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Abstract— Voltage instability limits the transmis-
sion capacity of a power network. Hence, finding
parametric conditions for the feasibility of the power
flow equations is of theoretical as well as practical
interest. Here, we take over from a recent result
tailored for the case of decoupled reactive load flow.
For the case of DC power networks, we consider
the particular scenario where two different types of
loads are present: classical passive loads, modeled as
negative quantities, and active loads due to possible
distributed generation, modeled as positive quanti-
ties. The analysis of the interaction between these two
different types of loads leads us to a less conservative
estimate of the injection region in parameter space.
As a byproduct of the mathematical analysis, we
leverage our result into a simple yet numerical expo-
nentially fast algorithm to compute the high-voltage
load flow solution. Finally, we extensively verify our
findings on standard IEEE test-beds.

Index Terms— network transmission capacity, dc
power flow analysis, fixed point iterative algorithms

I. Introduction

Among many different non-linear phenomena charac-
terizing the operational condition of a power system,
voltage instability and, in particular, voltage collapse,
limits the transmission capability of a power network
[1]. Indeed, the transmission capacity, i.e., the extent to
which a network can deliver power, is constrained by
the fundamental physical limits of the network. While
approaching this limit, increasingly lower voltages are
typically observed, until voltage collapse occurs [2], [3].
Because of the increasing penetration of distributed
generation together with the higher and intermittent
consumer’s demand, today’s networks are expected to
get dramatically close to their hosting limits. Thus
opening unprecedented challenges to systems operators
which must guarantee high-quality power delivery to
consumers as well as safe operation of the network.

From a purely mathematical perspective, the Power
Flow Equations (PFEs) model the static interactions
and coupling among all the quantities of a power net-
work and their solution space represents all the feasible
operating points of the network. Interestingly, since
loading-induced voltage collapse can be described stat-
ically [4] and thus leveraging static power flow analysis
only, by date, voltage collapse studies and characteriza-
tion of the PFEs solution space are intimately related
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problems. For instance, along this line of research two
sides of the same coin are:

• To synthetize Voltage Collapse Proximity Indicators
(VCPIs) quantifying margins against collapse.

• To find conditions for the solvability of the PFEs.

VCPIs are typically formulated in voltage-space with
the main criticism that, to end up with digestible met-
rics, relations with the parameter-space are often lost.
Conversely, conditions for the solvability of the PFEs
are usually formulated in parameter-space. In this case
the main criticism relies of the highly non-linear nature
of the equations which makes the development of neat
analysis extremely hard.
However, despite all the respective pros and cons and
the fact that the two topics are often analyzed sepa-
rately, both classical and current literature can be found.
Regarding the synthesis of VCPIs, from the seminal
work [5] where is shown that the determinant of the PF
Jacobian can be used to measure proximity to collapse,
a considerable bunch of literature have been developed
considering e.g., eigenvalue [6] and condition numbers
indicators [2], continuation methods [7], optimization
[8], as well as distributed approaches tailored for dis-
tribution networks [9]. Regarding the development of
parametric conditions, for the sole case of active power
transmission capacity, in [10] the authors present a
condition for the synchronization of networks of coupled
oscillators in terms of the network parameters. For the
reactive decoupled case, in the prelimiary work [11] a
linear approximation of the load equations is given.
Always considering the reactive decoupled case, in the
more recent [1] the authors present a sharp parametric
condition which guarantees existence, uniqueness and
stability of a solution of the power flow equations.
Extensions to the active/reactive coupled case with a
convenient general linear model for the PFEs can be
found in [12], [13].

In this paper, we lean toward developing parametric
conditions for the solvability of the PFEs. We consider
the case of DC networks. While it is understood that
analyzing the coupled AC case is much more appealing
from both a theoretical and a practical perspective, it is
worth stressing that unraveling the DC case is a neces-
sary condition to promote the development of additional
theory. We build our analysis and take over from [1],
trying to make a step forward since a disadvantage of the
condition in [1] is that it does not distinguish between
loads of different nature. Indeed, while traditional loads



are “passive” meaning that they only absorb/consume
power (and thus modeled as negative quantities P < 0),
the penetration of distributed generation foresees the
presence of “active” loads. These are able to sustain their
own demands while injecting (for some time) additional
power back into the grid (thus are modeled as positive
P > 0). Intuitively, this additional injection positively
affects the network loading margin similarly to the well-
known principle in AC networks of voltage support by
reactive power compensation [14].
The main contributions of the paper are twofold. i) First
we present a sufficient condition for the existence of a
solution for the DC PFEs. Compared to the condition
in [1], its effectiveness is to identify an extended set
of solutions when both positive and negative loads are
considered. While the results are a preliminary general-
ization of those in [1] and do not pretend to represent a
whole theory on this matter, the ultimate goal is to make
a step toward a rigorous understanding of the interplay
between different types of loads. ii) As second contribu-
tion, we present a simple yet (numerical) exponentially
fast algorithm to compute the high-voltage solution. The
algorithm arises as natural byproduct of a convenient
fixed point reformulation of the PFEs.
All the technical proofs are collected in the Appendix.

