
A distributed control algorithm for the minimization of the power
generation cost in smart micro-grid

Guido Cavraro, Ruggero Carli, and Sandro Zampieri

Abstract— We consider the problem of minimizing the power
generation cost by exploiting the distributed renewable energy
sources (DRES) located in the power distribution network. The
proposed strategy requires that the intelligent agents, located
at the microgenerator buses, measure their voltage and then
adjust the amount of injected power, according to a feedback
control law that is indeed a projected gradient descent strategy.
Simulations are provided in order to illustrate the algorithm
behavior.

I. INTRODUCTION

The ultimate goal of the optimal power flow (OPF)
problem is to find an operating point of the power system
that minimizes a cost function (tipically the generation cost
or the line losses) satisfying the power demand and some
operative constraints, such as bus voltage limits or generators
generation limits. In the past, algorithms for the solution
of the OPF problem have been applied to the transmission
networks, namely, the high voltage networks transporting the
electrical power from the power plants to the distribution
networks and finally to the users.

The advent of distributed energy resources such as wind
turbines, solar cells, or other renewable energy sources is
drastically changing the actual power distribution scenario
[1]. In the near future, several agents (the prosumers [2])
on the power grid will be able to have generation capacity,
storage capacity and loads. In fact, a massive number of
small power generators are envisioned to be deployed in the
low voltage and medium voltage power distribution grid. The
availability of this large number of generators will yield to a
number of benefits for the electrical distribution system, such
as voltage profile improvements, reduction of line losses and
power generation cost and other ancillary services [3]. On
the other hand, power injection of several renewable energy
sources could lead, if not properly regulated, to system
instability, thus requiring the solution of OPF problems also
in the low and medium voltage power distribution networks.

In the traditional transmission grid the OPF problem is
tipically solved by centralized solvers that collect all the
necessary field data, compute the optimal configuration, and
dispatch the power production to the generators. However
this approach is not practical in the distribution network,
due to the fast variability in the power demand, to the poor
prediction on small size generators energy production and to
the fact that generators can connect or disconnect, requiring

The authors are with the Dept. of Information Engineering, University
of Padova, Via Gradenigo 6/a, 35131 Padova, Italy. Email: {cavraro,
carlirug, zampi}@dei.unipd.it. The research leading to
these results has received funding from the European Community’s Seventh
Framework Program under grant agreement n. 257462 HYCON2 Network
of Excellence.

an automatic reconfiguration of the grid control infrastructure
(the so called “plug and play” approach).

Many algorithms solving the OPF problem have been
designed. Many of them exploit a powerful optimization
technique, the ADMM ([4]). They typically require a large
number of iterations and a high computational burden to con-
verge, mainly due to the nonlinear relations among powers
and voltages which make the OPF problem non-convex. To
overcome these drawbacks, one of the most popular solution
is to reformulate the OPF problem as a rank-constrained
semidefinite program, which is convexified by dropping the
rank constraint and it is finally solved in a distributed manner,
via a primal or dual optimization ([5]) or via the ADMM
([6]). However all these approaches are based on the standing
assumptions that all the buses of the grid are monitored and
all the grid parameters (topology, line impedances etc.) are
perfectly known; these assumptions might be unrealistic in
many scenarios. Additionally, the OPF solution is applied
only after a number of communication rounds which are
needed by the optimization process to provide the solution.

The algorithm we propose, extends the approach of [7]
and [8] to the OPF problem, and can be considered as
a feedback control strategy. Indeed, its key feature is the
alternation between measurement steps and actuation steps
which are based on the measured data (phasorial voltages),
and therefore it is inherently an online algorithm. This fact is
particularly important as it allows to chase the power demand
and the generation capability variation, that in presence of
renewable energy sources are highly changing. Remarkably,
the algorithm we propose is guaranteed to converge to a quasi
optimal solution without monitoring all the grid nodes, but
only the generators.

In the OPF problem we consider, the goal is to minimize
the global generation cost by controlling the amount of
active powers injected in the grid by the generators. The
active powers are subject to box constraints modeling the
generation capability of each generator, while the objective
function is given by the sum of the generation cost functions
associated to the generators. In our setup we consider only
two types of such functions: the ones associated to the micro-
generators dispersed in the grid and the one associated to
the utility. We tackle the problem via a projected gradient-
based approach. In particular exploiting an approximated
solution of the power flow nonlinear equations, we show
the gradient of the objective function can be computed by
the compesators just via local measurements of the phasorial
voltages at their connection points. Applying at each iteration
a projected gradient descent step, the algorithm is shown to
be provably convergent to an appromixated optimal solution



of the OPF problem. Furthermore, we provide acharacteri-
zation of the optimal solution that can be useful to design
algorithms that solve the OPF problem.

