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Abstract— Traditionally, electrical power was generated in
big power plants. The cost of producing energy was related
to the cost of fuel, e.g., carbon or gas, and by the cost of
maintaining the power plants. With the advent of distributed
energy resources, power can be produced directly at the edge of
the electrical network by a new type of agents: the prosumers.
Prosumers are entities that both consume and generate power,
e.g., by means of photovoltaic panels. The cost of the power
produced by prosumers is no longer related to fuel consumption
since energy coming from distributed generators is essentially
free. Rather, the cost is related to the remuneration that is due
to the prosumers for the services they provide. The proposed
control strategy minimizes the active power generation cost
in the aforementioned scenario. The control scheme requires
that the prosumers measure their voltage and then adjust
the amount of injected power, according to a continuous time
feedback control law that is indeed a projected gradient descent
strategy. Simulations are provided in order to illustrate the
algorithm behavior.

I. INTRODUCTION

The advent of distributed energy resources (DERs), like
wind turbines, photovoltaic panels, or other renewable energy
sources, is going to dramatically change the actual electrical
grid [1] as a massive number of small power generators
will be deployed in the distribution grid. On one hand,
a number of improvements for the electrical system will
be achieved with the integration of the distributed energy
resources in the distribution network, e.g. voltage profile
improvements, reduction of line loss and power generation
cost and other ancillary services [2]. On the other hand,
distribution networks can suffer instabilities or damages
if the (possibly) millions hosted DERs do not coordinate
their power injections. This motivates the recent interest in
developing algorithms that solve optimal power flow (OPF)
problems for distribution networks, while in the past they
were focused only on transmission networks. Utilities have
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to solve optimal power flow (OPF) problems to find a power
system operating point that minimizes a cost function, e.g.,
the generation cost or the line losses, satisfying the power
demand and some operative constraints, like limitation on
the generation capability or voltage magnitude limits.

OPF problems for transmission networks are usually tack-
led by centralized off-line algorithms which (i) collect all the
necessary field data, (ii) compute the optimal configuration,
and (iii) dispatch the power production to the generators.
Similar off-line solution strategy has been applied to distri-
bution networks too, e.g., algorithms based on the alternating
direction method of multipliers (ADMM) has been developed
[3]. They require a large number of iterations and a high
computational burden to converge, mainly due to the non-
linear relations among powers and voltages which make the
OPF problem non-convex. To overcome these drawbacks, the
OPF problem has been reformulated as a rank-constrained
semidefinite program conveniently convexified by dropping
the rank constraint [4]. Heed that in all the aforementioned
solutions, the OPF solution is applied at the end of the
optimization process, that requires either a global knowledge
of the system state or a number of communication rounds
necessary for the solution numerical computation.

This approach is not practical in distribution networks,
because of the power demand fast variability and in the gen-
erators’ generation capabilities, and to the fact that generators
can connect or disconnect, requiring an automatic reconfig-
uration of the grid control infrastructure (the so called “plug
and play” approach). This explains the recent interest in
online distributed feedback optimization algorithms, where
the feedback is exploited to infer from local measurements,
e.g., voltages or power injections, global information [5]–[7].

The algorithm proposed herein is (i) a continuous time
control algorithm, that exploit as feedback variables the
phasorial voltages and information about the power flowing
through the substation (also termed PCC in the following),
(ii) is inherently an online algorithm, and (iii) can be imple-
mented in a distributed way. The OPF problem we consider
aims at minimizing the global power generation cost. In our
setup we consider two types of cost functions: one associated
with the power produced by conventional power plants
and coming from the external transmission network, and
one associated with the DERs dispersed in the distribution
network. The problem is tackled via a projected gradient-
based approach that is shown to be provably convergent to
an approximated optimal solution of the OPF problem.



II. NOTATION AND MATHEMATICAL PRELIMINARIES

Upper- (lower-) case boldface letters denote matrices (col-
umn vectors). Sets are denoted with calligraphic symbols.
Symbol > stands for transposition. Vectors 1 and em rep-
resent the all-one vectors and the m-th canonical vector,
respectively. Given a set A, |A| is the number of elements
in A. The projection of a vector x0 onto a convex set X is
denoted as ΠX (x0) = arg minx∈X ‖x− x0‖.

