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Abstract

In the analysis of a recently proposed distributed estimation algorithm based on the Kalman �ltering and on gossip iterations,
we needed to apply a new inequality which is valid for i.i.d. matrix valued random processes. This inequality can be useful in
the analysis of the convergence rate of general jump Markov linear systems.

In this paper we present this inequality. This is based on the theory of majorization and on its use in the analysis of the
singular values. Finally we will show the impact of this inequality on the performance analysis of gossip based distributed
Kalman �lters.
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1 Introduction

Assume we have a Markov random process Q(t), t = 0, 1, 2, . . ., taking values in the set RN×N of N ×N matrices,
and assume we want to evaluate how "big" is the positive semide�nite matrix

P (t) := E[Q(t− 1) . . .Q(1)Q(0)QT (0)QT (1) . . .QT (t− 1)] (1)

This matrix naturally appears when analyzing the discrete time jump Markov linear system [8]

x(t+ 1) = Q(t)x(t) (2)

where x(t) ∈ RN for all t = 0, 1, 2, . . . is called the state of the system. Indeed, it is easy to see that

E[||x(t)||2] = x(0)TP (t)x(0)

where || · || means the Euclidean norm. Therefore the evolution of the state x(t) is well described by the evolution
of the positive semide�nite matrix P (t). One way to evaluate how big is P (t) is through its 2-norm, which coincides
with the largest eigenvalue of P (t). An alternative way is to consider the trace of P (t), which coincides with the sum
of all the eigenvalues of P (t). In this paper we propose an upper bound on P (t) in terms of the matrix P (1)t for the
particular case in which Q(t) are independent. This bound proved to be very useful in analyzing a particular jump
Markov linear system arising in our study of recently proposed distributed estimation algorithms.
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Recently there has been an increasing interest in the sensor networks technology and in the design of algorithms
that enable to exploit the potentials of such apparatus [17,1,11]. In particular, there have been proposed distributed
estimation algorithms which allow to take decisions from the huge amount of data collected by a great number of
sensors which can exchange information through wireless communication. Some of the most e�ective distributed
estimation methodologies are based of consensus or gossip algorithms (see [5,10,7,19,20]and the references therein).
Examples of distributed estimation methodologies based on this technique can be found in [6,2,3,16,15,18]. Another
example is described below .

Let us consider N sensors, labeled with the elements of the set V = {1 . . . N}. These sensors can communicate
each other according to a graph G = (V, E), meaning that we have an edge (j, i) ∈ E if and only if j can transmit
information to i.

Assume that we want to estimate, by means of such a sensor network, a discrete-time scalar random process of the
form

x(t+ 1) = x(t) + w(t) (3)

where x ∈ R and w(t), known as model noise, is a white noise with zero mean and variance q. This is the model of
a random walk. Each sensor i of the network can collect noisy measurements the state x(t), namely

yi(t) = x(t) + vi(t) (4)

where the measurement noise, vi(t), is a white noise. Assume for simplicity that vi(t) are independent, have all zero
mean and the same variance r. Assume moreover that they are all independent of the model noise w(t).

The estimation algorithm consists of 2 stages. The �rst stage is a Kalman�like estimate update in which, at each
time instant, every node collects its own measurement yi(t) and updates its estimate x̂i(t)

x̂loci (t+ 1) = `x̂i(t) + (1− `)yi(t).

where ` ∈ (0, 1) is the Kalman gain. Since x̂loci (t) has been updated using only local information, it is called local
estimate.

The second phase of the algorithm prescribes that, during two consecutive measurements, nodes improve their local
estimates by exchanging information along the communication links allowed by the graph G. More precisely, the
second phase consists in the following iteration

x̂i(t+ 1) =

N∑
j=1

Qij(t)x̂
loc
j (t)

where Qij(t) is di�erent for zero only if (j, i) ∈ E . If we let Q(t) be the matrix with entries Qij(t) and we introduce
the column vectors y(t),xloc(t),x(t) having entries yi(t),x

loc
i (t),xi(t), respectively, we can write

x̂(t+ 1) = Q(t) (`x̂(t) + (1− `)y(t)) (5)

To take into account the randomness introduced by the use of random protocols, [5], and by presence of unpredictable
environments, we assume that Q(t) is randomly drown from an alphabet of stochastic matrices Q compatible with
the graph, namely Qi,j 6= 0 only if (j, i) ∈ E . In fact, the compatibility of the matrices with the graph ensures that
the algorithm respects the communication constraints and the stochasticity is known to be su�cient to guarantee
unbiasedness of the estimate (see for instance [6]).

