveforms synchronized
with the Universal Coordinated Time (UTC) [4]. Initially
conceived and applied at the transmission level, PMUs are
gaining interest in distribution systems to support different
applications among which SE is one of the most relevant.
The availability of voltage magnitude and phase introduces

M.Todescato, R.Carli and L.Schenato are with the Dept. of Information
Engineering of the University of Padova, via Gradenigo 6/B 35131 Padova,
Italy. [todescat|carlirug|schenato]@dei.unipd.it.
G.Barchi is with the Institute for Renewable Energy at EURAC Research,
viale Druso 1 39100 Bolzano, Italy. Grazia.Barchi@eurac.edu.

the possibility of directly measuring rather than estimating
the state variables [5]. However, because of their high cost,
only a limited number of PMUs is available, thus most of the
recent solutions rely on measurements from a small number
of PMUs along with conventional smart meter [6].
The high accurate PMU measurements, while improving SE,
can be exploited for different operations but this requires
an almost perfect synchronization with the UTC in order to
avoid additional uncertainty contribution to phase angles. For
this reason, in the literature most of works assume the PMUs
perfectly synchronized and model additional uncertainty with
a standard Gaussian distribution [6]. Conversely, different
source of uncertainty are present in PMUs [7] with time
synchronization representing one of them. Indeed, GPS pro-
vides 1pps (pulse-per-second) synchronization signals, with
a theoretical accuracy of 1µs which affects synchronization
offsets, while internal PMUs clocks present frequency de-
viations which can produce large time skews. In view of
this, the SE problem in the presence of synchronization error
has been studied in the more recent literature. In [8] a first
investigation on the effect of sync error is provided together
with a static distributed estimator suitable for distribution-
only grids. In [9], by leveraging the assumption of small an-
gle differences, the authors formulate a measurement model
which is bilinear w.r.t. grid state and sync error parameters
to which two parallel Kalman filters are applied. Finally, in
[10] only PMUs offset error due to GPS is considered.
Inspired by the recent [6], we address the problem
of SE based on PMU measurements and load pseudo-
measurements. As opposed to [6], we explicitly consider the
presence of synchronization error in the PMU measurements.
The final aim is the simultaneous estimation of the system
state as well as the time synchronization error which, if
not correctly modeled can compromise the estimation per-
formance of standard approaches.
The contributions are threefold: i) conversely to solutions in
the literature, our methodology seamlessly applies to trans-
mission and distribution grids since we base our analysis on
a recently proposed generalized linear model for the power
flow manifold [11]. ii) Since the prescribed approximation
naturally expresses the voltages in polar coordinates, our
measurement model is linear in the synchronization error
parameters affecting the voltage phase angles. Hence, we
propose a Kalman-based algorithm for the simultaneous
estimation of the state and of the synchronization error pa-
rameters (offset and skew). iii) Based on the IEEE C37.118.1
[12] standard on PMUs, we practically quantify the extent
to which modeling errors turn out to be totally misleading.



II. POWER NETWORK MODEL

We envision a power network as a cyber-physical system
consisting of a cybernetic layer and a physical layer. The
cybernetic layer consists of a data aggregator (DA) and a
Central Processing Unit (CPU). The DA is able to collect
measurements coming from the smart metering devices the
physical layer is equipped with. The CPU is in charge of
all the computational payload and, in particular, of the SE
algorithm. Regarding the physical layer, we assume each
electric bus equipped with a low-cost smart meter which
provides low-accuracy power measurements. Moreover, only
some nodes have attached a PMU able to provide highly-
accurate measurements. We refer the reader to Section III
for further details on the measurement models. In addition,
following the notation in [11] we model an AC power
network, assumed to be in synchronous sinusoidal steady-
state regime, as a graph G(V, E) where the nodes set V =
{1, . . . , n} denotes the electric buses, while the edges set E
denote the set of electric branches between connected buses.
For each bus h ∈ V , we define the following quantities,
related to its phasor representation:
• voltage uh = vhe

jθh ∈ C, vh = |uh|, θh = ∠uh ∈ R;
• injected current ih ∈ C;
• absorbed power sh = ph + jqh ∈ C, where ph, qh ∈ R

are the active and reactive components, respectively.
We define the nodal admittance matrix Y ∈ Cn×n via its
elements

Yhk =

{
yshh +

∑
` 6=h yh` if k = h

−yhk otherwise

where yhk is the admittance of the electric line (h, k) con-
necting bus h with bus k, while yshh is the shunt admittance
(admittance to ground) at bus h.
By collecting all the nodal quantities into vectors u =
[u1, . . . , un]T , i = [i1, . . . , in]T , s = [s1, . . . , sn]T and
thanks to Kirchhoff’s law and the nodal power balance, it
holds, denoting with (·) the complex conjugate operator, that

i = Y u , s = diag(u)i .