A convex cone K is a set such that, for every x1,x2 ∈ K,
ax1 ∈ K, a ≥ 0, and ax1 + (1 − a)x2 ∈ K, 0 ≤ a ≤ 1.
Given a convex cone K ⊂ RN , its polar cone K∗ is the set
K∗ = {y : y>x ≤ 0,x ∈ K}.

Lemma 1 (Lemma 1, [7]): Consider a convex cone K ⊂
RN and a vector a ∈ RN . Let b = ΠK(a). Then, it holds
a− b ∈ K∗.
The tangent cone of a non-empty convex set X at x ∈ X is
the convex cone

T x
X = cl{d ∈ RN : ∃ε > 0,x + εd ∈ X}.

The normal cone of a non-empty convex set X at x ∈ X is
the convex cone

N x
X = {d ∈ RN : d>(y − x) ≤ 0,∀y ∈ X}.

The tangent and the normal cone of X at x are such that
N x
X = (T x

X )∗ [9].

III. CYBER-PHYSICAL MODEL OF A DISTRIBUTION GRID

A smart power distribution network can be described as a
cyber-physical system in which
• The physical layer comprises the distribution infrastruc-

ture: lines, loads, microgenerators, and the substation;
• The cyber layer consists of intelligent agents provided

with actuation, communication, sensing, and computa-
tional capabilities.

The physical layer can be modeled using an undirected
graph G = (V, E); the set V , with cardinality |V| := n + 1,
collects nodes that are associated with electrical buses. The
substation, also termed point of common coupling (PCC),
is labeled as 0. As a consequence, we can write V =
{0, 1, . . . , n}. The set E , E ⊆ V × V , with cardinality
|E| := m, collects the edges that are associated with the
electrical lines. Usually, distribution networks feature a radial
topology; thus, m = n. Define the following quantities:
• u ∈ Cn, with uv being the voltage at bus v;
• i ∈ Cn, where iv is the current injected at node v;
• s = p+ iq ∈ Cn, where sv , pv and qv are the complex,

the active and the reactive power injected at node v.
Active and reactive powers will take positive values, i.e.,
pv, qv ≥ 0 when they are injected in the grid by bus v.
Conversely, pv, qv ≤ 0 means that bus v is absorbing
power from the grid.

• z = r + ix ∈ Cm, where z`, r` and x` are the
impedance, the resistance and the reactance of line `.

The system state is described by the following system of
equations: [

i0
i

]
= Y

[
u0
u

]
(1a)

u0 = UN (1b)
uv īv = pv + iqv v 6= 0 . (1c)

Equation (1a), where Y is the bus admittance matrix,
provides the relation between voltages and currents. Equation
(1b) holds since the substation is modeled as an ideal voltage
generator imposing the nominal voltage u0 = UN . Finally,
equation (1c) comes from the fact that all the nodes, except
the PCC, are modeled as constant power buses. It can be
shown that there exists a unique matrix Z ∈ Cn×n, called the
Green matrix, that allows us to write voltages as a function
of currents via:

u = Zi + 1UN . (2)

Notably, the Z is symmetric and positive semidefinite (see
[10]). Furthermore, it has been shown that the non-linear
relation between power injections and voltages satisfies [10]

u =
(R + iX)

UN
(p− iq) + 1UN + o

(
1

UN

)
where the little-o notation means that limUN→∞

o(f(UN ))
f(UN ) =

0. As a consequence, the voltage-powers relation can be
approximated with the linear function

u =
(R + iX)

UN
(p− iq) + 1Un (3)

where the matrices R and X are the real and the imaginary
part of Z, respectively. Power loss equals the sum of the
powers injected by the substation and all the prosumers; thus,
p0 can be written as

p0(p) = −
n∑
v=1

pv + `(p) = −1>p + `(p). (4)

where `(p) denotes the active power loss. The dependence of
power loss from q is dropped, since in this paper the reactive
power injections q are considered as fixed, non-controllable
variables. The linearization (3) can be used to find convex
approximations of the active power network loss

