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Abstract— We consider the problem of minimizing the power
generation cost by exploiting the microgenerators dispersed in
the power distribution network. The proposed strategy requires
that the intelligent agents, located at the microgenerator buses,
measure their voltage and then actuate the physical layer by
adjusting the amount of injected power, according to a feedback
control law derived from a projected gradient descent strategy.
Simulations are provided in order to illustrate the algorithm
behavior.

I. INTRODUCTION

The ultimate goal of the optimal power flow (OPF)
problem is to find an operating point of the power system
that minimizes a cost function (tipically the generation cost
or the line losses) satisfying the power demand and some
operative constraints. In the past, algorithms for the solution
of the OPF problem have been applied to the transmission
networks, namely, the high voltage networks transporting the
electrical power from the power plants to the distribution
networks and finally to the users. The advent of distributed
energy resources is drastically changing the actual power
distribution scenario. Indeed, in the near future a massive
number of small power generators are envisioned to be
deployed in the low voltage and medium voltage power
distribution grid yielding to a number of benefits for the
electrical distribution system. On the other hand, power
injection of several renewable energy sources could lead, if
not properly regulated, to system instability, thus requiring
the solution of OPF problems also in the low and medium
voltage power distribution networks. Many algorithms solv-
ing the OPF problem have been designed. Many of them
exploit powerful optimization techniques, like ADMM ([1]),
primal or dual optimization ([2]), or convex relaxation. They
typically require a large number of iterations and a high
computational burden to converge and they are based on
the standing assumptions that all the buses of the grid are
monitored and all the grid parameters are perfectly known.
The algorithm we propose extends the approach of [3] to
the OPF problem, and can be considered as a feedback
control strategy: its key feature is the alternation between
measurement steps and actuation steps which are based
on the measured data (phasorial voltages), and therefore
it is inherently an online algorithm. This fact is particu-
larly important as it allows to chase the power demand
and the generation capability variation, that in presence of
renewable energy sources are highly changing. Remarkably,
the algorithm we propose is guaranteed to converge to an
approximated optimal solution without monitoring all the
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grid nodes, but only the generators. In the OPF problem
we consider, the goal is to minimize the global generation
cost by controlling the amount of powers injected in the
grid by the generators. The active and reactive powers are
subject to box constraints modeling the generation capability
of each generator, while the objective function is given by
the sum of the generation cost functions associated to the
generators. We tackle the problem via a projected gradient-
based approach. In particular exploiting an approximated
solution of the power flow nonlinear equations, we show the
gradient of the objective function can be computed by the
compensators just via local measurements of the phasorial
voltages at their connection points. Applying at each iteration
a projected gradient descent step, the algorithm is shown to
be provably convergent to an appromixated optimal solution
of the OPF problem.

II. MATHEMATICAL PRELIMINARIES AND NOTATION

Let G = (V, E , σ, τ) be a directed graph, where V is the
set of nodes, E is the set of edges, with n = |V|, r = |E|.
Moreover σ, τ : E → V are two functions such that edge
e ∈ E goes from the source node σ(e) to the terminal node
τ(e). In the paper we introduce complex-valued functions
defined on the nodes and on the edges. These functions will
also be intended as vectors in Cn and Cr. Given a vector
u, we denote by ū its (element-wise) complex conjugate,
and by uT its transpose. We denote by <(u) and by =(u)
the real and the imaginary part of u, respectively. Let A ∈
{0,±1}r×n be the incidence matrix of the graph G, defined
via its elements

[A]ev =

 −1 if v = σ(e)
1 if v = τ(e)
0 otherwise.

We define as 1 the column vector of all ones, while 1v is the
vector whose value is 1 in position v, and 0 everywhere else.
Given u, v, w ∈ R`, with vh ≤ wh, h = 1, . . . , ` we define
the operator proj(u, v, w) as the component wise projection
of u in the set

{
x ∈ R` : vh ≤ xh ≤ wh, h = 1, . . . , `

}
, i.e.,

[proj (u, v, w)]h =

 uh if vh ≤ uh ≤ wh
vh if uh < vh
wh if uh > wh

(1)

III. CYBER-PHYSICAL MODEL OF A SMART GRID

In this work, we envision a smart power distribution
network as a cyber-physical system, in which the physical
layer consists of the power distribution infrastructure, in-
cluding power lines, loads, microgenerators, and the point
of connection to the transmission grid, while the cyber
layer consists of intelligent agents, dispersed in the grid,
and provided with actuation, sensing, communication, and



computational capabilities. We model the physical layer as
a directed graph G, in which edges in E represent the power
lines, and nodes in V represent both loads and generators
that are connected to the microgrid.We limit our study to the
steady state behavior of the system, where all voltages and
currents are sinusoidal signals at the same pulsation ω0, and
can therefore be represented in phasorial notation.