Then, by combining the two equations, one gets

s = diag(u)Y u , (1)

which has to be satisfied by any feasible power flow.
According to [11], we define the power network state vector
as ξ := [vT ,θT ,pT ,qT ]T where v,θ,p,q ∈ Rn are ob-
tained stacking together the corresponding nodal quantities.
By using rectangular coordinates, it is possible to rewrite (1)
in implicit form as F (ξ) = 0, where F : R4n 7→ R2n which,
as stated in Lemma 1 of [11], implicitly defines the power
flow manifold

M = {ξ | F (ξ) = 0} .
This reformulation is interesting since it defines all the
voltages and power injections that are compatible with the
physics without assuming any a priori model for the net-
work’s buses such as the typical PQ, PV or slack buses.

A. Best Linear Approximant

In this section we recall Proposition 1 of [11] which, given
a point ξ∗ ∈ M, states how to reconstruct the best linear
approximant, i.e., the plane tangent toM at ξ∗, of the power
manifold M at the feasible point ξ∗.

Proposition 1 (Proposition 1 of [11]): Let ξ∗ ∈ M, i.e.,
ξ∗ = [(v∗)T , (θ∗)T , (p∗)T , (q∗)T ]T , such that F (ξ∗) = 0.
Then, the linear manifold tangent to M in ξ∗ is given by

Aξ∗(ξ − ξ∗) = 0 , (2)

where, being I the identity matrix of suitable size,

Aξ∗ =
[(
〈diag Y u∗〉+ 〈diag u∗〉N〈Y 〉

)
R(u∗)︸ ︷︷ ︸

Au∗

− I
]
,

u∗ := v∗ejθ
∗
, N :=

[
I 0
0 −I

]
, 〈A〉 =

[
Re A −Im A
Im A Re A

]
,

R(u) :=

[
diag(cosθ) −diag(v)diag(sinθ)
diag(sinθ) diag(v)diag(cosθ)

]
. �

Assuming Au∗ invertible1, the result of Proposition 1
states that it is possible to express the voltage deviations
as linear functions of the power deviations, i.e.,[

δv
δθ

]
= A−1u∗

[
δp
δq

]
, (3)

where δv := v − v∗, δθ := θ − θ∗, δp := p − p∗, δq :=
q − q∗. The strength of the presented linear model is that
it holds for any admissible working point ξ∗ ∈ M. For
instance, assuming absence of shunts, the flat profile ξ∗ =
[1T , 0T , 0T , 0T ]T is feasible and corresponds to

Aξ∗ =

[
Re Y −Im Y −I 0
−Im Y −Re Y 0 −I

]
which equals the Linear Coupled power flow model [13].
Hence, (2) can be regarded as a generalization of many
previously presented linear approximations. For the same
reason, by assuming no a priori information on the particular
physics of the grid, the liner approximant (3) seamlessly
holds for distribution as well as for transmission grids.

III. MEASUREMENT MODELS

Our final goal is to simultaneously estimate the grid state,
defined as the voltage magnitude v and phase θ at every
bus of the network, and the synchronization error. To do so,
in spirit of [6], we resort to two types of information: i)
historical data series of active and reactive power demands;
ii) real-time high-accuracy phasorial measurements.

A. Power Demand Time-Series

The first source of information are historical data series
of power demands available from measurements collected at
each bus from low-cost largely-available and, usually, low
accurate smart meters. This source of information is affected
by an uncertainty within 30%− 50% of the nominal values

1The assumption is not restrictive since in real power grids and, in
particular, in the presence of node shunt admittances, it is usually the case.



[14]. Therefore, the active and reactive power demands at
node h ∈ V at time t ∈ Z+ are written as

p̃h(t) = ph + wph(t) , wph(t) ∼ N (0, σ2
p|ph|2) ,

q̃h(t) = qh + wqh(t) , wqh(t) ∼ N (0, σ2
q |qh|2) ,

(4)

where ph, qh are the nominal values and where we assume
σp = σq ≈ 30 − 50% [14]. Moreover, in the following we
assume uncorrelated noise [6], [14], that is E[wpk(t)wqk(t)] =
E[wpk(t)wph(t)] = E[wqk(t)wqh(t)] = 0 for h, k ∈ V , where
E[·] denotes the expectation operator.

