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Abstract—We consider the problem of exploiting the micro-
generators connected to the power distribution grid to provide
distributed reactive power compensation for voltage support. We
review some of the state-of-the-art control strategies, compare
and analyze their performance. Furthermore, we propose a
novel control strategy that, exploiting communications among
neighboring micro-generators, achieves a fast voltage regulation
and minimizes the losses of the grid. Simulations are provided
in order to confirm the effectiveness of the novel algorithm and
to compare its performance with respect to the performance of
the state-of-the-art algorithms. In addition, a discussion on the
fundamental role played by the communication among generators
to guarantee that voltage constraints are satisfied is included.

I. INTRODUCTION

The advent of distributed energy resources such as wind
turbines, solar cells, or other renewable energy sources is
dramatically changing the actual power distribution scenario
[1]. In fact, a massive number of small power generators are
envisioned to be deployed in the low and medium voltage
power distribution grid. The integration of the distributed
energy resources in the distribution network could yield to a
number of benefits for the electrical distribution system, e.g.
voltage profile improvements, reduction of line losses, reduc-
tion of power generation cost and other ancillary services [2].
On the other hand, an uncontrolled power injection of several
renewable energy sources could lead to system instabilities or
damages, if not properly regulated. In fact, the intermittence
of the renewable sources can cause large voltages variations
and operational bounds may be violated. For these reasons,
voltage regulation is a fundamental issue in the development
of the future smart distribution grid.

Voltage regulation is achieved by controlling the generators
reactive power output, mainly because reactive power can
be produced almost with no cost and does not withstand to
economical issue, as instead the active power does. Tradi-
tionally, the voltage control is performed using mechanical
control devices, such as shunt capacitor banks or on-load tap
changers [3], that often are too slow to respond properly to
the voltage fluctuation due to the variability of the energy
resources and of the load demand. These are the reasons that
lead to the recent interest for strategies that regulate the voltage
magnitudes in the distribution network by acting the injection
(or absorption) of the micro-generators reactive power. Many
inverters have the capability, when they are running below their
rated output current, to inject (or to absorb) reactive power
together with active power [4]. Inverters can act in the grid
on a fast timescale. Furthermore generators can connect or
disconnect, requiring an automatic reconfiguration of the grid
control infrastructure (the so called “plug and play” approach).

These reasons call for local or distributed approaches to face
with the voltage regulation problem. Among the purely local
strategies, we cite the conservation of fixed power factor,
the injection of constant reactive power, the reactive power
control dependent on the voltage, and the power factor control
dependent on the active power injection (see [5], [6], [7],
[8]). These strategies however aim to only guarantee that the
voltage constraints are satisfied. Other strategies instead take
into account other important objectives, like loss minimization,
approaching the system state towards optimal configurations,
solutions of the optimal reactive power flow (OPRF) problem.
In the traditional transmission grid the OPRF problem is
typically solved by centralized solvers that collect all the
necessary field data, compute the optimal configuration, and
dispatch the power production to the generators. However this
approach is not practical in the distribution network, because of
the fast variability in the power demand and in the generators’
generation capabilities. Recently, popular solutions reformulate
the ORPF problem as a rank-constrained semidefinite program,
convexify it by dropping the rank constraint and then solve
it in a distributed way (see [9], [10], [11]). This approach
however requires that all the buses of the grid are monitored,
which is not practical in the distribution network. Instead,
the algorithms proposed in [12] and [13] are scalable in the
number of generators and do not require monitoring of all
the buses of the grid. They consist of the iteration of the
two following actions: collecting voltage measurements at the
micro-generators buses and actuating control laws based on
these measured data. In this paper we first revise three of
the state-of-the-art voltage control algorithms. Two of them
are purely local, i.e. agents execute them just by using mea-
surements of their own voltages, without cooperation. They
have a fast convergence to the steady state, even if it is
not guaranteed that voltage constraints are satisfied. On the
other hand, the third strategy allows the agents to cooperate
with each other and achieves power loss minimization while
guaranteeing that voltages constraints are satisfied. However
this strategy exhibits a transient which is slower as compared
to the other two strategies. In the second part of the paper we
propose a novel algorithm that combines the good properties
of the previous strategies: fast transient, voltage constraints
are satisfied and power loss minimization. The rest of the
paper is organized as follows. In Section III we provide a
model for the distribution network. In Section IV, we revise
the state-of-the-art control strategies. In Section V, we propose
the novel control strategy and finally, we analyze and compare
the strategies performance in Section VI.



