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Fundamental Actuation Properties of Multirotors:
Force–Moment Decoupling and Fail–Safe Robustness

Giulia Michieletto , Markus Ryll , Member, IEEE, and Antonio Franchi , Senior Member, IEEE

Abstract—In this paper, we shed light on two fundamental actu-
ation capabilities of multirotors. The first is the degree of coupling
between the total force and total moment generated by the pro-
pellers. The second is the ability to robustly fly completely still in
place after the loss of one or more propellers, in the case of mono-
directional propellers. These are formalized through the definition
of some algebraic conditions on the control allocation matrices. The
theory is valid for any multirotor, with arbitrary number, position,
and orientation of the propellers. As a show case for the general
theory, we demonstrate that standard star-shaped hexarotors with
collinear propellers are not able to robustly fly completely still at
a constant spot using only five of their six propellers. To deeply
understand this counterintuitive result, it is enough to apply our
theory, which clarifies the role of the tilt angles and locations of
the propellers. The theory is also able to explain why, on the con-
trary, both the tilted star-shaped and the Y-shaped hexarotors can
fly with only five out of six propellers. The analysis is validated
with both simulations and extensive experimental results showing
recovery control after rotor losses.

Index Terms—Aerospace control, aircraft propulsion, aerial
robotics, motion control, unmanned aerial vehicles.

I. INTRODUCTION

QUADROTORS constitute the most common unmanned
aerial vehicle (UAV) currently used in the civil and in-

dustrial context. Their high versatility allows their application
field to range from exploration and mapping to grasping, from
monitoring and surveillance to transportation [1]–[4]. Physical
interaction for quadrotors has been enabled by theoretical tools
such as physical property reshaping [5] and external wrench es-
timation [6]. Nevertheless, the interest of robotic communities
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is now moving toward modeling, design, and control of more
complex multirotor platforms, where the number of propellers
is larger than four [7]–[12]. Several hexarotor and octorotor ve-
hicles have been recently presented for applications spanning
from multiagent cooperative manipulation (see, e.g., [13] and
the references within) to human and environment interaction
(see, e.g., [14]–[16]). Intuitively, the intrinsic redundancy of
these platforms can be exploited in order to enhance funda-
mental actuation properties as the possibility to independently
control the position and the attitude of the vehicle and the ro-
bustness to rotor-failures, which constitute key requirements
for the real-world deployment. However, having a redundant
number of propellers is not in general enough to allow a static
and safe hovering (i.e., a hovering in which both the linear and
the angular velocity are zero) as it can be seen, for example,
in [17], where experiments are shown in which the hexarotor
starts to spin when control of a propeller is lost, even if still five
propellers are available1 and from other commercially avail-
able platforms.2 A more in-depth theoretical understanding of
the fundamental actuation properties of multirotors is needed to
handle those critical and extremely important situations.

The six rotor case has received particular attention. In order
to ensure full actuation, recent works have presented new de-
signs based on a tilt-rotor architecture, whose effectiveness has
been exhaustively validated even considering quadrotor plat-
forms (see, e.g., [18] and [19]). In [20], it has been shown that
a standard star-shaped hexarotor can gain the 6-DoF actuation
using only one additional servomotor that allows to equally tilt
all propellers in a synchronized way.

It has been proven that in the case of rotor-loss the propellers’
mutual orientations affect the hexarotor control properties. For
example, Du et al. [21] have conducted a controllability analysis
based on the multirotor linear approximation around hovering.
They concluded that in the case of a rotor failure the control-
lability strongly depends on the propeller spinning directions.
Similarly, in [22], the concept of maneuverability has been intro-
duced and investigated for a star-shaped hexarotor having tilted
rotors. Maneuverability has been defined in terms of maximum
acceleration achievable in the 6 DoFs. In the failed-motor case,
the (vertical) maneuverability reduces due to the loss in con-
trol authority, and the hovering condition is still possible only
for some tilt of the propellers. In [23], the authors have instead
proposed a method to design a star-shaped hexarotor keeping
the ability to reject disturbance torques in all directions while

1See the video here: https://youtu.be/cocvUrPfyfo.
2See, e.g., the video here: https://youtu.be/HQ7wa5cBT_w?t=45.
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counteracting the effect of a failure in any motor. Their solution
rests on (inward/outward) tilting all the propellers of a small
fixed angle. Finally, in [24], we investigated the robustness of
star-shaped hexarotors as their capability to still achieve the
static hovering condition (constant position and orientation) af-
ter a rotor loss, concluding that tilted platforms are 1-loss robust
and providing also a suitable cascaded control law for failed
vehicles. In that paper only numerical simulation results have
been provided. In this paper, we aim at significantly pushing
forward the theoretical understanding on the actuation proper-
ties of multirotor UAVs and at experimentally corroborating the
developed theory.

Introducing an appropriate dynamic model, we first inves-
tigate the coupling between the control force and the control
moment that emerges from the intrinsic cascaded dependence
of the UAVs translational dynamics from the rotation one. We
derive some necessary conditions on the control input space
that imply the possibility to independently act on the vehicle
position and attitude. To validate our statements, we analyze the
fulfillment of this property for platforms known in the literature
and categorize them using a proposed taxonomy.

As second step, we formalize the concept of rotor-failure
robustness for multirotors with propellers that can produce lift
force in only one direction (by far the most common situation).
This is based on the possibility for a multirotor to hover in
a constant spot with zero linear and angular velocity (static
hovering realizability property) even in the case a propeller fails
and stops spinning, while being able to produce a full set of
control inputs in any direction. The developed theory can be
applied to any multirotor structure comprising any number of
propellers arranged in any possible way.

In particular, we applied the theory to hexarotor platforms,
since they are the most interesting ones. This led to an ex-
tensive discussion on the robustness/vulnerability properties of
these platforms. The generic hexarotor structure considered is
parametrized by three angles that determine the positions (w.r.t.
the platform center of mass (CoM)) and the spinning axes direc-
tion of the six propellers in order to span the most known classes
of hexarotors. The study of the role of these angles shows that
both the tilted star-shaped hexarotor and Y-shaped hexarotor
can still hover statically after a rotor-loss. These conclusions
are supported by simulative and experimental results.

The remainder of the paper is organized as follows. The dy-
namic model for the generically tilted multirotors is given in
Section II. Section III is devoted to the analysis of the force–
moment decoupling properties. An in-depth rotor-failure robust-
ness analysis for hexarotor platforms is conducted in Section V,
after the formalization of the concept of static hovering re-
alizability in Section IV. Then, Section VI and Section VII,
respectively, report the experimental and simulative results of
the control of failed six-rotors. Main conclusions and future
research directions are drawn in Section VIII.

II. GENERICALLY TILTED MULTIROTORS

A Generically Tilted Multirotor (GTM) is an aerial vehicle
consisting of a rigid body and n lightweight propellers. The

model of a GTM is derived in the following for the reader’s
convenience and to fix the nomenclature.

Considering the body frame FB = {OB , (xB ,yB , zB )} at-
tached to the platform such that the origin OB coincides with
its CoM, the full-pose of the vehicle in world frame FW is de-
scribed by the pair q = (p,R) ∈ SE(3), where p ∈ R3 is the
position of OB in FW , and the rotation matrix R ∈ SO(3) rep-
resents the orientation of FB w.r.t. FW . The linear velocity of
OB in FW is v = ṗ ∈ R3 , whereas the orientation kinematics
is governed by the nonlinear relation

Ṙ = R[ωωω]× (1)

where ωωω ∈ R3 is the angular velocity of FB w.r.t. FW , ex-
pressed in FB , and [·]× is the map associating any vector in R3

to the corresponding skew-symmetric matrix in so(3).
The ith propeller, with i = 1 . . . n, rotates with an angular

velocity ωωωi ∈ R3 about a spinning axis that passes through the
propeller center OPi

. Both the direction of ωωωi and the position
pi ∈ R3 of OPi

are assumed constant in FB , while any assump-
tion is allowed on the angular velocity sign accounting, e.g., for
both bidirectional (unconstrained) and mono-directional (con-
strained) propellers.3 As customary, the propeller applies at OPi

a thrust (or lift) force fi ∈ R3 that is equal to

fi = κcfi
‖ωωωi‖ωωωi (2)

where cfi
> 0 is the norm of fi when ‖ωωωi‖ = 1 and κ ∈ {−1, 1}.

