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Online Leader Selection for Collective Tracking
and Formation Control: The Second-Order Case
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Abstract—In this paper, we deal with a double control
task for a group of interacting agents that have second-
order dynamics. Adopting the leader–follower paradigm, the
given multiagent system is required to maintain a desired
formation and to collectively track a velocity reference pro-
vided by an external source only to a single agent at time,
called the “leader.” We prove that it is possible to optimize
the group performance by persistently selecting online the
leader among the agents. To do this, we first define a suit-
able error metric that is able to capture the tracking perfor-
mance of the multiagent group while maintaining a desired
formation through a (even time-varying) communication-
graph topology. Then, we show that this depends on the
algebraic connectivity and on the maximum eigenvalue of
the Laplacian matrix of a special directed graph depend-
ing on the selected leader. By exploiting these theoretical
results, we finally design a fully distributed adaptive proce-
dure that is able to periodically select online the optimum
leader among the neighbors of the current one. The effec-
tiveness of the proposed solution against other possible
strategies is confirmed by numerical simulations.

Index Terms—Decentralized control, distributed agent
systems, distributed algorithms, mobile agents, multiagent
systems.

I. INTRODUCTION

FOR multiagent systems, the tracking of a collective mo-
tion constitutes a well-studied problem in both the control

and agentic communities (see, e.g., the recent [1] but also [2]–
[4]). Most of the proposed tracking algorithms rely upon the
leader–follower paradigm, a very popular technique [5]–[12],
which envisages the presence of a special agent, referred to
as the leader, that has access to the reference motion (often
provided by an external source) to be propagated to the whole
group. This approach arises as a very powerful tool in real ap-
plications, mainly because in many situations, it is unfeasible
to communicate at the same time with all agents in the group
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especially if they are geographically distributed and the avail-
able bandwidth is limited.

Within the multiagent context, the leader–follower solutions
have to guarantee the propagation of the reference motion and
its tracking with the smallest possible error/delay by means of
proper local actions. For this reason, the selection of the leader
plays an important role, and the literature distinguishes between
static and online leader selection. In the first case, the leader is
constantly assumed to be a certain agent within the group chosen
at the beginning of the task by the whole multiagent system.
Contrarily, when adopting the online selection, the leader is left
free to change over time.

Related works: Both in the static and online case, the leader
selection generally rests upon the optimization of a suitable in-
dex. For example, the authors of [13] have addressed the static
leader election task accounting for the maximization of the net-
work coherence, defined as the ability of the consensus-network
to reject stochastic disturbances, while in [14], the harmonic in-
fluence centrality measure is used to quantify the influence of
a node on the opinion of the global network. Allowing for the
presence of multiple (static) leaders, in [15], a fully distributed
strategy is described to select the minimum set of leaders that
ensures the structural controllability of the resulting commu-
nicating system, whereas a prespecified number of leaders is
assumed in [16], focusing on the computation of bounds on the
global optimal value in large stochastically forced consensus
networks. A similar scenario is considered in [17] where the
K-leader selection problem (standard static leader selection is-
sue) is investigated in ring and path graphs assuming that lead-
ers are noise-free and followers obey noisy consensus dynamics.
The authors of [18] instead evaluate the effect of noise-corrupted
leaders in the network performance through the definition of the
joint centrality of a set of nodes. Finally, in [19], the combinato-
rial nature of the problem of choosing k leaders among n agents
is analyzed, showing that the task can be efficiently faced via a
semidefinite program, once a suitable sequence of relaxations is
applied.

Although the literature about an online leader selection is
more limited, the authors of [20] have addressed this problem
by investigating the instantaneous impact of the (time-varying)
leaders on the remaining agents through the notion of manipula-
bility. In [21], instead, both the total and the maximum variance
of the deviation from a desired trajectory are taken into ac-
count to face the so-called in-network leader selection problem
designing a self-stabilizing algorithm that, after a topology
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change, ensures network stability until the online determination
of the optimal leader for the new topology. Such an approach
rests on agents’ cooperation: the determination of a distributed
control protocol guaranteeing the leadership uniqueness consti-
tutes the main challenge of both static and online leader selec-
tion. Within the static context, this issue has been tackled in [22]
by using explicit message passing among the formation, while
a fault detection strategy without explicit communication need
is exploited in [23]. Allowing for a time-varying leadership, the
leader identity becomes an additional degree of freedom that has
to be handled over time by the network in a distributed manner,
limiting the selection duration and its computational burden.

Contributions: Different from all of the aforementioned
works in [24], we have proposed performing the online leader
selection to simultaneously optimize the collective tracking per-
formance from an external source and the maintenance of a de-
sired formation shape. The goal of this paper is to considerably
extend the results achieved in [24] by considering a more com-
plex dynamics for the multiagent group: while in [24], the agents
behave as first-order systems, we now consider second-order dy-
namics, thus assuming the linear accelerations as a control input.
The presentation of the contributions follows the same structure
of [24] to clearly highlight the differences arising from the adop-
tion of the double-integrator dynamic model. These are clearly
stated at the end of this paper and mainly derive from the fact
that the metrics introduced in [24] are not valid anymore in the
second-order case.

For a group of agents modeled as second-order systems, we
first formalize the problem of tracking an external reference
motion while maintaining a desired formation assuming that the
leader identity and the interaction graph topology can be both
time-varying. Then, we analyze the effect of changing leadership
to accomplish the formation control task by showing a direct
dependence of the convergence of a suitably defined tracking
error on the leader identity. Finally, we propose a new distributed
leader election procedure whose effectiveness is validated by
means of numerical simulations.

II. MODELING OF COLLECTIVE EXTERNAL REFERENCE

TRACKING AND DESIRED FORMATION MAINTENANCE

The first contribution of this paper is a set of results regarding
the modeling of a multiagent scenario consisting of a group of
N mobile agents equipped with communication, sensing, and
computation capabilities. Each agent i, i ∈ {1, . . . , N} of the
group is considered as a point mass in Rd , with d ∈ {2, 3}. The
ith agent position is denoted by pi ∈ Rd and its linear velocity
by ṗi = vi ∈ Rd . The set of the linear accelerations {v̇i}N

i=1
will be considered as the control input set in the following
development.