II. MATHEMATICAL PRELIMINARIES AND NOTATION

Let G = (V, E , σ, τ) be a directed graph, where V is the set
of nodes, E is the set of edges, with n = |V|, r = |E|. Moreover
σ, τ : E → V are two functions such that edge e ∈ E goes from
the source node σ(e) to the terminal node τ(e). A path is a
sequence of consecutive distinct edges. Given a vector u, we
denote by ū its (element-wise) complex conjugate, and by uT
its transpose. Let A ∈ {0,±1}r×n be the incidence matrix of
the graph G, defined via its elements

[A]ev =

{ −1 if v = σ(e)
1 if v = τ(e)
0 otherwise.

We define by 1 the column vector of all ones, while by ev we
the vector whose value is 1 in position v, and 0 everywhere
else. Given u, v, w ∈ R`, with vh ≤ wh, h = 1, . . . , ` we
define the operator [u]wv as the component wise projection of
u in the set

{
x ∈ R` : vh ≤ xh ≤ wh, h = 1, . . . , `

}
, that is,

([u]wv )h =

{
uh if vh ≤ uh ≤ wh
vh if uh < vh
wh if uh > wh

(1)

III. CYBER-PHYSICAL MODEL OF A SMART POWER
DISTRIBUTION GRID

In this work, we envision a smart power distribution
network as a cyber-physical system, in which the physical
layer consists of the power distribution infrastructure, includ-
ing power lines, loads, microgenerators, and the point of
connection to the transmission grid (called PCC), while the
cyber layer consists of intelligent agents, dispersed in the grid.
We model the physical layer as a directed graph G, in which
edges in E represent the power lines, and nodes in V represent
both loads and generators that are connected to the microgrid
(see Figure 1, middle panel). These include the residential and
industrial consumers, microgenerators, and also the PCC. We
limit our study to the steady state behavior of the system,
where all voltages and currents are sinusoidal signals at the
same frequency ω0, and can therefore represented by phasors.
The system state is described by the following variables (see
Figure 1, lower panel):

• u ∈ Cn, where uv is the grid voltage at node v;

• i ∈ Cn, where iv is the current injected at node v;

• s = p+iq ∈ Cr, where sv , pv and qv are the complex,
the active and the reactive power injected at node v.

For every edge e of the graph, we define by ze the impedance
of the corresponding power line. We make the following
assumption.

Assumption 1: All power lines in the grid have the same
inductance/resistance ratio, i.e., ze = eiθ|ze|, for any e in E
and for a fixed θ.

Assumption 1 is satisfied when the grid is relatively ho-
mogeneous, and is reasonable in most practical cases. We
collect all the grid impedances absolute values in the matrix
Z=diag(|ze|, e∈E). We label the PCC as node 1 and consider
it as an ideal sinusoidal voltage generator (slack bus) at the
grid nominal voltage UN , with arbitrary, but fixed, angle φ.
From now on, we consider, without loss of generality, φ = 0.
We model all nodes except the PCC as constant power or
P-Q buses. The powers sv corresponding to grid loads are
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Figure 1. Schematic representation of a microgrid. In the lower panel
the physical layer is represented via a circuit representation, where black
diamonds are microgenerators, white diamonds are loads, and the left-most
element of the circuit represents the PCC. The middle panel illustrates the
corresponding graph representation. The upper panel represents the cyber
layer, where agents (i.e. microgenerators and the PCC) are connected via a
communication infrastructure.

such that pv < 0, meaning that active power is supplied to the
devices. On the other hand, the complex powers corresponding
to micro-generators are such that pv ≥ 0, as active power is
injected into the grid. The system state satisfies the equations

i = e−iθY u (2)
u1 = UN (3)
uv īv = pv + iqv v 6= 0 (4)

where e−iθY is the bus admittance matrix of the grid. It
can be shown that there exists a unique symmetric, positive
semidefinite matrix X ∈ Rn×n such that{

XY = I − 1eT1
Xe1 = 0.

