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Abstract— We consider the problem of designing a state
estimation architecture for the power distribution grid, capable
of filtering raw measurements from low-end phasor measure-
ment units (PMUs) and presenting the state estimate to the
control and monitoring applications that need it. Specifically,
two algorithms to solve the estimation problem, which perfectly
fit with the designed architecture, are proposed. Then, the
contribution of this paper is threefold: i) the proposed approach
is leaderless, scalable, and consists in the distributed solution of
a least square problem which takes into explicit consideration
the inexact time synchronization of inexpensive PMUs. ii) The
first algorithm is a provably convergent scalable specialization
of the alternating directions method of multipliers (ADMM). iii)
The second algorithm is an extremely lightweight Jacobi-like
algorithm which can be powerfully exploited in setup where the
computational burden represent a major issue. Both algorithms
can be implemented locally, even in a peer-to-peer fashion. The
proposed approach is validated via simulations on the IEEE
123 test feeder, considering the IEEE standard C37.118-2005
for PMUs.

I. INTRODUCTION

The electric grid is currently undergoing a deep renovation
process towards the so-called smart grid. One of the major
aspects of this modernization is the widespread deployment
of measurement, monitoring, and actuation devices.

In this paper, we consider one specific thrust, which is
the deployment of phasor measurement units (PMUs) in
the medium and low voltage power distribution grid. The
presence of PMUs is quite uncommon in today’s power
distribution networks. However, this scenario has become
the subject of recent research efforts in the power systems
community [1], [2], including a 3-year research project
involving University of California together with the Power
Standards Lab and Lawrence Berkeley National Lab [3].

The cost of PMUs depends on their sensing accuracy. In
particular, time synchronization between them is a major
technological issue, generally tackled via expensive GPS
modules. So noisy and low-end device will necessarily be
preferred in order to keep the cost of large scale deployment
acceptable.

In this paper we propose a leaderless and distributed state
estimation architecture, in which PMUs communicate with
their neighbor peers in order to improve the quality of their
estimates. In particular, we show how a proper distributed
state estimation scheme can possibly enable the use of PMUs
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that are not even provided with a GPS module, and that are
synchronized over general purpose communication networks.

The paper is organized as follows. In the remainder of
this section, we review the main related technical literature.
In Section II we introduce a model for the power grid and
for the measurements obtained from the PMUs. Based on
this model, we define the problem to solve as least squares
problem in Section III. In Section IV we illustrate a suit-
able problem decomposition and we propose two different
distributed and scalable solutions. The first based on the
well known Alternate Direction Multiplier Method (ADMM)
while the second based on the Jacobi iterative algorithm to
solve liner systems. In Section V we validate our solutions
via simulations. Finally, Section VI concludes the paper.

A. Related work

Several solutions alternative to the centralized computation
of the state of a electric grid have been proposed in the
literature. The most common approach is based on a two
level architecture requiring a global coordinator [4], [5]. In
this multi-area approach the grid is split into macro-areas,
each of them equipped with a data processor. After a first
local estimation step the global coordinator combines all
these estimates making them compatible to the boundary bus
measurements.

Leaderless solutions include approximate algorithms de-
veloped from the optimality conditions involved [6], [7].
Beyond requiring local observability, these algorithm are
not always guaranteed to converge. Also the distributed
algorithms proposed in [8] adopts the multi-area approach.
The proposed algorithm is shown to be provably convergent
in finite time to the optimal solution of a classical weighted
least squares problem. However each area is envisioned to
maintain a copy of the entire high-dimensional state vector.

To address the conventional least-squares power system
state estimation problem, the authors in [9] propose a novel
algorithm which is a local version of the classical ADMM.
Even though the ADMM-based algorithm introduced in [9]
exhibits good performance in simulations, a complete proof
of its convergence is not provided. We stress the fact that
one of the two approaches that we propose in this paper
is an extension of the local ADMM algorithm of [9] to
the minimization of quadratic functions. These quadratic
functions are obtained by casting the state estimation prob-
lem as a classical least-squares problem and by adopting
a specific linearized model which also allows to deal with
the synchronization errors in the measurements provided by
the PMUs. The ADMM algorithm we propose in this paper
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reduces to linear iterations and it is shown to be provably
convergent. Due to space limitations, we do not report here
the proof of its convergence and we refer the interested reader
to the document [10], where we provide all the technical
details.