An undirected graph G, called the interaction graph, de-
scribes the interagent sensing and communication capabilities
so that the corresponding adjacency matrix A ∈ {0, 1}N ×N is
such that [A]ij = 1 if agents i and j, j �= i, can communi-
cate and measure their relative position pij = pi − pj ∈ Rd ,
and [A]ij = 0 otherwise, ∀ i, j ∈ {1, . . . , N}. The neighbor-
hood Ni = {j |Aij = 1} of the node i in G denotes thus the set
of agents with which the ith one can interact. The cardinality

of this set represents the degree of the ith agent, which, in
turn, corresponds to the ith element in the main diagonal of
D = diag(A1) ∈ RN ×N , that is, in the diagonal matrix asso-
ciated with the vector A1 with 1 ∈ RN representing a col-
umn vector of all ones. The degree matrix D contributes to
the definition of the Laplacian matrix L ∈ RN ×N of G, that is,
L = D − A. We assume that the second smallest eigenvalue λ2
of L (algebraic connectivity of G) is positive or, equivalently,
that the Laplacian matrix has rank N − 1. This condition is
guaranteed by the existence of at least one communication path
(i.e., a sequence of edges) for any pair of agents in the group, so
that the graph G is connected.

In this paper, the multiagent swarm is required to track a
collective motion command provided to the group by an external
“entity” (such as another agent, a planner, or a human operator),
referred to as the reference source. We assume that this transmits
a certain velocity reference ur ∈ Rd , which is supposed to be a
piecewise constant function with period Tr (reference command
period). In addition, we assume that the current value of ur is
communicated by the reference source to only one agent of the
group at a time, called the “current” leader and denoted by the
possibly time-varying index l.

The connectivity assumption on the interaction network en-
sures that the reference velocity can be transmitted to the whole
group of agents by exploiting a multihop propagation algorithm.
Without focusing on particular propagation schemes, we con-
sider the following consensus-based strategy:

ûl = ur (1)

˙̂ui = −ku

∑

j∈Ni

(ûi − ûj ) ∀i �= l (2)

where ûi ∈ Rd is the estimation of ur performed by the ith
agent, while the positive scalar gain ku tunes the algorithm con-
vergence speed, allowing to model both fast or slow propagation
technologies, for example, high-bandwidth local-area networks
(LANs) or ultrasonic underwater communication, respectively.
Note that for the leader, ûl = ur since the reference is directly
available.

To compactly rewrite the propagation model (1) and (2), we
introduce the “in-degree” Laplacian matrix Ll ∈ RN ×N of the
directed graph Gl , that is obtained from G by removing all of
the ingoing-edges of l. In other words, the matrix Ll is derived
from L by zeroing its lth row so that

Ll =

⎡

⎢⎣
Ml,1 �l,1 Ml,2

0� 0 0�

Ml,3 �l,2 Ml,4

⎤

⎥⎦ (3)

where Ml,1 , Ml,2 , Ml,3 , Ml,4 , �l,1 , �l,2 , and 0 are matri-
ces and column vectors of proper dimensions. By introducing
also the matrix Gl = −(Ll ⊗ Id) ∈ RdN ×dN where ⊗ denotes
the Kronecker product, and the vector û = [û�

1 , . . . , û�
N ]� ∈

RdN , the estimation dynamics (1) and (2) can be compactly
rewritten as

˙̂u = −ku (Ll ⊗ Id)û = kuGl û. (4)

As a further task, the agents group needs to maintain a desired
formation shape defined through the set of constant (absolute)
positions d = [d�

1 , . . . ,d�
N ]� ∈ RdN . Based on the actuation
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and sensing properties of the agents, this goal can be accom-
plished through several control strategies. For the sake of model
generality, we here consider a classical consensus-like solution
applied to second-order agents, namely

ṗi = vi (5)

v̇l = b(ur − vl) (6)

v̇i = b(ûi − vi) − kp

∑

j∈Ni

(pij − dij ) ∀i �= l (7)

where dij = di − dj ∈ Rd represents the desired relative po-
sition between agents i and j. The positive scalar gains b and
kp determine the velocity tracking performances and the “stiff-
ness” of the formation control, that is, how strongly the agents
will react to deviations from their desired formation. The con-
vergence toward the desired configuration is guaranteed by the
connectivity of the network interaction graph [25].

Exploiting the matrix Gl (previously introduced) and the vec-
tors p = [p�

1 , . . . ,p�
N ]� ∈ RdN , v = [v�

1 , . . . ,v�
N ]� ∈ RdN ,

and d = [d�
1 , . . . ,d�

N ]� ∈ RdN , the complete agents group dy-
namics can be shortened as follows:

ṗ = v (8)

v̇ = b(û − v) + kpGl(p − d). (9)

Let us then introduce the formation tracking error, the velocity
tracking error, and the velocity estimation error, namely

ep = (p − 1 ⊗ pl) − (d − 1 ⊗ dl) (10)

ev = v − 1 ⊗ vl (11)

eû = û − 1 ⊗ ur . (12)

The first one provides a measure of accuracy in tracking and
maintaining the desired formation shape encoded in d, while the
second and the third ones represent, respectively, the tracking
accuracy of the leader velocity vl , and the error in estimation
the reference ur .

Using the properties b(û − v) − 1 ⊗ v̇l = b(eû − ev), ėp =
ev , Gl(p − d) = Glep , and taking into account (4), (8), and
(9), the dynamics of the overall error e = [e�p e�v e�û ]� takes the
expression

ė =

⎡

⎢⎣
0 IdN 0

kpGl −bIdN bIdN

0 0 kuGl

⎤

⎥⎦ e (13)

where the reference velocity is assumed constant (u̇r = 0).
The system (13) presents some interesting properties whose

role is fundamental to derive the main contributions of this paper.
In this perspective, we first define

�l = [��l,1 ��l,2 ]
� ∈ RN −1 (14)

Ml =

[
Ml,1 Ml,2

Ml,3 Ml,4

]
∈ R(N −1)×(N −1) (15)

where Ml is the matrix obtained from Ll by removing its lth row
and column. Moreover, we report here the following (known)
facts important for the next developments.

Property 1 (Property 1 in [24]): If graph G is connected,
the following properties hold:

1) Ll1 = 0, ∀l = 1, . . . , N ;
2) Ml1 = (1�Ml)� = −�l ;
3) Ml is symmetric and positive definite;
4) σ(Ll) = σ(Ml) ∪ {0}, where σ(S) represents the spec-

trum of a square matrix S.
A consequence of this property is that the matrix Ll has N

real non-negative eigenvalues even though it is not symmetric.
Let σ(Ll) = {λi,l , i = 1, . . . , N | 0 = λ1,l ≤, . . . ,≤ λN,l} and
σ(L) = {λi , i = 1, . . . , N | 0 = λ1 ≤, . . . ,≤ λN} be the spec-
trum of Ll and L, then the following property holds.

