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Abstract— A standard operational requirement in power
systems is that the voltage magnitudes must lie within pre-
specified bounds. Conventional wisdom suggests that such a
tightly regulated voltage profile should also guarantee a secure
system, operating far from static bifurcation instabilities such
as voltage collapse. Here we demonstrate that this conclusion
is generally false, and that the distance from voltage collapse is
a systems-level objective distinct from ensuring voltage limits.
We formulate an optimization problem which maximizes the
distance to voltage collapse through injections of reactive power,
subject to power flow and operational voltage constraints. By
exploiting a linear reformulation of the power flow equations
we arrive at a convex reformulation which can be efficiently
solved for the optimal reactive power injections. We illustrate
the performance of our results with the IEEE30 bus network.

Index Terms— power networks, voltage support, reactive
power compensation, sparsity-promoting optimization, optimal
placement.

I. INTRODUCTION

The widespread penetration of distributed renewable gen-
eration, characterized by high variability and fast dynam-
ics, negatively impacts the voltage profile of a power net-
work. Voltage controllers are therefore required to guarantee
constraint satisfaction and safe operation of the network.
Techniques for voltage support include shunt and static
VAR compensation [1], [2], series compensation [3], off-
nominal transformer tap ratios [4], synchronous condensers
[5], and more inverters operating away from unity power
factor [6], [7]. For a detailed description of the reactive power
compensation technologies we refer the reader to [8].

Traditionally, the main purpose of voltage support is to
maintain voltage magnitudes tightly within predetermined
bounds (e.g., within 5% of some nominal level). Intuitively,
such a tightly regulated voltage profile should also guarantee
a large stability margin against static bifurcation instabilities
such as voltage collapse. A key direction in power system
stability analysis has been the development of indices quan-
tifying a power network’s proximity to voltage collapse. A
broad overview of this large subfield can be found in [9],
[10], [11], [12], [13]. The existing approaches are largely
based on numerical methods. They often require either
continuation power flow [14] to identify the insolvability
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boundary, or repeated computation of loading margins in
varying directions of parameter-space [15].

In this paper we combine voltage control with metrics
quantifying the distance to voltage collapse in order to
maximize the networks stability margin. While the usual
objective in voltage support problems is the security task of
confining voltage magnitudes within predetermined bounds,
here we follow an alternative approach: we attempt to
minimize a measure of the stress experienced by the network
subject to operational constraints. This approach stems from
[16], where a condition was introduced which quantifies
the network stress measures and the proximity to voltage
collapse. Based on this condition we pursue a novel system-
level formulation of optimal voltage support encoded as an
optimization problem with stress-minimization, i.e., maxi-
mization of the distance to voltage collapse, as objective
and subject to voltage security constraints. Our decision
variables are reactive power injections at a subset of buses
equipped with voltage control equipment. This approach
allows us to satisfy a local voltage constraint requirements
while optimizing a system-level voltage stability margin. By
exploiting linear approximation of the power flow equations,
we convexify our problem which can then be efficiently
solved for the optimal injections.

Compared to other approaches to voltage support prob-
lems, our results do not rely on the assumption of a radial
(i.e., acyclic) power grid topology [6], [7]. This makes
our approach appealing for both power transmission and
distribution networks. Different from the reactive power
compensation literature [17], [6], [18] and from the voltage
support literature [7], we seek to maximize a voltage stability
margin as opposed to related objectives such as minimizing
power losses.

The remainder of this paper is organized as follows: in
Section II, we recall the required preliminaries. In Section
III we present the main contribution of the paper. Firstly,
we review the typical objectives for voltage regulation prob-
lems and formulate our optimization problem. Secondly, we
present and solve the convex reformulation of the problem.
In Section IV we present some test cases. Finally, Section V
offers concluding remarks.