(5)

called the Green matrix, which depends only on the topology
of the grid power lines and on their impedances, and whose
elements are all not negative. Thanks to the Green matrix, we
can express the voltages as a function of the currents via

u = eiθXi+ 1UN . (6)

We assume that every micro-generator corresponds to an
agent, or compensator, in the cyber layer (upper panel of
Figure 1), and belongs to the set C ⊆ G (with |C| = m). We
assume furthermore that the agents are provided with some

• sensing capabilities, in particular voltage phasor mea-
surement unit (PMU), a device that allows them to take
phasorial measurements of the voltages ([14]);

• computational capabilities that will be exploited to
implement the proposed algorithms.



The agents can command the amount of reactive power in-
jected in the grid. In order to underline the difference among
smart agents and passive loads, we introduce the following
block decomposition of the voltages vector u

u =
[
u1 uTG uTL

]
, (7)

where u1 is the voltage at the PCC, uG ∈ Cm are the voltages
at the microgenerators, and uL ∈ Cn−m−1 are the voltages at
the loads. Similarly, we also define sG = pG + iqG and sL =
pL+ iqL. The non-linear relation among voltages and powers,
can be explicitly approximate by the following proposition,
which has been used in [13].

Proposition 2: Consider the physical model described by
the system of nonlinear equations (6), (3) and (4). Compen-
sators and load voltages satisfy[

uG
uL

]
=
eiθ

UN

[
M N
NT Q

] [
s̄G
s̄L

]
+ 1UN + o

(
1

UN

)
(8)

where the little-o notation means that limUN→∞
o(f(UN ))
f(UN ) = 0.

The quality of this approximation relies on having large
nominal voltage UN and relatively small currents injected by
the inverters (or supplied to the loads). This assumption is
verified in practice, and corresponds to correct design and
operation of power distribution networks, where indeed the
nominal voltage is chosen sufficiently large (subject to other
functional constraints) in order to deliver electric power to the
loads with relatively small power losses on the power lines.
Furthermore, (8) can be used to compute an approximation of
the voltages magnitudes[
|uG|
|uL|

]
=

1

UN

[
M N
NT Q

] [
cos(θ)pG + sin(θ)qG
cos(θ)pL + sin(θ)qL

]
+ 1UN . (9)

Equation (9) models the well known fact that the injection
or the absorption of reactive power increase or decrease,
respectively, the voltage magnitude also in the case of not
purely inductive lines.

IV. VOLT/VAR CONTROL STRATEGIES

Classically, the amount of reactive power injected by the
generators into the grid is regulated in order to perform the
voltage control, namely, to maintain the bus voltage mag-
nitudes within a predefined percentage deviation from the
reference voltage UN . In our setup, since we assume that only
agents can measure their voltage, we consider the following
set of constraints

Umin ≤ |uh| ≤ Umax, ∀h ∈ C (10)

where Umin and Umax are, respectively, the minimum and
maximum admissible values for the voltage magnitudes. In
addition to (10), since the generators deployed in the distri-
bution network are, typically, of small size, we need to take
into account also constraints on the generation capabilities of
agent h. Precisely, we assume that

qmin,h ≤ qh ≤ qmax,h, ∀h ∈ C (11)

where qmin,h, qh ≤ qmax,h denote, respectively, the minimum
and the maximum amount of reactive power that can be
injected by agent h. Usually qmin,h < 0 and qmax,h > 0.

In the following subsections, we propose three strategies
where each agent can regulate the injection of reactive power
into the grid in order to maintain the voltages magnitudes

h

k ∈ N (h)

k′ /∈ N (h)

Figure 2. An example of neighbor agents in the cyber layer. Circled nodes
(both gray and black) are agents (nodes in C). Nodes circled in black belong
to the set N (h) ⊂ C. Node circled in gray are agents which do not belong to
the set of neighbors of h. For each agent k ∈ N (h), the path that connects
h to k does not include any other agent besides h and k themselves.

within the interval [Umin, Umax]. The first two strategies are
purely local, in the sense that

1) agent h updates the injection of qh based only on mea-
surements of its own voltage, i.e., uh;

2) agents do not communicate with each other.

Instead, in the third strategy agents are allowed to commu-
nicate (via some communication channels which could be
possibly the power line communication (PLC)) exchanging
information related to the taken measurements and to some
additional quantities, as we will see in Subsection V. To model
the admissible communications among the agents in the cyber
layer, we next define the set of neighbors of a given agent h.