II. MATHEMATICAL PRELIMINARIES AND NOTATION

Let G = (V, E , σ, τ) be a directed graph, where V is the
set of nodes, E is the set of edges, with n = |V|, r = |E|.
Moreover σ, τ : E → V are two functions such that edge
e ∈ E goes from the source node σ(e) to the terminal node
τ(e). In the paper we introduce complex-valued functions
defined on the nodes and on the edges. These functions will
also be intended as vectors in Cn and Cr. Given a vector
u, we denote by ū its (element-wise) complex conjugate,
and by uT its transpose. We denote by <(u) and by =(u)
the real and the imaginary part of u, respectively. Let A ∈
{0,±1}r×n be the incidence matrix of the graph G, defined
via its elements

[A]ev =

 −1 if v = σ(e)
1 if v = τ(e)
0 otherwise.

We define as 1 the column vector of all ones, while 1v is the
vector whose value is 1 in position v, and 0 everywhere else.
Given u, v, w ∈ R`, with vh ≤ wh, h = 1, . . . , ` we define
the operator proj(u, v, w) as the component wise projection
of u in the set

{
x ∈ R` : vh ≤ xh ≤ wh, h = 1, . . . , `

}
, i.e.,

[proj (u, v, w)]h =

 uh if vh ≤ uh ≤ wh
vh if uh < vh
wh if uh > wh

(1)

III. CYBER-PHYSICAL MODEL OF A SMART GRID

In this paper, we envision a smart power distribution
network as a cyber-physical system, in which the physical
layer is the power distribution infrastructure, including power
lines, microgenerators, loads and the point of connection to
the transmission grid (PCC), and the cyber layer consists
of intelligent agents, scattered in the electrical network, and
provided with actuation, communication, sensing, and com-
putational capabilities. We use a directed graph G = (V, E)
to model the physical layer, where nodes in V represent both
loads and generators that are connected to the microgrid and
edges in E represent the power lines.We limit our study to the
steady state behavior of the system, where all voltages and
currents are sinusoidal signals waving at the same pulsation
ω0, and can therefore be represented in phasorial notation.

The system state is described by the following system
variables:
• u ∈ Cn, where uv is the grid voltage at node v;
• i ∈ Cn, where iv is the current injected at node v;
• s = p+ iq ∈ Cr, where sv , pv and qv are the complex,

the active and the reactive power injected at node v.
We assume that every microgenerator, and also the PCC,
corresponds to an prosumer in the cyber layer. We denote
this subset of the nodes of G by C (with |C| = m). Each
prosumer (referred to also as agent) is provided with sensing
capability in the form of a phasor measurement unit (PMU,
i.e., a sensor measuring voltage amplitude and angle [9]).
Agents that correspond to microgenerators can command

the amount of power injected in the grid. Moreover agents
can communicate with each other, via some communication
channels which could possibly via power line communication
(PLC). We introduce the following block decomposition for
the vectors of voltages u and powers s

u =
[
u0 uG uL

]T
, s =

[
s0 sG sL

]T
, (2)

where u0 is the voltage at the PCC, uG ∈ Cm−1 and uL ∈
Cn−m are the voltages at the microgenerators and at the
loads, respectively. Similarly for sG = pG + jqG and sL =
pL + jqL. We denote, for every edge e of the graph, by ze
the impedance of the corresponding power line. We assume
the following.

Assumption 1: All power lines in the grid have the same
inductance/resistance ratio, i.e., ze = ejθ|ze|, for any e in E
and for a fixed θ.
Assumption 1 is satisfied when the grid is relatively ho-
mogeneous, and is reasonable in most practical cases. We
collect all the grid impedances absolute values in the matrix
Z=diag(|ze|, e∈E). We label the PCC as node 0 and take
it as an ideal sinusoidal voltage generator (slack bus) at
the microgrid nominal voltage UN , with arbitrary, but fixed,
angle φ. We model all nodes but the PCC as constant
power or P-Q buses. The powers sv corresponding to grid
loads are such that pv < 0, meaning that positive active
power is supplied to the devices. On the other hand, the
complex powers corresponding to microgenerators are such
that pv ≥ 0, as positive active power is injected into the grid.
It is known that the system state satisfies the equations

u = e−iθY i (3)

u0 = UNe
iφ (4)

uviv = pv + iqv v 6= 0 (5)

where Y := ATZ−1A is the matrix collecting the absolute
values of the bus admittance matrix of the grid. From now on,
we consider, without loss of generality, φ = 0. The following
Lemma (that can be found in [10]) will be useful in the
sequel.

Lemma 2: Given Y := ATZ−1A, there exists a unique
symmetric, positive semidefinite matrix X ∈ Rn×n such that{

XY = I − 11T0
X10 = 0.