Property 2 (Property 2 in [24]): For a graph G and an
induced graph Gl , it is λi,l ≤ λi for all i = 1, . . . , N .

Property 2 descends from the Cauchy interlacing theorem ap-
plied to matrices L and Ml and it implies that if G is connected,
then both λ2 > 0 and λ2,l > 0, where by analogy, we denote
λ2,l as the “algebraic connectivity” of Gl .

Given these premises, we conclude this behavioring section
by formally proving the stability of the system (13).

Proposition 1: If graph G is connected, system (13) is
asymptotically stable for any positive constants kp , b, ku . Fur-
thermore, if

b > bc = 2
√

kpλN,l (critical damping)

the system evolution has no oscillatory modes, where λN,l =
max σ(Ml), that is, the largest positive eigenvalue ofLl . Finally,
the rates of convergence of [e�p e�v ]� and eû are dictated by

− b

2
+

1
2

√
b2 − 4kpλ2,l and − kuλ2,l

respectively, where λ2,l = min σ(Ml), that is, the smallest pos-
itive eigenvalue of Ll (algebraic connectivity of Gl).

Proof: Since ep,l = ėp,l = ev ,l = ėv ,l = eû,l = ėû,l = 0,
the stability of (13) is determined by the real part of the eigen-
values of the 3(N − 1) × 3(N − 1) matrix

R =

⎡

⎢⎣
0 I(N −1) 0

−kpMl −bI(N −1) bI(N −1)

0 0 −kuMl

⎤

⎥⎦⊗ Id

that is required to be negative definite. Thanks to the proper-
ties of the Kronecker product, we can focus on the first ma-
trix composing R. Being a block upper triangular matrix, it is
σ(R) = σ(R11) ∪ σ(R22), where

R11 =
[

0 I(N −1)
−kpMl −bI(N −1)

]
and R22 = −kuMl .

The spectrum of R22 is clearly σ(R22) = −kuσ(Ml) =
{−kuλ2,l , . . . ,−kuλN,l}. On the other hand, for any eigenvalue
μj , j ∈ {1, . . . , 2(N − 1)} of R11 , it follows that:

R11vj = μjvj (16)

where vj = [v�
j,1 v�

j,2 ]
� ∈ R2(N −1) is the unit-norm eigenvec-

tor of R11 associated with μj . Consider the matrix (I2 ⊗ w�
i ) ∈

R2×2(N −1) , where wi ∈ R(N −1) is the unit-norm eigenvector
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of Ml associated with the eigenvalue λi,l , i ∈ {2, . . . , N}. Left-
multiplying both sides of (16) with (I2 ⊗ w�

i ) and exploiting
the symmetry of Ml , we obtain

[
0 1

−kpλi,l −b

]

︸ ︷︷ ︸
Rλi , l

[
w�

i vj,1
w�

i vj,2

]
= μj

[
w�

i vj,1
w�

i vj,2

]
.

Hence, μj must also be an eigenvalue of the 2 × 2 matrix Rλi , l

for every λi,l ∈ σ(Ml), i = 2, . . . , N . This directly leads to

μ2i−1 = − b

2
+

1
2

√
b2 − 4kpλi+1,l (17)

μ2i = − b

2
− 1

2

√
b2 − 4kpλi+1,l (18)

for i = 1, . . . , N − 1. �
Therefore, both the agent velocities v and the estimation vec-

tor û asymptotically converge to the common reference velocity
ur , while the agent positions p converge to the desired shape
1 ⊗ pl + d − 1 ⊗ dl . Furthermore, the value of λ2,l directly af-
fects the convergence rate of the three error vectors ep , ev , eû

over time. Since, for a given graph topology G, λ2,l is deter-
mined by the identity of the leader in the group, it follows that
maximization of λ2,l over the possible leaders results in faster
convergence of the tracking error. This insight then motivates
the online leader selection strategy detailed in the rest of this pa-
per, where we will show that such maximization is actually only
one of the ingredients for obtaining faster convergence through
online leader selection.

III. ROLE OF LEADER IN TRACKING PERFORMANCE

In this section, we provide a theoretical analysis of how the
dynamics of the error vector is affected by changing the leader
of the agents group at time tk = kT with k ∈ N and T > 0
(leader election period). Since it is reasonable to assume that
the internal group communication is much faster than the refer-
ence source/leader interaction, we suppose T ≤ Tr so that the
velocity reference ur remains constant between tk and tk+1 .
Hereafter, we denote the leader at time tk with the index lk .

Rewriting the dynamics of the velocity estimation (4) and of
system (8) and (9) among consecutive sampling times, that is,
during the interval [tk , tk+1), we obtain

˙̂u = kuGlk û, t ∈ [tk , tk+1) (19)

ṗ = v, t ∈ [tk , tk+1) (20)

v̇ = b(û − v) + kpGlk (p − d), t ∈ [tk , tk+1) (21)

with the following initial conditions where t−k coincides with
the right extreme of the previous time interval1

û(tk ) = û(t−k ) + (S̄lk ⊗ Id)(1 ⊗ ur (tk ) − û(t−k )) (22)

p(tk ) = p(t−k ) (23)

v(tk ) = v(t−k ). (24)

1Formally, t−
k

coincides with the one-sided limit of time function approaches
tk “from below”.

The matrix S̄lk ∈ RN ×N in (22) realizes the reset action (1)
on the components of û related to the new leader lk . This is a
diagonal matrix having all zeros on the main diagonal except for
the lk th entry, which is set to one to ensure ûlk (tk ) = ur (tk ).
Its complement is defined as Slk = IN − S̄lk .

Recalling that ur (t) is constant in [tk , tk+1), the dynamics
of the error vector e(t) = [e�p (t) e�v (t) e�û (t)]� in this interval
is correctly described by system (13). Using (22)–(24), we can
derive the initial conditions e(tk ) as a function of the chosen
leader lk and of the received external command ur (tk )

ep(tk ) = (Slk ⊗ Id)
(
(p(t−k ) − d) − 1 ⊗ (plk (t−k ) − dlk )

)

(25)

ev(tk ) = (Slk ⊗ Id)(v(t−k ) − 1 ⊗ vlk (t−k )) (26)

eû(tk ) = (Slk ⊗ Id)(û(t−k ) − 1 ⊗ ur (tk )). (27)

From (25)–(27), it is straightforward to see that the choice
of the leader lk directly affects e(tk ). For this reason, when-
ever appropriate, we will use the notation e(tk , lk ) to explicitly
indicate this (important) dependency.