II. PRELIMINARIES

A. Power Network, Generator and Load Models
A power network can be modelled as a connected, undi-

rected and complex-weighted graph G(V, E) where V =

{1, . . . , n} (|V| = n) represents the set of nodes (or buses),
E (|E| = m) is the set of edges (or branches) connecting the
nodes, that is the set of unordered pairs (h, k), h, k 2 V ,
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such that h and k are connected to each other. Under
synchronous steady-state operating conditions, all the electric
quantities are sinusoidal signals at the same frequency. At
every bus h 2 V we have the following phasor quantities:

• nodal voltage: vh = Vh exp(j✓h) 2 C;
• current injection: ih = Ih exp(j h) 2 C;
• power injection: sh = ph + jqh = vhi⇤h 2 C;.

where Vh, ✓h, Ih, h, ph, qh 2 R and (·)⇤ denotes the com-
plex conjugate operator. A standard assumption on high-
voltage networks is that transmission lines are dominantly
inductive, and are therefore approximated as pure suscep-
tances. For recent voltage control studies on lossy networks,
see [6], [7], [18]. It is convenient to introduce the symmetric
susceptance matrix B 2 Rn⇥n which describes the weighted
connections among the nodes of the graph. Its hk-th entry
is defined as

Bhk =

8
><

>:

0, if (h, k) /2 E ;
Bhk > 0, if (h, k) 2 E , h 6= k;

�
P

h 6=k Bhk +Bh,shunt, if h = k;

where �Bhk is the line susceptance and Bh,shunt > 0 (resp.
Bh,shunt < 0) represents the capacitive (resp. inductive)
shunt susceptance to ground. The set of buses V can be
partitioned into the loads set, VL, and the generators set,
VG, i.e., V = VL [ VG, where we assume |VL| = n`

and |VG| = ng . After potentially relabelling the buses,
we partition the susceptance matrix according to loads and
generators as

B =

✓
BLL BLG

BGL BGG

◆
. (1)

We refer to BLL as the grounded susceptance matrix.
Assumption 1 (Properties of BLL):
i) �BLL is a non-singular symmetric M-matrix1;

ii) the graph associated to the BLL matrix (i.e., the graph
induced by the load buses VL) is connected.

Assumption 1 (i) is typically verified in practice [19], and
always satisfied in the absence of line-charging and shunt
capacitors. Assumption 1 (ii) can be made without loss of
generality, since connected components of the induced graph
will be electrically isolated from one another by generator
buses. By collecting all voltages, currents and powers into
vectors v, i, s 2 Cn, Kirchhoff’s and Ohm’s laws lead to

i = jBv , (2)

where j denotes the imaginary unit. From (2) we can write
the Power Flow Equations (PFEs) as

s = [v]i⇤ = [v](jBv)⇤ , (3)

where [·] denotes the diagonalization operator. Expanding
(3), for each h 2 V the real and imaginary parts must satisfy

ph(v) =
Xn

k=1

BhkVhVk sin(✓h � ✓k) , (4a)

1An M-matrix A is a matrix with negative off-diagonal elements and
positive diagonal ones which can be expressed in the form A = sI � B,
with bij  0, s > ⇢(B), where ⇢(B) is the maximum of the moduli of
the eigenvalues of B and I is the identity matrix.

qh(v) = �
Xn

k=1

BhkVhVk cos(✓h � ✓k) . (4b)

The PFEs (4a)–(4b) describe the relations among the buses
through the branches, while the behavior of each bus is
specified by the particular model assumed for generators
and loads. In this paper generators are modelled as standard
PV buses [20], i.e., node h 2 VG is specified by a fixed
voltage magnitude Vh and a fixed active power generation
level Ph. Instead, loads are modelled as PQ buses [21], [22],
namely, for h 2 VL active and reactive power injections Ph

and Qh are assumed fixed. In our setup, this PQ model
refers to not only loads, but also to sources interfaced with
power electronics and voltage support equipment such as
synchronous condensers. While our results extend to ZIP
load models [20], for simplicity of presentation we restrict
ourselves to constant power loads Qh(Vh) = Qh.