II. Preliminaries
A. Power Network Model

We model a DC resistive power network as a con-
nected, undirected, weighted graph (N , E) where N =
{1, . . . , n+m} is the set of nodes (or buses) and E ⊆
N ×N is the set of edges (or branches) connecting the
nodes, that is the set of unordered pairs (i, j), i, j ∈ N ,
such that i and j are connected to each other. The edges
weights of the graph are given by the electric lines con-
ductances gij = 1/rij > 0 which we conveniently collect
in the conductance matrix G = GT whose off diagonal
elements are given by Gij = −gij < 0, for (i, j) ∈ E ,
and diagonal elements Gii = −

∑
j∈N gij + gs,i with gs,i

denoting the node shunt conductance to ground.
Each electric bus i ∈ N is described by its nodal voltage
to ground Vi > 0 and by its power Pi ∈ R. Hence, the
voltage–power relations among buses through branches
are given by

Pi =
∑
j∈N

ViGijVj , i ∈ N ,

which, by collecting voltages and powers in the columns
vectors V, P ∈ Rn+m, respectively, can be conveniently
rewritten in compact form as

P = diag(V )GV . (1)

In the network we consider two types of buses:
1) a set L = {1, . . . , n} of n ≥ 1 constant power

load buses which are characterized by a constant
power Pi while the bus voltage Vi is a free variable.

This type of buses, the most common considered in
voltage collapse studies, represents stiff loads whose
power level is no voltage dependent. We highlight
that the more general ZIP model [15]

Pi(Vi) = gs,iV
2

i + Is,iVi + Pi . (2)

might be considered as well. However, the constant
impedance load bh,shunt can be absorped in the net-
work shunt conductance; while the constant current
portion Is,i can be absorbed into effective generator
voltages as shown in [1]. Therefore, without loss of
generality we assume a constant power model, i.e.,
Pi(Vi) = Pi.
Observe that this load model is the DC analogous
of the well-known PQ load model [15] in AC power
networks.

2) a set G = {n+ 1, . . . , n+m} of m ≥ 1 generator
buses each of them characterized by a constant
voltage level Vi > 0 acting as a voltage source
and where the power demand Pi is a free variable
determined by the load power demands.
Observe that this generator model is the DC anal-
ogous of the well-known PV generator model [3] in
AC power networks.

Now, according to the partition of the busesN into loads
L and generators G, it is convenient to split voltage and
power vectors and conductance matrix respectively as

V =
[
VL

VG

]
, P =

[
PL

PG

]
, G =

[
GLL GLG

GGL GGG

]
.

Accordingly, the power flow Eq. (1) can be rewritten as

PL = diag(VL)(GLLVL +GLGVG) , (3a)

PG = diag(VG)(GGLVL +GGGVG) . (3b)

Observe that, since the generator voltages VG are given
and fixed, upon solving Eq. (3a) for VL, Eq. (3b) can be
trivially solved to compute the generator powers PG.
For the matrix GLL, which we refer to as grounded
conductance matrix, we assume the following

Assumption 2.1 (Properties of GLL): The matrix
GLL:

1) is a non-singular positive symmetric M-matrix1;
2) the graph associated to it, that is the graph associ-

ated to the load nodes, is connected.
The first of Assumptions 2.1 is always verified in practice
[16] and always satisfied in the absence of line-charging
and shunt capacitors. The second assumption can be
made without loss of generality, see [1, Supplementary
Info]. Thanks to Assumption 2.1, GLL is invertible and
G−1

LL is a dense matrix with positive elements. It is then
convenient to define the open-circuit voltage profile [1]

V ∗L := −G−1
LLGLGVG > 0 ∈ Rn . (4)

1An M-matrix A is a matrix with negative off-diagonal elements
and positive diagonal ones which can be expressed in the form
A = sI −B, with bij ≥ 0, s > ρ(B), the maximum of the moduli
of the eigenvalues of B and I is the identity matrix.