`(p) = p>
R

U2
N

p + q>
X

U2
N

q. (5)

and of the power flowing through the substation

p0(p) = −1>p + p>
R

U2
N

p + q>
X

U2
N

q. (6)

We assume that every bus in the power network is a prosumer
[11], except the PCC. A prosumer is a bus able to generate
the power pgv ≥ 0 (v is a producer) but with a power demand
pdv, qv ≤ 0 too. That is, a prosumer v is both a producer and a
consumer of energy. Define, pv := pdv+pgv , i.e., pv is the sum
between the power demand and the generation capability of
prosumer v. We have two cases:
• When pv ≥ 0, the generation capability of v exceeds the

power demand and v behaves like a generator. Its power
output pv is controllable and satisfies 0 ≤ pv ≤ pv;

• When pv ≤ 0, the power demand exceeds the generation
capability of v and v behaves like an uncontrollable load
requiring pv = pv .



Fig. 1. Power cost function associated with a prosumer.

Each prosumer (referred to also as agent) is provided with
sensing capability in the form of a phasor measurement
unit (PMU). Finally, we assume that the power grid has a
Network Supervisor (NS) able to measure the amount of
power flowing into the distribution grid through the PCC.
The NS acts as an intermediary between the prosumers and
the distribution system operator, receiving updates on the
generation cost of p0, and broadcasting to all the prosumers
information that will be used in the control algorithm.

IV. PROBLEM FORMULATION

Next, a distributed feedback control algorithm will be de-
vised to minimize the power generation cost. The generation
cost is often chosen to be a polynomial, e.g., a quadratic
function of the type [4], [12], [13]

fv(pv) =

{
αv,2p

2
v + αv,1pv + αv,0 pv ≥ 0

0 pv < 0
. (7)

This is a common choice in the literature that well describe
the case in which power is produced in power plants;
however, it does not capture the case in which power is
produced by a DER, like a photovoltaic panel. In the latter
case, energy is produced at zero cost; rather, the power cost is
the remuneration due to the generator owners for the power
injection. In summary,
• When a prosumer is behaving like a generator, the

remuneration is proportional to the quantity of energy
injected into the grid, with a proportionality constant
that depends on the contractual agreement with the
utility;

• When a prosumer is behaving like a load, it will not
receive a remuneration; instead, the prosumer has to pay
the power consumed, whose price is proportional to the
power absorbed. As a result, the utility must sustain a
negative price, i.e. it earns money.

The model we use for the remuneration (see Figure 1) comes
straightforwardly from the previous reasoning, and it is

f̂v(pv) =

{
cv,G pv pv ≥ 0

cv,L pv pv < 0
∀v ∈ V (8)

In this framework there are mainly two possible scenarios.
The first one is related to the “prosumers point of view”,
in which the prosumers compete in order to maximize the
profit they earn from selling power to the grid. Overall, this

boils down to a game among the agents. A first treatment of
this scenario can be found in [14].

The second scenario is instead related to the “utility point
of view”, where the total cost accounts for the production
cost of the energy injected by the PCC (that comes from big
generation plants such as nuclear or hydroelectrical plants)
and for the remuneration to be paid to the owners of DRES.
In this framework, the goal of the utility is to minimize the
total cost while satisfying some operative constraints.

In this paper we focus on the second scenario. To have
a lighter notation, we assume that all the agents are paid in
the same way, that is,

cv,G = cG ∀v ∈ V\{0} (9)

and we model f0(p0) as

f0(p0) =

{
c0p0 p0 ≥ 0

0 p0 < 0
(10)

However, our results can be easily generalized to the case
in which (9) does not hold and the power generation cost at
the PCC is modeled with classic cost functions, e.g., (7). We
make also the following assumption.

Assumption 2: The reward cG is positive, that is cG > 0.

Formally, the problem we are interested into can be stated
as the following optimization problem

min
p

n∑
v=1

fv(pv) + f0(p0) (11a)

s. t. p0(p) = −1>p + p>
R

U2
N

p + q>
X

U2
N

q (11b)

p ∈ B (11c)

where
• equation (11b) models active power conservation;
• B is the feasible set, that is

B = {p : p
v
≤ pv ≤ pv}.