We assume that Q(t) is an independent and identically distributed matrix valued random process, moreover it is
independent of v(s) and w(r) at all time instants, ∀t, s, r. Furthermore we restrict our analysis only to symmetric
process: Q(t) = Q(t)T ∀t. The assumption of independence is not very restrictive in the sensor networks applications.
On the contrary symmetry is a rather restrictive hypothesis. In fact, it is not true that all possible consensus
algorithms prescribe the use of a symmetric matrix and an extension of the proposed result to the case of non
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symmetric stochastic matrices is subject of our present research. Nevertheless, the symmetric case is of interest
itself, since various of the algorithms that have been proposed, such a symmetric gossip [5], prescribe the use of
symmetric matrices only.

The algorithm under study (5) turns out to be a variation of the jump Markov linear system (2). We will show that
in the performance analysis of this algorithm a bound of the matrix P (t) de�ned in (1) will be extremely useful.

1.1 Paper Organization

The paper is organized as follows: in section 2 we de�ne the notation used in the paper while in section 3 we recall
some basic concepts and some known results in majorizarion theory. In section 4 the main result is stated, we
comment on the possibility to extend the obtained result and we formulate a conjecture. In section 5 the proof of
the previously presented result is presented and commented. Section 6 is devoted to illustrate the application of the
result to a problem of distributed estimation. Finally in section 7 we draw some conclusions.

2 Notation

In this paper we will use lower case letters, a, b, c, . . . , to denote scalars or vectors, capital letters, A,B,C, . . . , to
denote matrices and bold letters, a,A,b,B,c,C, . . . , to denote random variables. Moreover we will denote with ⊗
the Kronecker product while � will represent the Hadamard product, i.e. the entry�wise product.

Given a matrix M ∈ RN×N we will denote with σ(M) the vector in RN formed by the singular values of M
decreasingly ordered and with λ(M) the vector in CN formed by the eigenvalues of M ordered so that |λ1(M)| ≥
· · · ≥ |λN (M)|, where each eigenvalue appears as many times as its algebraic multiplicity. Recall moreover that for
any normal matrix N , NNT = NTN , σ(N) ≡ |λ(N)|, where with |λ(N)| we mean the Rn vector having entries
|λi(N)| .

Through the paper, for ease of notation, we will write σij(M) to denote (σj(M))
i
. Note that, using the notation we

just de�ned, λj(M
i) = λij(M) and, therefore, for a normal matrix N , σj(N

i) = σij(N).

3 Preliminary Results

Let us begin by reviewing some basic concepts about majorization.

De�nition 1 Given two vector x, y ∈ RN whose components are ordered decreasingly, i.e. x1 ≥ x2 ≥ · · · ≥ xN , we
say that x submajorize y and we write y ≺w x if

k∑
i=1

yi ≤
k∑
i=1

xi ∀k = 1, . . . , N

If moreover the inequality for k = N holds as an equality, then we say that x majorize y and we write y ≺ x

A broad literature on majorization theory and its applications is available. An introduction to the topic can be
found, for instance, in [12,13]. Majorization theory is extensively treated in [4] and in [14], a book fully devoted to
this topic.

In particular, recall that the following lemma holds

Lemma 1
Let x, y, and z be real, non�negative decreasingly ordered vectors. Then

y ≺w x ⇒ y � z ≺w x� z.
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Proof See [14, page 92, H.2.c] �

Recall moreover an important result on the singular values of the product of two matrices

Lemma 2 Given any two matrices M1 and M2

σ(M1M2) ≺w σ(M1)� σ(M2). (6)

Proof See [13,4]. �

Furthermore there is an important result specifying the relation between eigenvalues and singular values of a matrix

Lemma 3 Given any matrix M

|λ(M)| ≺w σ(M). (7)

Proof See [13,4]. �

Combining the previous two results we get that, given any two normal matrices N1 and N2,

|λ(N1N2)| ≺w σ(N1)� σ(N2) = |λ(N1)| � |λ(N2)|. (8)

We will use this inequality in the following.