The system state is described by the following system
variables:
• u ∈ Cn, where uv is the grid voltage at node v;
• i ∈ Cn, where iv is the current injected at node v;
• s = p+ iq ∈ Cr, where sv , pv and qv are the complex,

the active and the reactive power injected at node v.
We assume that every microgenerator, and also the PCC,
corresponds to an agent in the cyber layer. We denote this
subset of the nodes of G by C (with |C| = m). Each agent
is provided with sensing capability in the form of a phasor
measurement unit (PMU, i.e., a sensor measuring voltage
amplitude and angle). Agents that correspond to microgener-
ators can command the amount of power injected in the grid.
Moreover agents can communicate with each other, via some
communication channels which could possibly via power
line communication (PLC). We introduce the following block
decomposition for the vectors of voltages u and powers s

u =
[
u0 uG uL

]T
, s =

[
s0 sG sL

]T
, (2)

where u0 is the voltage at the PCC, uG ∈ Cm−1 and uL ∈
Cn−m are the voltages at the microgenerators and at the
loads respectively. Similarly for sG = pG + jqG and sL =
pL + jqL. For every edge e of the graph, we define by ze
the impedance of the corresponding power line. We assume
the following.

Assumption 1: All power lines in the grid have the same
inductance/resistance ratio, i.e., ze = ejθ|ze|, for any e in E
and for a fixed θ.
Assumption 1 is satisfied when the grid is relatively ho-
mogeneous, and is reasonable in most practical cases. We
collect all the grid impedances absolute values in the matrix
Z=diag(|ze|, e∈E). We label the PCC as node 0 and take
it as an ideal sinusoidal voltage generator (slack bus) at
the microgrid nominal voltage UN , with arbitrary, but fixed,
angle φ. We model all nodes but the PCC as constant
power or P-Q buses. The powers sv corresponding to grid
loads are such that pv < 0, meaning that positive active
power is supplied to the devices. On the other hand, the
complex powers corresponding to microgenerators are such
that pv ≥ 0, as positive active power is injected into the grid.
It is known that the system state satisfies the equations

u = e−iθY i (3)

u0 = UNe
iφ (4)

uviv = pv + iqv v 6= 0 (5)

where Y := ATZ−1A is the matrix collecting the absolute
values of the bus admittance matrix of the grid. The follow-
ing Lemma will be useful in the sequel.

Lemma 2: Given Y := ATZ−1A, there exists a unique
symmetric, positive semidefinite matrix X ∈ Rn×n such that{

XY = I − 11T0
X10 = 0.

(6)

The matrix X depends only on the topology of the grid
power lines and on their impedances and, adopting the same
block decomposition as in (2), we can write

X =

0 0 0
0 M N
0 NT Q

 , (7)

with M ∈ R(m)×(m), N ∈ R(m)×(n−m−1), and Q ∈
R(n−m−1)×(n−m−1). The following proposition provides a
approximate relation between the grid voltages and the power
injected.

Proposition 3: Consider the physical model described by
the set of nonlinear equations (3), (4) and (5). Thenu0uG

uL

 = eiφ

UN1 +
eiθ

UN

0 0 0
0 M N
0 NT O

 0
s̄G
s̄L


+ o

(
1

UN

)
, (8)

where the little-o notation means limUN→∞
o(f(UN ))
f(UN ) = 0.

Without loss of generality, from now on we assume φ = 0.

IV. OPTIMAL POWER FLOW PROBLEM

The goal of this paper is to design a distributed con-
trol algorithm that leads to the minimization of the power
generation cost of the power supplied to the loads, that we
assume to be constant power loads requiring ŝL. Formally
the problem we are interested into can be stated as

min
sj ,j∈C∪PCC

f =

m∑
j=1

fj(pj) + f0(p0) (9a)

s.t. sL = ŝL (9b)

s0 = −(1T sG + 1T sL) + `(sG, sL, UN ) (9c)

0 ≤ pv ≤ pMv v ∈ C (9d)

− qMv ≤ qv ≤ qMv v ∈ C (9e)

where
• constraint in (9c) models the power conservation in

the grid, that is always enforced by the PCC, being
`(sG, sL, UN ) the line losses in the grid;

• constraints in (9d) and (9d) model the agents generation
capabilities;

• the objective function f is the sum of the cost of the
power produced by the utility and injected into the
microgrid through the PCC (f0(p0)), and of the mi-
crogenerators’ payments for the power that they inject.