Definition 3 (Neighbors in the cyber layer): Let h ∈ C be
an agent of the cyber layer. The set of neighbors of h in the
cyber layer, denoted as N (h), is the subset of C defined as

N (h) = {k ∈ C ∪ {1} | ∃ Phk,Phk ∩ C = {h, k}} .

In Figure 2 we report an example of the neighbors set. In our
setup we assume that every agent h ∈ C knows its neighbors,
i.e.,N (h), and that it can communicate with them. In all strate-
gies we assume that all agents measure synchronously their
phasorial voltages at time-instants t0, t1, . . ., where tk = kT ,
for a given sampling time T .

A. A first local voltage control strategy (denoted hereafter as
LVC-1)

In this subsection, we propose a slightly modified version
of the reactive power compensation technique which has been
introduced in [4]. Let fh(u) be the function defined as

fh(u) = mh|u|+ βh (12)

where

mh = − qMh
UN − Umin

, βh =
UNq

M
h

UN − Umin
Moreover let f̂h(u) be the saturated version of fh(u) outside
the interval [qmin,h, qmax,h], that is,

f̂h(u) = [fh(u)]qmax
qmin

.

In Figure 3, a pictorial description of both fh and f̂h is
provided. In the LVC-1, agent h, after having taken the
measurement uh(t), updates qh(t) as follows

qh(t+ 1) = [qh(t) + αh(fh(uh(t))− qh(t))]
qmax,h

qmin,h
(13)



Figure 3. The green line represent function fh, while the red line represents
f̂h

where αh is a positive constant. Observe that f̂h(u) describes
the equilibrium point for Equation (13); indeed, if qh(t) =
f̂h(uh(t)) then qh(t + 1) = qh(t). In addition notice that
f̂h(UN ) = 0. Roughly speaking, the rationale behind LVC-1
is the following: if |uh| < UN then agent h will inject reactive
power in order to increase |uh|, while if |uh| > UN then agent
h will absorb reactive power in order to decrease |uh|.

In next Proposition we characterize the convergence prop-
erties of (13), by adopting the approximation (9) for the voltage
magnitudes, i.e, by neglecting the infinitesimal terms o(1/UN )
in Equation (8).

Proposition 4: Consider algorithm (13), and let ρ(M) be
the spectral radius of the matrix M . Then, if

αh ≤
2

mh

max{mj} −
mh sin θρ(M)

UN

, (14)

there exist a m-upla (ū1, . . . , ūm) such that uh(t) → ūh and
qh(t)→ f̂h (ūh) for all h ∈ {1, . . . ,m}.
Due to lack of space, the proofs of Proposition 4 and of the
following Propositions are here omitted. Although LVC-1 is
based on the quite popular voltage control strategy introduced
in [4], it is not guaranteed that |ūh| lies within the interval
[Umin, Umax]. In Section VI we will provide an example where
the constraints (10) are violated at the steady state. However
from the simulations we can see that the LVC-1 tends to
approach the voltages outside the feasible region towards the
interval defined in (10).

B. A second local voltage control strategy (denoted hereafter
as LVC-2)

In this subsection we propose a local control strategy
aiming at driving all the compensators’ voltage magnitudes
to a desired value ud. The reactive power update is given by

qh(t+ 1) = [qh(t) + ε(ud − |uh(t)|)]qmax,h

qmin,h
(15)

The rationale behind the LVC-2 is based on the approximated
linear relation among voltages and powers described in (9).
Specifically, if ud − |uh(t)| ≥ 0, then agent h will increase
qh, otherwise it will decrease it. The convergence of algorithm
(15) is analyzed in the following Proposition. Again, the result
stated has been obtained by adopting the approximation (9) for
the voltage magnitudes.

Proposition 5: Consider algorithm (15). Then, if

ε ≤ 2|u0|
sin θρ(M)

(16)

there exist a m-upla (ū1, . . . , ūm) such that uh(t) → ūh for
all h ∈ {1, . . . ,m}.
In general, the above Proposition does not guarantee that
uh = ud and, in turn, that |uh| ∈ [Umin, Umax] even if
ud ∈ [Umin, Umax].

