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Abstract—Orbital robotics, due to the unfriendly environment (radi-
ation, micro-gravity, thermal stresses, etc.) poses unique challenges to
robot and robot algorithms, and sets the need for new and innovative
autonomous systems. The design of servicing operations and devices is
nowadays one of the most important research field in space robotics.
Servicing operations range from regular inspection to the upgrade of
components and re-fuelling. It is immediate to notice that, regardless
of the operation to be carried out, the success is strictly linked to the
way in which the chaser and the target satellites move and interact with
respect to each other. The importance of relative motion for rendezvous
and docking operations, calls for an approriate laboratory facility able
to reproduce orbital conditions. This can be achieved only with a robotic
structure that simulates the target and chaser’s kinematics and dynamics.

In this paper, a complete approach to the problem is presented, from
the kinematic analysis to the modelling of the impact. In particular,
a spring-dashpot model was chosen for the contact simulation, and a
virtual-force control system has been adopted. Then, by considering the
system’s stability, we extracted the analytical expressions that link the
performances of the facility with the range of orbital systems that can
be simulated.

Furthermore, with the aid of a SimMechanicsr numerical model, we
inspected the performances of three different control strategies for the
movimentation of the robot.

I. INTRODUCTION

The increasing number of human objects in space has laid the
foundation of a novel class of orbital missions for servicing and
maintenance. There are currently very few facilities able to simulate
relative motion between orbiting objects: one of the most impor-
tant is probably DLR’s European Proximity Operations Simulator
(EPOS) [1]. The current facility, built in 2009, consists of a 25 m
long testing site with in two industrial anthropomorphic robots that
can reproduce docking and berthing scenarios, taking into account
dynamic contacts, gravity and even sunlight illumination for utmost
realistic simulations.

The main goal of this paper is to provide a guideline for the
development of a robotic manipulator for the simulation of close
approach orbital maneuvers, with particular attention to docking
and capture. The interesting aspect of this structure will be the
integration of a force sensing device that will take into account
both disturbances and contact forces between the objects. Through a
dedicated algorithm, the system is able to compute in real time the
consequences of these inputs in terms of trajectory modifications,
which are then fed to the hardware in the loop (HIL) control system.
Moreover, the software governing the manipulator can be commanded
to perform active maneuvers and relocation: as a consequence,
this structure can be used as the testing bench for any attitude
modification system, providing a reliable, real time simulation of the
orbital scenario. Furthermore, with the aid of dynamic scaling laws,
the potentialities of the facility can be exponentially increased: the

simulation environment is not longer bounded to be as big as the
robot workspace, but could be several orders of magnitude bigger,
allowing for the reproduction of otherwise preposterous scenarios in
a laboratory environment. The manipulator presented in this paper
will serve as the main testing facility for the reproduction and the
verification of theoretical and numerical analysis at CISAS research
center (Padova, Italy).

II. MANIPULATOR ANALYSIS

A. Preliminary design

For this particular application the 6 DOF anthropomorphic config-
uration seems to be the best choice in order to obtain the maximum
dexterity. In this structure, the first 3 joints provide the positioning,
whereas the remaining 3 take care of the attitude. Since the robot will
not be an off-the-self product, a custom end effector was designed
(Fig. 1), aiming to limit singular configurations and to maximize the
angular range.

Figure 1: End effector design.

Moreover, by designing the joints such that the last three joint axes
intersect at a point, it was possible to use Piper’s simplification [2]:
this led to substiantial easing in the kinematics and dynamics analysis.
Among the requirements that need to be satisfied in this project,
there is the workspace: the manipulator, in fact, must have sufficient
dexterity in a cube whose volume is at least 0.7 m × 0.7 m × 0.7 m
(which can be further extended with the use of a rail).

After an iterative process (comprising dexterity, workspace, stiff-
ness and structural analyses), a preliminary design of the robot was
performed, yielding the sizing parameters presented in the table.

link 1 link 2 link 3 link 4 link 5 link 6

length [m] 0.7 0.7 0.6 / / /

mass [kg] 1.05 1.71 1.46 0.23 0.19 0.21



B. Kinematics analysis

1) Differential kinematics: The kinematic analysis of the system is
performed using differential kinematics, which provide the relation-
ship between joint velocities and end effector velocities (both linear
and angular). v

ω

 =

 JP

JO

 · [q̇] (1)

Where JP and JO are both 3× 6 matrices. The derivation of the
Jacobian can be accomplished using several methods [3]. In order to
extract q̇, we can invert the equation:

q̇ = J−1(q̄) · v (2)

From this vector, since v is known from the trajectory planning,
we can finally obtain the joint variable position using an integration.
However, the initial position q(t = 0) needs to be known in order to
start the integration. This value can be obtained, for example, with
one of the IK methods available (for example, using Piper’s solution).