In this paper we assume all the fj’s to be proportional to
the amount of power injected, and, additionally, we assume
all the agents to be paid in the same way; specifically we
model the fj’s as

fj(pj) =

{
cGpj pj ≥ 0

0 pj < 0
∀j ∈ C (10)

In this paper we model f0(p0) as the fj , j ∈ C,

f0(p0) =

{
c0p0 p0 ≥ 0

0 p0 < 0
(11)



Other realistic models might be proposed, however the one
we consider, despite its simplicity, allows us to model inter-
esting system behavior in response to energy price variations
due to energy market logic or system performance necessity.
Problem (9) is not convex, mainly because ` is not convex.
However, via (8) we can approximate ` as

`(sG, sL, UN ) ' `A(sG, sL, UN ) + i`R(sG, sL, UN ) (12)

where

`A(sG, sL, UN ) =
cos(θ)

U2
N

([
pTG pTL

] [M N
NT Q

] [
pG
pL

]
+

+
[
qTG qTL

] [M N
NT Q

] [
qG
qL

])
(13)

`R(sG, sL, UN ) =
sin(θ)

U2
N

([
pTG pTL

] [M N
NT Q

] [
pG
pL

]
+

+
[
qTG qTL

] [M N
NT Q

] [
qG
qL

])
(14)

where `A(sG, sL, UN ) approximates the active power losses
while `R(sG, sL, UN ) approximates the reactive power
losses. Using the above formulas we can express the active
power injected by the PCC as

p0 ' −1T pG − 1T pL + `A(sG, sL, UN ) (15)

and we can approximate problem in (9) with the convex
problem

min
sj ,j∈C

f̂ (16a)

s.t. sL = ŝL (16b)

s0 = −(1T sG + 1T sL) + `(sG, sL, UN ) (16c)

0 ≤ pv ≤ pMv v ∈ C (16d)

− qMv ≤ qv ≤ qMv v ∈ C (16e)

where

f̂ =

m∑
j=1

fj(pj) + f0(−1T pG − 1T pL + `A(sG, sL, UN ))

V. GRADIENT PROJECTED CONTROL ALGORITHM

In this section we describe the control strategy the agents
apply. It is based on a projected gradient descent of f̂ . We
have

∂
(∑m

j fj(pj)
)

∂pG
=

 f
′
1(p1)

...
f ′m(pm)

 := f ′G(pG),
∂
(∑m

j fj(pj)
)

∂qG
= 0

while, as far as ∂f0(p0)
∂pj

, ∂f0(p0)∂qj
are concerned, we get

∂f0(−1T pG − 1T pL + `A(sG, sL, UN ))

∂pG
=

= f ′0(p0)
(
− 1 + 2

cos(θ)

U2
N

(MpG +NpL)
)

(17)

∂f0(−1T pG − 1T pL + `A(sG, sL, UN ))

∂qG
=

= f ′0(p0)
(

+ 2
cos(θ)

U2
N

(MqG +NqL)
)

(18)

Summarizing we can write

∂f̂

∂pG
= f ′G(pG) + f ′0(p0)

(
−1+ 2

cos(θ)

U2
N

(MpG +NpL)

)
(19)

∂f̂

∂qG
= f ′0(p0)

(
+2

cos(θ)

U2
N

(MqG +NqL)

)
(20)

While UN and θ can be assumed known a priori, the
quantities MpG + NpL and MqG + NqL depends on all
the active power injected into the grid (also the unmonitored
one of the loads) and on the topology of the grid. Again, by
exploiting (8), we have that

uG =
eiθ

UN
[M N ]

[
pG − iqG
pL − iqL

]
+ 1UN + o

(
1

UN

)
=
eiθ

UN
(MpG +NpL − iMqG − iNqL) + 1UN + o

(
1

UN

)
from which it follows

<(e−iθ(uG − 1UN )) =
MpG +NpL

UN
+ o

(
1

UN

)
(21a)

−=(e−iθ(uG − 1UN )) =
MqG +NqL

UN
+ o

(
1

UN

)
(21b)

and, in turn,

∂f̂

∂pG
' f ′G(pG) + f ′0(p0)(−1+

+ 2
cos(θ)