B. Decoupled Reactive Power Flow & Critical Load Matrix
Under normal operating conditions, the high-voltage op-

erating point is characterized by small voltages angle differ-
ences [21], which we formalize in the following assumption.

Assumption 2 (Decoupling Assumption): In steady state
operating conditions it holds that

|✓h � ✓k| = 0 8h, k : (h, k) 2 E .
Under Assumption 2 the Reactive Power Flow Equations

(RPFEs) (4b) simplifies in vector notation to

q(V ) = �[V ]BV . (5)

We now take into account the models and the partition
introduced in Sections II-A and, accordingly we partition the
vectors of voltage magnitudes and reactive power injections
as

V =


VL

VG

�
, Q =


QL

QG

�
.

Combining the power flow (5), the loads model and the
partitioning (1), the power balance Qh = qh(V ) at each
load h 2 VL can be written in vector notation as

QL = �[VL] (BLLVL +BLGVG) , (6)

or even more simply

QL = �[VL]BLL(VL � V ⇤
L ) . (7)

Here, V ⇤
L is the high-voltage open-circuit solution of (6)

without loading: QL = 0n` . We refer to it as the open-circuit
profile. Since V ⇤

L corresponds to the voltage profile for zero
loading, it could be referred to as the zero-load profile as
well. Under Assumption 1, the open-circuit profile V ⇤

L

V ⇤
L := �B�1

LLBLGVG (8)

is always well defined. Once (7) is solved for an operating
point VL, the reactive power injections at generators buses
VG are uniquely determined by substituting the operating
point into the final m equations in (5). It is useful to
recall the definition of the critical load matrix from [16]
which quantifies the stiffness of the transmission network
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by combining the network structure, generator voltages, and
generator locations into one matrix.

Definition 3 (Critical Load Matrix): Given the grounded
susceptance matrix BLL and the open-circuit profile V ⇤

L as
defined in (8), the critical load matrix Q

crit

is defined as

Q
crit

:=

1

4

[V ⇤
L ]BLL[V

⇤
L ]. (9)

C. Normalized Coordinate System

It is convenient to represent (7) using a normalized set of
variables. Using the open-circuit voltages V ⇤

L defined in (8),
we denote the vector of percentage voltage deviations as

v := [V ⇤
L ]

�1VL . (10)

Note that if the open-circuit profile is flat (V ⇤
L = ↵1 for some

↵ > 0), then v is simply the standard per unit voltage. In
general, however, due to inhomogeneous generators voltage
set points and the presence of shunt compensation, V ⇤

L is not
flat and the scalings in (10) are non-uniform.
From Definition 3, it is possible to rewrite the RPFEs (7) in
the normalized coordinates (10) as

QL = [v]Q
crit

(v � ). (11)

III. PROBLEM FORMULATION

In this section we present our novel problem formulation
which we refer to as the Stress Minimization Problem.

A. Security Constraints

A common operational requirement is that the load bus
voltage magnitudes must lie within a predefined percentage
deviation from a reference voltage. This tight clustering of
voltages is due to the following reasons:

i) The loads are designed to operate with a voltage in a
narrow region around the network base voltage;

ii) A flat voltage profile minimizes the reactive flows and,
consequently, minimizes the total power losses;

iii) A flat voltage profile near the nominal voltage min-
imizes the operational wear on system components,
which are designed to work at the nominal voltage level;

iv) Intuitively, a flat voltage profile indicates that the net-
work is safe from voltage collapse. We will in fact
show that this heuristic does not generally ensure a good
margin against static voltage instability.

We formalize this requirement by defining the secure set.