C. Dynamics analysis

1) Euler-Newton: Euler-Newton approach is based on the balance
of all the forces and torques acting on the generic link of the
manipulator. The solution of this problem is well suited for a recursive
approach. Following Luh-Walker [4] notation, the outward and the
inward iteration blocks can be synthetized as follows:

i+1ẇi+1 = i+1
iR

iẇi + i+1
iR

iwi × θ̇i+1 + θ̈i+1
i+1k̂i+1

i+1v̇i+1 = i+1
iR [ iv̇i + iω̇i × iPi+1 + iωi × (iωi × iPi+1) ]

iv̇Ci
= iv̇i + iω̇i × iPCi

+ iωi × (iωi × iPCi
)

Fi = m v̇Ci

Ni = C
i Iω̇i + ωi × C

i Iωi

(3)
ifi = iFi + i

i+1R
i+1fi+1

ini = iNi + i
i+1R

i+1ni+1 + iPCi
× iFi + iP i+1 × i

i+1R
i+1fi+1

τi = ifTi Ẑi

(4)
2) Euler-Lagrange: Euler-Lagrange method is an energy based

approach. With this technique, the equations of motion can be
obtained in a systematic way independently of the reference frame.
By choosing a set of generalized coordinates describing the link
positions it is possible to write Lagrange equation:

d

dt

(
∂L
∂q̇

)
−
(
∂L
∂q

)
= τ (5)

Where τ are the generalized forces acting on the links (mainly given
by actuator torques and joint friction). Although the formulation is
fairly easy to understand, its implementation is quite laborious. The
Lagrange equation can be re-written as1:

τ = M(q)q̈ + V(q, q̇)q̇ + G(q) (6)

Where M(q) ∈ Rn×n represents the inertia matrix and is calculated
with the following formula:

(7)M(q) =

n∑
i=1

(miJ
i
P

TJi
P + Ji

O
TRiIiRi

TJi
O)

1In the term τ , all the nonlinear components of the system are momentarily
ignored.
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Figure 2: Simulated docking manuever

The term V(q, q̇) ∈ Rn×n accounts for centrifugal and Coriolis
terms:

V(q) = Ṁ(q)q̇−
1

2

∂

∂qi
(q̇TM(q)q̇) (8)

Finally, the term G(q) ∈ Rn×1 accounts for the gravity compensa-
tion and is easily obtained from the derivation of the potential energy:

G(q) =

n∑
i=1

∂U
∂qi

(9)

where:
∂U
∂qi

= −
n∑

j=1

mig0J̌
j
Pi

(q) (10)

III. ORBITAL TRAJECTORY ANALYSIS

In close approach maneuvers, generally, one object (the target)
is passive and non-maneuvering, whereas the other (the chaser), is
active and trying to approach the target. With the aid of Clohessy
Wilthshire’s expressions (Eq. 11), it is possible to describe the relative
motion of the chaser in a target-centerd frame. If the orbit is circular
(V · r0 = 0, h =

√
µ r0), then [5]:

δẍ− 3
µ

r3
0

δx− 2

√
µ

r3
0

δẏ =
Fx

mc

δÿ + 2

√
µ

r3
0

δẋ =
Fy

mc

δz̈ +
µ

r3
0

δz =
Fz

mc

(11)

These are called Clohessy-Wiltshire (CW) equations and, with an
integration, the velocity and the position equations can be obtained.
By using compact notation, the instantaneous position and velocity,
δr(t) and δv(t), can be written as follows, with δr0 and δv0 being
the initial conditions and Ψii(t) ∈ R3×3 being orbit and time
dependent matrices:

δr(t)

δv(t)

 =

Ψrr(t) Ψrv(t)

Ψvr(t) Ψvv(t)

 ·

δr0

δv0

 (12)



The reference docking manuever analyzed in this paper is based on
a rendezvous approach between a target and chaser satellites which
are on the same, circular 300 km LEO orbit, with a relative distance2

of ∆x = [0.3 -0.8 0.3] m and a null relative initial velocity. Suppose
we want to complete the manuever in 6 s: using a two-impulse
approach technique, Eq. 12 yields the initial and final ∆v burns.
Once the trajectory was defined, the δr(t) and δv(t) vectors were
used for the simulations presented in Section VI. The trajectory is
pictured in Fig. 2.