B. PMU Measurements

The second source of information are phasor measure-
ments coming from high-cost highly accurate Phasor Mea-
surement Units which, because of their cost are deployed
only at a limited number of electric buses. To provide highly
accurate values, PMUs are equipped with a GPS module
which is exploited for synchronization purposes. Hence, it
is a common assumption to consider the PMUs as perfectly
synchronized, thus neglecting the impact of synchronization
uncertainty on the resulting measurements. Conversely, in
this work we explicitly consider also the effect due to time
clock synchronization error (de-synchronization).
More in details, the PMU measurements at a certain bus
h ∈ V at time t ∈ Z+ are of the form

ṽh(t) = vh(t) + wvh(t), wvh(t) ∼ N (0, σ2
pmu,v|vh|2) ,

θ̃h(t) = θh(t) + wθh(t) + dh(t), wθh(t) ∼ N (0, σ2
pmu,θ) ,

(5)

where σpmu,v and σpmu,θ are the modulus and phase standard
deviations. The synchrophasor reference Standard (i.e IEEE
C37.118:2014a [12]) for PMUs suggests a Total Vector Error
(TVE) below 1% in steady-state conditions. However, it is
known that, especially at the distribution level, the accuracy
required is higher due to the lower power flows and angle
phase differences [15]. For this reason, we assume

σpmu,v = 0.1% , σpmu,θ = 10−3[rad]

As for the power demand measurements, also for PMU
measurements, it is assumed the measurement noise to be
uncorrelated within the same node and across different nodes,
i.e., E[wvk(t)wθk(t)] = E[wvk(t)wvh(t)] = E[wθk(t)wθh(t)] = 0
for h, k ∈ V . Finally, the additional term dh(t), which
models the time synchronization error or de-synchronization,
represents the error with respect to the true universal time.
Since this component mainly affects the angle measurements
[7], we restrict our analysis to de-synchronization affecting
the voltage angles only. In particular, we consider a clock
error model which, within successive GPS synchronization
time instants kT, (k + 1)T, . . ., has the form

dh(t) = βh + αh
T

M
t , t ∈ Z[0,M ] ,

where T is the GPS synchronization period, M is the num-
ber of PMU measurements collected within two successive
synchronization instants; Z[0,M ] denotes the subset of Z
from 0 to M ; βh is an offset term due to GPS error which is

time
(k − 1)T

GPS re-sync

kT
GPS re-sync

(k + 1)T
GPS re-sync

1 M − 1 1 M − 1

reset. init. cond. reset. init. cond. τ(k, 4)

Fig. 1: Illustrative representation of the evolution of discrete time instants
in a universal time frame with the GPS units re-synchronizing every T [s].
According to Algorithm 1, every T [s] initial conditions are initialized.

assumed constant in the time interval
[
kT, (k+ 1)T

)
; αh is

the clock skew due to the fact that the internal clock of the
PMU, depending on the type of oscillator, might not oscillate
at the reference frequency. As for the offset, the skew is
assumed constant in the time interval

[
kT, (k+ 1)T

)
. Given

the 1pps synchronization of GPS units, reasonable value is
T = 1s [9] while, for a 50Hz sinusoidal signal, we select
a PMU reporting rate of 25Hz, thus M = 25 [12]. Finally,
note that the assumption of constant αh and βh is reasonable
conditioned to the relatively small synchronization period of
T = 1s. Observe that at each kT , offset β and skew α
can assume both positive and negative values. For instance,
a positive α means that the local clock frequency is faster
than that of the universal time reference.