II. POWER DISTRIBUTION GRID MODEL

In this section, we introduce some useful notation and
we provide a description and a mathematical model for the
power distribution grid and for the PMUs.

A. Power grid model

We model a power distribution grid as a directed graph
G = (V, E), in which edges represent the power lines, and
the n nodes (n = |V|) represent buses and also the point
of common coupling (PCC), i.e., the point of connection of
the power distribution grid to the trasmission grid. The grid
topology in represented via the incidence matrix A, defined
component-wise for ` ∈ E and v ∈ V as [A]`v = −1 if `
starts from node v, [A]`v = 1 if ` ends in node v, [A]`v = 0
otherwise.

We consider a balanced three-phase grid where every
steady state current and voltage can be represented as a
complex number y = Y ejθy of magnitude Y and phase
θy (measured with respect to an arbitrary common time
reference). The steady state of the network is described by
• u ∈ Cn, where uv = Uve

jθuv is the voltage at bus v;
• i ∈ Cn, where iv = Ive

jθiv is the current injected at v.
Let Z = diag(z`, ` ∈ E) be the diagonal matrix of

line impedances and L = ATZ−1A be the complex-valued
weighted Laplacian matrix. From Kirchhoff’s laws we have

i = Lu. (1)

Later on, we refer to the power grid state as the vector u
which describe the system working point uniquely.

B. PMU model

Every bus of the power distribution grid is provided with a
PMU, which measures the bus voltage uv and the current iv .
Conversely to other measurements setups presented in liter-
ature, in the setup presented here only nodal measurements
are available, while power lines are unmonitored.

We assume that the different PMUs sense the grid at
synchronous, evenly distributed, times t ∈ {kT, k ∈ N},
where T > 0 is a predetermined sample time, as dictated
also by the IEEE standard C37.118-2005 [11].

At every measurement time t, the PMUs at every bus v
obtain the following noisy data

U (m)
v = Uv + eUv ; eUv ∼ N (0, σ2

U )

θ(m)
uv

= θuv
+ eθuv

+ esync,v; eθuv
∼ N (0, σ2

θ)

I(m)
v = Iv + eIv ; eIv ∼ N (0, σ2

I )

θ
(m)
iv

= θiv + eθiv + esync,v; eθiv ∼ N (0, σ2
θ)

esync,v ∼ N (0, σ2
sync)

(2)

where we adopt a Gaussian distribution for all these error
terms. The different measurement error terms are caused by

independent physical causes and can therefore be assumed
uncorrelated:
• The terms eUv and eIv are caused by quantization of

the acquisition devices and by harmonic distortion.
• The phase error terms eθuv

and eθiv depend on the
sampling time of the acquisition devices and on the
algorithm employed for the estimation of the voltage-
current phase difference, traditionally denoted by φ.

• The synchronization error esync,v represents the phase
error due to inexact time synchronization between dif-
ferent PMUs, and is the same for both the voltage and
the current measurements at the same PMU.

We assume that PMUs are homogeneous (even if the
proposed formulation could easily account for heterogeneity
of the measurement devices) and thus their errors exhibit the
same probability distribution. A discussion about the vari-
ance of these error terms is postponed to Section V, where
typical values given by industrial standards, are reported.

Let us stack all the measurement errors in the vectors
eU , eθu , eI , eθi , esync, and let

e =


eU

eθu + esync
eI

eθi + esync


be the cumulative vector of all noise terms. Then the corre-
lation matrix Re = E[eeT ] for the noise is

Re =


σ2
UIn

(σ2
θ + σ2

sync)In σ2
syncIn

σ2
IIn

σ2
syncIn (σ2

θ + σ2
sync)In

 .
where In denotes the n-dimensional identity matrix.