IV. IMPACT MODELING

When using a robotic facility for the simulation of orbital manuev-
ers, it is fundamental to reproduce the contact dynamics. Given
that the relative motion is simulated correctly with the aid of the
CW expressions, the dynamic response of the satellites is strictly
dependent on the inertial properties of the bodies: the simulated
system, in general, will have different inertial properties and will
consequently behave with its own, characteristic dynamics; since the
robotic system cannot be subjected to drastic inertial modifications,
a software strategy has to be implemented.

mT d

k

mC

Figure 3: Spring-dashpot model.

First of all, it is mandatory to model the dynamics of the contact3.
Over the years, several techniques have been proposed: one of the
most used is certainly the spring-dashpot model [6], which models
the contact between satellites as a parallel spring-damper system, as
pictured in Fig. 3, where mT and mC are the target and chaser mass
respectively. The differential equations describing the system are:mT 0

0 mC

 ·

ẍT

ẍC

+


1

−1

 · f(t) = 0 (13)

where, if we define the relative position x = xC − xT , the force is
expressed by:

f(t) = −kx− bẋ (14)

By using the equivalent mass4 m, the system becomes:

mẍ(t) = kx+ bẋ (15)

This fully defines the 1D approximated orbital behavior of the
impact. In the laboratory case, however, the impact force will be
characterized by different parameters, kL and bL: these parameters
are hardware dependent, and respresent the facility’s equivalent
stiffness and damping (in the hypothesis of a 2nd order approximation
of the system). Referring to Fig. 4, the laboratory installation has
been modeled with 4 main blocks: A represents the spring-dashpot
impact model (which depends on the mockup of the docking system
mounted on the end effector), B is a compliance system that will be
further discussed, C is the stiffness of the force/torque (F/T) sensor
and D is the manipulator (whose 2nd order lumped parameters are

2Expressed in the CW frame.
3For this preliminary analysis, we will focus on a 1D model, which can

then be extended to a more general 3D case.
4The equivalent mass is defined as: m =

mCmT

mC +mT
.
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Figure 4: Lumped parameters laboratory model and its approximation.

a function of both the mechanics and of the control architecture).
The compliance stiffness B is introduced in order to simplify the
analysis: in a mechanical system, the dominant frequency of the
contact is governed by the most compliant part. Thus, the insertion
of a spring with a stiffness kspr << min{kC , kT/F , kR} allows the
system’s overall stiffness to be approximated with that of the spring.
This hypothesis is certainly true for kT/F (typical values for F/T
sensors are on the 106 ÷ 107N/m range); also, in this preliminary
analysis, we suppose that the robot is infinitely rigid and presents
no damping. As far as kC is concerned, its value depends on the
docking interface mockup and no valid approximation can be made
upon it. The simplified system is represented in the circled area of
Fig. 4. The force, in this case, has the following expression:

fL(t) = −kLx− bLẋ (16)

where:
kL = kC + kspr (17)

bL = bC (18)

In order to simulate the actual orbital impact force (Eq. 14) in a
laboratory environment (which is clearly subjected to a different
dynamics, Eq. 16) it is mandatory to introduce a software artifice.
With reference to [7], it is possible to implement a virtual force
fV (t) in order to satisfy the following:

f(t) = fL(t) + fV (t) (19)

Expliciting the lumped parameters, we have:

f(t) = −(kL + kV )x− (bL + bV )ẋ (20)

Hence, the value of the virtual parameters can be computed as:

kV = k − kL (21)

bV = b− bL + ε (22)

These parameters are computed upfront5 and can be finely tuned in
order for the laboratory dynamics to be an accurate representation of
the orbital scenario.

The concept of the contact simulation technique is represented in
Fig. 5a: note that both the inverse dynamics loop and the actuation
phase are simulated as delays (∆1 and ∆2 respectively). The total
delay block, with ∆ = ∆1+∆2, can be approximated with a rational

5Since the damping coefficient is influenced by the delay ∆ of the
simulation system, the parameter ε(∆) is introduced in Eq. 22.