This represents the high-voltage solution of (3a) when
all the loads are open-circuited, i.e., PL = 0n. Note that,
thanks to properties of GLL, V ∗L > 0. Thanks to (4),
Eq. (3a) can be further simplified as

PL = diag(VL)GLL(VL − V ∗L ) . (5)

B. Loading Margin for DC Networks
Here, we review the main result of [1], which we refer

the reader to for all the technical details.
The final goal of [1] was to identify a suitable loading
margin for decoupled networks concisely expressed in
parameter-space rather than as (generally) complicated
functions in voltage-space, e.g., determinant of the PFEs
Jacobian, eigenvalue, singular value or condition number
computations.
To this aim, denoting with δ ∈ [0, 1) the percentage
deviation of a load voltage Vi, i ∈ L, from the corre-
sponding open-circuit solution V ∗i , it is possible to define
the security set

S(δ) := {VL ∈ Rn
≥0 : (1−δ)V ∗L ≤ VL ≤ (1+δ)V ∗L} , (6)

with interior S(δ) and where the inequalities are de-
fined element-wise. In [1] the authors were interested in
characterizing the solutions VL ∈ S(δ). To quantify the
strength of the network, define the critical load matrix
Pcrit ∈ Rn×n as

Pcrit := 1
4diag(V ∗L )GLLdiag(V ∗L ) (7)

which, from Assumption 2.1 and the fact that V ∗L > 0n`
,

is a positive definite M-matrix. Then, Theorem 1 in [1]
gives a sufficient parametric condition for the existence
and uniqueness of a high-voltage solution for the decou-
pled PFEs (5) which states that if

∆ := ‖P−1
critPL‖∞ < 1

then ∃! VL ∈ S(δ−) where δ− ∈ [0, 1
2 [ is one of the two

solution of the equation 4δ(1− δ) = 0.
The condition above is extremely concise and represents
a voltage collapse proximity indicator directly in param-
eter space. Yet, a conservative aspect is that it does not
distinguish between passive and active loads, i.e., be-
tween loads than simply absorb/consume power versus
loads that might be equipped with distributed genera-
tion to injected/provide power. Thus, in the following we
try to explicitly take into account the interplay between
the two different types of loads.

III. Enhanced Loading Margin
We are interested in capturing the interplay between

injected (modeled as P > 0) and consumed (modeled
as P < 0) power at load buses and its effect on
the network loading margin. Intuitively, the presence
of active buses, able to sustain their own load while
providing additional power, should be beneficial from a
loading margin perspective. For the case of AC networks,
this can be viewed as the conventional power engineering

practice analogue of supporting the voltages by reactive
power compensation [14].
First of all, it is convenient to separate “active” buses
where power is injected, denoted with P+

L ∈ Rn, from
those where power is consumed, denoted with P−L ∈ Rn.
These are element-wise defined, for i ∈ L, as

[P+
L ]i :=

{
[PL]i if [PL]i > 0,

0 otherwise.

[P−L ]i :=
{
−[PL]i if [PL]i < 0,

0 otherwise.

(8)

In the the following, given a vector x ∈ Rn, ‖x‖+∞
denotes the standard∞−norm while, with a slight abuse
of notation, we define ‖x‖−∞ := min

h
|xh|, which is not

a proper norm. In addition, we define the following real
quantities:

ϕ+ := ‖P−1
critP

+
L ‖+∞ − ‖P−1

critP
−
L ‖−∞,

Φ+ := ‖P−1
critP

+
L ‖+∞ + ‖P−1

critP
−
L ‖−∞,

ϕ− := ‖P−1
critP

+
L ‖−∞ − ‖P

−1
critP

−
L ‖+∞,

Φ− := ‖P−1
critP

+
L ‖−∞ + ‖P−1

critP
−
L ‖+∞.

(9)

We now present our main result consisting in a sufficient
condition for the existence of a solution VL ∈ Rn

≥0 of (5).
Theorem 3.1 (Enhanced Feasibility Condition):

Consider the PFEs (5). Define V ∗L as in (4), Pcrit as in
(7), and the active and passive load vectors P+

L and
P−L as in (8). Compute δ− and δ− as the output of
Algorithm 1. Then, if δ− ≤ δ+:

1) Secure Solution: There exists at least one solution
VL ∈ S(δ−) of the DC PFEs (5);

2) Solutionless Region: There exists no solutions of
the DC PFEs (5) in the open set

{VL ∈ Rn` : VL > (1− δ+)V ∗L and VL /∈ S(δ−)}.
Remark 3.2 (Computational aspects): As outlined in

Algorithm 1, the parameters δup
− , δup

+ , δlow
− and δlow

+ are
the solutions of a third order equations. To explicitly
compute their values is possible either to exploit a
numerical approach, e.g., a Newton-Raphson algorithm,
or to use the closed form expression. �

Observe that, Algorithm 1 might not found admissible
solutions for the upper and lower inequalities. Obviously,
if this is the case, the statement of Theorem 3.1 cannot
be checked and nothing can be said on the solvability
of the PFEs (5). Despite that, the conditions of both
Theorem 1 in [1] and Theorem 3.1 can be interpreted
as providing estimates of the injection region of the
power network, i.e., the set of power demands in load-
space for which at least one high-voltage solution exists.
These estimates, of which a numerical comparison for a
simple two-load case system is reported in Section IV-
A, are implicit in the respective conditions. Namely, if
the conditions are satisfied for a set of injections PL,
then PL is in the injection region. Since Theorem 3.1



Algorithm 1 Enhanced Sufficient Feasibility Condition
Require: Φ+, ϕ+, Φ−, ϕ−. Define:

yup(δ) := ϕ+ + Φ+δ ,

ylow(δ) := ϕ− − Φ−δ ,
g(δ) := 4δ(1− δ2) .

1: {Upper Bound Check:}
2: if 0 ≤ ϕ+ ≤ 1 and Φ+ ≤ 4− 12

(ϕ+
8
) 2

3 then
3: compute δup

− ∈ [0, 1
2 ] and δup

+ ∈ [ 1
2 , 1] as the unique

solutions of the third order equation yup(δ) = g(δ)
4: else if ϕ+ < 0 then
5: set δup

− := 0 and compute δup
+ as

δup
− := min{yup(δ) = g(δ) , 1}

6: end if
7:
8: {Lower Bound Check:}
9: if −1 ≤ ϕ− ≤ 0 and Φ− ≤ 4− 12

(
−ϕ−

8
) 2

3 then
10: compute δlow

− ∈ [0, 1
2 ] and δlow

+ ∈ [ 1
2 , 1] as

the unique solutions of the third order equation
ylow(δ) = −g(δ)

11: else if ϕ− > 0 then
12: set δlow

− := 0 and compute δlow
+ as

δlow
+ := min{ylow(δ) = −g(δ) , 1}

13: end if
14:
15: if Admissible solutions have been found then
16: δ− := max{δlow

− , δup
− } , δ+ := min{δlow

+ , δup
+ } .

17: else
18: Return -1 (no solution found)
19: end if

generalizes Theorem 1 in [1] the following corollary is
straightforward.

Corollary 3.3 (Injection Region of DC PFEs): The
estimated injection region for the DC PFEs (5)
identified by the conditions of Theorem 3.1 is greater
than or equal to that identified by Theorem 1 in [1]. �

In view of Corollary 3.3, it is easy to see that when
only one type of load is present then Theorem 3.1
collapses onto Theorem 1 in [1].

Remark 3.4 (Geometrical Intuition): From a strictly
mathematical point of view, the parameters of Eq. (9)
represents slopes, Φ, and intercepts, ϕ, of some lines
whose relative geometrical positions, under the condi-
tions of Theorem 3.1, identify an invariant set for an
appropriate fixed point mapping (see Appendix). �

Remark 3.5 (Physical Intuition on P−1
critP

+
L , P−1

critP
−
L ):

Consider the PFEs (5), and define the normalized
voltage profile v := diag(V ∗L )−1VL, well defined since
V ∗L > 0. Exploiting Pcrit in (7), Eq. (5) can be rewritten

as
PL = 4 diag(v)Pcrit(v − 1) , (10)

and for lightly loaded networks, i.e., ‖PL‖ ∼ 0, it is
expected that VL ' V ∗L , i.e., v ' 1. Then, to first order,
the solution of (10) is given by

v ' 1+ 1
4P
−1
critPL = 1+ 1

4(P−1
critP

+
L − P

−1
critP

−
L ) (11)

From (11), the first-order solution consists of a uniform
profile 1, plus a deviation which depends on the loading
condition, with the matrix P−1

crit providing the conversion
between load-space and voltage-space. In particular,
since P−1

crit is a dense positive matrix, P−1
critP

+
L provides

voltage support while P−1
critP

−
L makes the voltage to drop.