It is worth remarking that the variance σ2
sync of the synchro-

nization error is typically larger than the variance of the angle
measurement error σ2

θ . Therefore, the correlation matrix Re
is not diagonal (i.e., the different cumulative error terms are
not independent). Proper modeling of this fact (as we did
here) is the crucial point that allows to tackle the problem
of poorly synchronized PMUs in an effective way.

III. WEIGHTED LEAST SQUARE STATE ESTIMATION

We pose the power state estimation problem as a weighted
least square problem [4]. We therefore consider the optimiza-
tion problem(

Û , θ̂u

)
= arg min

U,θu
J(U, θu) = arg min

U,θu
zTR−1e z (3)

with z defined as

z =


U (m) − U
θ
(m)
u − θu

I(m) − I(U, θu)

θ
(m)
i − θi(U, θu)

 . (4)

The functions I(U, θu) and θi(U, θu) in (4) derive from
the grid model presented in Section II-A and are nonlinear
functions of the decision variables U and θu. Therefore the

2580



optimization problem (3) is in general non-convex, and can
be difficult to tackle via standard iterative algorithms.

As proposed in other state estimation approaches based
on PMUs, we introduce a rectangular representation of the
state, so that we will be able to introduce a convenient
linearized measurement model and, ultimately, a convenient
closed form solution to (3). Let us define the complex
valued measurements u(m)

v = U
(m)
v exp

(
jθ

(m)
uv

)
and i(m)

v =

I
(m)
v exp

(
jθ

(m)
iv

)
. The measurement model can be rewritten

as a linear measurement model in the form

m = H x + η (5)

in which1m = [<(u(m)) =(u(m)) <(i(m)) =(i(m))]T ,
x = [<(u) =(u)]T and η = [<(eu) =(eu) <(ei) =(ei)]

T .
The vectors eu and ei are defined element-wise as

euv = u(m)
v − uv, eiv = i(m)

v − iv,

and

H =


In 0
0 In
<(L) −=(L)
=(L) <(L)

 . (6)

Defining Rη(x) = E[ηηT ], problem (3) is equivalent to

min
x

(m−Hx)T [Rη(x)]−1(m−Hx) (7)

The nonlinearity of the original model is now entirely con-
tained in the error covariance matrix Rη(x), which depends
on x and makes the problem (7) hard to solve in general.
This matrix is not diagonal, because both magnitude and
phase errors will be reprojected into both real and imaginary
components in the error vector η of the linear model (5).

A suitable approximation for Rη (that maintains the cor-
rect modeling of the time synchronization errors between
PMUs) can be easily obtain but due to lack of space we do
not report it here.Eventually, the matrix Rη takes the form

Rη ≈


Σ<(u) Σ<(u)=(u) Σ<(u)<(i) Σ<(u)=(i)

Σ=(u)<(u) Σ=(u) Σ=(u)<(i) Σ=(u)=(i)
Σ<(i)<(u) Σ<(i)=(u) Σ<(i) Σ<(i)=(i)
Σ=(i)<(u) Σ=(i)=(u) Σ=(i)<(i) Σ=(i)


(8)

where the sub-block matrices are all diagonal whose v-th
diagonal elements depend on the measurements. We refer the
interested reader to [12] where all the explicit expressions of
these matrices can be found.

Notice that the value of these elements in the proposed ap-
proximation depends on the value of the measurements, and
does not depend on the state x. Therefore, an approximation
of the optimal solution x∗ of problem (7) can be written in
closed form as

x∗ =
(
HTR−1η H

)−1
HTR−1η m. (9)

1The notations <(·) and =(·) represent the real and imaginary part of a
vector, respectively.