Both cfi
and κ are constant parameters depending on the shape

of the propeller. The propeller is said of CCW type if κ = 1
and of CW type if κ = −1. For CCW propellers, the lift has the
same direction of the angular velocity of the propeller, while for
the CW, it has the opposite direction. Moreover the ith propeller
generates a drag moment τττd

i ∈ R3 whose direction is always
opposite to the angular velocity of the propeller

τττd
i = −c+

τi
‖ωωωi‖ωωωi (3)

where c+
τi

> 0 is the norm of τττd
i when ‖ωωωi‖ = 1. Also c+

τi
is

a constant parameter depending on the shape of the propeller.
We assume that the propeller is lightweight enough that the
associated inertia moment can be neglected w.r.t. the two main
aerodynamical effects just described and the platform inertia.

One can arbitrarily choose a unit direction vector zPi
∈ R3

that is parallel to the ith propeller spinning axis and con-
stant in FB . The angular velocity is then expressed as ωωωi =
(ωωω�

i zPi
)zPi

=: ωizPi
. The quantity ωi ∈ R is the propeller

spinning rate. Substituting this last expression in (2) and (3)
we obtain

fi = κcfi
|ωi |ωizPi

= cfi
uizPi

(4)

τττd
i = −c+

τi
|ωi |ωizPi

= cτi
uizPi

(5)

where ui = κ|ωi |ωi and cτi
= −κc+

τi
. The input ui ∈ R, a one-

to-one mapping with ωi , appears linearly in the force and mo-
ment equation. The type of propeller is understood by the sign
of cτi

(cτi
< 0 for CCW and cτi

> 0 for CW).

3In Section. IV, we shall restrict this model to the case of mono-directional
propellers for studying the fail–safe robustness of most common platforms.
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Denoting with τττ t
i = pi × fi ∈ R3 the thrust moment of the

ith propeller, the total control force fc ∈ R3 and control moment
τττ c ∈ R3 applied at OB and expressed in FB are

fc =
n∑

i=1

fi =
n∑

i=1

cfi
zPi

ui (6)

τττ c =
n∑

i=1

(τττ t
i + τττd

i ) =
n∑

i=1

(cfi
pi × zPi

+ cτi
zPi

) ui. (7)

Introducing the control input vector u = [u1 · · · un ]� ∈ Rn ,
(6) and (7) are shortened as

fc = F1u, and τττ c = F2u (8)

where the control force input matrix F1 ∈ R3×n and the control
moment input matrix F2 ∈ R3×n depend on the geometric and
aerodynamic parameters introduced before.

The facts that cfi
> 0 and c+

τi
> 0 imply that none of the

columns of both F1 and F2 is a zero vector, and therefore, we
have both rank(F1) ≥ 1 and rank(F2) ≥ 1 by construction.

Neglecting the second-order effects (such as, the gyroscopic
and inertial effects due to the rotors, the flapping, and the rotor
drag), the dynamics of the GTM is described by the following
system of Newton–Euler equations:

mp̈ = −mge3 + Rfc = −mge3 + RF1u (9)

Jω̇ωω = −ωωω × Jωωω + τττ c = −ωωω × Jωωω + F2u (10)

where g > 0, m > 0, and J ∈ R3×3 are the gravitational accel-
eration, the total mass of the platform, and its positive definite
inertia matrix, respectively, and ei is the ith canonical basis
vector of R3 with i = 1, 2, 3.

III. DECOUPLING OF FORCE AND MOMENT

In the following, we assume that the GTM satisfies

rank(F2) = 3. (11)

The input space Rn can always be partitioned in the orthogo-
nal subspaces Im(F�

2 ) and Im(F�
2 )⊥ = ker(F2), such that the

vector u can be rewritten as the sum of two terms, namely

u = T2 ũ = [A2 B2 ]
[
ũA

ũB

]
= A2 ũA + B2 ũB (12)

where T2 = [A2 B2 ] ∈ Rn×n is an orthogonal matrix such that
Im(A2) = Im(F�

2 ) and Im(B2) = ker(F2). Note that, thanks
to (11), A2 ∈ Rn×3 is full rank, i.e., rank(A2) = 3, while B2 ∈
Rn×n−3 has rank(B2) = n − 3. Given this partition, we have

τττ c = F2T2 ũ = F2A2 ũA (13)

fc = F1T2 ũ = F1A2 ũA + F1B2 ũB =: fA
c + fB

c . (14)

The matrix F2A2 in (13) is nonsingular thus any moment τττ ∈
R3 can be virtually implemented by setting ũA = (F2A2)

−1τττ
in (12) in conjunction with any ũB ∈ Rn−3 .

The control force, which obviously belongs to F := Im(F1),
is split in two components: fc = fA

c + fB
c , defined in (14). The

component fA
c = F1A2 ũA represents the “spurious” force gen-

erated by the allocation of the input needed to obtain a nonzero

control moment. This component belongs to the subspace
FA := Im(F1A2) ⊆ R3 . The component fB

c = F1B2 ũB in-
stead represents a force that can be assigned independently
from the control moment by allocating the input u in Im(B2) =
ker(F2). This “free” force component belongs to the subspace
FB := Im(F1B2) ⊆ R3 , and it is obtained by assigning ũB .
Being T2 nonsingular, we have that F = FA + FB . It is instru-
mental to recall that 1 ≤ dim F ≤ 3 because rank(F1) ≥ 1, and
that FB ⊆ F, thus dim F ≥ dim FB .

The dimension of FB and its relation with F sheds light
upon the GTM actuation capabilities. The following two sets of
definitions are devoted to this purpose.

Definition 1: A GTM is
1) fully coupled (FC) if dim FB = 0 (i.e., if F1B2 = 0),
2) partially coupled (PC) if dim FB ∈ {1, 2} and FB � F,
3) un-coupled (UC), or fully decoupled, if FB = F (or,

equivalently, FA ⊆ FB ).
In an FC GTM, the control force depends completely upon the

implemented control moment, in fact fB
c = 0, and thus, fc = fA

c .
In a PC GTM the projection of the control force onto FB can
be chosen freely while the projection onto F⊥

B ∩ F depends
completely upon the implemented control moment. Finally in
a UC GTM no projection of the control force depends on the
control moment, i.e., the control force can be freely assigned
in the whole space F. Notice that the full decoupling does not
imply necessarily that the control force can be chosen in the
whole R3 , unless it holds also F = R3 .

The second important classification is provided in the follow-
ing definition.

Definition 2: A GTM
1) has a decoupled direction (D1) if dim FB ≥ 1
2) has a decoupled plane (D2) if dim FB ≥ 2
3) is fully actuated (D3) if dim FB = 3.
Combining the previous definitions we say that a GTM
1) has a single decoupled direction (SD1) if dim FB = 1
2) has a single decoupled plane (SD2) if dim FB = 2.
If a GTM has a decoupled direction, then there exists at least

a direction along which the projection of the control force can
be chosen freely from the control moment. If a GTM has a
decoupled plane, then there exists at least a plane over which
the projection of the control force can be chosen freely from
the control moment. If a GTM is fully actuated, then the control
force can be chosen in all R3 freely from the control moment.

We shall show that the D3 definition is equivalent to the more
common definition known in the literature, i.e.,

rank(F) = rank
([

F1
F2

])
= 6. (15)

Postmultiplying F by T does not change the rank, we obtain

FT =
[
F1
F2

]
[A2 B2 ] =

[
F1A2 F1B2
F2A2 0

]
. (16)

Recalling that rank(F2A2) = 3, thanks to (11), we have that
rank(F) = 6 if and only if rank(F1B2) = 3, which corre-
sponds to the fully actuated definition given above.

In terms of relations between the above-mentioned defini-
tions, we note that: D3 implies UC, while the converse is not
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TABLE I
FUNDAMENTAL PROPERTIES OF THE ACTUATION OF A GTM, WHERE N/A DENOTES AN IMPOSSIBLE COMBINATION

true; D3 implies D2; D2 implies D1. Finally, D1 (and thus D2)
can coexist with PC or UC but not with FC. Note that in the
state-of-the-art of multirotor controllers, it is implicitly assumed
that the GTM is fully decoupled and there exists a decoupled di-
rection oriented along its zB axis. An exception is represented
by controller that we proposed in [24], where the decoupled
direction can be any and the GTM can be also PC.

Table I yields a comprehensive view of all aforementioned
definitions and relations. In the following, we provide two il-
lustrative examples of GMT and study their coupling properties
with the theoretical tools just introduced.