If prosumer v behaves as a load, then p
v

= pv < 0.
If prosumer v behaves as a generator, then p

v
= 0 and

0 < pv <∞. Thus, the set B is bounded.
• the cost functions fv(pv)’s are defined as

fv(pv) := cGpv. (12)

The function fv(pv) is different from the piece-wise
actual cost f̂v(pv): fv(pv) is linear. Nonetheless, the
minimizer of (11) is the same as if the f̂v(pv)’s would
have been used, even though the minimum is different.
In fact, fv(pv) = f̂v(pv) for pv ≥ 0, i.e., where pv is an
actual optimization variable; while fv(pv) 6= f̂v(pv) for
pv < 0, where constraint (11c) forces pv = p

v
= pv .

Define f(p) =
∑n
v=1 fv(pv) + f0(p0). Thanks to (10) and

(12), we can write

f(p) =

{
f+(p) if p ∈ S+ ∪ S0

f−(p) if p ∈ S− ∪ S0
(13)



where

f+(p) = (cG − c0)1Tp + c0

(
p>

R

U2
N

p + q>
X

U2
N

q

)
f−(p) = cG1

Tp

S+ = {p : p0(p) > 0} S− = {p : p0(p) < 0}
S0 = {p : p0(p) = 0}.

S0 is a variety separating S+ from S−. The cost f(p) is
a continuous function: f+(p) and f−(p) are continuous in
S+ ∪ S0 and in S− ∪ S0, respectively; moreover, f+(p) =
f−(p) for all p ∈ S0. Furthermore, f(p) is differentiable in
S+ and in S−, but not in S0. The solution of problem 11 is
characterized by the following proposition, proved in [6].

Proposition 3: Consider problem (11), let Assumption 2
hold and denote with p∗ an optimal solution of (11). Then,
every optimal configuration p∗ is such that p0(p∗) ≥ 0, i.e.,
it belongs to S+ ∪ S0.

V. A CONTINUOUS-TIME ALGORITHM

Problem (11) could be solved by a continuous-time pro-
jected gradient descent of the cost function. However, remind
that Proposition 3 ensures that the optimum configuration lies
in S+∪S0. To speed up the rate of convergence, a reasonable
strategy is to steer the prosumers power injections p in the
region S+ ∪S0 as fast as possible when p ∈ S−, instead of
executing the mere gradient descent on f . Hence, we propose
the following strategy:
• if p0(p) < 0, agents aims at increasing p0 following

the rule
ṗ(t) = ΠT p(t)

B
(∇p0(p(t))) (14)

• if p0(p) ≥ 0, agents perform the cost function gradient
descent.

ṗ(t) = ΠT p(t)
B

(−∇f+(p(t))) (15)

The overall control rule can be written as

ṗ(t) = ΠT p(t)
B

(ϕ(p(t))) (16)

where

ϕ(p) =

{
−∇f+(p) = (c0 − cG)1− c0

U2
N
Rp p ∈ S+

∇p0(p) = −1 + 1
U2

N
Rp p ∈ S−.

(17)
Heed that the vector field (17) is continuous on the sets
S+ and S−, but it is discontinuous and not defined on
S0, since f is not differentiable in S0. A widely accepted
way to extend (17) on S0 is given by the Filippov convex
method, which considers the following set-valued extension,
or convexification, of ϕ(p) [15]. Precisely, let ϕ0(p) be
the extension of ∇f(p) on S0. According to the Filippov
method,

ϕ0(p) ∈ co{∇p0(p),−∇f+(p)} (18)

where co{∇p0(p),−∇f+(p)} denotes the smallest convex
set that contains ∇p0(p) and −∇f+(p). Hence, for p ∈ S0,
we can write

ϕ0(p) = −α(p)∇f+(p) + (1− α(p))∇p0(p) (19)

where α(p)) is a suitable non-negative variable, 0 ≤ α(p) ≤
1, which can take different values leading to:
• Attractive sliding mode. When both −∇f+(p) and
∇p0(p) are pointing towards S0, or

−∇f+(p)>∇p0(p) < 0 (20)

an attractive sliding mode occurs. When (20) is sat-
isfied, p will move along S0 giving rise to a sliding
motion. During the sliding motion, α(p) is such that
ϕ0(p) is tangent to S0, or ϕ0(p)>∇p0(p) = 0. It can
be easily shown that

α(p) =
‖∇p0(p)‖2

∇p0(p)>(∇f+(p) +∇p0(p))
(21)

and that α(p) > 0.
• Transversal intersection. When ∇f+(p) and ∇p0(p)

have the same orientation, that is

−∇f+(p)>∇po(p) > 0. (22)

there is no sliding motion and the trajectory of p(·) will
leave the surface S0. The parameter α(p) is chosen as
α(p) = 1.