(6)

The matrix X depends only on the topology of the grid
power lines and on their impedances and, adopting the same
block decomposition as in (2), we can write

X =

0 0 0
0 M N
0 NT Q

 , (7)

with M ∈ R(m)×(m), N ∈ R(m)×(n−m−1), and Q ∈
R(n−m−1)×(n−m−1). We have therefore

u = eiθXi+ 1UN . (8)

We conclude this section by introducing a useful approxi-
mated solution of the nonlinear equations (3), (4), and (5),
that, again, can be found in [10].



Proposition 3: Consider the physical model described by
the set of nonlinear equations (3), (4), (5) and (8). Node
voltages then satisfyu0uG
uL

 = UN1+
ejθ

UN

0 0 0
0 M N
0 NT Q

 0
s̄G
s̄L

+o

(
1

UN

)
(9)

(the little-o notation means that limUN→∞
o(f(UN ))
f(UN ) = 0).

IV. OPTIMAL POWER FLOW PROBLEM

The goal of this paper is to design a distributed con-
trol algorithm that leads to the minimization of the power
generation cost of the power supplied to the loads, that we
assume to be constant power loads requiring ŝL. Formally
the problem we are interested into can be stated as

min
sj ,j∈C∪PCC

f =

m∑
j=1

fj(pj) + f0(p0) (10a)

s.t. sL = ŝL (10b)

p0 = −(1T pG + 1T pL) + `(sG, sL, UN ) (10c)

0 ≤ pv ≤ pMv v ∈ C (10d)

where
• constraint in (10c) models the active power conservation

in the grid, being `(sG, sL, UN ) the active power losses
in the grid;

• constraints in (10d) model the agents generation capa-
bilities;

• the objective function f is the sum of the cost of the
power produced by the utility and injected into the
microgrid through the PCC (f0(p0)), and of the mi-
crogenerators’ payments for the power that they inject.

Observe that (10c) provides a expression of p0 as a function
of sG, sL, UN (in the following p0 or p0(pG) stand for
p0(sG, sL, UN )). We define B as the feasible set, that is

B = {pG ∈ Rm : 0 ≤ pv ≤ pMv }.

In several studies of the OPF problem and in recent papers
[11], [12], [13], the cost functions are tipically chosen
quadratic (e.g fj(pj) = α2

jp
2
j +α1

jpj +α0
j ), or anyway con-

vex, continous and differentiable, because they derive from
models of the energy production costs of classical power
plants and generators. However these choices do not capture
the features of scenarios with high penetration of distributed
renewable energy resources (DRES), such as photovoltaic
panels, that produce energy at zero cost, but whose owners
receive a reward from the utility for the energy they inject
into the grid. In this new scenario the cost function does not
model anymore the effective cost of energy production, but
rather the retribution that the prosumers receive. Tipically
the reward is proportional to the quantity of energy injected
into the grid, with a proportionality constant that depends
on the contractual agreement among the producer and the
utility. This reward can be modeled as

fj(pj) =

{
cjGpj pj ≥ 0

0 pj < 0
∀j ∈ C (11)

since, obviously if the power produced ppj by the prosumer
j is lower than the power that it requires prj , it has to pay
the difference pj = ppj − prj < 0 and then it is not rewarded.

In this framework there are mainly two possible scenarios.
The first one is related to the “prosumers point of view”.
Since the prosumers are paid proportionally to the energy that
they inject and since their production basically has no cost,
they would like to maximize the power they inject, while
keeping satisfied some operative constraints. The result is a
game among the agents. A first treatment on this scenario
can be found in [14].

The second scenario is instead related to the “utility point
of view”, where the total cost accounts for the production
cost of the energy injected by the PCC (that comes from big
generation plants such as nuclear or hydroelectrical plants)
and for the remuneration to be paid to the owners of DRES.
In this framework, the utility imposes a behaviour procedure
to be followed by the prosumers to compute the amount of
energy they have to inject into the grid: the goal of the utility
is to minimize the total cost while satisfying some operative
constraints.

In this paper we focus on the second scenario. As it will
be clear in the following, the utility, differently from the
classical centarlized schemes, does not impose to the agents
the active power reference points (and even does not know
them). But it just provides them the informations needed to
compute and to actuate (all by their own) the optimal power
input.

We assume for simplicity that all the agents are paid in
the same way, that is,

cjG = cG ∀j ∈ C

and we model f0(p0) as the fj , j ∈ C, that is

f0(p0) =

{
c0p0 p0 ≥ 0

0 p0 < 0
(12)

However our treatment can be easily generalized to the case
in which the reward is different from one producer to another
and in which either the reward or the power generation cost
at the PCC are modeled with different functions.