4 Main Result

Let us introduce a �nite indexes set A and consider a �nite alphabet of normal matrices

{Qα α ∈ A}, QαQ
T
α = QTαQα ∀α ∈ A

from which we assume to randomly draw a matrix and denote with P the probability measure on the alphabet. We
will refer to P as selection probability and we will denote pα the probability that Qα is drawn. Consider then the
random process {Q(t)}t∈N of independent and identically distributed random variables P[Q(t) = Qα] = pα ∀t that
describes independent extractions form the alphabet {Qα α ∈ A}.

We want to study the matrix
E
[
Q(i− 1) . . .Q(0)Q(0)T . . .Q(i− 1)T

]
.

We present now a result that relates the spectrum of this positive semide�nite matrix to the spectrum of E
[
Q(0)Q(0)T

]i
.

The proof is reported in Section 5.

Theorem 4 Given any �nite normal matrix alphabet {Qα α ∈ A}, ∀i ∈ N we have that

σ
(
E
[
Q(i− 1) . . .Q(0)Q(0)T . . .Q(i− 1)T

] )
≺w σ

(
E
[
Q(0)Q(0)T

]i)
. (9)

The above result, for k = n, gives the following trace inequality

Corollary 5 Given any �nite normal matrix alphabet {Qα α ∈ A}, ∀i ∈ N we have that

tr
(
E
[
Q(i− 1) . . .Q(0)Q(0)T . . .Q(i− 1)T

] )
≤ tr

(
E
[
Q(0)Q(0)T

]i)
.

Moreover, again as a trivial corollary of the above result, we get an inequality on the largest eigenvalue λmax, already
proved in [10]
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Corollary 6 Given any �nite normal matrix alphabet {Qα α ∈ A},

λmax

(
E
[
Q(i− 1) . . .Q(0)Q(0)T . . .Q(i− 1)T

] )
≤ λimax

(
E
[
Q(0)Q(0)T

])
.

4.1 Comments on the result

One might wonder if it is possible to relax the hypothesis of normality The answer is no, as the following counterex-
ample shows
Counterexample Let A = {1, 2}, let pA = {p1 = 1

3 , p2 = 2
3} and let

{Qα α ∈ A} =

{
Q1 =

[
0 1

0 0

]
, Q2 =

[
0 0

0 1

]}
.

Note that Q1 is not normal since

Q1Q
T
1 =

[
1 0

0 0

]
6=

[
0 0

0 1

]
= QT1Q1

We get that

E
[
Q(1)Q(0)Q(0)TQ(1)T

]
=

1

9

[
2 0

0 4

]
E
[
Q(0)Q(0)T

]2
=

1

9

[
1 0

0 4

]

Therefore it does not hold that σ(E
[
Q(1)Q(0)Q(0)TQ(1)T

]
) ≺w σ(E

[
Q(0)Q(0)T

]2
) since

tr (E
[
Q(1)Q(0)Q(0)TQ(1)T

]
) =

6

9
>

5

9
= tr (E

[
Q(0)Q(0)T

]2
)

�

One might wonder then if the inequality holds true for any singular value, i.e. if

σi

(
E
[
Q(i− 1) . . .Q(0)Q(0)T . . .Q(i− 1)T

] )
≤ σi

(
E
[
Q(0)Q(0)T

]i) ∀i = 1 . . . N.

This is false as shown in the following counterexample
Counterexample Let A = {1, 2}, let pA = {p1 = 1

2 , p2 = 1
2} and let

{Qα α ∈ A} =

{
Q1 =

[
1 0

0 2

]
, Q2 =

[
1 1

1 2

]}
.

After some simple computations one gets that

E[Q(0)QT (0)]2 =
(
p1Q1Q

T
1 + p2Q2Q

T
2

)2
=

[
4.5 9

9 22.5

]

σ(E[Q(0)QT (0)]2) =

[
26.2279

0.7721

]
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while (omitting transposes, since matrices are symmetric)

E[Q(1)Q(0)Q(0)Q(1)] =p21Q
2
1Q

2
1 + p1p2Q1Q2Q2Q1 + p2p1Q2Q1Q1Q2 + p22Q2Q2 =

[
5.25 9

9 21.75

]

σ(E[Q(1)Q(0)Q(0)Q(1)]) =

[
25.7091

1.2909

]