In order to define a valid metric for the error vector, we first
state the following result which holds for any positive semidef-
inite matrix and then we provide a lemma that is preliminary to
the main result of the section.

Proposition 2: Consider the Laplacian matrix L ∈ RN ×N

of any connected graph with N vertexes and denote by
λN the largest eigenvalue of L. Assuming three constants
kn1, kn2, kn3 ∈ R such that

kn1 > 0, kn3 > 0 and 0 < kn2 < kn1 /
√

λN (28)

the matrix

PL :=

⎡

⎢⎣
kn1 G + kn3 IdN kn2 G 0

kn2 G kn1 IdN 0
0 0 IdN

⎤

⎥⎦ ∈ R3dN ×3dN

(29)

where G = (L ⊗ Id) ∈ RdN ×dN is positive definite.
Proof: In order to prove the statement, it is sufficient to

show that the eigenvalues of the symmetric matrix

P� =
[

kn1 L + kn3 IN kn2 L
kn2 L kn1 IN

]
∈ R2N ×2N (30)

are all positive. Any eigenvalue μj , j ∈ {1, . . . , 2N} of P�

must satisfy the relation P�vj = μjvj , where vj ∈ R2N is the
eigenvector associated with μj . If we left-multiply both sides
of the previous relation with (w�

i ⊗ I2) ∈ R2×2N , where wi ∈
RN is the left-eigenvector of L associated with the generic
eigenvalue λi , i ∈ {1, . . . , N}, we obtain
[

kn1 λi + kn3 kn2 λi

kn2 λi kn1

]

︸ ︷︷ ︸
P�

λi

[
w�

i vj,1

w�
i vj,2

]
= μj

[
w�

i vj,1

w�
i vj,2

]
(31)

with vj = [v�
j,1 v�

j,2 ]
�. This, in turn, implies that μj must be

an eigenvalue of the 2 × 2 matrix P�
λi

for every λi ∈ σ(L).
Analytically computing the eigenvalues of P�

λi
by solving a
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quadratic equation, we obtain

μj =
1
2

(
kn1 (λi + 1) + kn3 −

√
Δ
)

(32)

μ2j =
1
2

(
kn1 (λi + 1) + kn3 +

√
Δ
)

(33)

where

Δ = (kn1 (λi − 1) + kn3 )
2 + 4k2

n2
λ2

i . (34)

By then imposing μj , μ2j > 0, we obtain

λ2
i k

2
n2

< k2
n1

λi + kn3 kn1 (35)

which is always verified for λi = 0. For any other λi > 0, in-
equality (35) can be met by adopting the more restrictive con-
straint λ2

i k
2
n2

< k2
n1

λi , that is, kn2 < kn1 /
√

λi . The proof is
concluded by noticing that the last inequality holds for every
λi ∈ σ(L) when kn2 is set according to (28). �

Lemma 1: Consider a positive definite symmetric matrix
A ∈ RN ×N and denote by 0 < φ1 ≤, . . . ,≤ φN its eigenval-
ues. Define the symmetric matrix

Q := sym (Q1Q2) =
1
2
(
Q1Q2 + Q�

2 Q�
1
)
, with (36)

Q1 =

⎡

⎢⎣
kn1 A + kn3 IM kn2 A 0

kn2 A kn1 IM 0
0 0 IM

⎤

⎥⎦ (37)

Q2 =

⎡

⎢⎣
0 IM 0

−A −bIM bIM

0 0 −A

⎤

⎥⎦ (38)

where b, kn1, kn2, kn3 > 0, and kn2 < kn1 /
√

φN (to ensure the
positive definiteness of Q1 , according to Property 2).

If the following conditions are also met:

b < φ1 (39)

kn1 <
2φ1

b
(40)

kn2 < min
{

bkn1

φN (2 + b)
,
2
b
− kn1

φ1

}
(41)

kn3 <
bkn2 φ1

2
(42)

then the 3N eigenvalues of Q are all negative and, in particular,
they are upper-bounded by the maximum between the following
negative quantities

kn2 φ1(b − φ1) (43)

kn2 φN

(
1 +

b

2

)
− b

2
kn1 (44)

φ1

(
b

2
kn2 − 1

)
+

b

2
kn1 . (45)

Proof: After suitable computations, we obtain

Q =

⎡

⎢⎣
−kn2 A

2 − b
2 kn2 A + kn3 IM

b
2 kn2 A

∗ kn2 A − bkn1 IM
b
2 kn1 IM

∗ ∗ −A

⎤

⎥⎦ .

Any eigenvalue νj , j ∈ {1, . . . , 3N} of Q must satisfy the re-
lation Qvj = νjvj , where vj ∈ R3N is the eigenvector related
to νj . Left-multiplying both sides of the previous relation by
(I3 ⊗ w�

i ) ∈ R3×3N , where wi ∈ RN is the left-eigenvector
of A associated with the eigenvalue φi , i ∈ {1, . . . , N}, we get

⎡

⎢⎣
−kn2 φ

2
i − b

2 kn2 φi + kn3
b
2 kn2 φi

∗ kn2 φi − bkn1
b
2 kn1

∗ ∗ −φi

⎤

⎥⎦

⎡

⎢⎣
w�

i vj,1

w�
i vj,2

w�
i vj,3

⎤

⎥⎦

= νj

⎡

⎢⎣
w�

i vj,1

w�
i vj,2

w�
i vj,3

⎤

⎥⎦

where vj = [v�
j,1 v�

j,2 v�
j,3 ]

�. This means that for every eigen-
value φi of A, νj must be an eigenvalue of the 3 × 3 matrix

Qφi
=

⎡

⎢⎣
−kn2 φ

2
i − b

2 kn2 φi + kn3
b
2 kn2 φi

∗ kn2 φi − bkn1
b
2 kn1

∗ ∗ −φi

⎤

⎥⎦ .

Applying the Gershgorin circle theorem, we know that every
eigenvalue of Qφi

is at least in one of the six disks (in the
complex plane) centered on the three main diagonal terms of
the matrix, and with the radius the sum of the magnitudes of the
off-diagonal entries in same column or in the same row. Due
to the symmetry of Qφi

in our case, we have only three disks
whose largest intersection with the real axis are, respectively

zi,1 := −kn2 φ
2
i +
∣∣ b
2 kn2 φi − kn3

∣∣+
∣∣ b
2 kn2 φi

∣∣

zi,2 := kn2 φi − bkn1 +
∣∣ b
2 kn2 φi − kn3

∣∣+
∣∣ b
2 kn1

∣∣

zi,3 := −φi +
∣∣ b
2 kn2 φi

∣∣+
∣∣ b
2 kn1

∣∣ .