UN
<(e−iθ(uG − 1UN )

))
:= ĝp (22a)

∂f̂

∂qG
' f ′0(p0)

(
−2cos(θ)

UN
=(e−iθ(uG − 1UN ))

)
:= ĝq (22b)

Remarkably, from the above expressions, it turns out that
the compesators can compute the gradient by taking only
local voltage measurements. Indeed, ∀k ∈ C, it holds[

<(e−iθ(uG − 1UN ))
]
k
= |uk| cos(∠uk − θ)

− |uN | cos(∠uN − θ) (23)[
=(e−iθ(uG − 1UN ))

]
k
= |uk| sin(∠uk − θ)

− |uN | sin(∠uN − θ) (24)

and hence, each compensator, in order to evaluate the
corresponding component of f̂ ’s gradient, needs only the
knowledge of its voltage, of the PCC voltage and of f ′0(p0).
Based on the above observations, we propose the following
algorithm, where we assume that the agents can update their
state variables qh and λh, h ∈ C\{0}, synchronously.

Let γp and γq be positive scalar parameter. At every syn-
chronous iteration of the algorithm, each agent h ∈ C\{0}
executes the following operations in order:

1) senses the system obtaining its voltage phasorial mea-
surement uh;

2) receives the PCC voltage phasorial measurement u0 =
UN ;



3) computes the gradient directions approximations

[ĝp]h = f ′h(ph) + f ′0(p0)(−1+ (25a)

+ 2
cos θ

UN

(
|uk| cos(∠uk − θ)− |uN | cos(∠uN − θ)

))
[ĝq]h = f ′0(p0)(−2

cos θ

UN

(
|uk| cos(∠uk − θ)+ (25b)

− |uN | cos(∠uN − θ)
))

4) computes the active and reactive power to be injected
in the grid performing the following gradient descent
steps

ph ← ph − γp[ĝp]h (26a)
qh ← qh − γq[ĝq]h (26b)

5) projects ph and qh into the feasible region and actuates
the projected values

ph ← proj(ph, 0, pMh ) (27a)

ph ← proj(qh,−qMh , pMh ). (27b)

Based on the above description, it is clear what is the
feedback scheme that underlies the procedure we propose:
during each iteration each agent senses the grid, communi-
cates with the PCC, computes the power set-point and then
actuates it. Concerning the convergence properties of the
above distributed control algorithm, we have the following
result.

Proposition 4: Consider problem (16), and assume∑
h∈C

pMh ≤ −1T pL (28)

Then the algorithm in (25), (26) and (27) converges asynptot-
ically to the optimal solution of (16) if

γp ≤ γmax, and γq ≤ γmax

where γmax = 2 f
′(p0) cos θ
U2

N
ρ(M) being ρ(M) the spectral

radius of M .
Remark 5: Condition (28) incorporates the fact that the

agents total generation capacity is not able to satisfy the
whole loads power requirement. This situation might be
encountered in those grids where the agents are all small-
size renewable generators. We plan to study situations where
condition (28) is not satisfied as future research.

VI. SIMULATIONS

The algorithm has been tested on the testbed IEEE 37
[4], whose scheme is on Fig. 1, on a nonlinear exact solver
of the grid [5]. The load buses are a blend of constant-
power, constant current, and constant-impedance loads, with
a total power demand of almost 2 MW of active power
and 1 MVAR of reactive power. The impedances of the
power lines are different for different edges. However, the
inductance/resistance ratio exhibits a smaller variation, rang-
ing from ∠ze = 0.47 to ∠ze = 0.59 (justifying in some
sense Assumption 1). We considered the scenario in which
5 microgenerators have been deployed in this distribution

PCC

Fig. 1.

TABLE I
RESULTING ACTIVE POWER ALLOCATION [KW]

node α = 1 α = 0.96 α = 0.50 pM

PCC 409 1319 1994
1 85 0 0 85
2 415 0 0 415
3 368 78 0 368
4 178 155 0 178
5 490 407 0 490

grid. We ran the algorithm with different values of the ratio
α = c0/cG, and with γp = γq = γM/4. The asymptotical
active power values (reported in Table I) of each simulation
reached the optimum values. In Fig. 2 instead is reported

Fig. 2. Trajectory of the generation cost with α = 1

the cost generation trajectory of the ran with α = 1. We
can see that the feedback control strategy at every iteration
makes the cost to reduce, until it reaches the optimum value.
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