Based on (9) and by exploiting the properties of X we
can express the active power losses in the grid as

`(sG, sL, UN ) =

([
pTG pTL

] [M N
NT Q

] [
pG
pL

]
+

+
[
qTG qTL

] [M N
NT Q

] [
qG
qL

])
cos(θ)

U2
N

+ o

(
1

U2
N

)
(13)

Defining

˜̀(sG, sL, UN ) =

([
pTG pTL

] [M N
NT Q

] [
pG
pL

]
+

+
[
qTG qTL

] [M N
NT Q

] [
qG
qL

])
cos(θ)

U2
N

(14)



we can rewrite (10c) as

p0 + 1T (pG + pL) = `(sG, sL, UN )

' ˜̀(sG, sL, UN ).

Hence we can approximate problem (10) with the following
one

min
sj ,j∈C

f̂ (15a)

s.t. sL = ŝL (15b)

p̂0 = −(1T pG + 1T pL) + ˜̀(sG, sL, UN ) (15c)

0 ≤ pv ≤ pMv v ∈ C (15d)

where

f̂ = cG1
T pG + f0(−1T pG − 1T pL + ˜̀(sG, sL, UN ))

and where p̂0 is an approximation of p0 that differs from it
just up to infinitesimal terms. Observe that problem (15) is
convex. It is convenient to express f̂ in the following way:

f̂(pG) =

{
f̂+(pG) if pG ∈ P+

f̂−(pG) if pG ∈ P−
(16)

where

f̂+(pG) = (cG − c0)1T pG + c0 ˜̀(sG, sL, UN )

f̂−(pG) = cG1
T pG

P+ = {pG : −1T pG − 1T pL + ˜̀(sG, sL, UN ) > 0}
P− = {pG : −1T pG − 1T pL + ˜̀(sG, sL, UN ) ≤ 0}

i.e., P+ is the set of all the pG such that p̂0(pG) > 0,
while P− is the set of all the pG such that p̂0(pG) < 0.
We furthermore define

P0 = {pG : −1T pG − 1T pL + ˜̀(sG, sL, UN ) = 0}

i.e., the set of all the pG such that p̂0(pG) = 0.
We conclude this section with a characterization of the

optimal solution of (10).
Proposition 4: Consider problem (10). If p∗G is an optimal

solution, then p0(p∗G) ≥ 0.
Proof: Let p∗G be an optimal solution such that p∗0 =

p0(p∗G) ≤ 0 and let `A(s∗G, s
∗
L, UN ) be the active power

losses of the system in this configuration. We will show
that there exist another configuration p̃G such that f(p̃G) <
f(p∗G) and p̃0 = p0(p̃G) ≥ p∗0. If p∗0 < 0, from (10c), it
follows that there exist at least a compensator k such that
pk > 0. Let now k decrease its active power injection by
−δk, δk > 0. Let δk such that

p0(p∗G) ≤ p0(p∗G − 1kδk) ≤ 0.

Now let us examine the change ∆i0 in the current injected
by the PCC. We have

∆i0 = 1T0 Y∆u

= 1T0 Y X(10 − 1k)
δk
U2
N

+ o

(
1

UN

)
= 1T0 (I − 101

T )(10 − 1k)
δk
U2
N

+ o

(
1

UN

)
=

δk
U2
N

+ o

(
1

UN

)
' δk
U2
N

It follows that the active power absorption of the PCC after
the injection drop δp changes by

∆p0 = < (UN∆ξe) = UN
δk
UN

> 0

that is, p0(p∗G − 1kδk, q
∗
G) > p0(p∗G). Finally, we point out

that the new configuration, with a greater p0 has a cost that
is lower than the starting one:

f̂(pG − 1kδk, )− f̂(pG) =

− cGδk + f0(pG − 1kδk, qG)− f0(pG, qG)

' −cGδk ≤ 0

The same proof can be applied also if we consider problem
(15) instead of (10). The above proposition implies that the
optimal solution pG belongs to P+ ∪ P0. Moreover, using
a reasoning similar to the one exploited in the above proof,
we can easily prove the following

Lemma 5: Consider problems (10) and (15), if p∗0 = 0,
then c0 > cG.