IV. PROBLEM DECOMPOSITION AND DISTRIBUTED
OPTIMIZATION ALGORITHMS

Before describing the two algorithm proposed, we recall
here the multi-area decomposition approach presented in [7]
and also advocated in the IEEE standard C37.118-2005 [11].
Moreover, in order to reduce the complexity of the notation
to a minimum, we review in general form, a common setup
in distributed optimization.

To compute the solution x∗ directly as in (9), one needs to
know the entire measurements vector and the matrices H and
Rη . To reduce the computational complexity it is possible to
introduce a convenient multi-area decomposition. We assume
that the grid is partitioned into non-overlapping sub-areas
each of them provided with a local data processor with
computational and communication capabilities. In particular,
it is assumed each processor having only knowledge of the
local grid topology and of the measurements which pertain
to the monitored area.

According to this decomposition, assume the set of buses
V be partitioned into s sub-areas A1, . . . ,As, where |Ai| =
ni with

∑s
i=1 ni = n. Moreover ∀i ∈ {1, . . . , s} let xAi

be the portion of the state, i.e. the relevant information,
belonging to area i and denote with Ni the set of areas which
are linked to area i, that is its neighbors set. Then we recall
that Problem (7) is equivalent to the problem

min
xA1

,...,xAs

s∑
i=1

Ji

(
xAi

,
{
xAj

}
j∈Ni

)
(10)

Because of the specific least square estimation problem
at hand, the functions Ji has a specific quadratic form, and
therefore we further restrict to the case where

Ji(xi, {xj}j∈Ni) = (11)qi −Aiixi −∑
j∈Ni

Aijxj

T

Qi

qi −Aiixi −∑
j∈Ni

Aijxj


To solve (10), and so to ultimately solve our state estima-

tion problem, we now propose two iterative algorithms.

A. ADMM-based algorithm

The method we propose in this subsection is a partition-
based version of the classical ADMM method which exploits
the equivalence between problem in (10) and the following
problem

min
x

s∑
i=1

Ji(x
(i)
i , {x(i)j }j∈Ni)

subject to x
(i)
i = z

(i,j)
i ; x

(i)
j = z

(i,j)
j

x
(i)
i = z

(j,i)
i ; x

(i)
j = z

(j,i)
j , ∀ j ∈ Ni,

(12)

where with the notation x
(i)
j we denote a copy of state xj

stored in memory by node i, and where the z’s are auxiliary
variables that are introduced by the ADMM algorithm.
Observe that the connectedness of the graph G and the
presence of the bridge variables z′s ensures that the optimal
solution of (12) is given by x(i)i = x∗i and x(i)j = x∗j .
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The redundant constraints added in problem (12) with
respect to problem (10), allow to find the optimal solution
through a distributed, iterative, partition-based implementa-
tion which optimizes the standard augmented Lagrangian
defined, for ρ > 0, as

L =

s∑
i=1

Ji(x(i)i , {x(i)j }j∈Ni
) +
∑
j∈Ni

[
λ
(i,j)
i

(
x
(i)
i − z

(i,j)
i

)
+λ

(i,j)
j

(
x
(i)
j − z

(i,j)
j

)]
+
∑
j∈Ni

[
µ
(i,j)
i

(
x
(i)
i − z

(j,i)
i

)
+µ

(i,j)
j

(
x
(i)
j − z

(j,i)
j

)]
+
ρ

2

∑
j∈Ni

[
‖x(i)i − z

(i,j)
i ‖2

+‖x(i)j − z
(i,j)
j ‖2 + ‖x(i)i − z

(j,i)
i ‖2 + ‖x(i)j − z

(j,i)
j ‖2

]}
At each iteration of the algorithm, node i, i ∈ {1, . . . , s},
alternates dual ascent step on the Lagrange multipliers
λ
(i,j)
i , {λ(i,j)j }j∈Ni

and µ(i,j)
i , {µ(i,j)

j }j∈Ni
, with minimiza-

tion steps on the variables x
(i)
i , {x(i)j }j∈Ni

and z
(i,j)
i ,

{z(i,j)j }j∈Ni .
However, for the case where the functions J ′is have

the particular quadratic structure illustrated in (11), these
optimization steps can be greatly simplified. Indeed in this
case the partition-based ADMM algorithm reduces to a linear
algorithm requiring, during each iteration of its implemen-
tation, only one communication round involving the x