One can observe that the parameters ϕ+ and ϕ− are the
difference between the maximum positive and the mini-
mum negative deviations, and the minimum positive and
the maximum negative deviations, respectively. To this
extent, the parameters represent the maximum possible
positive and negative linear deviation from the open-
circuit solution V ∗L . �

A. Solving the PFEs - An exponentially fast algorithm
The condition of Theorem 3.1 can be effectively

used for monitoring and security purposes. Besides that
however, if solutions exist, it is convenient to be able
to compute at least one of them. Here, we present a
simple yet (numerically) exponentially fast algorithm to
compute one solution of (5). The algorithm naturally
arises from a convenient fixed point reformulation of
(5). Indeed, defining the deviation vector of VL from the
open-circuit profile V ∗L as x := diag(V ∗L )−1VL − 1 ∈ Rn,
Eq. (5) can be rewritten as

x = f(x) := −1
4P
−1
critdiag(PL)r(x) (12)

where r(x) =
[

1
1+x1

, . . . , 1
1+xn

]T

. The Fixed Point (FP)
Algorithm 2 shows how to leverage (12), which can
be regarded as an algorithmic iteration of an iterative
algorithm, to compute one solution of the PFEs (5).

Algorithm 2 Fixed Point (FP)
Require: P−1

critdiag(PL), x(0) = 0, ε > 0
1: repeat
2: x(k + 1) = f(x(k)) = − 1

4P
−1
critdiag(PL)r(x(k))

3: until ‖x(k + 1)− x(k)‖ < ε

Remark 3.6 (Stopping Criterion): In Algorithm 2, ε
is a user-defined parameter which sets the stopping
criterion and, in turn, the convergence accuracy.

IV. Simulation Results
Here we test the condition of Theorem 3.1 as well as

the proposed FP Algorithm 2. All the simulations are
run in Matlab on a 2.53GHz Intel Core 2 Duo processor
with 8GB of RAM. The standard power flow solver used
is Matpower [17].
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Fig. 1: Plot, in the load space, of the feasible loading configu-
rations. The green line denotes the limit of the feasible region.
The blue area identifies loading conditions satisfying both the new
proposed condition and the condition in [1]. The red areas identify
conditions where only the new condition is met.

A. Three-nodes case study

For a three buses network which represents the mini-
mum working example to have both active/positive and
passive/negative loads, it is possible to explicitly plot the
solutions of the PFEs in load space. For each solution,
we can check the condition of Theorem 3.1 against
the one in [1]. We consider a simple network with line
topology – generator-load-load – with electric lines with
conductances equal to 10[p.u.] and 14[p.u.], respectively.
Load demands are expressed in [p.u.] values. Figure 1
shows in green the limit of the feasible region, i.e., the
region where solutions of the PFEs can be found. The
blue area represents loading configurations captured by
both Theorem 3.1 and the condition in [1]. Finally, the
red areas represent those configurations where only the
new condition is met. As can be seen, the feasible region
grows in the positive orthant direction, which corre-
spond to positive/injected loads, but none of the two
conditions is able to capture it. Moreover, as expected, in
the case of single-type loads, either positive or negative,
the proposed condition collapses onto the one in [1].
The more interesting case of mixed loads shows that
the new feasibility condition better captures the network
capacity.

B. Test on standard IEEE transmission networks

Here we perform tests on a set of standard trans-
mission networks tranformed into DC equivalent by
considering just the resistive part. Specifically, for each
network we perform a Monte Carlo simulation over 1000
runs where at each run we randomize 100% of the
demand and check i) if a solution is found, ii) if the
proposed condition is satisfied and iii) if the condition
of [1] is verified. Table I reports the results. Note that,
even if the improvement from the condition in [1] is not
considerable, the new condition is able to capture, in all
the cases, a bigger set of feasible loading configurations.

Grid 9 bus 14 bus 30 bus 39 bus

# Loads 6 9 24 29
# Generators 3 5 6 10
Solution Found 49.90% 91.20% 76.30% 55.70%
∆ < 1 18.50% 79.80% 27.50% 10.00%
New Condition Met 19.40% 80.30% 29.20% 11.60%

TABLE I: Results for different IEEE standard grids averaged over
1000 Monte Carlo runs.
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Fig. 2: Numerical average convergence rate of the FP algorithm.

C. FP algorithm
Here, we show the effectiveness of the proposed FP

Algorithm 2.
First, we show the (numerical) exponential convergent
behavior of the FP algorithm. The test-bed considered
is the IEEE 30 bus transmission grid. We compare
the solution of our FP algorithm with the solution
previously computed thanks to the standard Matpower
solver. Figure 2 shows, in logarithmic scale, the average
over 1000 Monte Carlo successful realizations, of