A. Standard (Collinear) Multirotors

Consider that Im(F�
1 ) ⊆ ker(F2) = Im(B2). Recalling that

F1 
= 0 , we have that F1B2 
= 0 and that

F2F�
1 = 0 ⇔ F1F�

2 = 0 ⇔ F1A2 = 0 (17)

therefore, FA = {0}, and hence, FB = F, i.e., the GMT is UC.
Classical multirotor systems fall in this case. They are char-

acterized by an even number of propellers having parallel ori-
entations, a balanced geometry and choice of CW/CCW types.
Specifically, as zPi

= zP , their matrices F1 and F2 result to be

F1 =
[
cf1 zP · · · cfn

zP

]

F2 =
[
cf1 p1 × zP · · · cfn

pn × zP

]
+

[
cτ1 zP · · · cτn

zP

]
. (18)

Notice, to have rank(F2) = 3, it is enough to choose at least
the position vectors of two propellers i and j such that pi × zP ,
pj × zP , and zP are linearly independent.

To show that F2F�
1 = 0, it has to be observed first that

F2F�
1 = Cf + Cτ , where Cf = ((

∑n
i=1c

2
fi
pi) × zP )z�P ∈

R3×3 and Cτ = (
∑n

i=1cτi
cfi

)zP z�P ∈ R3×3 . Then, by suitably
choosing the positions and the coefficients {cτi

, cfi
} one can

easily make Cf = Cτ = 0. For example, it is enough to make
the propellers pairwise balanced, i.e., satisfying pi + pj = 0,
cfi

= cfj
, and cτi

= −cτj
for i ∈ {1 . . . n

2 } and j = i + n
2 .

Many other choices are however possible.
Finally, w.r.t. Table I, we can note that such a multirotor sys-

tem has also a decoupled direction but not a decoupled plane,
because rank(F1) = 1, and thus, dim FB = 1. Classical mul-
tirotor systems are therefore un-coupled/fully decoupled (UC)
GTMs with a single decoupled direction (SD1).

In these platforms, control moment and control force can
be considered independently. Furthermore, two other properties

have been fundamental to establish the success and simplicity
in controlling such platforms. First of all, the control force is
always directed in the same direction in the body frame, re-
gardless of the value of the input u, and therefore, its direction
is not affected by the unavoidable uncertainty of the propeller
spinning rate. Second of all, the force direction in the world
frame can be reliably measured by simple attitude estimation,
as well as its derivative (by a gyroscope) and controlled through
the fully actuated rotational dynamics. The only price to pay is
underactuation (dim F = 1), which has not been an obstacle in
many cases of practical relevance.

B. Tilted Quadrotor

The tilted quadrotor used in [25] constitutes an example of a
kind of vehicle is such that the ith propeller is tilted about the axis
joining OB with OPi

of an angle αi in a way that the consecutive
rotors are oriented in a opposite way, i.e., α1 = α3 = α and
α2 = α4 = −α, with α ∈ [0, π

2 ]. Hence, assuming that all the
propellers have the same aerodynamic features (namely cfi

=
cf and |cτi

| = cτ ), we have

F1 = cf

⎡

⎣
0 sα 0 −sα
sα 0 −sα 0
cα cα cα cα

⎤

⎦ (19)

F2 = cτ

⎡

⎣
0 sα + rcα 0 −sα − rcα

−sα − rcα 0 sα + rcα 0
−cα + rsα cα − rsα −cα + rsα cα − rsα

⎤

⎦ (20)

where r = (cf /cτ )l with l denoting the distance between OB

and OPi
, sα = sin α, and cα = cos α.

From (20), it is easy to see that F = R3 if sα 
= 0 and cα 
= 0,
while F = span{e3} if sα = 0, and finally F = span{e1 , e2} if
cα = 0. In addition, F2 in (20) results to be full rank if tan α 
=
−r and tan α 
= 1

r , whereas if tan α = 1
r (−cα + rsα = 0),

then rank(F2) = 2 and if tan α = −r (sα + rcα = 0), then
rank(F2) = 1. When rank(F2) = 3, according to (12), the in-
put space R4 can be partitioned by choosing, for example,

A2 =

⎡

⎢⎢⎣

0 −1 −1
1 0 1
0 1 −1
−1 0 1

⎤

⎥⎥⎦ and B2 =

⎡

⎢⎢⎣

1
1
1
1

⎤

⎥⎥⎦. (21)
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As a consequence, we get

F1A2 = 2cf

⎡

⎣
sα 0 0
0 −sα 0
0 0 0

⎤

⎦ and F1B2 = 4cf

⎡

⎣
0
0
cα

⎤

⎦. (22)

When cα = 0, the GTM is FC because dim FB = 0. Instead,
as long as cα 
= 0, we have that dim FB = Im(F1B2) = 1, i.e.,
the GTM has a SD1, which is e3 . In this case, the platform
is UC if and only if sα = 0, in fact only in this case FB =
F (or equivalently FA = {0} ⊆ FB ). Instead, in the case in
which sα 
= 0 (as in [25]) the GMT is PC. The plane F⊥

B ∩ F =
span{e1 , e2} represents the plane along which the projection
of the control force depends completely on the choice of the
control moment. In [25], the effect of this term is partially
mitigated by the robustness of the hovering controller, however
the perfect tracking that is possible with α = 0 is theoretically
not guaranteed anymore.

IV. STATIC HOVERING REALIZABILITY WITH

MONO-DIRECTIONAL PROPELLER SPIN

The large majority of propellers used in GTMs can spin only
in one direction, mainly due to the larger efficiency of propellers
with asymmetric profile and the difficulty in reliably and quickly
changing the spinning direction. It is therefore important to
consider this additional constraint in the model and analyze the
consequences. In the following, we use the notation u ≥ 0 or
u > 0 to indicate that each entry of the vector u is nonnegative
or positive, this section, we aim at theoretically analyzing the
conditions under which a GTM can stay in a controlled static
equilibrium when the additional constraint u ≥ 0 is enforced.
We start from the following definition.

Definition 3 (Equilibrium): A GTM is in equilibrium if

ṗ = 0, p̈ = 0, ωωω = 0, ω̇ωω = 0 (23)

or, equivalently

ṗ = 0, fc = F1u = mgR�e3 , ωωω = 0, τττ c = F2u = 0. (24)

A basic property to ensure the rejection of external distur-
bances while being in equilibrium is the possibility to exert a
control moment τττ c in any direction and with any intensity by a
suitable allocation of the input vector u ≥ 0. In this perspective,
in [23], the following condition has been introduced.

Definition 4 (Realizability of any control moment [23]): A
GTM can realize any control moment if it is possible to allocate
the actuator values u ≥ 0 to obtain any τττ c ∈ R3 . Formally if

∀τττ c ∈ R3 ∃u ≥ 0 s.t. F2u = τττ c . (25)

In [23], it has been shown that (25) is equivalent to the simul-
taneous satisfaction of (11) and the following condition:

∃u > 0 s.t. F2u = 0. (26)

A drawback of Definition 4 is to consider only the realizabil-
ity w.r.t. the control moment, thus ignoring the control force.
However, a proper control force generation is also needed to
robustly control the GTM while in equilibrium. For this reason,
in [24], we have proposed the following additional condition.

Definition 5 (Realizability of any control force [24]): A
GTM can realize any control force if it is possible to allocate
the input to obtain a control force with any intensity fc ∈ R≥0
while the platform is in static hovering, i.e., if

∀fc ∈ R≥0 ∃u ≥ 0 s.t. F2u = 0 and ‖F1u‖ = fc . (27)

Note that the static hovering equilibrium (24) does not force
the vehicle in a certain orientation. As a consequence, when
it is possible to generate a control force with any nonnegative
intensity, then it is sufficient to attain the suitable attitude (ori-
entation) in order to realize any other control force vector.

Proposition 1: Condition (27) is equivalent to

∃u ≥ 0 s.t. F2u = 0 and F1u 
= 0. (28)

Proof: The proof is rather straightforward.
(28) ⇒ (27): Assume that ū satisfies (28), i.e., F2 ū = 0

and F1 ū 
= 0, then, for any fc ∈ R≥0 , it exists the vector u =
fc ū/‖F1 ū‖, which satisfies (27).

(27) ⇒ (28): Consider any fc ≥ 0, and assume that u satis-
fies (27), then the same u satisfies also (28). �

Exploiting the previous equivalent conditions, we introduce
the following more complete definition for the realizability of
the static hovering.