(i)
i ,

{x(i)j }j∈Ni
, i ∈ {1, . . . , s}, variables. To show that, let us it

is convenient to introduce the following compact notation.
Consider node i and, without loss of generality, assume
Ni =

{
j1, . . . , j|Ni|

}
. Then let

X(i) =

 x
(i)
i{

x
(i)
j

}
j∈Ni

 ,
Ai =

[
Aii Aij1 . . . Aij|Ni|

]
,

Mi = diag
{
|Ni| Imi

, Imj1
, . . . , Imj|Ni|

}
.

Additionally we introduce the following auxiliary variables,

G(i) =


G

(i)
i

G
(i)
j1
...

G
(i)
j|Ni|

 , F (i) =


F

(i)
i

F
(i)
j1
...

F
(i)
j|Ni|

 , B(i) =


B

(i)
i

B
(i)
j1
...

B
(i)
j|Ni|


where G

(i)
i , F

(i)
i , B

(i)
i ∈ Rmi and G

(i)
jh
, F

(i)
jh
, B

(i)
jh

∈
Rmjh . It turns out that Ai ∈ Rri×γi , Mi ∈ Rγi×γi and
G(i), F (i), B(i) ∈ Rγi , where γi = mi +

∑|Ni|
h=1mjh .

The partition-based ADMM algorithm for quadratic func-
tions is formally described as follows. The standing assump-
tion is that all the matrices ATi QiAi + Mi, i ∈ {1, . . . , n}
are invertible.
Processor states: For i ∈ {1, . . . , s}, node i stores a copy

of the variables X(i), G(i), F (i), B(i).

Initialization: Every node initializes the variables it stores
in memory to 0.

Transmission iteration: For t ∈ N, at the start of the t-th
iteration of the algorithm, node i transmits to node j,
j ∈ Ni, its estimates x(i)i (t), x(i)j (t). It also gathers the
t-th estimates of its neighbors, x(j)j (t), x(j)i (t), j ∈ Ni.

Update iteration: For t ∈ N, node i, i ∈ {1, . . . , s}, based
on the information received from its neighbors, perform
the following computations in order:

G
(i)
i (t) =

ρ

2

∑
j∈Ni

(
x
(i)
i (t)− x(j)i (t)

)
G

(i)
jh

(t) =
ρ

2

(
x
(i)
jh
− x(jh)jh

)
, 1 ≤ h ≤ |Ni|

F (i)(t+ 1) = F (i)(t) +G(i)(t)

B(i)(t+ 1) = 2ρMiX
(i)(t)−G(i)(t+ 1)− 2F (i)(t+ 1)

Finally, it updates X(i) as follows

X(i)(t+ 1) =[
ATi QiAi +Mi

]−1 [
ATi Qizi +

1

2
B(i)(t+ 1)

]
Proposition IV.1 characterizes the performance of the

algorithm.

Proposition IV.1. Consider the partition-based ADMM al-
gorithm described above. Let ρ be any real number. Assume
that the matrices ATi QiAi + Mi, i ∈ {1, . . . , s}, are
invertible. Then the trajectory t→

{
X(i)(t)

}
converge expo-

nentially to the optimal solution, namely, for i ∈ {1, . . . , n},
x
(i)
j (t)→ x∗j for all j ∈ Ni and, in particular,

x
(i)
i (t)→ x∗i .

Proof. The proof is omitted and is available in [10].

Remark. We point out that it is be possible to provide, as
done in [9], a simplified a version of the partition-based
ADMM algorithm, where two monitors communicate with
each other only the information related to those nodes which
are on the boundary of their sub-areas of interest. Then the
vectors X(i), G(i), F (i), B(i) and the matrices Mi, Ai result
to be smaller in size.