J := ‖VL,FP − VL,MP‖∞ ,

where the subscripts “FP” and “MP” stand for Fixed
Point and Matpower, respectively.
As second comparison, we test the FP algorithm in
terms of execution time against the Fast Decoupled
Power Flow Matpower solver over different IEEE trans-
mission grids. A set of Monte-Carlo samples have been
uniformly drawn randomizing 100% of the demand. The
power flow equations have been solved with the stan-
dard Matpower solver and with a modified solver where
the standard Matpower’s Newton-Raphson iteration to
compute the step to update the voltage magnitudes
is substituted by the FP algorithm. We consider 1000
successful realizations, where both the standard and the
modified solvers converge. Table II shows comparable
performance. Yet, the modified solver behaves slightly
better. In flavor of Table II, for the 118 bus system only,
Figure 3 plots the execution times of 25 different runs
for both the standard MP solver and the modified one,
denoted as FP. As can be seen the average running time
(dashed horizontal lines) corresponding to the FP solver
is lower than that of the standard MP solver. Finally,
we compare the standard Fast Decoupled Power Flow



Grid 9 bus 14 bus 39 bus 57 bus 118 bus
MP 11.0 10.4 12.0 12.2 13.4
FP 9.7 9.2 10.3 10.8 10.8

TABLE II: Average execution time in [ms] over 1000 Monte Carlo
runs for different standard transmission grids.
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MP - Single exe. time

MP - Average exe. time
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FP - Average exe. time

Fig. 3: Time comparison between standard MP and modified FP
solvers for 25 realizations over the 118 buses transmission grid.

Matpower solver and its modified version in terms of
percentage of successful realizations. The test-bed used
is again the IEEE 30 buses grid. We draw 1000 Monte-
Carlo samples randomizing:
• the network electrical parameters with a deviation

of ±5% from their nominal values,
• the 50% of the demand,
• the 50% of the generation,

Table III shows how the modified FP solver behaves
better or at least equal than the standard one.

MP successful realizations [%] 46.40
FP successful realizations [%] 48.30
MP and FP successful [%] 98.10
MP only successful [%] 0.00
FP only successful [%] 1.90

TABLE III: Comparison, in terms of number of successful realiza-
tions, between the standard Matpower solver and its modified FP
version.

V. Conclusions
We addressed the problem of DC power flow feasi-

bility. We built the analysis from recent results in the
field. We presented a sufficient condition to ensure the
existence of a solution of the power flow equations. The
advantage from previous results is to take into account
the effects of possible distributed generation, modeled as
active/positive loads able to sustain their own load while
injecting power into the grid. As a natural byproduct
of reformulating the PFEs in fixed point notation, we
obtained a simple yet numerically efficient algorithm to
solve the PFEs. Finally, both the feasibility condition
as well as the proposed algorithm have been extensively
tested over standard feeders.
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Appendix
Proof of Theorem 3.1

The proof is split according to statements 1) and 2).

A. Proof of Statement 1)
We proceed as follows: i) we present some conve-

nient bounds for the PFEs in fixed point notation;
ii) we present necessary and sufficient conditions for
the existence of the parameters δlow

− , δlow
+ , δup

− and δup
+

(equivalently for Algorithm 1 to be well-posed) and
conditions to ensure the solution space to be invariant
for the fixed point mapping; iii) we show contraction of
the fixed point mapping.

i) First of all, from Section III-A, let us recall Eq. (12)
which, defining the vector r(x), x being the vector of
voltage deviations from V ∗L , reads as

x = f(x) := −1
4P
−1
critdiag(PL)r(x) . (13)

Moreover, from the definition (6) of S(δ), for any δ ∈
[0, 1[, it follows that

VL ∈ S(δ) (resp. S(δ)) ⇐⇒ x ∈ B∞(δ) (resp. B∞(δ)) .

In view of the above equivalence, in the following we
work with x and B∞(δ) rather than VL and S(δ).
Regarding (13) as a discrete-time dynamical system,
i.e., x(k + 1) = f(x(k)), our ultimate goal is to show
B∞(δ) is forward-invariant for the above dynamics and,
in particular, that from B∞(δ+) the dynamics contracts
until reaching B∞(δ−).
Now, by splitting PL as in (8), by considering the
definition of r(x) and being x ∈ B∞(δ), f(x) can be
upper and lower bounded by

f(x) ≤ ‖P
−1
critP

+
L ‖+∞

4(1− δ) 1 −
‖P−1

critP
−
L ‖−∞

4(1 + δ) 1, (14a)

f(x) ≥ ‖P
−1
critP

+
L ‖−∞

4(1 + δ) 1 −
‖P−1

critP
−
L ‖+∞

4(1− δ) 1. (14b)

Hence, given a certain δ, a simple condition for the
invariance of B∞(δ) is to require (14a)–(14b) satisfy,
respectively

1
4
‖P−1

critP
+
L ‖+∞

1− δ 1 − 1
4
‖P−1

critP
−
L ‖−∞

1 + δ
1 ≤ δ1, (15a)