Definition 6 (Static hovering realizability): If the three con-
ditions (11), (26), and (28) are met then the GTM can realize a
static hover (with nonnegative inputs), or equivalently, is stati-
cally hoverable.

Notice that (11), (26), and (28) are only necessary conditions
to ensure that a platform can stay in any equilibrium according
to Definition 3.

The property of realizability of static hovering is agnostic
w.r.t. the set of attitudes at which the static hovering can be
realized. These are all the attitudes represented by a matrix R
for which (24) holds with u ≥ 0. If a GTM can hover statically,
we are sure that at least one attitude of such kind exists.

All the common star-shaped multirotors are GTM that can
hover statically, as stated in the following proposition.

Proposition 2: Multirotors having n propellers, with n ≥ 4
and even, cτi

= cτ > 0 for i = 1, 3 . . . n − 1, cτi
= −cτ for

i = 2, 4 . . . n, and cfi
= cf > 0, zPi

= e3 , pi = l Rz ((i − 1)
2π
n )e1 for i = 1 . . . n (where l = dist(OB ,OPi

) > 0 and Rz is
the canonical rotation matrix about the z-axis) can realize static
hovering.

Proof: After some simple algebra, it is easy to check that F2
is full rank. Furthermore, it is also easy to check that the vector
of all ones 1 = [1 · · · 1]� ∈ Rn has the property that F21 = 0
and F11 
=0, thus u=1 satisfies all the required conditions. �

Standard star-shaped multirotors described in Proposition 2
are not the only statically hoverable GTMs. In fact, in
Section V, we shall show other examples that arise in the impor-
tant situations of propeller failures. Conversely, it is also easy to
find examples of GTMs that cannot hover statically, like the one
in the following Proposition, which also explains why quadro-
tors have an alternated pattern of CW and CCW propellers.

Proposition 3: Consider a 4-rotor that respects all the condi-
tions in Proposition 2 apart from the fact that cτi

= cτ > 0 for
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i = 1, 2 and cτi
= −cτ for i = 3, 4. This GTM cannot realize

static hovering.
Proof: Expanding (7) for this special case, and noting that

p3 = −p1 and p4 = −p2 , we obtain

τττ c =
n∑

i=1

(cfi
pi × zPi

+ cτi
zPi

) ui (29)

= (cf p1 × e3 + cτ e3) (u1 − u3)

+ (cf p2 × e3 + cτ e3) (u2 − u4).

Denoting with f21 = (cf p1 × e3 + cτ e3) and f22 = (cf p2 ×
e3 + cτ e3), we have that F2 = [f12 f22 − f12 − f22 ] whose
rank is 2, and therefore, condition (11) is not met. �

Notice that if there was no constraint u ≥ 0 the capability of
realizing static hovering would have been equivalent to the ex-
istence of a decoupled direction, while since we are considering
the additional constraint u ≥ 0 one needs stronger properties
to be fulfilled. This remark is in line with the fact that GMTs
that can hover statically have a decoupled direction (D1) (see
Definition 2) as stated in the following proposition, but are not
necessarily un-coupled/fully decoupled (UC).

Proposition 4: A GTM that can realize static hovering has
a decoupled direction. In particular, consider any u = ū ∈ Rn

which satisfies (28), then a possible decoupled direction is

d∗ = F1 ū/‖F1 ū‖. (30)

Proof: ū ∈ ker(F2) hence the rightmost requirement in (28)
can be written as F1B2 ũB 
= 0, which implies dim FB ≥1. �

V. ROTOR-FAILURE ROBUSTNESS FOR HEXAROTORS

In this section, we apply the theory developed so far to inves-
tigate the rotor-failure robustness of hexarotor GTMs. Robust-
ness is defined as the capability of the platform to realize static
hovering even in the case a propeller fails and stops to spin.
The attention is focused on platforms having six rotors, because
in [26] it has been shown that it is the minimum number of
actuators that guarantees the resolution of controller allocation
problem with redundancy against a single failure.

Definition 7: In the context of this paper, “the kth rotor is
failed” means that it stops to spin (ωk = uk = 0), thus producing
neither thrust nor drag anymore. A rotor that is not failed, i.e.,
whose spinning rate can be still controlled, is healthy.

Definition 8: Given a hexarotor GTM whose propellers set
is denoted by P = {1 . . . 6}, this is said to be {k}-loss robust
with k ∈ P if the GTM possessing only the healthy rotors in
P\{k} can still realize static hover (according to Definition 6).

Definition 9: A hexarotor GTM is said to be
1) fully robust if it is {k}-loss robust for any k ∈ P;
2) partially robust if it is not fully robust but it is {k}-loss

robust for at least one k ∈ P;
3) fully vulnerable if it is neither fully nor partially robust.

A. (α, β, γ)–Hexarotor Family

In the following, we describe a fairly general hexarotor GTM
model parametrized by 3 angles: α, β, and γ. The angle γ is

Fig. 1. Arrangement of three consecutive propellers, highlighting the effect
of angles α, β , and γ .

meant to define the propellers arrangement, while the angles α
and β allow to describe the orientation of the rotors spinning
direction (see Fig. 1) as formally explained in the following.
The so obtained (α, β, γ)–hexarotor family spans (and extends)
the most commonly used classes of six-rotor GTMs. Our goal is
to analyze the relations that exist between these angles and the
robustness features of the members of this family. By doing so,
we significantly extend the results presented in [23], where only
a family parametrized by β is considered (i.e., it is assumed α =
γ = 0) and only the compliance with Definition 4 is analyzed,
instead of the more strict Definition 6.

For a (α, β, γ)-hexarotor GTM, the positions in FB of the
propeller centers OPi

s are given by

pi = Rz

(
(i − 1)π

3 − 1
2 (1 + (−1)i)γ

)
︸ ︷︷ ︸

Rγ (i)

le1 ∀i ∈ P (31)

where γ ∈ [0, π
3 ] and l = dist(OB ,OPi

) > 0. In this way the
smallest angle between OB OPi

and OB OPj
, j = (imod 6) + 1

is alternatively π
3 − γ and π

3 + γ, as shown in Fig. 1.
The orientation of the ith propeller is instead provided by

zPi
= Rγ (i)Ry (β)

︸ ︷︷ ︸
Rβ

Rx(αi)︸ ︷︷ ︸
Rα (i)

e3 = Rαβγ (i)e3 (32)

where Rx ,Ry are the canonical rotation matrices about the
x-axis and y-axis, respectively, αi = (−1)i−1α (with i ∈ P),
and α, β ∈ (− π

2 , π
2 ]. To geometrically understand the meaning

of (32) one can note that the unit vector zPi
is equal to the z-

axis of the frame obtained after the following two consecutive
rotations applied to FB : the first is a rotation of an angle αi

about the vector
−−−−→
OB OPi

, while the second is a rotation of an
angle β about the y-axis of the intermediate frame obtained after
the first rotation.

In terms of aerodynamic coefficients, each hexarotor of the
family has the following alternating pattern:

cfi
= cf , cτi

= (−1)i−1cτ ∀i ∈ P (33)

where cf and cτ are constants depending on the propellers.
In the following, we comment on the most relevant configu-

rations that can be obtained by changing the three angles. First,
when sweeping γ from 0 to π

3 , we obtain a smooth transi-
tion between the two most popular propeller arrangements for
hexarotors depicted in Fig. 2, i.e.,

1) γ = 0: the hexarotor has a star-shape, characterized by
the fact that all the OPi

s are located at the vertexes of a
regular hexagon (see Fig. 2(a));
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Fig. 2. Two most popular (0, 0, γ)–hexarotor GTMs. (a) Standard star-shaped
hexarotor (γ = 0). (b) Y-shaped hexarotor (γ = π

3 ).

2) γ = π
3 : the hexarotor has a Y-shape, characterized by the

fact that the OPi
s are pairwise located at the vertexes of

an equilateral triangle (see Fig. 2(b)). To make this con-
figuration practically feasible there must be a suitable ver-
tical distance between each pair of coincident propellers.
However, this fact does not change the outcome of the
following analysis, and therefore is neglected.

The angles α and β influence only the propeller orientations:
1) If both α = 0 and β = 0, then the zPi

s are all pointing
in the same direction as zB . This is the most common
situation for standard hexarotors because it is the most
efficient in terms of energy. However, it results in an under
actuated dynamics due to the fact that rank(F1) = 1.