(a) (b)

Figure 5: Virtual-force based control loop for contact dynamics simulation.

Padé’s function in order to perform a frequency response analysis. In
this case, we chose Padé’s first order approximation [8]:

e−s∆ ≈
1−

∆

2
s

1 +
∆

2
s

(23)

Moreover, the sensors’ transfer functions were inserted in the di-
agram: for a preliminary analysis, however, since the dynamics of
the system is largely within their cut-off frequency, these blocks can
be ignored. Hence, the overall system can be simplified as the one
pictured in Fig. 5b, where Eq. 20 allowed for further compactness.

We then performed a frequency analysis of the system: its transfer
function, for a generic input U(t), is:

T (s) =
Xr(s)

U(s)
=

1

2 + s ·∆
2− s ·∆

ms2 + bs+ k

(24)

The characteristic equation is:

∆ ·ms3 + (2m− b ·∆)s2 + (2b− k ·∆)s+ 2k = 0 (25)

According to Routh-Hurwitz’s criterion [9], the system is stable if:{
m− b

∆

2
, b− k

∆

2
,

(
m− b

∆

2

)
·
(
b− k

∆

2

)
− km∆

}
> 0 (26)

Which yields the following two conditions:

∆ < min

{
2m

b
,

2b

k

}
(27)

4mb− 4mk∆− 2b2∆ + kb∆2 > 0 (28)

From these equations, by fixing one of the 4 parameters (m, b, k,
∆), 3D plots can be extracted for the system design; for example,
by fixing ∆ (which is known once the robot control architecture has
been tested), we can get the minimum mass m required for simulation
stability (Fig. 6), which is analytically defined as:

m > max

{
b∆

2
,

2b2∆− kb∆2

4b− 4k∆

}
(29)

V. COMPLETE TRAJECTORY ANALYSIS

In order to simulate the complete trajectory, 3 different phases must
be simulated: the initial trajectory, the impact and the consequent
trajectory (in the hypothesis of a non-zero coefficient of restitution6,

6The coefficient of restitution γ of two colliding objects is a positive real
number between 0 and 1 representing the ratio of speeds after and before
an impact, taken along the line of the impact. Pairs of objects with γ = 1
collide elastically, while objects with γ < 1 collide inelastically. For γ = 0,
the objects effectively ”stop” at the collision, not bouncing at all.

Figure 6: Minimum mass required for simulation stability, for
∆ = {5, 10, 15}ms

γ 6= 0). The first part has been discussed in Section III, and allows
for the simulation up to the impact point. Then, with the technique
presented in Section IV, if the stability conditions (Eq. 26) are met,
the impact can then be simulated; this translates into the knowledge
of the impact force, or, in other words, of the coefficient of restitution
γ of the contact. Hence, the computation of the ∆v caused by the
impact is straightforward.

∆v =

∫
timp

|F |
m
· dt (30)

By plugging this into Eq. 26 and supposing that within the duration of
the impact the relative position of the spacecrafts has not changed,
it is possible to compute the third part of the trajectory, which is
trivial. The procedure, in fact, is the same as the one used for the
computation of the initial trajectory. In the future, we are planning to
implement an autonomous control system that computes, if γ 6= 0, the
new approaching trajectory after the impact, optimizing time schedule
and fuel consumption.

VI. CONTROL TECHNIQUES

In this section several control techniques for the manipulator are
analyzed: the first technique, based on Newton-Euler dynamics, is the
most correct in the sense that no approximations are taking place7.

7In the hypothesis of a perfect knowledge of the geometrical and inertial
parameters.



(a) (b)

Figure 7: Control systems based on Euler-Newton and Lagrange-Euler dynamic models respectively. Note that it is possible to switch from the two
Lagrange-Euler based systems by setting the switch block SW of Fig. 5b to 0 for gravity only, and to 1 to gravity and inertia.

Figure 8: Joint errors for the simulated trajectory presented in Section III. The control loops are: Lagrange-Euler with M and G for the 1st row,
Lagrange-Euler with G only for the 2nd row, Newton-Euler for the 3rd row.