V. A GRADIENT PROJECTED DESCENT ALGORITHM

The algorithm we propose is based on a gradient descent
strategy that we derive considering the approximated prob-
lem (15). Let us compute the gradient of the cost function
f̂ . Observe that

∂
(∑m

j fj(pj)
)

∂pG
= cG1,

while, concerning ∂f0(p0)
∂pj

, by exploiting the chain rule we
have that

∂f0(p0)

∂pG
= f ′0(p0)

(
−1 + 2

cos(θ)

U2
N

(MpG +NpL)

)
Plugging together the above expressions we get

∂f̂

∂pG
= f ′G(pG) + f ′0(p0)

(
−1 + 2

cos(θ)

U2
N

(MpG +NpL)

)
(17)

which, using (11) and (12), can be finally rewritten as

∂f̂

∂pG
(pG) = cG1, (18)

if pG ∈ P−, otherwise

∂f̂

∂pG
(pG) =2c0

cos(θ)

U2
N

(MpG +NpL) + (cG − c0)1 (19)



if pG ∈ P+.
Observe that, while the values UN and θ can be assumed

known a priori, the quantities MpG+NpL depend on all the
active powers injected into the grid (also on the unmonitored
active powers of the loads) and on the topology of the grid.
However, by exploiting again (9), we have that

uG =
eiθ

UN

[
M N

] [pG − iqG
pL − iqL

]
+ 1UN + o

(
1

UN

)
from which it follows that

<(e−iθ(uG − 1UN )) =
MpG +NpL

UN
+ o

(
1

UN

)
(20)

and then
∂f̂

∂pG
(pG) ' f ′G(pG) + f ′0(p0)

(
− 1+

+2
cos(θ)

UN
<(e−iθ(uG − 1UN ))

)
(21)

where in this last expression we are neglecting the terms
that vanish to 0 for large UN . It turns out that the gradient
of f̂ can be computed only by local voltage measurements.
Indeed ∀k ∈ C we have that[
<(e−iθ(uG − 1UN ))

]
k

=|uk| cos(∠uk − θ)+
− |uN | cos(∠uN − θ)

and then each compensator, in order to obtain its component
of ∂f̂

∂pG
, needs only to know its own voltage, the PCC voltage

and f ′0(p0). Next we formally describe the algorithm we
propose in this paper. For simplicity, in the following, [ĝp]h
denotes the component of the approximated gradient related
to agent h.

Let γ be a positive scalar parameter. At every iteration of
the algorithm, each agent h ∈ C\{0} executes the following
operations in order:

1) senses the system obtaining its voltage phasorial mea-
surement uh;

2) receives the PCC voltage phasorial measurement u0 =
UN , the PCC active power injected p0 and the cost
coefficient c0;

3) computes the approximated gradient direction
[ĝp]h = f ′h(ph) + f ′0(p0)(−1+

+ 2
cos θ

UN

(
|uk| cos(∠uk − θ)− |uN | cos(∠uN − θ)

))
(22)

4) computes the active power to be injected in the grid
performing the following gradient descent steps

ph ← ph − γ[ĝp]h (23)

5) projects ph into the feasible region and actuates the
projected values

ph ← proj(ph, 0, pMh ) (24)

Based on the above description, it is clear what is the feed-
back scheme that underlies the procedure we propose: during
each iteration each agent senses the grid, communicates with
the PCC, computes the power set-point and then actuates it.

VI. CONVERGENCE ANALYSIS

In this section we consider the gradient projected descent
of f̂

pG(t+ 1) = proj
(
pG(t)− γ ∂f̂

∂pG
, 0, pMG

)
(25)

in spite of its approximated version given in (22), (23) and
(24), that we perform in pratice.

We consider three different scenarios:
1) the one in which p∗G ∈ P+ and ∂f̂+

∂pG
(p∗G) = 0, that is

the solution of (15) is equal to the global minimizer of
f̂+.;

2) the one in which p∗G ∈ P+ and ∂f̂+

∂pG
(p∗G) 6= 0, that is

the minimum point of f̂+ is not the same of f̂ (in this
case the minimum of f̂+ lies outside the boundary of
B);

3) the one in which p∗G ∈ P0, that is the minimum
argument of f̂ is such that p0(p∗G) = 0;

We were able to provide a formal proof of convergence of
(25) only for the first scenario. However extensive numerical
simulations suggest that (25) converges to the optimum also
in the second scenario. Concerning the third scenario, we
can prove the convergence of the continous-time version of
(25) (which corresponds to have a γ which tends to zero)
by resorting to the tools of sliding mode control. The crucial
point is to theoretically quantify the difference among the
continous-time trajectory and the discrete-time trajectory.
These considerations are summarized in the following propo-
sitions.

Proposition 6: Consider the optimization problem (15)
and the dynamic system described by the update equation
(25). Let p∗G be the optimal configuration and assume that
p∗G ∈ P+ and ∂f̂+

∂pG
(p∗G) = 0. Then the trajectory t→ pG(t)

converges to the optimal value p∗G if

γ ≤ U2
N

cos θρ(M)c0
.

Proposition 7: Consider the optimization problem (15)
and the continous-time version of the dynamic system de-
scribed by the update equation (25). Let p∗G be the opti-
mal configuration and suppose that p∗G ∈ P0. Then the
continuous-time trajectory t → pG(t) converges to the
optimal value p∗G.