2) If α 
= 0 and β = 0, then the zPi
s are titled alternatively by

an angle α and −α about the axes
−−−−→
OB OP1 , . . . ,

−−−−→
OB OP6 .

This choice makes the GTM less energy efficient than
the previous case. However, its advantage is that one can
obtain rank(F) = 6, i.e., a D3 GTM.

3) If α = 0 and β 
= 0, then the zPi
s are titled by an angle

β about the axes passing through the OPi
s and tangen-

tial to the circle passing through all the OP1 , . . . , OP6 .
This choice has the same full-actuation pros and energy
efficiency cons of the previous case.

4) Finally, the case in which α 
= 0 and β 
= 0 is a combina-
tion of the previous two.

TABLE II
ROLE OF THE ANGULAR PARAMETERS α, β , AND γ W.R.T. THE HEXAROTOR

ACTUATION PROPERTIES

The rest of the section is devoted to the analysis of the role of
the angular parameters α, β, γ w.r.t. the rotor-failure robustness.
Specifically, we study the conditions on these angles which make
it possible to realize static hovering after a rotor loss. To this
end, we denote by G1(α, β, γ),G2(α, β, γ) ∈ R3×6 the control
force and moment input matrices of an (α, β, γ)-hexarotor (i.e.,
the F1 and F2 appearing in (8), respectively). In addition, we
indicate as kG1(α, β, γ) and kG2(α, β, γ) the 3 × 5 matrices
obtained from G1(α, β, γ) and G2(α, β, γ), respectively, by
removing the kth column, i.e., assuming that the kth propeller
fails, with k ∈ P . Finally, for the sake of compactness, we
summarize the propeller aerodynamic and geometric features
using r = (cf /cτ )l, while the symbols s and c stand for sine
and cosine, respectively.

The formal results derived in the following are summed up in
Table II that states the influence of the (α, β, γ) angles w.r.t. the
full-actuation and the rotor-failure robustness.

B. On the Vulnerability of the (0,0,0)-Hexarotor GTMs

Before we proceed to analyze the role of the single angular
parameters, we consider the case α = β = γ = 0, which coin-
cides with a standard star-shaped hexarotor. Although highly
used, and often believed to be robust to failures, supposedly
thanks to the presence of two additional rotors w.r.t. a quadro-
tor, these GTMs are actually fully vulnerable, as stated in the
following proposition, which is a direct consequence of the two
results shown independently in [23] and [24].

G2(0, 0, 0) = cτ

⎡

⎢⎢⎣

0
√

3
2 r

√
3

2 r 0 −
√

3
2 r −

√
3

2 r

−r − 1
2 r 1

2 r r 1
2 r − 1

2 r

1 −1 1 −1 1 −1

⎤

⎥⎥⎦ (34)

G2(α, 0, 0) = cτ

⎡

⎢⎢⎣

0
√

3
2 (sα + rcα)

√
3

2 (sα + rcα) 0 −
√

3
2 (sα + rcα) −

√
3

2 (sα + rcα)

− (sα + rcα) − 1
2 (sα + rcα) 1

2 (sα + rcα) (sα + rcα) 1
2 (sα + rcα) − 1

2 (sα + rcα)

cα − rsα −cα + rsα cα − rsα −cα + rsα cα − rsα −cα + rsα

⎤

⎥⎥⎦ (35)

G2(0, β, 0) = cτ

⎡

⎢⎢⎣

sβ − 1
2

(
sβ − r

√
3cβ

) − 1
2

(
sβ − r

√
3cβ

)
sβ − 1

2

(
sβ + r

√
3cβ

) − 1
2

(
sβ + r

√
3cβ

)

−r cβ − 1
2

(√
3sβ + r cβ

) 1
2

(√
3sβ + r cβ

)
r cβ − 1

2

(√
3sβ − r cβ

) 1
2

(√
3sβ − r cβ

)

cβ −cβ cβ −cβ cβ −cβ

⎤

⎥⎥⎦ (36)

G2(0, 0, γ) = cτ

⎡

⎢⎢⎣

0 +r s
(

π
3 − γ

)
+r

√
3

2 +r s (π − γ) −r
√

3
2 +r s

( 5π
3 − γ

)

−r −r c
(

π
3 − γ

)
+r 1

2 −r c (π − γ) +r 1
2 −r c

( 5π
3 − γ

)

1 −1 1 −1 1 −1

⎤

⎥⎥⎦. (37)
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Fig. 3. Composition of the propeller moments for a (α, 0, 0)-hexarotor GTM
with any α. (a) Opposed rotors. (b) All healthy rotors. (c) Rotor-failure case.

Proposition 5 (Proposition 2 in [24]): The (0, 0, 0)–hexar-
otor GTM is fully vulnerable.

We provide next a new geometrical interpretation of this
counterintuitive result which will help both to understand the
result itself and to highlight the main drawback of the (0, 0, 0)–
hexarotor design that should be overcome to attain the robust-
ness against failure of such platforms.

Exploiting (31) and imposing α = β = γ = 0, the control
moment input matrix of the (0, 0, 0)–hexarotor GTM results
as in (34)–(37) bottom of the previous page. Note that the
columns {gi ∈ R3 , i ∈ P} of G2(0, 0, 0) are such that g1 =
−g4 , g2 = −g5 , g3 = −g6 . This means that the total mo-
ments generated by the two propellers of an opposed-propeller
pair are always collinear regardless of the values assigned to
their inputs ui and uj , where (i, j) ∈ {(1, 4), (2, 5), (3, 6)} (see
Fig. 3(a)), i.e., we have

τττ c = g1(u1 − u4) + g2(u2 − u5) + g3(u3 − u6). (38)

According to (38), the total control moment applied to the plat-
form can be expressed as the linear combination of the linearly
independent vectors g1 ,g2 ,g3 that identify the directions of the
moments of opposed-rotor pairs. Given that, even if ui, uj ≥ 0,
the sign of (ui − uj ) can be any, τττ c can have any direction (and
intensity) in R3 (see Fig. 3(b) for a graphical representation).
However, if any propeller fails, e.g., propeller 6, then u6 = 0
and the control moment degrades to

τττ c = g1(u1 − u4) + g2(u2 − u5) + g3u3 . (39)

Given that u3 in (39) must be nonnegative, τττ c is limited in the
half-space of R3 generated by g3 and by the delimiting plane
Π12 parallel to g1 and g2 , as graphically shown in Fig. 3(c).
The condition (25) is therefore not satisfied, because any τττ
belonging to the complementary half-space cannot be attained
by any choice of u1 . . . u5 ≥ 0.

We can summarize as follows:
1) the total moments generated by two propellers that are

opposed are collinear; therefore,
2) the moments generated by two opposed-rotor pairs (g1 ,

g4 , g2 , and g5 in Fig. 3(b)) lie all on a 2-dimensional (2-D)
plane, even if they are generated by the (conical) combi-
nation of four independently controllable moments4; as a
consequence,

3) five propellers alone can only generate half of the whole
3-D space.

4A conical combination of m vectors can contain in principle a subspace of
dimension up to m − 1, i.e., up to 3 if m = 4.

If one finds a way to make the four moments at point 2)
noncoplanar, but actually spanning (by conical combination) the
whole space R3 , then symmetry would be broken, singularity
overcome, and robustness hopefully achieved. A way to obtain
this is to design the hexarotor such that the moment of the
opposed propeller pairs are not collinear as in the (0, 0, 0)-
hexarotor case. We will show next by changing which ones of
the angular parameters of the considered family of hexarotors
one can actually achieve such goal.

C. Role of α

Despite the influential role of α in guaranteeing the full-
actuation of the (α, β, γ)-hexarotor [7], [20], its effect in the
robustness achievement is completely marginal, as summarized
in the following statement.

Proposition 6: For any α ∈ (− π
2 , π

2 ] the (α, 0, 0)–hexarotor
GTM is fully vulnerable.

Proof: The control moment input matrix is reported in (35).
Both G2(α, 0, 0) and kG2(α, 0, 0) (for any k ∈ P) are
full rank for every value of α in the domain of inter-
est, except when tan(α) = −r and tan(α) = 1/r. In fact,
considering Ḡ(α, 0, 0) = G2(α, 0, 0)G�

2 (α, 0, 0) ∈ R3×3 and
kḠ(α, 0, 0) =k G2(α, 0, 0)kG�

2 (α, 0, 0) ∈ R3×3 , it holds that

det(Ḡ(α, 0, 0)) = 54c2
τ (sα + rcα)4 (cα − rsα)2 (40)

det(kḠ(α, 0, 0)) = 27c2
τ (sα + rcα)4 (cα − rsα)2 . (41)

Trivially, (40) and (41) are null when tan(α) = −r and
tan(α) = 1/r, so in these two cases the requirement (11) is
not satisfied and the hexarotor cannot hover statically.