IV. ESTIMATION

As above mentioned, our final goal is: to provide a good
and almost real-time estimate (v̂, θ̂, α̂, β̂) of the system
state (v,θ) and of the PMUs de-synchronization parameters
(α,β) by leveraging the linear approximation (3) together
with the information coming from ubiquitous power demand
time series (4) and PMUs measurements (5).
We cast our estimation procedure as a Bayesian inference
process. More specifically, the idea is to exploit the power
demand predictions, characterized by a low accuracy, to
provide a prior for our Bayesian model. Then, high accuracy
PMU measurements are used to improve the state estimate.
Since our estimator consists of a Kalman filter [16], a state
space model together with an output model are needed.
Before outlining the models, observe that GPS re-
synchronization instants and PMU measurements collection
instants happen to live on two different time scales as shown
in Figure 1. Hence, it is convenient to denote discrete instants
in a universal time reference as

τ(k, t) = kT +
T

M
t , k ∈ Z+ , t ∈ Z[0,M − 1] ,

where k denotes the k-th re-synchronization instant while t
the t-th PMU measurement. In the following, talking about
the evolution of discrete-time systems, with a slight abuse of
notation, instead of writing x(τ(k, t)) we write x(k, t).

A. State model

Given the linear relation (3) and the PMU measurement
model (5), as inner state of the Kalman filter it is conve-



nient to pick the power demands deviations2 δp, δq ∈ Rn
together with the synchronization error parameters3 α,β ∈
Rm. Moreover, given T = 1s, within two consecutive re-
synchronization instants, it is reasonable to assume a constant
model for the power demands as already done for α and β.
Hence, by defining the state vector

x(k, t) :=
[
δp(k, t)T δq(k, t)T α(k, t)T β(k, t)T

]T
,

the state evolution reads as

x(k, t+ 1) = x(k, t) , x(k, 0) ∼ N (0, P0) , (6)

with P0 = blkdiag(σ2
pdiag(|p∗|)2, σ2

qdiag(|q∗|)2, σ2
αI, σ

2
βI)

where blkdiag represent the block diagonal matrix made
from its arguments and p∗,q∗ are the nominal/predicted
values for active and reactive power demands available at
τ(k, 0) computed using the time-series information. These
are used as priors in our Bayesian model. Hence, the priors
for δp and δq are equal to 0. σα, σβ are the clock skew and
GPS offset variances which, without loss of generality, are
assumed equal for all the PMUs. We set4 σα = 10−2[rad]
assuming a clock accuracy of ≈ 10 ÷ 30 ppm [17]; while
σβ = 2× 10−4[rad], assuming a 50Hz frequency signal and
a GPS with ≈ 0.5 ÷ 1µs accuracy [4]. Moreover, having
no prior information on the offset and skew biases, we
set them to 0. Finally observe that additional correlation
terms between active and reactive power can be added.
However, in the following we consider the uncorrelated
case. Finally, note that the state model has been outlined
only for t ∈ Z[0,M ] assuming k being fixed. At k + 1
different strategies can be adopted. The simplest one is to
re-initialize the filter. However, we underline that we will
not discuss on this matter since in the simulation section
we will focus on one synchronization window only.

B. Output model
The output model is obtained from the combination of (3)

with the PMU measurement model (5). Moreover, from the
nominal/predicted demands p∗,q∗ it is possible to retrieve
a feasible point u∗ = (v∗,θ∗), used to correctly define the
model and, in particular, to compute the matrix Au∗ for the
linear approximant. Then, by stacking all the measurement
collected at time instant τ(k, t) in the vector

y(k, t) =

[
δṽ(k, t)

δθ̃(k, t)

]
:=

[
ṽ(k, t)

θ̃(k, t)

]
−
[
v∗

θ∗

]
,

where ṽ(k, t) =
[
ṽ1(k, t) . . . ṽm(k, t)

]T
, θ̃(k, t) =[

θ̃1(k, t) . . . θ̃m(k, t)
]T

, the output model reads as

y(k, t) = Hx(k, t)+w(k, t) , w(k, t) ∼ N (0, R) , (7)

2Note that the network’ state are the voltages. Hence, picking the power
demands as state for the Kalman filter is in contrast with this choice.
However, given (3) and the power-demand time series information, the latter
seems the most reasonable choice. We stress that this is not restrictive for
the following analysis.

3In general, the de-synchronization parameters are of dimensionm, where
m ∈ Z[0, n] is the number of PMUs deployed in the grid.

4The value of σα largely depends on the type of oscillator used. We
assumed PMUs equipped with quartz-crystal oscillator which, due to aging
and temperature effects, are characterized by an accuracy ∼ 1÷ 100ppm.