By using the fact that kn1 , kn2 , kn3 , φi , and b are positive quan-
tities and kn3 also satisfies (42), we obtain

zi,1 < −kn2 φ
2
i + bkn2 φi =: z̄i,1 (46)

zi,2 < kn2 φi

(
1 + b

2

)− b
2 kn1 =: z̄i,2 (47)

zi,3 = −φi + b
2 kn2 φi + b

2 kn1 . (48)

Our goal is then to find the additional conditions on kn1 , kn2 ,
and kn3 such that z̄i,1 , z̄i,2 , and zi,3 are all negative for each
i ∈ {1, . . . , N}. Posing z̄i,1 < 0 results in b < φi , which is
then equivalent to (39). Condition z̄i,2 < 0 can be guaranteed if
kn2 < b

φi (2+b) kn1 , that is, it is equivalent to kn2 < b
φN (2+b) kn1.

Condition zi,3 < 0 results in kn2 < 2
b − kn 1

φi
, that is, kn2 <

2
b − kn 1

φ1
. Since it must be also kn2 > 0, the last inequality can

only be verified if 2
b − kn 1

φ1
> 0, that is, if (40) holds. Con-

dition (41) is the combination of the just mentioned upper-
bounds on kn2 , namely, it has to be simultaneously guaranteed

that kn2 < b
φN (2+b) kn1 and kn2 < 2

b − kn 1
φ1

. Finally, the val-
ues in (43)–(45) represent the values of z̄i,1 , z̄i,2 , and zi,3 , re-
spectively, where φi has always been chosen as the worst case
according to the assumption that 0 < φ1 ≤, . . . ,≤ φN . �

The following result finally gives an explicit characterization
of the behavior of e(t) during the interval [tk , tk+1), which then
naturally leads to the subsequent definition of optimal leader
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selection. For the sake of exposition, we assume that kp = ku =
1. All of the results easily extend to the more general case
kp > 0, ku > 0 with more tedious machinery.

Proposition 3: Consider the error vector e(t) with a specific
leader lk and, w.l.o.g., kp = ku = 1. If the constants b, kn1 , kn2 ,
kn3 are chosen in order to satisfy the next conditions

0 < b < λ2,lk , 0 < kn1 <
2λ2,lk

b
, 0 < kn3 <

bkn2 λ2,lk

2

0 < kn2 < min

{
bkn1

λN,lk (2 + b)
,
2
b
− kn1

λ2,lk

,
kn1√
λN,lk

}

(49)

then the error metric ‖e(t)‖2
L := e�(t)PLe(t) is monotonically

decreasing in the time interval [tk , tk+1) wherein the topology
is assumed to be fixed. In particular, the error metric behavior
is dominated by the following exponential upper bound:

‖e(t)‖2
L ≤ ‖e(tk )‖2

L e−2 νl k
(t−tk ) ∀t ∈ [tk , tk+1) (50)

where νlk > 0 is the minimum among the following quantities:

νlk = min

⎧
⎪⎨

⎪⎩

kn2 λ2,l(λ2,l − b)
b
2 kn1 − kn2 λN,l

(
1 + b

2

)

λ2,l − b
2 (kn2 λ2,l + kn1 ).

(51)

Proof: The dynamics of the error e(t) in [tk , tk+1), with
kp = ku = 1 reduces to

⎡

⎢⎣
ėp

ėv

ėû

⎤

⎥⎦ =

⎡

⎢⎣
0 IdN 0
Gl −bIdN bIdN

0 0 Gl

⎤

⎥⎦

⎡

⎢⎣
ep

ev

eû

⎤

⎥⎦ (52)

where we omit (as in the following) the time dependency for the
sake of exposition. The subvectors ep,l , ev ,l , and eû,l are zero
at t = tk and their dynamics is invariant, due to the row of zeros
in Ll corresponding to the agent l, i.e.,

ep,l = ev ,l = eû,l = ėp,l = ėv ,l = ėû,l = 0 ∀t ∈ [tk , tk+1).

Hence, we can restrict our analysis to the dynamics of the orthog-
onal subspace, that is, of the remaining components ep,i , ev ,i ,
and eû,i ,∀i �= l. We denote by lep , lev , and leû the d(N − 1)-
vectors obtained by removing the d entries corresponding to l
in ep , ev , and eû , respectively, and with le their concatenation.
Therefore, we have

l ė =

⎡

⎢⎣

l ėp
l ėv
l ėû

⎤

⎥⎦ =

⎡

⎢⎣
0 I(N −1)d 0

lGl −bI(N −1)d bI(N −1)d

0 0 lGl

⎤

⎥⎦ le = Dl
le

(53)

where lGl = −(Ml ⊗ Id) ∈ R(N −1)d×(N −1)d .
We now consider the error metric dynamics. First, note that

‖e‖2
L = e�PLe = le

�
PMl

le = ‖le‖2
Ml

(54)

where PMl
∈ R3d(N −1)×3d(N −1) is defined as (29) with lGl

and Id(N −1) in place of G and IdN , respectively. Notice that the
positive definiteness of PL implies that also PMl

is a positive

definite matrix for all l; thus, the metrics ‖le‖2
Ml

are well defined
for all l according to Property 3. Hence, we have

d

dt
‖e‖2

L =
d

dt
‖le‖2

Ml

= 2le�PMl

l ė = 2le�PMl
Dl

le

= 2le�sym(PMl
Dl)le ≤ 2μmax,l‖le‖2

Ml
(55)

where μmax,l is the largest eigenvalue of the symmetric part of
PMl

Dl . Accounting for equality (54), (55) implies that for all
t ∈ [tk , tk+1), it holds that

‖e(t)‖2
L ≤ ‖e(tk )‖2

L e2 μm a x , l k
(t−tk ) (56)

which coincides with (50) proving that μmax,l = −νl , where νl

is defined as in the proposition.
To this and first of all we note that due to the properties of

the Kronecker product, the eigenstructure of sym(PML
Dl) is

obtained by repeating d times the structure of matrix Q in (36)
by choosing A = Ml . Applying Lemma 1 with A = Ml and,
thus, φ1 = λ2,l and φN = λN,l , we obtain that if kn1 , kn2 , kn3

are chosen as in the assumption of the proposition, then −νl is
the maximum eigenvalue of Q which results upper-bounded by
the maximum of the quantities in Lemma 1. This, in turn, yields
a lower-bound for νl by the minimum among the quantities in
the proposition. �

For the reader’s convenience, we report in Fig. 1 the values
of λ2,l versus λ2 and of λN,l versus λN for different leaders l
and across different graph topologies.