For other cases, we focus the attention on the require-
ment (26), analyzing the ker(kG2(α, 0, 0)). Thanks to the par-
ticular structure of the matrix in (35), it can be seen that

ker
(
kG2(α, 0, 0)

)
= span

(
h\k

k+1 + h\k
k−2 , h\k

k+2 + h\k
k−1

)
(42)

where h\k
i is the vector of the canonical basis of R5 obtained in

the following way:
1) first compute the vector of the canonical basis of R6 ,

which has a one in the entry i mod 6 and zeros elsewhere,
2) then remove the kth entry from the previous vector (which

is a zero entry by construction).
For example, for k = 6, we have h\6

6+1 = [1 0 0 0 0]� and

h\6
6−2 = [0 0 0 1 0]� and therefore h\6

6+1 + h\6
6−2 = [1 0 0 1 0]�.

Additionally we have h\6
6+2 + h\6

6−1 = [0 1 0 0 1]�. It is easy to
check that the last two vectors are in ker(6G2(α, 0, 0)) regard-
less of the value of α. This implies that any u ∈ R5 that satisfies
6G2(α, 0, 0)u = 0 has one entry structurally equal to 0 (cor-
responding to the propeller k + 3 mod 6), and therefore (26),
cannot be satisfied. This finally means that the failed (α, 0, 0)-
hexarotor GTM cannot fly in static hovering, namely it is fully
vulnerable according to Definition 6. �

From a geometrical perspective, with reference to Fig. 3,
tilting the propeller 3 of an angle α about

−−−−→
OB OP3 and the

propeller 6 of an angle −α about
−−−−→
OB OP6 does tilt the two

moments generated by the two opposite rotors in the same way
and therefore keeps them collinear. The same holds for the pairs
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(1, 4) and (2, 5). As a consequence, the discussion provided in
Section V-B is still valid and the vulnerability of the (α, 0, 0)-
hexarotor is confirmed by the geometric intuition.

D. Role of β

The importance of β angle w.r.t. the capability of a star-shaped
hexarotor to fly after a rotor failure has been discussed indepen-
dently in [23] and [24]. Pushing further the understanding of this
fact, in the following, we analytically and geometrically prove
that a (0, β, 0)-hexarotor GTM is also fully robust according to
the stronger property defined in Definition 9.

Proposition 7: Assume that α = γ = 0, then for any β ∈
(−π

2 , π
2 ) such that | tan β| 
= √

3r and c2β 
= 1
(1−r 2 ) , the result-

ing (0, β, 0)-hexarotor GTM is fully robust.
Proof: When α = γ = 0, the control moment input ma-

trix is parametrized by the angle β as in (36). Introducing Ḡ
(0, β, 0) = G2(0, β, 0)G�

2 (0, β, 0) ∈ R3×3 and kḠ(0, β, 0) =
kG2(0, β, 0)kG�

2 (0, β, 0) ∈ R3×3 , we first observe that

det(Ḡ(0, β, 0)) = 54c2
τ c2β

(
1 + (r2 − 1)c2β

)2
(43)

det(kḠ(0, β, 0)) = 27c2
τ c2β

(
1 + (r2 − 1)c2β

)2
. (44)

Hence, the full-rankness (11) is guaranteed for any β ∈ (−π
2 , π

2 )
even in the case of any propeller failure, as long as c2β 
= 1

(1−r 2 ) .
Then, proceeding as in [23], we analyze the null space of the

matrix kG(0, β, 0), assuming w.l.o.g. k = 6. It can be seen that
a generic vector u ∈ ker(6G(0, β, 0)) satisfies

u1 =
ε + 1
2ε

u3 − ε + 1
ε − 1

, u2 = u3 − ε + 1
ε − 1

(45)

u4 =
ε + 1
2ε

u3 + 1, u5 = 1 (46)

where ε = − 1√
3r

tan β ∈ R. Hence, supposing 0 < |ε| < 1, it

can be proved that u ∈ R5 defined in (45) and (46) is strictly
positive if 0 < u3 < |2ε/(ε + 1)|. As a consequence, the con-
dition (26) is fulfilled.

Using the parametrization (45)–(46) for the vector u, it can
also be proved that the 6G1(0, β, 0)u 
= 0, where 6G1(0, β, 0)
is obtained removing the sixth column of the force input matrix

G1(0, β, 0) =

⎡

⎢⎢⎣

sβ 1
2 sβ − 1

2 sβ −sβ − 1
2 sβ 1

2 sβ

0
√

3
2 sβ

√
3

2 sβ 0 −
√

3
2 sβ −

√
3

2 sβ

cβ cβ cβ cβ cβ cβ

⎤

⎥⎥⎦. (47)

Having checked that the three conditions (11), (26), and (28)
are met for any β ∈ (− π

2 , π
2 ) such that | tan β| 
= √

3r and c2β

= 1

(1−r 2 ) , then the statement of the proposition is proved. �
This result can be also partially justified by geometric intu-

ition. In fact, when all the propellers are equally inward/outward
tilted of an angle β 
= 0, the total moments of the opposed rotors
are not collinear anymore. This is shown in Fig. 4(a) for pro-
pellers 3 and 6, where the vectors τd

3 and τd
6 are rotated in a way

that breaks the symmetry while τ t
3 and τ t

6 have the same orienta-
tion as in Fig. 3(a) and are not shown. Thus, the moments of the
opposed propellers, g3u3 and g6u6 in Fig. 4(a), are not collinear
anymore and the same holds for the other two pairs of opposed
propellers. The total moment is thus the conical combination of

Fig. 4. Composition of the propeller moments for a (0, β, 0)-hexarotor GTM
with any β 
= 0. (a) Opposed rotors. (b) All healthy rotors. (c) Rotor-failure
case.

six different directions:

τττ c = g1u1 + g2u2 + g3u3 + g4u4 + g5u5 + g6u6 . (48)

In this case, the failure of the sixth (or any other) propeller
does not reduce the total control moment space since if we even
only consider four of the five remaining vectors g1 ,g2 ,g4 ,g5
they are not anymore coplanar but actually their conical combi-
nation C1245 spans the whole R3 , as depicted in Fig. 4(c). The
same holds for the failure of any other propeller.

E. Role of γ

We conclude evaluating the role of γ. Note that the condi-
tion α = β = 0 and γ 
= 0 entails that the propellers are parallel
oriented but not equally spaced. This asymmetry of the plat-
form results to be fundamental to overcome the vulnerability
established in Section V-B.

Proposition 8: Assume that α = β = 0, then for any γ ∈
(0, π

3 ], the resulting (0, 0, γ)-hexarotor GTM is fully robust.
Proof: Imposing α = β = 0, the control moment input ma-

trix is G2(0, 0, γ) in (37). This is full rank for any choice of
γ ∈ [0, π

3 ], and analogously is the derived kG2(0, 0, γ) for any
k ∈ P . This fact can be verified by considering the determinant
of the matrices Ḡ2(0, 0, γ) = G2(0, 0, γ)G�

2 (0, 0, γ) ∈ R3×3

and kḠ2(0, 0, γ) =k G2(0, 0, γ)kG�
2 (0, 0, γ) ∈ R3×3 . Specif-

ically, it occurs that det(Ḡ2(0, 0, γ)) = 54c2
τ r4 , hence the con-

dition (11) is always fulfilled independently from γ. In the case
of any rotor failure, the determinant of kḠ2(0, 0, γ) results in-
stead to be a complex nonlinear function of γ, however it can be
numerically checked that it is never null in the domain of inter-
est. Hence, the first condition for the static hovering realizability
is always satisfied in the case of rotor-failure.