Based on the previous considerations, the gradient field (17)
can be extended as

ϕ(p) =


−∇f+(p) p ∈ S+

∇p0(p) p ∈ S−

ϕ0(p) p ∈ S0
(23)

Beside the discontinuity of ϕ(p) in S0, the dynamic (16)
may be discontinuous also on the boundaries of the feasible
set B, where the gradient is projected on the cone of the
feasible directions. For these reasons, the standard notion of
solution for ordinary differential equations does not apply. In
this paper, the trajectory p : [0, t] → Rn is a Caratheodory
solution on the interval [0, t] if it is absolutely continuous
and satisfies (16) almost everywhere in [0, t]. The system
considered in this paper guarantees the uniqueness of the
Caratheodory solution, see [16].

The next Proposition, which is the main result of this
paper, shows that the dynamic (16) is asymptotically stable
and that steers the system towards the solution of (11).

Proposition 4: Consider problem (11) and the dynamic
(16). Let Assumption 2 hold. Then, (11) has a unique
solution p∗ and the trajectory t → p(t) is asymptotically
stable and converges to the unique optimum p∗.

VI. A DISCRETE-TIME FEEDBACK CONTROL
IMPLEMENTATION

The control strategy (16) cannot be actually implemented,
since inverters or power electronic devices in general per-
form control actions on discrete times. For this reason, we
introduce the discrete-time version (16):

p(t+ 1) =

{
ΠB
(
p(t)− ε+∇f+(p(t)

)
if p0(p) > 0

ΠB
(
p(t) + ε−∇p0(p(t)

)
if p0(p) < 0

(24)



where ε+, ε− are a suitable positive constant. The continuous
time dynamic (16) can be seen as the limit of the discrete
time dynamic (24) when ε+ and ε− tend to zero.

To avoid the computational burden of a centralized algo-
rithm, we seek for a distributed implementation of (24), i.e.,
we aim at designing a control scheme that can be performed
by each prosumer having just a local and partial (thus not
global) knowledge of the grid state.

Note that the gradients ∇f+(p(t)) and ∇p0(p(y)) cannot
be computed by each prosumer using only local information.
Rather, global information, i.e., the whole power injection
vector p and the grid structure R, is needed, in contrast
with our desire for designing a distributed algorithm. How-
ever, an estimate of Rp can actually be computed locally.
Assume that all the power lines in the grid have the same
inductance/resistance ratio, but possibly different impedance
magnitude, i.e., z` = eiθ|z`| for any ` in E and for a fixed
θ. In this case, equation (3) becomes

u = eiθ|Z|(p− iq) + 1UN (25)

where the matrix |Z| collects the absolute values of the
entries of Z. This assumption is satisfied when the induc-
tance/resistance ratio of the power lines of the grid is rela-
tively homogeneous, which is reasonable in many practical
cases, e.g., see the IEEE standard testbeds [17] and [18, Table
I]. Under (25), we can estimate Rp as

Rp = cos θ<(e−iθ(u− 1UN )). (26)

Equation 26 can be used finally to obtain the approximations

∇f+(p) = (cG − c0)1 +
c0 cos θ

U2
N

<(e−iθ(u− 1UN ))1

∇p0(p) = −1 +
cos θ

U2
N

<(e−iθ(u− 1UN ))1

Note that every prosumer can compute its component of
∇f+(p) knowing its own voltage phasor, the prices cG and
c0, and the parameter θ, since

[∇f+(p)]v = (cG − c0) +
c0 cos θ

U2
N

<(e−iθ(uv − UN ))

(27)

[∇p0(p)]v = −1 +
cos θ

U2
N

<(e−iθ(uv − UN )). (28)