Thanks to the upper bound (50) at every instant t = tk , it
is possible to estimate the maximum future decrease of the
error vector e(t) in the interval [tk , tk+1). By evaluating (50) at
t = t−k+1 , that is, just before the next leader selection, we obtain

‖e(t−k+1)‖2
L ≤ ‖e(tk , lk )‖2

L e−2 νl k
T . (57)

Note that both e(tk , lk ) and νlk depend on the value of the
current leader lk . As a consequence, the right-hand side of (57)
can be exploited for choosing the leader at time tk in order
to maximize the convergence rate of e(t) during the interval
[tk , tk+1) and, therefore, improving at the same time both the
tracking of the reference velocity and of the desired formation.

These observations are gathered in the following Fact.
Fact 1: Consider an N -agent system required to accomplish

the dual task modeled in Section II according to the leader–
follower paradigm. Within the online leader selection context,
in order to improve the tracking performance of the reference ve-
locity and of the desired formation during the interval [tk , tk+1)
having duration T , the leader should be selected so that it solves
the following minimization problem:

arg min
l∈Lk

fk (l), with fk (l) = ‖e(tk , lk )‖2
L e−2 νl T (58)

where Lk ⊆ {1, . . . , N} is the set of “eligible” agents from
which a leader can be selected at tk and the error metric defined
in Property 3 is used.

In Fact 1, the concept of “eligible” agents is introduced for
the first time; however, this will be clarified in the following
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Fig. 1. Values of λ2 , l versus λ2 and λN ,l versus λN for different lead-
ers l. The squares correspond to values of λ2 , l and λN ,l associated
with a leader l = 1, . . . , N , with N = 10. The solid constant blue lines
represent λ2 and λN . Each row corresponds to a different graph with
N = 10 vertexes. From top to bottom: the line, ring, star, two random
(connected) graphs, and a clique graph.

section. In the following text, we highlight two crucial aspects
related to the minimization problem (58).

Remark 1: Similar to the first-order case, the minimization
problem (58) needs to be solved online because of the depen-
dency of the cost function on both the group topology and the
current multiagents system state.

Remark 2: The reset action (1) implies the zeroing of the
components of the estimation error vector eû associated with
the current leader lk . Hence, the quantity ‖e(tk , lk )‖2

L may de-
crease at every instance of the leader selection. Thus, it would
be desirable to reduce the leader selection period T as much
as possible. However, in practice, there exists a maximum fre-
quency at which the leader selection process can be executed,
guaranteeing the successful procedure termination under real-
world constraints. This entails the existence of a finite minimum
selection period Tmin such that T ≥ Tmin > 0.

IV. DISTRIBUTED NEXT BEST LEADER SELECTION

The contribution of this section is a fully distributed proce-
dure to solve the optimization problem (58). To cope with the
distributiveness requirement, the set of agents eligible as leader,
namely, the set Lk introduced in Fact 1, is restricted to the
neighborhood of the current leader, that is, Lk = Nlk . As better
explained in the following text, this choice ensures the possibil-
ity of each agent belonging to Lk to evaluate the quantity fk (l)
in (58) (depending on the current leader) through a local infor-
mation exchange. Nevertheless, this also implies that the min-
imization (58) is performed only locally, that is, in Lk = Nlk ,
thus, the achieved minimum might not be global. To guarantee
a global optimum, indeed, fk (l) should be minimized over all
agents in the group, that is, setting Lk = {1, . . . , N}. However,
this would result in fully centralized optimization whenever G is
not the complete graph since it entails that all agents have global
knowledge of the network. In our method, the global optimum
is instead approximated by the repetition, at every time T , of the
minimization (58) in the neighborhood of the current leader. In
this way, the computation load is spread among the agents and
over time, as is customary in distributed approaches. We shall
see in Section V that this choice is a good compromise between
distributiveness and global optimality.

We now consider the evaluation of the cost function fk (m)
in (58) by any leader-candidate m ∈ Nlk . This requires the
knowledge of the error norm ‖e(tk , m)‖2

L and of the eigen-
values λ2,m and λN,m in order to compute νm through (51).
Although all of them are global quantities, in the following text
we will prove that they can be locally retrieved by restoring
some well-known distributed estimation techniques.

First, for any m ∈ Nlk both λ2,m and λN,m can be locally
estimated exploiting a simplified version of the Decentralized
Power Iteration algorithm proposed in [26] and based on the
PI average consensus estimating (PI-ace) technique introduced
in [27]. Thanks to the consensus-based mechanism, the PI-ace
strategy allows the mth agent belonging to the group Nlk to
build a local estimation ŵk of the eigenvector wk of Mm cor-
responding to the eigenvalue λk,m , k ∈ {2, N}. In this way,
the estimate λ̂k,m = −(

∑
n∈Nm

[Mm ]m,n [ŵk ]n )[ŵk ]−1
m can be

derived by employing only locally available information. The
convergence of such a procedure is ensured by a suitable choice
of the eigenvector estimation gains and initial conditions as dis-
cussed in [26] and [27].

Also, the error norm ‖e(tk , m)‖2
L can be estimated by any

leader-candidate m ∈ Nlk via a distributed procedure requiring
information locally available and recoverable via 1-hop com-
munication (i.e., directly provided by a neighboring node). To
prove this fact, omitting all dependencies for the sake of brevity,
we rewrite the scalar quantity ‖e(tk , m)‖2

L as

e�PLe = kn3 e
�
p ep + kn1 e

�
v ev + e�û eû

+ kn1 e
�
pGep + 2kn2 e

�
pGev (59)

and we note that ‖(Sm ⊗ Id)x‖2 =
∑N

i=1 ‖xi‖2 − ‖xm‖2 . As
a consequence, by recalling (25)–(27) and denoting with the
superscript − that all quantities computed at t−k and with p̃−
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and the difference p− − d, the first three terms in (59) can be
rewritten accounting for the following identities:

e�p ep =
N∑

i=1

‖p̃−
i − p̃−

m‖2 + 0

=
N∑

i=1

p̃−�
i p̃−

i − 2p̃−T
m

N∑

i=1

p̃−
i + N p̃−�

m p̃−
m (60)

e�v ev =
N∑

i=1

‖v−
i − v−

m‖2 + 0

=
N∑

i=1

v−�
i v−

i + 2v−�
m

N∑

i=1

v−
i + Nv−�

m v−
m (61)

e�û eû =
N∑

i=1

‖û−
i − ur‖2 − ‖û−

m − ur‖2

=
N∑

i=1

û−�
i û−

i − 2u�
r

N∑

i=1

û−
i + Nu�

r ur − ‖û−
m − ur‖2 .