VII. SIMULATIONS

The algorithm has been tested on the testbed IEEE 37
[15], which is an actual portion of 4.8kV power distribution
network located in California. The load buses are a blend
of constant-power, constant-current, and constant-impedance
loads, with a total power demand of almost 2 MW of active
power and 1 MVAR of reactive power (see [15] for the
testbed data). The length of the power lines range from a
minimum of 25 meters to a maximum of almost 600 meters.
The impedance of the power lines differs from edge to edge,
however, the inductance/resistance ratio exhibits a smaller
variation, ranging from ∠ze = 0.47 to ∠ze = 0.59. This



PCC

G

G G

G

G

Fig. 1. Schematic representation of the IEEE 37 test feeder [15], where
five microgenerators have been deployed.

Fig. 2. Trajectory of a algorithm run, in which cG/c0 = 0.96.

justifies Assumption 1. We considered the scenario in which
5 microgenerators have been deployed in this portion of the
power distribution grid (see Figure 1).

The maximum active power capabilities of each generator
has been set to values that go from 85 to 490 kW. The
algorithm presented in Section V have been simulated on
a nonlinear exact solver of the grid [16].

Firstly, we simulate the first scenario, and we choose
γ as one half of the bound indicated in the statement of
Proposition 6. The results of the simulation have been plotted
in Figure 2, in which we can see a smooth convergence.
The parameter γ has been chosen as one half of the bound
indicated by Proposition 6. The dashed blackline represents
the cost of the OPF solution (computed via a numerical
centralized solver that have access to all the grid parameters
and load data) while the red line represents the behavior
of the proposed algorithm. Finally, we simulate the case

Fig. 3. Trajectory of a algorithm run, in the third scenario considered

Fig. 4. Trajectory of p0 in the run depicted in Figure 3.

in which we are in the scenario treated by Proposition 7,
and we choose γ as one hundredth of the bound indicated,
in order to reduce the difference among the discrete-time
and the continous-time algorithm implementation. The cost
trajectories is depicted in Figure 3, where it is clear the
chattering typically produced by the sliding mode control
near the optimal solution. In Figure 3 and most of all in
Figure 4, where we plot the PCC active power injected
trajectory, one can sees that the “reaching phase” lasts around
150 iterations. In this phase, the pG’s move towards P0 until
they cross it. Then it begins the sliding mode on P0 with
the characteristic chattering, and because of it p0 starts to
chatter near zero.

VIII. CONCLUSIONS AND FUTURE DEVELOPMENTS

In this paper we propose a feedback control strategy
to solve the OPF problem in smart micro-grids with high
penetration of DRES. We model the cost function, we state
the OPF problem and we derive its convex approximation.
Furthermore we characterize its optimal solution. Then we
tackle the OPF problem by deriving a projected gradient
ascent, and finally we provide some simulations in order to
show and explain its behaviour. We envision as future plans
to introduce in this framework also the control of reactive
power, to deal with other operative constraints (such as
node voltage magnitude) and to study the interaction among
various micro-grid connected, by their PCC, to a higher level
network (e.g. high voltage grid).

APPENDIX

Proof: [Proof of Proposition 6]
In this scenario, pG ∈ P+ ∩ B. Being p∗G the solution of

(15) and then a fixed point for (25), it satisfies

p∗G =

[(
I − 2γ cos(θ)c0

U2
N

M

)
p∗G+

−2γ cos(θ)

U2
N

NpL − γ(cG − c0)1

]
P+

(26)

where [·]P+ is the projection into P+ ∩ B. Notice that
the gradient of f̂+ is a Lipschitz continous function, with
Lipschitz costant K = 2c0 cos θ

U2
N

ρ(M). In fact∥∥∥∥∥∂f̂+∂pG
(u)− ∂f̂+

∂pG
(v)

∥∥∥∥∥ =∥∥∥∥2c0 cos θ

U2
N

M(u− v)

∥∥∥∥ ≤ 2c0 cos θ

U2
N

ρ(M) ‖u− v‖



where ρ(M) is the spectral radius of M . Now, let’s define
d(t) = pG(t) − p∗G, and see what happens if we perform a
projected gradient descent of f̂ with

γ ≤ U2
N

2c0 cos θρ(M)
(27)

If pG(t) ∈ P+ then
1) the distance among pG and p∗G always decreases, that

is
‖d(t+ 1)‖ ≤ ‖d(t)‖ (28)

In fact

‖d(t+ 1)‖ = ‖pG(t+ 1)− p∗G‖
= ‖pG(t+ 1)− [p∗G]P+‖ ≤ ‖d(t)‖

where we exploit (19), (26) and the fact that the
projection is a non exansive map, that is