Hence:
σ1(E[Q(1)Q(0)Q(0)Q(1)]) = 25.7091 ≤ 26.2279 = σ1(E[Q(0)Q(0)]2)

and
tr (E[Q(1)Q(0)Q(0)Q(1)]) = 27 ≤ 27 = tr (E[Q(0)Q(0)]2)

as prescribed by inequality (9), but

σ2(E[Q(1)Q(0)Q(0)Q(1)]) = 1.2909 � 0.7721 = σ2(E[Q(0)QT (0)]2)

�

Many numerical experiments instead supported the conjecture that the statement of Theorem 4 is still holds true
in the case of stochastic, possibly non-normal, matrices. The proposed conjecture have relevant applications in
distributed estimation over wireless sensors network since in that case the matrices of the alphabet are known to be
always stochastic.

5 Proof of Theorem 4

The proof is based on the following lemma

Lemma 7 Given any normal matrix alphabet {Qα α ∈ A}, and any symmetric positive semi-de�nite matrix P ≥ 0,
we have that

σ
(
E
[
Q(0)PQ(0)T

] )
≺w σ (P )� σ

(
E
[
Q(0)Q(0)T

])
. (10)

Proof Note that the thesis (10) is equivalent to prove that, ∀k = 1, . . . , N

k∑
j=1

σj

(∑
α∈A

pαQαPQ
T
α

)
≤

k∑
j=1

σj (P )σj

(∑
α∈A

pαQαQ
T
α

)
. (11)

To this aim recall ([13,4]) that for any matrix M

k∑
j=1

σj (M) = max
UTU=Ik

tr
(
UTMU

)
, (12)

therefore

k∑
j=1

σj

(∑
α∈A

pαQαPQ
T
α

)
= max
UTU=Ik

tr

(
UT

(∑
α∈A

pαQαPQ
T
α

)
U

)
.
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Note, moreover, that

P = V Tdiag{[σ1(P ), . . . , σk−1(P ), σk(P ), . . . , σN (P )]}V
≤ V Tdiag{[σ1(P )− σk(P ), . . . , σk−1(P )− σk(P ), 0, . . . , 0]}V + σk(P )I

= P̄ + σk(P )I,

where
P̄ = V Tdiag{[σ1(P )− σk(P ), . . . , σk−1(P )− σk(P ), 0, . . . , 0]}V.

Therefore

max
UTU=Ik

tr UT

(∑
α∈A

pαQαPQ
T
α

)
U ≤ max

UTU=Ik
tr UT

(∑
α∈A

pαQαP̄Q
T
α

)
U+

+ σk(P )tr UT

(∑
α∈A

pαQαQ
T
α

)
U. (13)

One has, again for (12),

σk(P )tr

(
UT

(∑
α∈A

pαQαQ
T
α

)
U

)
≤ σk(P )

k∑
j=1

σj

(∑
α∈A

pαQαQ
T
α

)
. (14)

The other term of the sum in (13) can be upper�bounded by noting that

tr

(
UT

(∑
α∈A

pαQαP̄Q
T
α

)
U

)
=
∑
α∈A

pαtr
(
UTQαP̄

1
2 P̄

1
2QTαU

)
=
∑
α∈A

pαtr
(
P̄

1
2QTαUU

TQαP̄
1
2

)
. (15)

Noting that
UUT ≤ I

in the sense of the positive semide�nite matrices and recalling that, given two positive semide�nite matrices A and
B, such that A ≤ B, it holds that

tr XTAX ≤ tr XTBX,

form (15), one gets

∑
α∈A

pαtr
(
P̄

1
2QTαUU

TQαP̄
1
2

)
≤
∑
α∈A

pαtr
(
P̄

1
2QTαQαP̄

1
2

)
= tr

(
P̄

1
2

(∑
α∈A

pαQ
T
αQα

)
P̄

1
2

)

=

N∑
j=1

λj

(
P̄

1
2

(∑
α∈A

pαQ
T
αQα

)
P̄

1
2

)
(16)

Using (8) and recalling that, for any semi�positive de�nite matrix A ≥ 0, λ(A) ∈ RN and λ(A) ≥ 0 one gets