Definition 4 (Secure set): Given a reference voltage VN 2
R>0

and a percentage deviation ↵ > 0, the secure set V is
defined as

V :=

⇢
VL 2 Rn` |

kVL � VN k1
VN

 ↵

�
,

or, equivalently

V :=

⇢
v 2 Rn` |

k[V ⇤
L ]v � VN k1

VN
 ↵

�
. (12)

The common local “security” requirement is that the
vector of percentage voltage deviations defined in (10) lies
within the secure set, i.e.,

v 2 V . (13)

While this represents a baseline operational requirement,
under some circumstances it may not be sufficient to ensure
safe grid operation. We present a simple example in which
voltages remain within operational bounds, but the operating
point is extremely sensitive to changes in load demands.

Example 5 (Security requirement inadequacy): Consider
the simple two-buses case study consisting of a PV bus
source connected to a PQ load and a collocated shunt
capacitor, as illustrated in Figure 1a. Figures 1b–1c show
the QV nose curve plot where:

• the blue curves represent the voltage solutions (high and
low) of the RPFEs (7) corresponding to different load
conditions;

• the black horizontal dashed lines identify the secure
set V;

• the orange vertical dashed lines identify the feasible
loading limits induced by the secure set;

• the magenta dash-dotted line identifies the tangent line
to the blue curve in the middle point of the orange lines,
i.e., the sensitivity of the voltage w.r.t. load changes.

From Figure 1b, note that if the normalized load demand
QL/Qcrit

is too large, the operating point does not lie within
V. A standard policy is then to support the voltage level by
adjusting the shunt compensation, i.e., by increasing B

shunt

.
We consider two different scenarios: Figure 1b shows the
QV curve in the absence of shunt compensation (B

shunt

=

0), while Figure 1c shows the QV curve with B
shunt

=

2.4 S. Figure 1b shows that the security requirement (13),
guarantees a “safe” distance to collapse, represented by the
nose of the blue curve. Moreover, the slope of the QV curve
at the operating point (i.e., the sensitivity of the voltage
to changes in load) is small, meaning that relatively big
changes in the load condition do not translate into big voltage
changes. Conversely, in Figure 1c the security requirement is
“dangerously” close to the nose of the curve. Moreover, the
requirement alone does not discriminate the operating points
within V: indeed, it does not consider their proximity to the
collapse point while, there are points (the left-most) which
are preferable. Finally, the sensitivity line is steeper meaning
that small changes in the load cause relatively big changes
in the voltage, which is an undesirable property.

The previous analysis highlights that voltage constraint
requirements alone can be insufficient. Note that the most
preferable operating point within V is the left-most voltage
solution, identified by the intersection of the left orange line
and the top black one. This is the feasible point farthest
from voltage collapse. Moreover, the left-most point on the
blue curve represents the open-circuit V ⇤

L solution. Then,
a simple intuition is that by minimizing the distance of the
operating point from the open-circuit solution — constrained
to the fact that the operating point must belong to V — we
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(b) Absence of shunt.
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(c) Presence of shunt.

Fig. 1: Two-buses case: panel (a) plots the network scheme where VN = 1 [p.u.], B = 4 S. Panels (b)–(c) plot the QV nose curve
for two different configurations: (a) Absence of shunt capacitor, Bshunt = 0. (b) Presence of shunt capacitor, Bshunt = 2.4 S. The blue
curves represent the high and low voltage solutions of the RPFEs. The black dashed horizontal lines identify the secure set. The orange
dashed vertical lines are the allowed load which ensure the operating point to lie within the secure set. Finally, the magenta dash-dotted
diagonal line represents the tangent line on the blue curve corresponding to the middle point of the orange lines.

will maximize the voltage collapse stability margin of the
network.

B. Network Stress Measure and Stress Minimization Problem

Based on the insights given by Example 5, we define the
following measure for the network stress induced by the load.

Definition 6 (Network Stress Measure): Consider a
power network G(V, E), described by the RPFEs (11), and
let the open-circuit profile V ⇤

L be as in (8). Then, we define
the network stress measure induced by the load as

J
stress

(v) := kv � 1k1 . (14)

where v = [V ⇤
L ]

�1VL is defined as in equation (10).