C. Distributed optimal reactive power flow algorithm (denoted
hereafter as DORPF)

In this section we briefly review the algorithm proposed in
[13], solving the following OPRF problem

min
qG

ūTY u cos θ (17a)

subject to Umin ≤ |uh| ≤ Umax
qmin,h ≤ qh ≤ qmax,h

∀h ∈ C\{0} (17b)

where uTY u cos θ are the active power losses in the distribu-
tion lines. The algorithm solves problem (17) through a dual
ascent strategy introducing the auxiliary variables λmin, λmax,
µmin, µmax (the Lagrange multipliers, i.e. the dual variables of
the problem). Agent h iteratively executes the following steps:

1) it measures its voltage uh(t) and it gathers from its
neighbors the voltage measurements

{uk(t) = |uk(t)|ei∠uk(t), k ∈ N (h)}

and the set of values of the Lagrange multipliers

{µmin,k(t), µmax,k(t), k ∈ N (h)};
2) it updates the voltage Lagrange multipliers

λmin,h(t+ 1) =

[
λmin,h(t) +

γ

U2
N

(
U2

min − |uh(t)|2
)]∞

0
(18a)

λmax,h(t+ 1) =

[
λmax,h(t) +

γ

U2
N

(
|uh(t)|2 − U2

max
)]∞

0
(18b)

where γ is a positive constant;
3) it computes the reactive power output

q̄h = qh(t)− sin θ(λmax,h(t+ 1)− λmin,h(t+ 1))+

+
∑

k∈N (h)

Ghk|uh(t)||uk(t)| sin(∠uk(t)− ∠uh(t) + θ)

−
∑

k∈N (h)\{0}

Ghk(µmax,k(t)− µmin,k(t)). (19a)

where Ghk is the admittance of the electric path between
h and k, which is assumed known by agent h.

4) it updates the power Lagrange multipliers

µmin,h(t+ 1) =

[
µmin,h(t) +

γ

U2
N

(qmin − q̄h)

]∞
0

(20a)

µmax,h(t+ 1) =

[
µmax,h(t) +

γ

U2
N

(q̄h − qmax)

]∞
0

(20b)

5) it projects the reactive power set point q̄h into the feasible
set defined by equation (11) and injects it

qh(t+ 1) = [q̄h]
qmax,h
qmin,h (21)

The DORPF algorithm convergence properties are discussed
in [13] , where it is shown that under condition

γ ≤ U2
N

ρ(ΦM−1ΦT )
, (22)



where Φ is the matrix

Φ = [− sin θM sin θM −I I]
T
,

the trajectory t → q(t) converges to the optimal solution of
(17). In spite of the purely local algorithms LVC-1 and LVC-2,
in DORPF the agents are allowed to communicate with each
other. Thanks to the additional information gathered from the
neighbors, the agents can not only drive the voltage magnitudes
within the interval of admissible values, but also minimize the
power losses.

Based on numerical evidence, the speed of convergence
of DORPF to the steady-state of is slower than the speed of
the two previous algorithms which, however, do not guarantee
that the constraints (10) are satisfied. In next Section we
introduce an algorithm that combines the fast transient of LVC-
1 and LVC-2, with the asymptotic convergence to the optimal
solution of (19) of DORPF.

V. FAST DISTRIBUTED OPTIMAL REACTIVE POWER FLOW
ALGORITHM (DENOTED HEREAFTER F-DORPF)

In this section we propose a novel algorithm for voltage
regulation and loss minimization, obtained by combining the
strategies presented in the previous Section. In particular f-
DORPF inherits the good properties of the former algorithms:
the fast transient of algorithm LVC-1 and the convergence
to an optimal equilibrium of algorithm DORPF. Finally, it
exploits LVC-2 in order to avoid the use of the Lagrange
multipliers associated with the voltage constraints (10). At
every synchronous iteration t of the algorithm, each agent
h ∈ C\{0} executes the following operations in order:

1) it measures its voltage uh(t) and it gathers from its
neighbors the phasorial voltage measurements

{uk(t), k ∈ N (h)}

and the values of the Lagrange multipliers associated to
the reactive powers

{µmax,k(t), µmin,k(t)), k ∈ N (h)};

2) it determines the reactive power to be injected

q̄h = qh(t) + δ

where δ is computed as follows. If |uh(t)| /∈
[Umin, Umax] then

δ = αh(fh(uh(t))− qh(t)) (23)

where αh satisfies (14). Otherwise if |uh(t)| /∈
[Umin, Umax], then agent h computes the quantities