‖[x]P+ − [y]P+‖ ≤ ‖x− y‖;

2) if pG(t + 1) ∈ P+, then f(pG(t + 1)) ≤ f(pG(t)) (it
comes from Proposition 3.3 in [17]);

3) if pG(t+ 1) ∈ P−, we cannot know if f(pG(t+ 1)) ≤
f(pG(t)).
Otherwise, if pG(t) ∈ P− then

4) if pG(t + 1) ∈ P−, then ‖d(t + 1)‖ ≤ ‖d(t)‖ and
f(pG(t + 1)) ≤ f(pG(t)). Let x ∈ Rm, and let x‖ an
x⊥ be the components of x parallel or orthogonal to 1,
respectively.
Then it is trivial to see that ‖d(t+1)‖‖ ≤ ‖d(t)‖‖ while
‖d(t+ 1)⊥‖ = ‖d(t)⊥‖.

5) if pG(t+1) ∈ P+, then we cannot know if ‖d(t+1)‖ ≤
‖d(t)‖ and f(pG(t+1)) ≤ f(pG(t)). We point out that
this is the only situation in which d could increase;

From the above considerations, we get that if the trajectory
lies always in P+, (27) guarantees the convergence of the
algorithm. Furthermore, if ∃ T : {pG : ‖pG − p∗G‖ ≤
d(T )} ∈ P+, then from 1) and 2) it follows again the
convergence of the algorithm. It is clear that, in principle,
the only possible situation in which the algorithm does not
converge, is the one in which there is a continuing sequence
of cross of P0, from P− to P+ because, we point it out
again, it is the only situation in which d can increase. That
is a motion with the following characteristics:

(i) when pG ∈ P+, then the trajectory of pG approaches
P0, always diminuishing however the distance to p∗G
(due to 1) ), until pG crosses it. The only condition
that make it happens is that

〈 ∂f̂
∂pG

,1〉 ≤ 0 (29)

that is

1T
(

2c0
cos(θ)

U2
N

(MpG +NpL) + (cG − c0)1

)
=

= (cG − c0)1T1 + o

(
1

UN

)
=

' (cG − c0)m ≤ 0

pG(t)

d⊥(t)

p∗G

P−P+

V

P0

s
s

Fig. 5. Here we are in the case in which m = 2. Due to (28), pG(t+1)
will be inside the circle centered in p∗G and passing through pG(t), while
due to (29), pG(t+1) will be on the right side of the vertical line passing
through pG(t). As a consequence, pG(t + 1) will lie in the red dotted
region, and then ‖d⊥(t+ 1)‖ ≤ ‖d⊥(t)‖. The dashed line represents the
variety V .

and then this type of trajectory is possible only when
c0 > cG. If otherwise cG > c0, then the update of pG
does not point P− and then the trajectory will evolve
only in P+ and (27) guarantees the convergence of the
algorithm.

(ii) when pG ∈ P−, then the trajectory of pG approaches
P0, always diminuishing however the distance to p∗G
(due to 4) ), until pG crosses it, producing an increas-
ing in the distance among pG and p∗G;

(iii) points (i) and (ii) repeat continously, and it is just
the transition from P− to P+ that makes the distance
increase and the algorithm not to converge

Now we will show that, if (27) holds the former motion
cannot last always. First of all, exploiting (14) and being all
pG ∈ P0 such that

0 = −1T pG − 1T pL + `(sG, sL, UN )

= −1T pG − 1T pL + o

(
1

UN

)
we approximate P0 with the set of all pG such that 1T pG+
1T pL = 0. Suppose now that a trajectory like the one
described above takes place. Consider the evolution of d⊥(t).
We have that d⊥(t) = (I − 11T /m)d(t) = P⊥d(t), where
P⊥ is the projection matrix onto the space orthogonal to 1.
If we define the variety

V = {pG : pG = p∗G + v, v ∈ (ker1)⊥}

then d⊥ represents the distance among pG and V .
1) if pG ∈ P+, then (28) and (29) force d⊥ to decrease.

The condition is well depicted in Figure 1.
2) if pG ∈ P−, then until pG remain in P− then d⊥

maintains its value, because

P⊥
∂f̂

∂pG
= cGP⊥1 = 0

i.e. the motion takes place in a subspace orthogonal to
1.



From the previous consideration, it turns out that the tra-
jectory tends to the variety V that intersects P0 in [p∗G]P0 ,
where [·]P0 is the projection into P0. Notice that the set

Φ = {pG : ‖pG − p∗G‖ ≤ ‖[p∗G]P0 − p∗G‖}

that represents the ball centered in p∗G and with radius
‖[p∗G]P0 − p∗G‖ lies inside P+ and it is tangent to P0 in
[p∗G]P0 . The decreasing of d⊥ and the crosses from P− to
P+ force the trajectory to enter Φ, and then (28) makes pG
to converge to p∗G.