N∑
j=1

λj

(
P̄

1
2

(∑
α∈A

pαQ
T
αQα

)
P̄

1
2

)
≤

N∑
j=1

λj

(
P̄

1
2

)
λj

(∑
α∈A

pαQ
T
αQα

)
λj

(
P̄

1
2

)
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Therefore

∑
α∈A

pαtr
(
P̄

1
2QTαUU

TQαP̄
1
2

)
≤

N∑
j=1

λj
(
P̄
)
λj

(∑
α∈A

pαQ
T
αQα

)

=

k−1∑
j=1

(σj(P )− σk(P ))σj

(∑
α∈A

pαQ
T
αQα

)
. (17)

Now the assumptions of normality of the matrix alphabet,

QTαQα = QαQ
T
α ,

comes into play, allowing to combine (13), (14) and (17) to get

k∑
j=1

σj

(∑
α∈A

pαQαPQ
T
α

)
= max
UTU=Ik

tr

(
UT

(∑
α∈A

pαQαPQ
T
α

)
U

)

≤
k−1∑
j=1

(σj(P )− σk(P ))σj

(∑
α∈A

pαQαQ
T
α

)
+ σk(P )

k∑
j=1

σj

(∑
α∈A

pαQαQ
T
α

)

=

k−1∑
j=1

σj(P )σj

(∑
α∈A

pαQαQ
T
α

)
−
k−1∑
j=1

σk(P )σj

(∑
α∈A

pαQαQ
T
α

)
+

+ σk(P )

k∑
j=1

σj

(∑
α∈A

pαQαQ
T
α

)

=

k−1∑
j=1

σj(P )σj

(∑
α∈A

pαQαQ
T
α

)
+ σk(P )σk

(∑
α∈A

pαQαQ
T
α

)

=

k∑
j=1

σj(P )σj

(∑
α∈A

pαQαQ
T
α

)
. (18)

which concludes the proof of the lemma. �

Proof of the theorem We will prove the theorem by induction.
It is trivially true for i = 1.
Suppose that the thesis (9) holds true for i and let us prove that this implies it holds true for i+ 1. Let us de�ne

P (i) = E
[
Q(i− 1) . . .Q(0)Q(0)T . . .Q(i− 1)T

]
Note that P (i) is symmetric and positive semide�nite P (i) ≥ 0 ∀i
Recalling that Q(0) . . .Q(i) are independent and identically distributed, one gets

P (i+ 1) = E
[
Q(i)Q(i− 1) . . .Q(0)Q(0)T . . .Q(i− 1)TQ(i)T

]
= E

[
E
[
Q(i)Q(i− 1) . . .Q(0)Q(0)T . . .Q(i− 1)TQ(i)T |Q(i)

]]
= E

[
Q(i)E

[
Q(i− 1) . . .Q(0)Q(0)T . . .Q(i− 1)T |Q(i)

]
Q(i)T

]
= E

[
Q(i)E

[
Q(i− 1) . . .Q(0)Q(0)T . . .Q(i− 1)T

]
Q(i)T

]
= E

[
Q(i)P (i)Q(i)T

]
= E

[
Q(0)P (i)Q(0)T

]
,

where in the last equality follows from the fact that the process Q(t) is i.i.d..We want therefore to prove that

k∑
j=1

σj
(
E
[
Q(0)P (i)Q(0)T

])
≤

k∑
j=1

σi+1
j

(
E
[
Q(0)Q(0)T

]
)
)
∀k = 1, . . . , N

8



that is, ∀k = 1, . . . , N
k∑
j=1

σj

(∑
α∈A

pαQαP (i)QTα

)
≤

k∑
j=1

σi+1
j

(∑
α∈A

pαQαQ
T
α

)
.

From lemma 7 we know that

k∑
j=1

σj

(
E
[
Q(0)P (i)Q(0)T

] )
≤

k∑
j=1

σj (P (i))σj
(
E
[
Q(0)Q(0)T

])
(19)

Moreover, by inductive hypothesis, we have that

k∑
j=1

σj (P (i)) ≤
k∑
j=1

σij
(
E
[
Q(0)Q(0)T

])
.

Therefore, using lemma 1, we get

k∑
j=1

σj
(
E
[
Q(0)P (i)Q(0)T

])
≤

k∑
j=1

σij
(
E
[
Q(0)Q(0)T

])
σj
(
E
[
Q(0)Q(0)T

])
=

=

k∑
j=1

σi+1
j

(
E
[
Q(0)Q(0)T

])
,

that completes the proof. �

Remark 1 Note that the assumption of normality allows to combine (13), (14) and (17) to get (18) which amounts
to the thesis.