1
4
‖P−1

critP
+
L ‖−∞

1 + δ
1 − 1

4
‖P−1

critP
−
L ‖+∞

1− δ 1 ≥ −δ1. (15b)

From (15a)–(15b) note that the vector 1 can be canceled
out leading to two simpler scalar inequalities. Further-
more, defining g(δ) := 4δ(1− δ2), rearranging the terms
and exploiting the definitions in (9), we get, respectively

ϕ+ + Φ+δ ≤ g(δ) , (16a)

ϕ− − Φ−δ ≥ −g(δ) . (16b)

Figure 4 shows an example of how these inequalities
might look like.
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Fig. 4: Representation of the upper bound (16a) (red lines) and of
the lower bound (16b) (black lines).

ii) Now, in order to prove invariance of B∞(δ) we first
present necessary and sufficient conditions for the solv-
ability of (16a) (resp. (16b)) and thus for the existence
of δup
− , δ

up
+ (resp. δlow

− , δlow
+ ). Then we present a necessary

and sufficient condition for the simultaneous solution
of the inequalities ensuring the intersection of the two
solution sets to be non-empty. We consider (16a) first.

Theorem 1.1: The following three scenarios com-
pletely characterize the solution set of (16a) for δ ∈
[0, 1]:

1) if ϕ+ < 0, solutions always exist.
2) if 0 ≤ ϕ+ ≤ 1, there exist solutions if and only if

Φ+ ≤ 4− 12
(ϕ+

8
) 2

3 ;
3) otherwise no solution exists.

If 1) or 2) hold, there exist δup
− ∈ [0, 1

2 ] and δup
+ ∈ [δup

− , 1]
such that, for δ ∈ [δup

− , δ
up
+ ], (16a) is satisfied. �

Proof: Scenario 1) is trivial. Indeed, since Φ+ > 0,
if ϕ+ < 0 then there exists ε > 0 s.t. for δ ∈ [0, ε[,
y(δ) := ϕ+ + Φ+δ < 0 . Conversely, for all δ ∈ [0, 1],
g(δ) ≥ 0. Hence, δ− = 0 while δ+ ∈ ]δ−, 1] can be
computed as the solution of the third order polynomial
y(δ) = g(δ) , δ > 0 . If the solution is ≤ 1 we set δ+
equal to it, otherwise we set δ+ = 1.
For 2), first of all, notice that the values ϕ+ and Φ+ are
not independent and such that ϕ+ ≤ Φ+. In particular,
if one parameter increases the other one increases ac-
cordingly. In particular, there is one value of ϕ+ beyond
which the slope Φ+ of y(δ) is such that y(δ)∩ g(δ) = ∅.
To compute such value, we compare y(δ) and the line
ytg(δ, δ) := s(δ)δ + i(δ) tangent to g(δ) at δ. Indeed,
solutions exist only if y ≤ ytg point-wise. The functions
s(δ) and i(δ) identify slope and intercept of ytg(δ, δ) and
are equal to, respectively

s(δ) = 4− 12δ2 ; i(δ) = 8δ3 ; δ ∈
[
0, 1/
√

3
[
.

Their values define the set of tangent lines to g(δ);
see Figure 5. Note that at δ = 1/

√
3, g(δ) attains its

maximum hence, after that point s(δ) < 0 and the
comparison between y and ytg is meaningless. Now,
imposing ϕ+ = i(δ) and solving for δ, one obtain δ =(ϕ+

8
) 1

3 . This identifies a particular tangent line ytg(δ, δ),
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Fig. 5: Line ytg(δ) tangent to g(δ) for different values of δ.

whose slope is equal to

s(δ) = 4− 12
(ϕ+

8

) 2
3
,

and it is easy to understand that y(δ) intersects g(δ) in
at least one point if and only if its slope Φ+ satisfies

Φ+ ≤ 4− 12
(ϕ+

8

) 2
3
,

that is, if and only if y is not above ytg. In particular,
if y(δ) < ytg(δ, δ), for δ > 0, then it intersects g(δ)
in two points, δup

− ∈
[
0, 1/
√

3
[

and δup
+ ∈ ]δup

− , 1];
conversely, if y(δ) = ytg(δ, δ) point-wise then, for the
equation y(δ) = g(δ) there exist two solutions δup

− , δ
up
+

s.t. δup
− = δup

+ = δ ∈ [0, 1/
√

3[.
Regarding 3) we must show that for ϕ+ > 1 no solution
exists. Recall that 1 < ϕ+ ≤ Φ+. However, i(δ) = 1
corresponds to δ = 1/2 and thus to s(δ) = 1 < Φ+,
meaning that y(δ) > ytg(δ, δ), for δ ≥ 0. Thus no
intersection exists.
Finally, we show that δup

− ∈ [0, 1/2]. Indeed, assume
δ > 1/2. Then, i(δ) > s(δ) which is against ϕ+ ≤ Φ+
and thus y(δ) > ytg(δ, δ). This means that, for cases 1)
and 2), it actually holds δup

− ∈ [0, 1/2].
Remark 1.2: Observe that, even if the limit value

ϕ+ = 1 is admissible in practice, this is never achieved
in the case of mixed loads. This is because, thanks to
Theorem 1.1, there exists a solution if and only if

ϕ+ = Φ+ = 1.