However, this approach requires a relatively long computation time,
leading to delays that could eventually give rise to instability to
the discrete digital loop. In order to find a trade-off between the
correctness of the model and the computation time, we analyzed
approximate controls based on Lagrange’s equation. While Newton-
Euler’s formulation, due to its iterative, non intuitive form, is not easy
to manipulate, Lagrange’s expression, on the other hand, thanks to
an immediate physical meaning of its components, is definitely more
prone to tailoring and approximations. A SimMechanicsr model was
used to simulate the trajectory and to compute the joint errors, which
are displayed in Fig. 8. The system block diagrams are presented in
Fig. 7. The presence of computation delays is taken into account by
feeding the simulated system with a quantized torque, whose step-size
is equal to the self iteration time. The gains used for these simulations
are constant and equal to Kp = 50 and Kd = 0.01. In the future,
the authors plan to design a robust controller, able to find a good set
of constant gains such that, despite possible variations, the poles are
guaranteed to stay in favorable locations.

A. Newton-Euler feedforward control

This control technique (Fig. 7a) provides the actuators with the
exact torque vector τ computed with Newton-Euler’s approach.
Though this system could theoretically work in an open chain fashion,
there is, nonetheless, a feedback compensator that rejects external
disturbances.

The reference trajectory to be followed is calculated from CW
equations (refer to Section III) and is istantaneously expressed as
a Cartesian vector of position and velocity that is further converted
into general coordinates q and q̇ by using the differential kinematics
technique. The average iteration time8 is ∼2.3 ms. Although this
technique is certainly not the fastest (it is almost two times longer
than approach B), the controller allows for an optimal rejection of
noise and system uncertainties, with a maximum error of 0.2◦ at
Joint 4 (Fig. 8).

B. Lagrange-Euler (gravity compensation) feedforward control

This approach consists of the calculation of Lagrange equation’s
gravity term only, G(q). This means ignoring the effect of the

8This has been calculated using an Intelr Core i7-3770, CPU @ 3,40 GHz,
8 GB RAM computer.



inertia and of the centrifugal and Coriolis acceleration. For relatively
slow dynamics (like a docking approach manuever), the gravity
term accounts for most of the torque that needs to be produced by
the motors for a correct trajectory tracking. Since the gravitional
term is the most straightforward and less time-consuming part to be
calculated in Lagrange’s equation, a feedforward control that uses
only G(q) has been designed, and can be seen in Fig. 7b (when the
switch block value SW=0). The average iteration time is ∼1.1 ms.
Though this is the fastest technique, the neglectance of the inertia and
centrifugal terms gives rise to important errors, expecially at Joint 1,
where a drift of 1◦ was observed (Fig. 8).

C. Lagrange-Euler (inertia and gravity compensation) feedforward
control

This technique can be seen as the natural evolution of the gravity
compensation feedforward control. In addition, in fact, the inertia
contribution M(q) is considered. At a price of an additional term to
be computed, this system is able to track more accurate trajectories
in which the kinematics gives rise to consistent inertial forces. The
system can be seen in Fig. 7b (when the switch block value SW=1).
The average iteration time is ∼2.1 ms. With respect to the previous
system, errors are clearly mitigated, but the performances are still
worse than Newton-Euler’s approach (Fig. 8).

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we discussed a step-to-step approach to the simu-
lation of rendezvous and docking manuevers, from the kinematics
analysis to the modelling of the contact. By adopting a spring-
dashpot model, it was possible to analyze the dynamics of the impact
and to implent, using the virtual force approach [7], a control loop
for the simulation of the orbital scenario. By inspecting the system
stability with Routh-Hurwitz’s criterion, analytical conditions relating
the facility performances and the scenarios that can be possibly
simulated were extracted. These expressions take into account the
facility delay ∆ and the satellites parameters mT ,mC , k, b.

As far as the control system is concerned, results showed that
the most efficent technique is based on Newton-Euler feedforward
control, allowing to obtain an angular joint error < 0.1◦ with a
computation time of ∼2.3 ms. By implementing the code in a C++

environment, we expect to drastically improve this Matlabr based
result.

Future work will mainly consist of the construction of the facility
and in the validation of the simulated models. In particular, the effects
of non-linearities, such as friction, will be analyzed and inserted in
the model; moreover, for the simulation of impacts, the parameters
of Fig. 4 will be fully characterized and the approximations will be
verified; once the manipulator has been built and the control software
implemented, a full-manuever (rendezvous and impacts) simulation
and validation campaign will take place.
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