Remark 2 The proposed theorem holds true also in the case of in�nite alphabet sets, both countable and uncountable.
In fact, the assumption of �niteness of the alphabet does not play a central role in the proof and can be dropped,
taking care to guarantee the boundedness of the expectations that appear in the proof. To this aim, as one can easily
see, it is su�cient to add the further assumption of boundedness of E

[
Q(0)Q(0)T

]
.

Remark 3 Note moreover that in the proposed proof it has never been used the fact that P(α) is such that
∑
α∈A pα =

1. The presented result holds therefore for any p(α) of non�negative weight function, p(α) ≥ 0 ∀α ∈ A even if∑
α∈A pα 6= 1 (

∫
A p(α)dα 6= 1).

6 Application of the result to a distributed estimation problem

In the following section we describe a relevant application of the proposed result in the �eld of distributed estimation
for sensor networks. A more detailed analysis of the speci�c application can be found in [9].

As we mentioned in the introduction, we consider a sensor network of N agents that are allowed to communicate
according to the communication graph G = (V, E).

We want to estimate, by means of such a sensor network, a discrete-time scalar random walk described by equa-
tion (3) from noisy measurements (4). For ease of notation collect all the N measurements in a vector y(t) =
[y1(t), . . . ,yN (t)]T and all measurement noises in a vector v(t) = [v1(t), . . . ,vN (t)]T . Equation (4) becomes then

y(t) = 1x(t) + v(t),

where we denote by 1 the vector [1, . . . , 1]T ∈ RN . Since we assumed that all measurement noises are independent
and identically distributed, we have that E[v(t)vT (t)] = rIN .
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The estimation algorithm we consider is presented in detail in [9] and it is a randomized version of the one that has
been proposed and analyzed in [6]. It consists on the recursion

x̂(t+ 1) = Q(t) (`x̂(t) + (1− `)y(t))

where ` ∈ (0, 1) is the Kalman gain and Q(t) is drown at each time instant from an alphabet of stochastic matrices
compatible with the graph, namely Qi,j 6= 0 only if (j, i) ∈ E .

6.1 Mean Square Analysis

Let us consider the estimation error of the algorithm

x̃(t) = 1x(t)− x̂(t).

After simple computations one gets the following description of its time evolution

x̃(t+ 1) = (1− `)Q(t)x̃(t) + `Q(t)w(t) + 1v(t).

Let us study the variance of the estimation error

Σ(t) = E
[
x̃(t)x̃T (t)

]
.

Recalling that Q(t), w(s), v(u) can be assumed to be independent ∀t, s, u and noting that x̃(t) is independent from
Q(t), w(t) and v(t), since it depends only on Q(s), w(s) and v(s) for s = 1, . . . , t− 1, one can easily see then that

Σ(t+ 1) = E
[
x̃(t+ 1)x̃T (t+ 1)

]
= (1− `)2E

[
Q(t)x̃(t)x̃T (t)QT (t)

]
+ `2rE

[
Q(t)QT (t)

]
+ q11T .

Since

E
[
Q(t)x̃(t)x̃T (t)QT (t)

]
=

= E
[
E
[
Q(t)x̃(t)x̃T (t)QT (t)|Q(t)

]]
= E

[
Q(t)E

[
x̃(t)x̃T (t)|Q(t)

]
QT (t)

]
= E

[
Q(t)Σ(t)QT (t)

]
,

we have that

Σ(t+ 1) = (1− `)2E
[
Q(t)Σ(t)QT (t)

]
+ `2rE

[
Q(t)QT (t)

]
+ q11T . (20)

For ease of notation let us de�ne the linear operator

L(M) = E[Q(t)MQT (t)].

Equation (20) represents a linear time invariant system that can be rewritten as

Σ(t+ 1) = (1− `)2L(Σ(t)) + `2rL(I) + q11T .

Note that, using this notation, the matrix P (t) de�ned in (1) is given by

P (t) = Lt(I).