Definition 6 is based on the intuition that the open-circuit
profile V ⇤

L represents the natural operating point in the
absence of loading, i.e., the network is under “no stress”.
In this sense, the stress function (14) quantifies the loading
on the network conveniently expressed in the percentage
deviation variable v.

In the following, we assume that a certain number of load
buses can be equipped with additional controlled devices,
e.g., synchronous condensers [5] or photovoltaic panels
connected to the grid through power inverters. We assume
these devices can provide a controllable amount of reactive
power support, and in the following we model them as
controllable sources of reactive power q, subject to upper
and lower operational bounds. Specifically, the RPFEs (11)
are modified as

QL + q = [v]Q
crit

(v � ) , (15)

where q 2 Rn` is such that q
min

 q  q
max

, being
q
min

, q
max

the vectors of minimum and maximum prescribed
reactive injections, respectively. The standing assumption is
that, if a load bus h 2 VL is not equipped with an additional

device, the corresponding entry qh is fixed and equal to zero,
i.e., q

min,h = q
max,h = 0.

We now formulate our optimization problem of interest,
which we refer to as the Stress Minimization problem.

Problem 7 (Stress Minimization): Consider a power net-
work G(V, E) governed by the RPFEs (15). Let J

stress

(v) be
defined as in (14). Then the goal is

minimize

q2Rn`
J
stress

(v), (16)

s.t.

(
v 2 V,
q
min

 q  q
max

.

The main idea behind Problem 7 is that minimizing J
stress

keeps the operating point of the network as far as possible
from the tip of the nose curve, and thus far from voltage
collapse. Voltage security requirements are incorporated into
the problem as hard constraints.

Problem 7 is highly non-linear and non-convex, due to the
quadratic behavior of (15). In the following, we convexify
this problem through the use of a power flow linearization.

C. Linear Approximation and Convexification

We now introduce a suitable linearization for Problem 7
which had been first presented in [23]. Assuming kQLk ⇠ 0,
we expect the normalized normal profile (10) to be v '
(i.e., VL ' V ⇤

L ), which would be the exact high voltage
solution corresponding to QL = 0. It follows by simple
linearization that, to first order, the solution of the RPFEs
(15) is given by

bv = � 1

4

Q�1

crit

(QL + q) . (17)

More precisely: the first order solution of the RPFEs is
composed by the uniform profile plus a deviation which
is a linear function of the network load profile. Using the
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Fig. 2: Voltage profiles before and after the optimization.

linearization (17), the stress cost (14) can be approximated
by

J
stress

(v) = kv � k1 /
��Q�1

crit

(QL + q)
��
1 . (18)

Note that the approximated cost function is convex in the
reactive power injections q. Exploiting the same lineariza-
tion, the secure set V is accordingly modified as

bV :=

(
bv 2 Rn` | k[V

⇤
L ]bv � VN k1

VN
 ↵

)
.

Plugging the expression of bv in (17) into the requirements
in the definition of bV, we translate these voltage bounds into
explicit bounds on our decision variables, the controlled reac-
tive power injections q. After some algebraic manipulations,
one finds that bv 2 bV if and only if

VN (1� ↵)[V ⇤
L ]

�1  � 1

4

Q�1

crit

(QL + q)

 VN (1 + ↵)[V ⇤
L ]

�1 .

These inequalities can be further rearranged to obtain

⇠
low

 �Q�1

crit

q  ⇠
up

,

where

⇠
low

:= 4

�
VN (1� ↵) [V ⇤

L ]
�1 �

�
+Q�1

crit

QL , (19a)

⇠
up

:= 4

�
VN (1 + ↵) [V ⇤

L ]
�1 �

�
+Q�1

crit

QL . (19b)

We are now ready to present the convexified version of
Problem 7.