δD =
∑

k∈N (h)

Ghk(|uh(t)||uk(t)| sin(∠uk(t)− ∠uh(t)− θ)

− µmax,k(t) + µmin,k(t)) (24)
δUmax = ε((Umax − |uh(t)|) (25)
δUmin = ε((Umin − |uh(t)|) (26)

where ε satisfies (16). Since the constraints (10) are
satisfied, δUmax

and δUmin
have opposite signs, i.e. they

would update the reactive power injected in opposite
directions. Let δ̄ be the value between δUmax

and δUmin

with the same sign of δD. Agent h will set

δ = sign(δD) min{|δ̄|, |δD|}

3) it computes the reactive power to be injected

q̄h = qh(t) + δ

4) it updates the power multipliers as

µmin,h(t+ 1) =

[
µmin,h(t) + γ

(
qmin,h

U2
N

− q̄h
U2

N

)]∞
0

(27)

µmax,h(t+ 1) =

[
µmax,h(t) + γ

(
q̄h
U2

N

− qmax,h

U2
N

)]∞
0

(28)

5) it injects the projected set point

qh(t+ 1) = [q̄h(t)]
qmax,h
qmin,h (29)

Loosely speaking, the f-DORPF works as follows: if |uh|
violates the constraints (10), node h updates the reactive power
injection performing a step of the LVC-1, because it provides a
faster response approaching the system towards a feasible con-
figuration. Otherwise, in order to keep the constraints satisfied,
it discriminates between a step inspired by the DORPF (except
for the voltages multipliers), and a step which is suggested by
LVC-2 (the choice is for the less aggressive update).

VI. SIMULATIONS AND DISCUSSION

The algorithms has been simulated on the testbed IEEE 37
[15], sketched in Figure 4, which is a portion of 4.8kV power
distribution network located in California. The load buses are
a mix of constant-current, constant-impedance and constant-
power loads, with a total active power demand of almost 2
MW and reactive power demand of almost 1 MVAR (see
[15] for the testbed data). The impedance of the power lines
differs from edge to edge, however, the inductance/resistance
ratio exhibits a smaller variation, ranging from ∠ze = 0.47
to ∠ze = 0.59, thus justifying Assumption 1. We consider
the scenario in which five micro-generators, the gray nodes in
Figure 4, can inject or absorb reactive power to regulate the
voltage magnitude.

In all the following simulations, the initial micro-generators
reactive power outputs are set to zero, and their generation
capabilities are such that there exists always a configuration
guaranteeing that the constraints (10) are satisfied. In Figure 5
and in Figure 6 we plot the behavior of, respectively, the
minimum agents voltage magnitude and the power losses for
the LVC-1, LVC-2 and DORPF strategies. The simulations
have been obtained optimizing over the parameters αh, ε and
γ. The following observations are in turn:

• LVC-1 strategy fails to satisfy the voltage constraints;

• LVC-2 satisfies the voltage constraints but it attains a
value of power losses which is very high as compared
to the power losses of the other strategies;

• DORPF leads the voltage magnitudes within the set
[Umin, Umax] 1 and the power losses to the optimal
value (computed with a centralized solver) compatible
with the voltage and power constraints; however it
exhibits a transient which is much slower than the
transients of the other two strategies.

In Figure 7 and in Figure 8 we compare the performance
of the DORPF and f-DORPF algorithms. We can see that the

1For simplicity in this simulation we consider only the constraint |uh| ≥
Umin; however both LVC-2 and DORPF fulfill also the constraint |uh| ≤
Umax.
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Figure 4. Schematic representation of the IEEE 37 test feeder [15], the grey
nodes represent the agents in the distribution network.

Figure 5. Minimum compensators voltage magnitude using the algorithms
revised in Section IV.

f-DORPF strategy achieves the same optimal performance,
in terms of power losses of the DORPF algorithm, but its
convergence rate is much faster (comparable with the conver-
gence rate of the LPV-1 algorithm). The little gap between
the optimal power losses and the steady-state power losses
attained by both f-DORPF and DORPF is due to the fact that
these algorithms use a unique value of θ for all the lines, and
that they approximate the voltages as linear function of the
powers with (8) and (9).
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