By plugging (27) and (28) into equation (24), we obtain
the control rule performed by the prosumers. Trivially, the
projection onto the feasible set can be done locally. To
perform (24), besides local information, prosumers need to
know the current power flowing the substation, the substation
voltage, and the current price c0. The NS is in charge
of metering p0 and UN and broadcasting their value and
c0 to the prosumers. Based on the above description, it
is clear what is the feedback scheme that underlies the
procedure we propose: during each iteration agents and the
NS sense the grid, communicate, compute the power set-
point and then actuate it. The control strategy, formally
described in Algorithm I, require only an estimate of the
resistance/reactance ratio to be executed. Hence, it can be
considered as a model free optimization algorithm.

ALGORITHM I

Let ε be a suitable positive constant. At the (t+ 1)-th cycle.
The NS performs the following actions:

1. Measure the power p0(p(t)) and the voltage UN .
2. Broadcast p0(p(t)), UN and c0.

Prosumer v performs the following actions
1. Measure its own voltage uv(t)).
2. Receive the quantities p0(p(t)), UN and c0.
3. Computes its gradient component through (27) or (28).
4. Computes, using equation (24), and applies the active

power setpoint.

1

2

3

4
5

6

7
8

Fig. 2. Schematic representation of the IEEE 37-bus test feeder. Red
nodes represent prosumers behaving as generators, as their power generation
capability exceed their power requirement. Black nodes instead represent
prosumer behaving as loads, whose power demand is bigger than their
generation capabilities.

VII. SIMULATIONS

The algorithm has been tested on a single-phase equivalent
of the IEEE 37-bus test feeder, reported in Figure 2. The load
buses are a mixture of constant-current, constant-impedance
and constant-power loads, with a total active power power
demand of almost 2 MW and reactive power demand of
almost 1 MVAR [17]. The line impedances differ from edge
to edge, however, the inductance/resistance ratio exhibits a
smaller variation, ranging from ∠z` = 0.47 to ∠z` = 0.59.
Eight prosumers, able to generate more power than they
require, behave as generators with controllable power output.
Their maximum active power capabilities have been set to
values that go from 85 to 490 kW. The algorithm presented
in Section VI was simulated on a nonlinear exact power
flow solver [19]; on the same solver, the true solution of
the optimization p∗ was computed. The step-size ε was
chosen small to make the trajectory similar to the continuous
time version. To study the convergence of the feedback
optimization algorithm, introduce the variable d = ‖p−p∗‖.

Firstly, we simulate the case in which cG < c0, i.e.,
the case in which it is cheapest to import power from
the external grid. Precisely, we normalized c0 = 1 and



Fig. 3. An algorithm numerical simulation with cG = 1.5 and c0 = 1.

Fig. 4. An algorithm numerical simulation with cG = 0.5 and c0 = 1.

set cG = 1.5. In this case, p∗ ∈ S+. The results are
reported in Fig. 3. Secondly, the case where c0 < cG,
i.e., when buying energy from the distributed generators is
more convenient, was inspected. Fig. 4 shows the results for
c0 = 1, cG = 0.5. In this case, p∗ ∈ S0 and a sliding motion
appeared. Some comments are in order. First, the cost of
the equilibria configurations is slightly higher than the cost
of the true minimum, i.e., the equilibrium is suboptimum,
see Fig. 3 and Fig. 4, left panels. This is because of the
approximations used to distribute the algorithm. Second, in
the case c0 = 1, cG = 0.5, the reaching phase, i.e., the part
of the trajectories in which p reaches the surface S0, lasts
about 400 iterations. Once p starts sliding on the surface S0,
the trajectory of p slows down, see Fig. 3, right panel. Third,
when c0 = 1, cG = 0.5, and p is on the sliding surface, the
trajectory experienced the typical sliding mode chattering,
which appears because the control strategy is implemented
in discrete time rather than in continuous time, and it is
evident on the trajectory of p0, see Fig. 5.