This is equivalent to

1 = ‖P−1
critP

+
L ‖+∞ − ‖P−1

critP
−
L ‖−∞

= ‖P−1
critP

+
L ‖+∞ + ‖P−1

critP
−
L ‖−∞

which is achieved only if ‖P−1
critP

−
L ‖−∞ = 0 and so

‖P−1
critP

+
L ‖+∞ = 1. This is an admissible scenario but

it is not of particular interest since we want to analyze
the interaction between the positive and negative part
of the load. �

Regarding (16b), for symmetry of the inequalities, a
similar theorem can be stated.

Theorem 1.3: The following three scenarios com-
pletely characterized the solution set of (16b) for δ ∈
[0, 1]:

1) if 0 < ϕ−, solutions always exist.
2) if −1 ≤ ϕ− ≤ 0, there exist solutions if and only if

Φ− ≤ 4− 12
(
−ϕ−

8
) 2

3 ;
3) otherwise no solution exists.

If 1) or 2) hold, exist δlow
− ∈ [0, 1

2 ] and δlow
+ ∈ [δlow

− , 1]
such that, for δ ∈ [δlow

− , δlow
+ ], (16b) is satisfied. �

Theorems 1.1 and 1.3 give necessary and sufficient
conditions for the existence of solutions of (16a) and
(16b), respectively. However, their simultaneous solution
is still not sufficient for the invariance of B∞(δ) and
indeed, it is necessary to verify the intersection of their
solution sets is non empty. The following theorem can
be easily verified by graphical inspection.

Theorem 1.4: Assume that both (16a) and (16b)
have non empty solutions sets and define δ− :=
max{δlow

− , δup
− } and δ+ := min{δlow

+ , δup
+ }. Then

D :=
{
δ ∈ [δ−, δ+] | ϕ+ + Φ+δ ≤ g(δ) and

ϕ− − Φ−δ ≥ −g(δ)
}
6= ∅

if and only if δup
− < δlow

+ and δlow
− < δup

+ . �

iii) To conclude we need to prove existence of a
solution inside S(δ−) only, indeed, so far, thanks to
Brouwer’s fixed point theorem [18], it is possible to
conclude existence of a solution in any S(δ), δ ∈ [δ−, δ+].
Let us regard Eq. (13) as the equilibrium of the discrete-
time dynamical system x(k + 1) = f(x(k)) and assume
x(k) ∈ B∞(δ+). Then, there exists x(k) ∈ B∞(δ), δ <
δ+ such that ‖x(k)‖∞ = δ. From the results above we
have that

−δ1 ≤ f(x) ≤ δ1 if δ ∈ [δ−, δ+] ,

−δ1 < f(x) < δ1 if δ ∈ ]δ−, δ+[,

meaning that ‖f(x)‖∞ < δ for δ ∈ ]δ−, δ+[. Hence

‖x(k + 1)‖∞ = ‖f(x(t))‖∞ < ‖x‖∞ = δ, δ ∈ ]δ−, δ+[.

This reasoning can be propagated at the successive
iteration eventually contracting until we hit ‖x(k)‖∞ =
δ− for some k > k. This means that starting from B∞(δ)
for δ ∈ [δ−, δ+[, our forward invariant set B∞(δ) shrinks,
reaching B∞(δ−), δ− ∈

[
0, 1

2
]
. Finally, it automatically

follows from the contraction argument the absence of
solutions inside S(δ+) \ S(δ−).

B. Proof of Statement 2)
Notice that in the interval ] − δ+,+∞[, each com-

ponent of r(x), i.e., ri(xi) = 1/(1 + xi) is strictly
monotone and ‖r(k)‖∞ < 1/(1 − δ+). Thus, given
x(k) ∈ ] − δ+,+∞[n it follows that (14a)–(14b) are
strict and, in turn, ‖x(k + 1)‖∞ = ‖f(x(k))‖∞ < δ+.
Hence x(k+1) ∈ B∞(δ+). Together with the contraction
argument above, Statement 2) follows.