(62)

Therefore, the quantity ‖e(tk , m)‖2
L can be evaluated by any

agent m ∈ Nlk as a function of:
1) the vectors pm (t−k ), vm (t−k ) and ûm (t−k );
2) the vector ur (tk );
3) the three vectors

∑N
i=1 ûi(t−k ),

∑N
i=1vi(t−k ), and∑N

i=1(pi(t−k ) − di);
4) the three scalar quantities

∑N
i=1 û

−�
i û−

i ,
∑N

i=1v
−�
i v−

i ,
and
∑N

i=1 p̃
−�
i p̃−

i ;
5) the total number of agents N .

The vectors listed in 1) are locally available to agent m and,
similarly, ur (tk ) is locally available to agent m via 1-hop com-
munication from the current leader lk . On the other hand, the
quantities listed in 3) and 4) can be locally estimated by em-
ploying the PI-ace strategy mentioned before. Finally, the total
number of agents N can be assumed to be an a priori informa-
tion locally available to each agent; otherwise, one can resort
to an additional distributed scheme (see, e.g., [28]) to obtain
its value over time. This analysis thus proves that any agent
m ∈ Nlk can compute ‖e(tk , m)‖2

L by exploiting only local
and 1-hop communication information.

We have thus shown that all quantities involved in the eval-
uation of fk (m) in (58) can be locally achieved by any leader-
candidate m ∈ Nk . Hence, at every tk , the optimal leader selec-
tion can be performed by the agents group in a distributed way
according to the procedure summarized in Algorithm 1. This
is hereafter referred to as Distributed and Optimized Online
Leader Selection (DO2 Leader Selection). Note that its conver-
gence is ensured by the convergence results on the decentralized
power iteration method and the PI-ace scheme provided in [26]
and [27], respectively.

V. SIMULATION RESULTS

This section is devoted to the validation of the proposed DO2
Leader Selection approach through the comparison with other

Fig. 2. Current graph G topology (top) and components of the external
velocity reference ur (bottom).

trivial although intuitive leader selection procedures. These con-
sist of a random leader selection among all agents in the group
and a no leader selection envisaging a constant (a priori chosen)
leader during all of the task executions. To highlight the effec-
tiveness of the DO2 Leader Selection strategy, we also consider
its centralized version such that at each iteration, the leader is
selected by setting Lk = {1, . . . , N}: this allows to evaluate
the gap between the global optimal solution and the local one
computed through Algorithm 1.

Numerical simulations are performed accounting for a group
of N = 10 agents modeled as point masses in Rd with d = 3.
All of the runs start from the same initial conditions on the
agents position and assume time-varying agents interaction. In
detail, the interaction graphG changes according to Fig. 2, which
reports on the top of the topology variations with indexing de-
fined in Fig. 1: we simulate the decrease of the connectivity
level to show the robustness of the DO2 Leader Selection algo-
rithm w.r.t. to the communication amount. The reference veloc-
ity ur (t) ∈ R3 is behaviored as a piece-wise constant function
of period Tr = 5 s w.r.t. its three components as depicted on the
bottom of Fig. 2. For the random and optimized strategies, the
leader selection period is set to T = 0.05 s. Finally, the gains
kp = 2, ku = 1, b = 0.01 are used in the network dynamics
model and all of the PI-ace estimators are designed to converge
to the consensus value in a finite number of iterations limiting
the final estimation error.
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Fig. 3. Identity of the current leader l(t) (top) and error metric ‖ei (t)‖L i = 1, . . . , N (bottom) by applying different leader selection strategies.
(a) Random leader selection. (b) No leader selection. (c) Globally optimized leader selection. (d) Locally optimized leader selection.

TABLE I
LEADERSHIP CHANGES USING VARIOUS LEADER SELECTIONS

The results of the simulations are shown in Fig. 3(a)–(d): the
plots on the top depict the result of the leader selection proce-
dure (i.e., the time-varying leader identity l(t)) and the plots
on the bottom report the corresponding error norm ‖ei(t)‖L ,
i = 1, . . . , N defined by matrix PL in (29) highlighting the
value related to the current leader (orange line).

First, we can observe that the constant leader strategy
[see Fig. 3(b)] presents the worst performance in minimizing
‖ei(t)‖L w.r.t. the other cases, even though the convergence of
the errors toward zero is achieved, in accordance with Property 3.
Note that, w.l.o.g., we have assumed that the leader constantly
coincides with agent 1. However, when a fixed topology is con-
sidered, the performance of the constant leader solution might
improve by choosing the leader that optimizes the error con-
vergence rate computing the value νl for each l ∈ {1, . . . , 10}
according to (51) (see Fig. 1 for the values of λ2,l and λN,l).
The random leader selection [see Fig. 3(a)] performs better than
the constant leader strategy, but its convergence time is much
worse w.r.t. the optimized (both globally and locally) leader se-
lection cases in Fig. 3(c) and (d). Indeed, randomly picking the
next leader among the neighbors of the current leader makes
the error converge to zero in a time between 1 and 2 s, while
adopting the local DO2 Leader Selection strategy, the conver-
gence time is always below 0.5 s. In addition, the results of
the local DO2 Leader Selection strategy in Fig. 3(d) concern-
ing the error behavior are comparable to the ones of its global
version in Fig. 3(c). This implies that the suboptimal solution
derived from the use of a distributed paradigm approaches the
global optimum provided by the centralized approach. Further-
more, the local DO2 Leader Selection strategy visually results
in fewer leader identity changes (plots on the top). To clarify
this point, Table I reports the number of leadership changes over
the considered period for each leader selection strategy.

The following has to be noted: while the random strategy
changes the leader almost at each iteration T , the DO2 Leader
Selection strategy (especially the local version) tends to “sta-
bilize” the leader choice as the error norm ‖ei(t)‖L converges
to zero, that is, when the tracking transient becomes negligible
and the group of agents has reached a steady state in its tracking
performance. This fact constitutes an important advantage of
the DO2 Leader Selection strategy w.r.t. the random one since
in real-world applications, the constant change of leadership
would correspond to the need of continuously re-establishing
new connections from the reference source side. Furthermore,
from this point of view, to perform a local optimization is more
advantageous than a global one.