Algorithm 1 SASE
Require: P0, R, H . Initialize Σ(0) = P0.

for t ∈ Z[0,M ] do {// Offline computations}
Compute and store

L(t+ 1) = Σ(t)HT (HΣ(t)HT +R)−1 (8a)

Σ(t+ 1) = (I − L(t+ 1)H)Σ(t) (8b)

end for
for k ∈ Z do {// Online computations}

Initialize x̂(k, 0) = 0
for t ∈ Z[0,M ] do
x̂(k, t+1) = x̂(k, t)+L(t+1)(y(k, t+1)−Hx̂(k, t))

end for
end for

where w(k, t) :=
[
wv(k, t)T wθ(k, t)T

]T
,

H :=

[
A−1u∗

0 0
t TM I I

]
.

and R := blkdiag(σ2
pmu,vdiag(|v∗|)2, σ2

pmu,θI). It is worth
observing that, due to the linear relation (3) between buses’
power and network’ state, i.e., voltages’ magnitude and
phase, the de-synchronization enters linearly in the output
model (7) without any further approximation.

C. Kalman filter formulation

From (6)–(7), we have at disposal a complete model to
run a Kalman filter [16] to simultaneously compute the
best linear estimates of system state and de-synchronization
parameters. Since in the prescribed case the state vector has
no dynamic and there is no process noise, it is convenient
to express the Kalman equations in filter form rather than as
prediction and correction separately. Algorithm 1 describes
what we refer to as Synchronization Aware State Estimator,
hereafter denoted with SASE. In Algorithm 1 note that,
according to the state-space evolution and the periodic syn-
chronization instants, we assume that at every k the filter
initial conditions are re-initialized, see Figure 1. Regarding
the error covariance matrix Σ(t), since it does not depend on
the measurements, its evolution can be computed offline and
stored for t ∈ Z[0,M ]. Moreover, in view of our modeling
choices and, in particular, the absence of state dynamic and
process noise, Σ(t) is non-increasing, namely we can state
the following Lemma whose proof is straightforward thus
omitted.

Lemma 2 (Error Covariance matrix evolution): Within
two consecutive synchronization instants k ∈ Z+, the error
covariance matrix Σ (8b), associated to the Kalman filter of
Algorithm 1, satisfies Σ(t+ 1) ≤ Σ(t) , t ∈ Z[0,M ] . �

Finally, according to P0, Σ can be partitioned as

Σ =


Σp Σpq Σpα Σpβ

Σqp Σq Σqα Σqβ

Σαp Σαq Σα Σαβ

Σβp Σβq Σβα Σβ

 .



Parameter Value [units] Ref.

T 1 [s] [9]
M 25 [samples] [12]

σp, σq 50% [14]
σpmu,v, σpmu,θ 0.1%, 10−3[rad] [12]

σα 10−2[rad] [17]
σβ 2× 10−4 [rad] [12]

v∗,θ∗,p∗,q∗ power flow nominal solution

TABLE I: Parameters used in the simulations

Then, from (3), one has
[
v̂

θ̂

]
=

[
v∗

θ∗

]
+ A−1u∗

[
δp̂
δq̂

]
, with

error covariance matrix given by Σu :=

[
Σv Σvθ

Σθv Σθ

]
=

A−1u∗

[
Σp Σpq

Σqp Σq

]
A−Tu∗ .

V. SIMULATIONS

Here we compare the proposed SASE algorithm against:
1) An online iterative version of the static algorithm pre-

sented in [6] (hereafter referred to as Bayesian Linear
State Estimator – BLSE) which does not assume any
synchronization error in the measurements.

2) A strategy assuming the presence of an oracle
which deterministically tells the CPU the exact de-
synchronization parameters. Observe that, in the pres-
ence of sync error, this is the achievable best thus the
strategy is used and referred to as Ground Truth – GT.

Differently from the proposed algorithm, both the above
cases, i.e., GT and BLSE, return estimates of the voltage
quantities v̂, θ̂ only since either the synchronization param-
eters are neglected or they are perfectly known.
For consistency, since we compare our approach with the
solution proposed in [6], we exploit their same test bed con-
sisting of an 11 kV 50Hz 15 nodes Indian rural distribution
feeder [18]. We refer to [6], [18] for additional details.
To test the algorithms we use MATLAB. Regarding the
parameters choice, Table I sums up all the values of interest.
We compare the estimation performance in terms of Av-

erage Rooted Mean Squared Error which, given any two
n-dimensional vectors a(t),b(t), possibly functions of time,
is defined as

ARMSE(a(t),b(t), t) :=

√√√√1

n

n∑
h=1

E[|ah(t)−bh(t)|2]. (9)