Problem 8 (Convex Stress Minimization): Consider a
power network G(V, E), governed by the RPFEs (15). Let
VN , ↵, Q

crit

, V ⇤
L , q

min

and q
max

be as in the previous
problem. Finally, define ⇠

low

and ⇠
up

as in (19a)–(19b),
respectively. Then we seek to

minimize

q2Rn`

��Q�1

crit

(QL + q)
��
1 , (20)

s.t.

(
⇠
low

 �Q�1

crit

q  ⇠
up

,

q
min

 q  q
max

.

Before After (3 units) After (7 units) After (9 units)

0.559 0.410 0.238 0.263

TABLE I: Values of kQ�1
crit(QL + q)k1 before and after the

optimization.

Remark 9 (On the stress measure): The stress measure
(18) is inspired by recent results [16] on the solvability of
the decoupled reactive power flow equations (7). In [16] it
has been shown that if

kQ�1

crit

QLk1 < 1 ,

then (7) has a unique high-voltage solution safe from voltage
collapse; for kQ�1

crit

QLk1 � 1 voltage collapse may occur.
From (18), we therefore see that J

stress

(v) quantifies the
stress experienced by the network. ⇤

Observe that in Problem 8 both the cost function and the
constraints are now convex in the optimization variables.
Indeed, the security constraints are linear in q and identify a
polytope. Thanks to the linearization introduced in Section
III-C, Problem 8 can be efficiently solved by means of
convex optimization techniques.

IV. SIMULATIONS

We now present a case study to show the effectiveness
of the optimization procedure proposed. All the simulations
have been done in MATLAB using MATPOWER [24] and
CVX [25] for the power flow computations and the convex
optimization, respectively. The test-bed consists of:

• IEEE 30 bus transmission grid;
• a reference voltage VN = 1 [p.u.];
• a secure threshold ↵ = 5%;
• capacity constraints q

min

= � 0.5 ⇥ kQLk1 and
q
max

= 0.5⇥ kQLk1.
In all simulations we plot the actual profile VL normalized
with respect to the network base voltage, consistent with the
MATPOWER convention, instead of the normalized profile v.

Figure 2 shows the performance before and after the
optimization for different number of controlled loads. In
particular, a set of 3, 7 and 9 loads out of 24, whose
position have been randomly chosen, have been equipped
with voltage control equipment which can inject reactive
power. The addition of more controllable devices tends to
improve the load profile and lower the objective minimum.
However, since the positions of the controllable devices are
not optimized, more controllable devices does not necessarily
lead to a lower objective value. This can be seen either from
Figure 2 or directly inspecting the value of the cost function
after the optimization procedure, reported in Table I together
with its initial value. Indeed, the 9 randomly selected units
underperform the 7 randomly selected units; the placement
of controllable units is important. To avoid this behavior, a
suitable, e.g., greedy, approach for resource allocation could
be added in order to improve the algorithm. Moreover, it
is worth noting from Figure 2 how stress minimization and
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classical voltage compensation do not coincide. Indeed, the
open-circuit profile V ⇤

L , in general, does not even belong to
the feasible set.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented a novel optimization formulation for
the voltage support via reactive power compensation whose
cost function encodes the stress experienced by the grid,
while the standard local security requirements are imposed
as constraints. By exploiting a linearization of reactive power
flow, the objective function becomes linear and convex in the
optimization variables and the optimization problem can be
effectively solved.

As future research direction, we will investigate how to
equip the algorithm with a suitable placement procedure in
order to let the operator choose a desired trade-off between
performance and optimal resource allocation solution. We
will further investigate the effectiveness of the presented
approach with respect to different optimization variables,
like the shunts capacitors or series compensation techniques.
Moreover, we would like to investigate how the stress min-
imization objective could be implemented using a real-time
feedback control algorithm, rather than a priori allocation
and planning. Finally, we are working on extending our
approach to coupled active/reactive power flows including
conductances.
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