VIII. CONCLUSION

This paper presents and analyzes a feedback control al-
gorithm for the minimization of the generation cost in a
distribution network. The main features of our approach are
the following. Firstly, it considers the case in which the cost
of the power is not related to actual generation cost, but rather
to economical agreements between utilities and prosumers.
Secondly, it can be referred to as a “quasi local” approach.
Each prosumer is able to implement the control rule by
using only local information and some common knowledge
that it is broadcasted by the NS. Finally, simulations on
a standard testbed prove the effectiveness of the proposed

Fig. 5. Trajectory of p0(p) in the same numerical simulation depicted in
Figure 4.

control scheme.

APPENDIX

Next, we will make the following simplification. Since
power loss are negligible, we will approximate p0(p) as a
linear function of p,

p0(p) = −1Tp. (29)

Note that (29) is the limit of (5) when UN becomes large
enough. In this simplified case, ∇p0(p) = −1. Before
proving Proposition 4, we firstly show that, in a finite amount
of time, the trajectory of p will reach the space (S+ ∪ S0).

Proposition 5: Let initial active power configuration be-
long to S−, i.e., p(0) ∈ S−. Let Assumption 2 hold. Then,
there exists a T <∞ such that p0(p(T )) = 0.

Proof: Let p(0) such that p0(p(0)) < 0. In this case,
the dynamic of prosumer v is given by

ṗv(t) =
[
ΠT p(t)

B
(∇p0(p(t))

]
v

=

{
−1 if pv > p

v

0 if pv = p
v

(30)

Note that
• trivially, p0(p) is positive if all the pv’s are non-positive;
• the effect of the control rule is to decrease the power

injection of each prosumer;
Hence, the time constant T is lower than the time needed by
the control rule (30) to steer every pv to its lower bound p

v
,

T ≤ max
v
{pv − pv} <∞.

Being the feasible set B bounded, it follows that T <∞.
Proof: [Proof of Prop. 4] Adopting the approxima-

tion (29) to model p0(p) and using Prop. 3, the optimum
power configuration p∗ can be found as the solution of

min
p

f+(p) (31a)

s. t. 1>p ≤ 0 (31b)
p ∈ B (31c)

where the constraint (31b) is basically enforcing p0(p) ≥
0. Problem (31) is convex with a strongly convex cost and
thus have a unique solution. Denote the feasible set of 31 as
F = {p : 1>p ≤ 0,p ∈ B} = (S+ ∪S0)∩B. Being f+(p)



a strictly convex function and p∗ its unique minimizer over
F , it follows that ∀p ∈ F

f+(p∗) ≥ f+(p) +∇f+(p)(p∗ − p)

f+(p∗) < f+(p).

Combining the former equations yields to

−∇f+(p)(p− p∗) < 0 (32)

Furtermore, heed that when p ∈ S0

• being ∇p0(p) orthogonal to the surface S0 it follows
that

∇p0(p) ∈ Np
F . (33)

• since p∗ belongs to F , it holds

(p∗ − p) ∈ T p
F . (34)

From the definition of tangent and normal cone, and from
equations (33) and (34), we have that

−∇p0(p)(p− p∗) ≤ 0,p ∈ S0 (35)

In order to study the stability of (16), define the Lyapunov
function V (p(t)) = 1/2‖p(t)−p∗‖2, whose time derivative
is given by

V̇ (p(t)) = (p(t)− p∗)>ṗ(t)

= (p(t)− p∗)>ΠT p(t)
B

(ϕ(p(t)))

≤ (p(t)− p∗)>ϕ(p(t)) (36)

where the last inequality holds since, due to Lemma 1 and
the fact that Np

F = (T p
F )∗, we have

(p(t)− p∗)>
(
ϕ(p(t))− ṗ(t)

)
≥ 0.

Let now p(t) ∈ F\S0. In this case, thanks to equation (32),
we have

V̇ (p(t)) ≤ (p(t)− p∗)>ϕ(p(t))

= −(p(t)− p∗)>∇f+(p(t)) < 0.

When instead p(t) ∈ S0, equations (19), (32) and (35), and
the fact that α(p) 6= 0 unless p is the global minimizer of
f+, yield

V̇ (p(t)) ≤ (p(t)− p∗)>ϕ(p(t))

= −(p(t)− p∗)>α(p)∇f+(p)+

+
(
1− α(p)

)
(p(t)− p∗)>∇p0(p) < 0.
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