For the sake of the notation simplicity we have preferred
not to provide the details of this implementation aspect.

B. Jacobi-like algorithm

The method we propose in this subsection, hereafter
denoted as Jacobi-like algorithm, is inspired by the Jabobi
technique used to iteratively solve systems of linear equations
[13]. The algorithm is formally described as follows. The
standing assumption is that the matrices ATiiQiAii, i ∈
{1, . . . , s} are all invertible.
Processor states: For i ∈ {1, . . . , s}, node i stores an

estimate xi(0) ∈ Rmi of its own state.
Initialization: Every node initializes its estimate to an arbi-

trary value.
Transmission iteration: For t ∈ N, at the start of the

t-th iteration of the algorithm, node i transmits its
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estimate xi(t) to all its neighbors. It also gathers the
t-th estimates of its neighbors, xj(t), j ∈ Ni.

Update iteration: For t ∈ N, node i, i ∈ {1, . . . , s} updates
its estimate as follows

xi(t+ 1) = argmin
xi

Ji

(
xi; {xj(t)}j∈Ni

)
=
(
ATiiQiAii

)−1
ATiiQi

zi − ∑
j∈Ni

Aijxj(t)


To establish the convergence properties of the Jacobi-like

algorithm it is convenient to introduce the following block
matrix K = [Kij ], i, j = 1, . . . , s, where Kij ∈ Rmi×mj is
defined as

Kij =

 ATiiQiAii if j = i
ATiiQiAij if j ∈ Ni, j 6= i

0 if j /∈ Ni
In the following Proposition, by diag {K} we denote the
block diagonal matrix having in the diagonal the blocks
K11, . . . ,Kss. We have the following result.

Proposition IV.2. Assume the spectral radius of the matrix
(diag {K})−1 (K − diag {K}) is strictly less than one, i.e.,
all its eigenvalues are strictly inside the unitary circle. Then,
there exists x̄ ∈ RN , such that the trajectory t→ x(t) gen-
erated by the Jacobi-like algorithm converges exponentially
to x̄. Let be z̄ =

[
(AT11Q1z1)T , . . . , (ATssQszs)

T
]T

. If the
matrix K is invertible then

x̄ = K−1z̄

Proof. Observe that the updating step can be written as

x(t+ 1) = (diag {K})−1 (z̄ − (K − diag {K})x(t)) (13)

where (13) represents the standard iteration of the Jacobi
method. The result established in the Proposition follows
from the classical results on the Jacobi method [13].

Remark. In general the state x̄ is different from the optimal
state x∗.However, it can be seen via numerical simulation,
as shown in Section V that, when applied to Problem (10),
the Jacobi-like algorithm converges to an estimate x̄ which
is very close to x∗.

Remark. It is worth stressing that the computation of the
update iteration of the Jacobi-like algorithm is simpler, and,
in turn, less time-consuming, than the update iteration of the
partition-based ADMM algorithm.

V. SIMULATION RESULTS

In this section we validate and compare the two proposed
algorithms via simulations on standard medium voltage IEEE
testbeds [14]. Specifically, we provide a comparison between
the performance of the ADMM-based algorithm presented in
Section IV-A and the Jacobi-like algorithm presented in IV-B
on the IEEE 123 test feeder [14].

To show the effectiveness of the proposed algorithms, for
both of them we consider only a peer-to-peer architecture, in
which all PMUs independently process their available data.
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Fig. 1. Residual error at the steady state of the Admm algorithm (red) and
of the Jacobi-like algorithm (blue), in the case of a peer-to-peer architecture,
compared to the raw measurements.