Proof: [Proof of Proposition 7]
The solution p∗G of (15) belongs to P0, that is the discon-

tinuity variety of ∂f̂
∂pG

, and the minimum of f̂+ belongs to
P−. This implies that, both in P+ and P−, the opposite of f̂
gradient points P0. Then, if pG(t) ∈ P+ and we perform the
projected gradient descent of f̂+ (f̂(pG) is equal to f̂+(pG)
in P+), in a finite time the trajectory hthe boundary P0. If,
otherwise, pG(t) ∈ P− again the projected gradient descent
of f̂− (f̂(pG) is equal to f̂−(pG) in P−), will make pG
to cross P0. It is clear as a result that it borns a motion in
which there is a continous cross of P0. Consider now the
update equation

pG(t+ 1) = pG(t)− γ ∂f̂

∂pG
(pG(t)) (30)

that is simply (25) without the projection. It can be in-
terpreted as the forward-Euler discrete-time version of the
continous time update

εṗG(t) = −γ ∂f̂

∂pG
(pG(t)) (31)

where ε is the discretization time interval. If we apply the
change of timescale

τ =
t

ε
⇒ dτ

dε
=

1

ε

we obtain

ṗG(τ) = −γ ∂f̂

∂pG
(pG(τ)) = γϕ(pG(τ)) (32)

where

ϕ(pG) =


ϕ+ = c0

(
2 cos(θ)

U2
N

(MpG +NpL)
)

+

+(cG − c0)1 if pG ∈ P+

ϕ− = cG1 if pG ∈ P−

Equation (32) represents the continous time gradient descent
of f̂ . If we fix a initial pG, from the previous considerations
in a finite time we reach P0 and then, due to the nature
of f̂ gradient, we have a sliding mode on the variety. Now
we have to obtain a equivalent velocity. Again, as we did in
the previous proof, we approximate P0 with the set of all
pG such that 1T pG + 1T pL = 0. Now, following Filippov’s
continuation method [18], we have to find, among the convex
combination of ϕ+ and ϕ− “near” P0 the one that mantains
the trajectory in the variety, that is we have to find a ϕ0 such
that

ϕ0 = µϕ+ + (1− µ)ϕ−, 1Tϕ0 = 0

The former leads to the condition

µ =
cG
c0

+ o

(
1

UN

)
' cG
c0

from which it turns out that

ϕ0 = 2cG
cos(θ)

U2
N

(MpG +NpL)

and then, for all pG(τ) belonging to P0, the equivalent
velocity is described

ṗG(τ) = −γ2cG
cos(θ)

U2
N

(MpG(τ) +NpL) (33)

describes the sliding mode on P0. Notice that, from Lemma
5, we have that c0 > cG and then 0 < µ < 1. Now consider
the discretized version of (33) constrained to the feasible set
B

pG(t+1) =

[
pG(τ)− εγ2cG

cos(θ)

U2
N

(MpG(t) +NpL)

]
P0∩B
(34)

with ε arbitrary small, and where [·]P0∩B is the projection
into P0 ∩ B. Let’s define d(t) = [pG(t)]P0 − p∗, i.e. d(t)
represents the distance among the agents state pG(t) and the
solution of (15). The equilibrium p∗G satisfies

p̃∗G =

[
p̃∗G − εγ2cG

cos(θ)

U2
N

(Mp̃∗G +NpL)

]
P0∩B

(35)

We have that

‖d(t+ 1)‖ ≤
∥∥∥∥(I − εγ2cG

cos(θ)

U2
N

M

)∥∥∥∥ ‖d(t)‖

being the projection a non exansive map (‖[x]P0 − [y]P0‖ ≤
‖x− y‖ ). Thus, being ε arbitrary small and M a symmetric
positive definite matrix, we have ‖d(t + 1)‖ < ‖d(t)‖ and
then pG(t) converges to p∗G

REFERENCES

[1] A. Ipakchi and F. Albuyeh, “Grid of the future,” Power and Energy
Magazine, IEEE, vol. 7, no. 2, pp. 52–62, 2009.

[2] S. Grijalva and M. U. Tariq, “Prosumer-based smart grid architecture
enables a flat, sustainable electricity industry,” in Innovative Smart
Grid Technologies (ISGT), 2011 IEEE PES. IEEE, 2011, pp. 1–6.

[3] F. Katiraei and M. Iravani, “Power management strategies for a
microgrid with multiple distributed generation units,” Power Systems,
IEEE Transactions on, vol. 21, no. 4, pp. 1821–1831, 2006.
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