Observe that, under the assumptions of linear model and
correct measurement noise statistic, the Kalman filter error
covariance matrix can be exploited since it holds that

ARMSE(t) =

√
1

n
Trace(Σ(t)) . (10)

However, if either one of the two assumptions above is
missing then the equivalence in (10) might not hold. Hence,
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Fig. 2: Empirical ̂ARMSE (11) and theoretical ARMSE (10), in logarith-
mic scale, as function of the number of deployed PMUs for M = 25.

we also resort to an empirical approximation averaged over
N = 1000 Monte Carlo runs computed as

̂ARMSE(a(t),b(t),t)=

√√√√1

N

N∑
i=1

1

n

n∑
h=1

|ah(t)−bh(t)|2. (11)

In view of the above discussion, it is possible to leverage
the comparison between (10) and (11) to perform model
qualification. Indeed, ̂ARMSE(t) ≈ ARMSE(t) means
the non-linear measurements statistic is effectively captured
by the linear filter built on the approximation. Finally,
note that as opposed to SASE and GT, which exploit the
true measurements statistic, BLSE ignores the presence of
synchronization delay. Hence, to compute the theoretical
performance of the filter it is necessary to resort to a modified
Riccati equation comprising the correct measurements error
statistic. Thus, when we refer to the theoretical values of
the ARMSE, we implicitly assume (10) is used where Σ(t)
is the error covariance matrix for SASE and GT, while for
BLSE is the solution of a suitably modified Riccati.

Figure 2 shows the values of ̂ARMSE(·, ·,M) (11) and
ARMSE(·, ·,M) (10) for the estimated complex voltage
û = v̂ejθ̂ (Figure 2a) and parameters α̂, β̂ (Figure 2b)
with respect to the true values u,α,β as functions of the
number of PMUs deployed in the network when all the
M = 25 PMU measurements have been processed, i.e.,
right before a new synchronization instant occurs. Note
that the PMUs deployment order affects the performance
improvement. However, since the placement policy is out
of the scope of the paper, we resort to the greedy algorithm
proposed in [6] which we refer the reader to.
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Fig. 3: Empirical ̂ARMSE (11) and theoretical ARMSE (10), in logarith-
mic scale, as function of the number of collected PMU measurements M ,
for 8 PMUs deployed in the network. M ∈ [0, 60] to consider the PMU
reporting rates for both the 50Hz and 60Hz standards.

From Figure 2a, it is interesting to note that i) the proposed
SASE approach behaves almost indistinguishable from the
GT while ii) the unmodeled synchronization error clearly
deteriorates the BLSE, whose performance achieves, at best,
≈ 30% improvement. Conversely, the SASE performance
with just one PMU improves of ≈ 60%. Thus, at worst,
it performs twice as better as the BLSE with the full
set of PMUs deployed. Regarding the de-synchronization,
Figure 2b shows that the estimation performance does not
clearly improve for increasing number of PMUs deployed.
This can be expected since the synchronization error param-
eters of different PMUs have been assumed uncorrelated.
Finally, note that in both Figure 2a and 2b, theoretical and
empirical curves almost perfectly coincide, validating the
goodness of the prescribed linear approximation. We remind
this holds for parameters values as in Table I.

Figure 3 shows the performance for different PMU re-
porting rate. That is for a fixed number of PMUs, the
Figure shows the evolution of the ̂ARMSE(·, ·, ·) (11) and
of the ARMSE(·, ·, ·) (10) as functions of the number of
collected PMU measurements M . Figure 3a confirms the
good behavior of SASE compared with GT. Conversely, as
time passes, the BLSE does not improve since it has no clue
about the presence of the delay. Figure 3b supports this claim.
Indeed, since the estimated skew improves for increasing M ,
the SASE is able to compensate for it. Finally, Figure 3b
shows that the offset does not improve with M . This is an
intrinsic modeling problem due to the fact that offset and
power demand happen to be linearly dependent.

VI. CONCLUSIONS

In this paper we addressed the problem of state estimation
in power systems. We considered the presence of PMUs de-
synchronization and analyzed the problem of simultaneous
state and synchronization error parameters estimation. By
casting the problem in a Bayesian framework while resorting
to a novel linear approximation for the power flow equations,
we proposed a Kalman filtering procedure to achieve the
purpose. Interestingly, it is shown how the presence of
synchronization error easily misleads the estimator if the
measurements model does not properly account for it.
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