To explore which conditions on γ possibly ensure that
kG2(0, 0, γ) fulfills requirement (26), we assume again that
the sixth rotor fails. The solution of 6G2(0, 0, γ)u = 0 is

u1 = u4 +
(−√

3sγ − cγ + 1)
(2cγ + 1)

(49)

u2 = −
(√

3sγ − cγ + 1
)

(2cγ + 1)
u4 +

3
(2cγ + 1)

(50)

u3 = −
(√

3sγ − cγ + 1
)

(2cγ + 1)
u4 +

(√
3sγ − cγ + 1

)

(2cγ + 1)
(51)

u5 = 1. (52)

It can be verified that, as expected, the positivity of u cannot be
ensured for γ = 0. In fact, replacing γ = 0 in (51), we obtain
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Fig. 5. Composition of the propeller moments for a (0, 0, γ)-hexarotor GTM
with γ = π

3 . (a) Opposed rotors. (b) All healthy rotors. (c) Rotor-failure case.

u3 = 0, a structurally zero entry, as in the proof of Proposition 6.
On the other side, observing that 0 ≤ sγ ≤

√
3

2 and 1
2 ≤ cγ ≤ 1

in the domain of interest, the condition 0 < γ < π/3 implies
the existence of a strictly positive vector u ∈ ker(6G2(0, 0, γ)),
namely the fulfillment of (26).

Exploiting (49)–(52), it is possible to show that also (28)
is satisfied when γ > 0. To do so, it is necessary to evaluate
6G1(0, 0, γ)u by introducing the control force input matrix

G1(0, 0, γ) = cf [e3 e3 e3 e3 e3 e3 ] (53)

Trivially, it results that 6G1(0, 0, γ)u 
= 0. As a consequence,
both the Y-shape hexarotor (γ = π

3 ) and all the less common
configurations where 0 < γ < π

3 are fully robust. �
Fig. 5(a) shows the moments composition for a pair of op-

posed rotors in a Y-shaped hexarotor. It is straightforward to
see that whenever γ > 0 the moment directions of the opposed
propellers are not collinear anymore. This generates the same
beneficial consequences described in Section V-D, as shown in
Fig. 5(b) and (c). For example, the conical combination C1245
spans the whole R3 also in this case.

VI. EXPERIMENTS WITH A STAR-SHAPED HEXAROTOR

In this section, we present and discuss real-world experiments
that have been conducted on a star-shaped hexarotor platform
available at LAAS-CNRS, the Tilt-Hex.

A. Experimental Setup

The Tilt-Hex aerial robot is a fully actuated (and therefore
un-coupled/fully decoupled) multirotor, developed at LAAS-
CNRS. It is a ( 7π

36 , 5π
36 , 0)–hexarotor GTM, namely is an instan-

tiation of a star-shaped hexarotor whose propellers are tilted with
α = 35◦ and β = 25◦. These angles represent a good choice to
achieve a balance between full actuation and inefficient losses
as a result of internal forces. In addition, the choice of no-zero α
entails some practical advantages also in the case of a motor-fail
that will be clear in the following.

All the mechanical parts of the Tilt-Hex are off-the-shelf
available or 3-D printable. The diameter of the platform, includ-
ing the propeller blades, is 1.05 m and the total mass, with a
2200 mAh Li-Po battery, results as m = 1.8 kg.

The MK3638 brushless motors by MikroKopter are used, to-
gether with 12 in propeller blades. A single propeller–motor
combination can provide a maximum thrust of 12 N. The ESC
(electronic speed controller), a Bl-Ctrl-2.0, is as well purchased
from MikroKopter. The control software running on the ESC,
developed at LAAS, controls the rotational propeller speed in

Fig. 6. Time line of controller switching. (1) HC is running, failure is manually
triggered—ith propeller stops. (2) Failure gets detected, opposing propeller is
stopped and controller switched to FC. (3) Manual trigger to restart the two
stopped motors. (4) Two rotors reach 16 Hz, the controller is switched back to
HC. (5) Reference trajectory reaches the initial position and orientation of the
Tilt-Hex.

closed loop and additionally allows to read the current spinning
rate [27]. An on-board inertial measurement unit (IMU) pro-
vides measurements of three gyroscopes and a 3-D accelerom-
eter at 500 Hz. An OptiTrack motion capture system provides
position and orientation data at 100 Hz. These data are fused via
a UKF state estimator to obtain the full vehicle state at 500 Hz.

The controller is implemented in MATLAB-Simulink and
runs at 500 Hz on a stationary workstation. As its computational
effort is very low (considerably below 1 ms per control loop),
it could be ported easily to an on-board system. Based on our
experience with a similar porting, we expect the performances
of the onboard implementation to be better than the MATLAB-
Simulink implementation, thanks to the possibility of reaching a
faster control frequency (greater than 1 kHz) and latency below
1 ms. Therefore, the experiments shown here represent a worst
case scenario from this point of view.

During the execution of all experiments, two controllers have
been utilized (see Fig. 6). While the Tilt-Hex is healthy (all rotors
working) or before a failure detection of an ESC, the controller
presented in [20] and [28] is used—referred to as the healthy
controller (HC). As soon as a failure is detected, the controller is
switched to the controller described in [24]—referred to as failed
controller (FC).5 In some of the following experiments, the
failure of the ESC has been triggered externally. The fail trigger
lets an ESC to immediately stop its propeller from spinning
and to rise a failure flag. The status of the failure flags of all
ESCs is checked every 10 ms. When a failure is detected, the
opposed propeller is stopped and the controller is switched to
FC. To change back the status from failed to healthy, the two
stopped motors need to be restarted. As the time duration is not
always identical, the FC is used until a spinning rate of 16 Hz
(minimum closed-loop spinning rate of the ESC) is reached on
both previously stopped motors. Then, the controller is switched
to HC and a trajectory is computed to drive back the platform
from its current position and orientation to the initial reference
position and orientation smoothly. Finally, the Tilt-Hex reaches
its initial position and orientation.

We used external failure triggers for conducting several ex-
periments in a row and in a repeatable way. In addition, we
also performed an experiment where a propeller was mechani-
cally stopped by an impact with an external object during flight.
Fig. 7 reports some significant frames of the experiment with the
mechanical stop. This shows the robustness of the proposed ap-
proach and the possibility of using it within a pipeline of failure

5We reused in this section the acronym “FC” for failed controller since there
is not risk to confuse it with “fully coupled.”
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Fig. 7. Recovering of the Tilt-Hex from the manual hitting of one of its
propeller. The numbers indicate the different phases of the experiment. (1) Static
hover in healthy conditions. (2) Manual stop of a propeller. (3) Transient phase.
(4) Static hovering in failed conditions (nonspinning propellers are marked
in red).

detection, isolation, and reaction. The reader is referred to the
videos attached to this paper to fully enjoy all these experiments.

B. Experimental Validations

1) Basic Principles: In the first experiment (Experiment 1),
we present the basic principles and behavior of the controller
and its recovering capabilities. We report the results of three
consecutive failures of the first three propellers, resulting in the
stopping of all propeller pairs (1–4, 2–5, 3–6) of the Tilt-Hex.
To perform the experiment, we have as well recovered from the
failed situation and restarted the failed and the actively stopped
motor (compare Fig. 6). As the Tilt-Hex is a fully actuated aerial
vehicle, a smooth transient trajectory is followed to recover the
initial pose after the motor failure phase.

The results of Experiment 1 are presented in Fig. 8. The back-
ground colors of the plots indicate the used controller. In green
shaded areas HC is used, in red shaded areas FC is used while
in white shaded areas FC is used as well but the two stopped
motors are restarted already. The first two plots of Fig. 8 present
the reference position pr , the actual position p, and the posi-
tion error ep = p − pr irrespective of the used controller. Note
that initially, while HC is used, the reference position is tracked
perfectly. At t1 = 7.58 s the failure of motor 1 is triggered (cor-
responding to event 1 in Fig. 6) and at t2 = 7.6 s the controller is
switched to FC and the opposed motor 4 is stopped (correspond-
ing to event 2 in Fig. 6). Immediately the position error increases,
reaching a peak position error norm of ‖ep‖ = 0.37 m. In the
moment of controller switching, a discontinuity of the refer-
ence orientation Rr occurs. This is evident comparing the third
and fourth plot of Fig. 8: the third plot reports the current and
reference orientation expressed in terms of roll-pitch-yaw an-
gles, while the fourth plot depicts the orientation error, defined
as eR = 1

2 (R�
r R − R�Rr )∨, where the operator [·]∨ describes

the map from the so(3) to R3 . The discontinuity is explained by
the different steady hovering orientations of the failed system,
which is due to the presence of no-zero tilt angle α. Indeed,
setting α 
= 0 implies that, when a motor fails, the PC resulting
platform has a decoupled direction which is not parallel to zB .

Fig. 8. Experiment 1—three consecutive failure and recovery of motor
1 till motor 3. Green shaded background—Tilt-Hex healthy; Red shaded
background—Tilt-Hex rotor failed; White shaded background—FC but stopped
propellers are restarted already.