We considered the following standard deviations for the
measurement errors:

voltage amplitude: σU = 10−3UN [Volt]

current amplitude: σI = 10−3Imax [A]

angle: σθ = 10−3 [rad]

sync: σsync = 3 · 10−3 [rad]

where UN is the nominal voltage of the grid and where Imax
is the largest current magnitude in the network.These param-
eters are in accordance with the maximum measurement er-
rors allowed by the IEEE standard C37.118-2005 [11], which
specifies only an aggregate constraint on the measurement
errors, without differentiating between magnitude and phase
constraints:

|u(m)
v − uv|
|uv|

≤ 1%,
|i(m)
v − iv|
|iv|

≤ 1%.

In the upper panel of Figure 1, we plotted, for each node
v of the distribution test feeder, a comparison between the
magnitude errors Ûv − Uv and U

(m)
v − Uv , while, in the

lower panel, we plotted a comparison between the phase
errors θ̂uv

− θuv
and θ

(m)
uv − θuv

, where by Ûv and θ̂uv

we denote the steady state estimates computed by estimation
algorithms. We want to stress the fact that the state estimates
obtained via the ADMM-based algorithm (red dots) do not
depend on the adopted decomposition of the grid, as the
steady state is provably the unique optimal estimate. Notice,
on the other hand that the Jacobi-like algorithm does not
converge to the true optimal estimate, as a small steady
state error is noticeable (blue dots). It is however stable,
as predicted by Proposition IV.2, whose assumptions are all
verified in this scenario. In both cases, the measurement
errors are drastically reduced by the algorithms proposed,
which provide a consistent and accurate estimate of the node
voltages.
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Fig. 2. Comparison of the norm of the magnitude estimation error for
different values of the standard deviation σsync. Both algorithms have been
reported, together with the raw measurements and the optimal centralized
estimate (which corresponds to the estimate generated by the ADMM
algorithm). The plot represents the average of 1000 trials, and the norm
of the error has been plotted in logarithmic scale.

We also consider the case in which the synchronization
error is larger. Specifically, up to sync: σsync = 10−2 [rad],
which is comparable to the synchronization accuracy achiev-
able without GPS, if the PMUs are synchronized via data
network synchronization protocols (see for example [15] and
references therein). In Figures 2 we plotted the norm of
the magnitude as a function of σsynch. It can be seen that
the ADMM algorithm outperforms the Jacobi-like algorithm,
even if they both reduce the measurement errors present
in the raw data. As expected, the curves generated by the
ADMM algorithm correspond to the optimal centralized
estimate. Similar results can be observed for the phase errors.

In order to analyze the computational complexity of the
two proposed algorithm, we studied the evolution of the error
norm ‖û(t) − u∗‖, where û(t) = Û(t)ejθ̂u(t) denotes the
estimate computed after t iterations of the algorithms, and
u∗ is the optimal state estimate. We plotted the error norm
as a function of the computational time, in Figure 3. Even
if the estimate û(t) generated by ADMM-based algorithm
converges exponentially to u∗, it can be observed how the
updating step of the Jacobi-like algorithm is computation-
ally much simpler than the corresponding iteration in the
ADMM-based algorithm.Iindeed, the Jacobi-like algorithm
exhibit a faster transient, and may be preferred if the system
sampling time is short, compared to the available computa-
tional capabilities at the agents.

VI. CONCLUSIONS

We considered the motivating scenario of a smart power
distribution grid, where a number of control applications
require precise measurements of the grid state. We modeled a
practical case in which noisy measurements are provided by
PMUs located at the grid buses. In particular, we model the
measurement error that is caused by inexact synchronization
of the PMUs, which is a major issue in the deployment of
low-end measurement solutions. We derived two different
distributed and scalable algorithms in order to compute the
optimal state estimate, and we proved their convergence. Via
simulations, we showed the effectiveness of both presented
solutions, showing that time synchronization between PMUs
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Fig. 3. Behavior of the error norm ‖û(t)−u∗‖ for both the ADMM and the
Jacob-like estimation algorithm, in the case of a peer-to-peer architecture,
as function of time. The norm of the error has been plotted in logarithmic
scale.

in the power distribution network becomes a tractable issue
and suggest that GPS-less PMUs could be used.
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