VI. FIRST-ORDER VERSUS SECOND-ORDER CASE

In this section, we aim at figuring out the main differences
between the first-order leader election addressed in [24] and
the second-order case faced in this paper. The purpose is to
highlight both the challenging aspects and the benefits derived
from the employment of a more complex dynamic model for
the multiagent group. These are listed as follows.

1) In [24], the described agents group is behaviored as a
first-order system since the single-integrator model rep-
resents the simplest way to characterize a mobile agent
dynamics. Here, we deal with second-order systems to
describe the dynamics of a multiagent team. Despite the
increased complexity, this choice is motivated by the fact
that these systems better approximate the behavior of
physical agentic agents and that controlling acceleration
(rather than velocity) generally allows an agent to realize
smooth movements.

2) Contrary to [24], in general, it occurs that ev �= v − 1 ⊗
ur . The leader velocity asymptotically converges to the
reference ur via (4); however, since the control acts at
an acceleration level, one has that vl �= ur during any
transient phase.

3) The initial condition û(tk ) depends on the chosen leader
lk and is, in general, discontinuous at tk . The position
vector p(t) and (contrary to [24]) the velocity vector
v(t) are instead continuous at tk .

4) Property 3 proves that the scalar metric ‖e(t)‖2
L is mono-

tonically decreasing along the system trajectories, while
this is not guaranteed to hold for other metrics such as the
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�2-norm ‖e(t)‖2 as well as the one introduced in [24] for
the first-order case. Hence, the definition of the matrix
PL and the results stated in Property 3 represent novel
and original contributions of this paper, when compared
with [24].

5) PL is significantly more complex matrix than its first-
order counterpart (Pkn

in [24]) and it is not at all
a straightforward extension of it. Pkn

is basically a
“scaled” identity matrix, while PL contains several repe-
titions of the Laplacian matrix and is no longer a diagonal
matrix. An important contribution of our work has been
to find a matrix, such as PL , so that:

a) can be made positive definite, so that it can repre-
sent a well-defined norm;

b) makes the matrix Q positive definite as well, in
order to define monotonically decreasing error dy-
namics;

c) has a distributed structure, so that the error can
be computed in a distributed way using distributed
estimation.

Finding such a matrix, with a structure completely differ-
ent from the first-order case, is one of the main corner-
stones of this paper.

6) We have shown that in the first-order leader election,
only the knowledge of the smallest eigenvalue λ2,m of
the matrix Mm is required. Considering a second-order
dynamics, the value of the maximum eigenvalue λN,m is
required since the parameter νm depends on both quanti-
ties.

7) The structure of Algorithm 1 here proposed is similar to
the one in [24]. The similarity is, however, limited since
the computation of fk (m) (row 11) in the second-order
cases is different from the first-order one. Furthermore,
in the second-order case, this computation requires the
estimation of three (instead of four as in the first-order
case) scalar quantities because of the continuity of the
velocity vector v. This results in a simpler implementa-
tion compared to the first-order case since one less PI-ace
filter is needed.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we deal with the problem of online leader
selection for a group of agents whose dynamics is modeled as a
second-order system. The key idea is to treat the leader identity
as a time-varying quantity to be chosen in order to optimize the
performance in tracking an external velocity reference signal
and in achieving a desired formation shape. For this goal, a
suitable tracking error metric has been defined to capture the
leadership changing effect in group performance.

A distributed leader selection procedure has then been pro-
posed: during the agent motion, the DO2 Leader Selection al-
gorithm aims at persistently selecting the best leader w.r.t. the
defined tracking error metric. The validity of the proposed ap-
proach has been stated comparing the DO2 strategy with other
more trivial solutions such as keeping a constant leader over
time (as is typically done), or relying on a random choice.

As future developments, we want to extend our analysis by
allowing the presence of multiple reference sources/leaders and
accounting for other optimization criteria such as, for example,
controllability.
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in large dynamical networks: Noise-free leaders,” in Proc. 50th IEEE
Conf. Decis. Control Eur. Control Conf., Orlando, FL, USA, Dec. 2011,
pp. 7188–7193.

[20] H. Kawashima and M. Egerstedt, “Leader selection via the manipulability
of leader-follower networks,” in Proc. Amer. Control Conf., Montreal, QC,
Canada, Jun. 2012, pp. 6053–6058.

[21] S. Patterson, “In-network leader selection for acyclic graphs,” in Proc.
Amer. Control Conf., Chicago, IL, USA, Jan. 2015, pp. 329–334.

[22] F. Bullo, J. Cortés, and S. Martı́nez, Distributed Control of Robotic Net-
works (Applied Mathematics Series). Princeton, NJ, USA: Princeton Univ.
Press, 2009.

Authorized licensed use limited to: POLO BIBLIOTECARIO DI INGEGNERIA. Downloaded on May 27,2021 at 12:02:12 UTC from IEEE Xplore.  Restrictions apply. 



FRANCHI et al.: ONLINE LEADER SELECTION FOR COLLECTIVE TRACKING AND FORMATION CONTROL 1425

[23] I. Shames, A. M. H. Teixeira, H. Sandberg, and K. H. Johansson, “Dis-
tributed leader selection without direct inter-agent communication,” in
Proc. 2nd IFAC Work. Estimation Control Netw. Syst., Annecy, France,
Sep. 2010, pp. 221–226.

[24] A. Franchi and P. Robuffo Giordano, “Online leader selection for im-
proved collective tracking and formation maintenance,” IEEE Trans. Con-
trol Netw. Syst., vol. 5, no. 1, pp. 3–13, Mar. 2018.

[25] W. Ren, “Consensus seeking in multi-vehicle systems with a time-varying
reference state,” in Proc. Amer. Control Conf., New York, NY, USA, Jul.
2007, pp. 717–722.

[26] P. Yang, R. A. Freeman, G. J. Gordon, K. M. Lynch, S. S. Srinivasa, and R.
Sukthankar, “Decentralized estimation and control of graph connectivity
for mobile sensor networks,” Automatica, vol. 46, no. 2, pp. 390–396,
2010.

[27] R. A. Freeman, P. Yang, and K. M. Lynch, “Stability and convergence
properties of dynamic average consensus estimators,” in Proc. 45th IEEE
Conf. Decis. Control, San Diego, CA, USA, Jan. 2006, pp. 338–343.

[28] B. Briegel, D. Zelazo, M. Burger, and F. Allgöwer, “On the zeros of
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