However, it implies also a smaller condition number for the ma-
trix kG2( 7π

36 , 5π
36 , 0) that has to be inverted in the computation

of the input required to achieve the reference control moment
(see [24] for further details).

After the controller switching, the system stabilizes within a
few seconds (observe ṗ andωωω in Fig. 8). The final orientation er-
ror is negligible, while a small steady-state position error is still
visible, which can be easily explained by the unavoidable uncer-
tainty in the force and torque coupling matrices in (8). This error
can be further decreased using integral terms or adaptive control,
however the main goal here was to show that static hovering (i.e.,
with zero velocities) is achieved, rather than showing extremely
accurate position control. At t3 = 23.7 s the two stopped motors
are asked to start again and at t3 = 24.8 s both rotors are spin-
ning with the minimum spinning rate ω1,4 = 16 Hz of the ESC.
The controller is switched to HC and the initial position and
orientation is reached fast without any visual steady-state error.
The same procedure is repeated for motor i = 2 and i = 3. In
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Fig. 9. Experiment 2-1—Mean of state error function for 23 trials in position
(blue) and orientation (red) and maximum state error values over all trials
(yellow and purple).

Fig. 10. Experiment 2-2—Step response of the system with failure. At t =
20 s a step of 0.5 m along pr 1 is commanded. At t = 55 s a step of −0.5 m along
pr 1 is commanded. The time of the step signal is indicated by the black dashed
line in all plots.

the three failed phases different motor pairs are stopped: it is
interesting to notice the different hovering orientations during
the different failures.

2) Robustness: We now test the robustness of the controller
by three experiments. In Experiment 2-1, we present accumu-
lated results of n = 23 repeated failures of motor 3, and in Ex-
periment 2-2, we show the response of the system in the case of
a step in the reference position under failed conditions. Finally,
in Experiment 2-3, we present the response of the system to a
continuously changing reference (similar to a ramp response).

In Experiment 2-1, the last phase of Experiment 1 (from 60 to
80 s) has been repeated for 23 trials: the Tilt-Hex has recovered
from the failure in all the cases. To get a better understand-
ing of the vehicle performance, we define a new position and
orientation error function representing the error of its state

ep = ‖ep‖ + k‖ev‖, eR = ‖eR‖ + k‖ew‖

with k = 1 s, ev = ṗ, and eω = ωωω. In Fig. 9, we report the mean
error value ēp and ēR of all trials, and their maximum value at
each time instant. The failure is triggered at t = 0 s, and it is
evident that the position and orientation state error increases
directly after the failure but then decreases after ≈ 2.5 s and
stabilizes at small values after ≈ 4 s. Similarly, the maximum of
the state error increases in the beginning, reaches its maximum
after ≈ 2.5 s but then decreases rapidly.

In Experiment 2-2, (see Fig. 10) a step in the reference posi-
tion pr of 0.5 m is commanded at t = 20 s under failed condition
(FC). At t = 55 s an opposing step of −0.5 m is commanded.
The Tilt-Hex tracks both steps within a few seconds and the
platform position and orientation remains perfectly stable.

Fig. 11. Experiment 2-3—Trajectory following of the system with failure.

TABLE III
STANDARD DEVIATIONS OF THE SIMULATED NOISE

In Experiment 2-3, the reference position trajectory is
changed about all axes with a total trajectory length of 2.4 m
(see Fig. 11, first plot) while the reference orientation is hor-
izontal (Rr = I3). The position error remains limited with a
maximum norm position error of max|ep | = 0.3 m at 59 s. Note
that the failed Tilt-Hex is actually more difficult to control than
an ordinary underactuated system (e.g., a standard quadrotor).
In the case of a collinear multirotor system, the generated thrust
force is always perpendicular to the rotor plane regardless of the
rotational speed of each rotor. In the case of the failed Tilt-Hex,
this property is not given anymore, making the tracking of time
varying trajectories much more difficult.

VII. SIMULATIONS WITH A Y-SHAPED HEXAROTOR

Given that a Y-shaped hexarotor (namely a (0, 0, π
3 )-hexar-

otor GTM) is not available for testing in our lab, we tested the
theoretical results regarding this kind of hexarotor in a real-
istic simulation for the case of a single propeller failure. The
simulation exploits the dynamic model (8) extended by several
real-world effects to increase the fidelity.

1) Position and orientation feedback and their derivatives are
impinged on time delay tf =12 ms and sensor noise ac-
cording to Table III. The actual position and orientation
are fed back with a lower sampling frequency of only
100 Hz while the controller runs at 500 Hz. These prop-
erties are reflecting a typical motion capture system and
an IMU seen in the experiments of Section VI.

2) The ESC driving the motors is simply modeled by quan-
tizing the desired input u resembling a 10 b discretiza-
tion in the feasible motor speed resulting in a step size
of ≈ 0.12 Hz. Additionally, the motor–propeller com-
bination is modeled as a first-order transfer function
(G(s) = 1

1+0.005 s ). The resulting signal is loaded again
with a rotational velocity dependent noise level (see
Table III). This combination mirrors with high realism
the dynamic behavior of a common ESC motor–propeller
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Fig. 12. Realistic simulation of the control of a Y-shaped hexarotor GTM in
the case of a motor failure. The moment of motor failure is indicated by the
black vertical bar.

combination [27] (i.e., BL-Ctrl-2.0, by MikroKopter,
Robbe ROXXY 2827-35 and a 10 in rotor blade).

3) The controller assumes a direct stop of the failed propeller,
whereas in the model an exponential decay of the failed
rotor’ generated force is simulated (t 1

2
= 0.1 s). This adds

an unknown force and torque disturbance.
In the simulated scenario the vehicle shall hover at a prede-

fined spot pr and Rr (phase I). At time t = 3 s, we model the
failure of a single rotor and use the controller described in [24]
to recover from this situation (phase II). The actual position in
the moment of failure is used as new reference position.

The results of the Y-shaped hexarotor simulation are reported
in Fig. 12. The position and orientation errors (plot 1 and plot
4) in phase I (before the failure occurs) are negligible—the
hexarotor hovers perfectly at its desired spot. Accordingly, the
translational velocity (plot 2) is very small (considering the
realistic factors introduced in the simulation) with ‖ṗ‖ <
0.07 m/s. At time t = 3 s, the failure of propeller 1 is simu-
lated. The actual spinning rates ω1 , . . . , ω6 are reported in the
last plot of Fig. 12. In the moment of rotor 1 failure ω1 starts
to decrease exponentially and the system is clearly perturbed.
Immediately the translational velocity and the position error
are increasing, reaching a peak position error of ‖ep‖ = 0.46 m
1.1 s after the failure. Subsequent, the position and orientation
errors decrease fast and the hexarotor GTM tracks again well the
reference position. It is interesting to see how propeller 2, 3, and

5 are compensating the loss of generated thrust while propellers
4 and 6 are commanded to decrease their thrust.

In [24], we already presented simulated results for a tilted
star-shaped hexarotor. Compared to this case, on a Y-shaped
hexarotor, it is not advisable to switch off the propeller opposed
to the failed one as in the star-shaped case.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we studied two fundamental actuation proper-
ties for the multirotor UAVs. First, we considered the interplay
between the control force and the control moment and we distin-
guished between FC, PC, and UC platforms according to both
the dimension of the freely assignable force subspace FB and its
relation with the total force subspace F. Then, we introduced the
concept of static hovering realizability that rests upon the pos-
sibility to reject any disturbance torque while counterbalancing
the gravity. The robustness properties of a family of hexarotor
parametrized by three angles have been finally explored in terms
of capability to statically hover after a rotor loss. We found out
that the full robustness is guaranteed by (inward/outward) tilt-
ing each propeller on its

−−−−→
OB OPi

-axis or by moving towards
the Y-shaped hexarotor and thus breaking the symmetry of the
propeller positions in the star-shaped hexarotor.

It should be straightforward for other research groups to ap-
ply the theory developed in this paper to assess the robustness
other classes of vehicles with n = 6 or more and whose angular
parameters can even change during flight.

An interesting challenge would be also to design a n-rotor
platform that is (fully) robust to the loss of (n − 4) propellers,
e.g., a fully 2-losses robust hexarotor, or a fully 3-losses robust
eptarotor, or a fully 4-losses robust octorotor. Indeed, if such
platform exists or not is still an open question.
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