Note moreover that L(11T ) = E(Q11TQT ) = 11T . To see more clearly that equation (20) represents a linear
time invariant system, de�ne s(t) the vectorization of Σ(t), s(t) = vect(Σ(t)). Recalling then that vect(ABC) =
(CT ⊗A)vect(B) and note that vect

(
L(M)

)
= E[Q(t)⊗Q(t)]vect(M). Equation (20) can then be rewritten as

vect(Σ(t+ 1)) = s(t+ 1) = (1− `)2E[Q(t)⊗Q(t)]s(t) + `2rE[Q(t)⊗Q(t)]vect(I) + q1N2 ,
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where 1N2 is the vector of RN2

having all entries 1, that is precisely a linear time�invariant system forced by a
constant input. Note that

E[Q(t)⊗Q(t)]1N2 = E[(Q(t)1N )⊗ (Q(t)1N )] = 1N2 .

Since E[Q(t)⊗Q(t)] is stochastic we have that (1− `)2E[Q(t)⊗Q(t)] is stable.

We have therefore that, for every initial condition, the system reaches an asymptotically stable equilibrium

Σ(∞) =

+∞∑
i=0

(1− `)2iLi
(
`2rL(I) + q11T

)
= `2r

+∞∑
i=0

(1− `)2iLi+1(I) + q

+∞∑
i=0

(1− `)2i11T

= `2r

+∞∑
i=0

(1− `)2iLi+1(I) +
q

1− (1− `)2
11T . (21)

One is in particular interested in computing the trace of Σ(∞).

tr (Σ(∞)) = `2r

+∞∑
i=0

(1− `)2itr Li+1(I) +
qN

1− (1− `)2
(22)

Unluckily we did not manage to �nd a closed form expression for

+∞∑
i=0

(1− `)2iLi+1(I)

but it can be upper�bounded using the trace inequality presented in corollary 5. We have in fact that

tr Li(I) ≤ tr
(
E
[
Q(t)QT (t)

]i)
= tr

(
E
[
Q2(t)

]i)
, (23)

where we used the fact that we are restring our analysis to the case of symmetric matrix alphabet.

Equation (23) allows us to analyze the N ×N matrix E[Q2(t)] rather then the linear operator L, described by the
N2 ×N2 matrix E[Q(t)⊗Q(t)].

Using (23) we get the following upper�bound on tr Σ(∞)

tr Σ(∞) = `2r

+∞∑
i=0

(1− `)2itr Li+1(I) +
qN

1− (1− `)2

≤ `2r
+∞∑
i=0

(1− `)2itr E
[
Q2(t)

]i+1
+

qN

1− (1− `)2

= `2r

+∞∑
i=0

(1− `)2i
N∑
j=1

λj

(
E
[
Q2(t)

]i+1
)

+
qN

1− (1− `)2

=

N∑
j=1

`2r

+∞∑
i=1

(1− `)2i−2λij
(
E
[
Q2(t)

])
+

qN

1− (1− `)2

=

N∑
j=1

`2r
λj
(
E
[
Q2(t)

])
1− (1− `)2λj (E [Q2(t)])

+
qN

1− (1− `)2
.
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On an application point of view, one would like to study the natural optimization problem of �nding the proba-
bility distribution pα = P[Q(t) = Qα] such that 1

N tr Σ(∞) is minimized. Numerical experiments show that this
optimization problem is not convex. One can rather consider then as a cost function the proposed upper�bound on
tr Σ(∞)

1

N
tr Σ(∞) ≤ J({pα}α∈A) =

1

N

N∑
j=1

`2r
λj
(
E
[
Q2(t)

])
1− (1− `)2λj (E [Q2(t)])

+
q

1− (1− `)2

Therefore it is relevant to study the optimization problem of minimizing the cost functional J({pα}α∈A) in the
variables {pα}α∈A. As it has be shown in [9] such a problem is convex. This fact has a relevant impact since it
shows that this optimization problem is intrinsically easy and can be solved using any standard convex optimization
technique. Even on a numerical point of view, one can make use of one of the many convex optimization software
available.

7 Conclusions

In this paper we presented a majorization inequality on the singular values of the expectation of matrix�valued
random variables' product. It is shown that, if the alphabet is made of normal matrices, the singular values of the
matrix E[Q(i) . . .Q(0)QT (0) . . .QT (i)] are submajorized by the singular values of E[Q(0)Q(0)T ]i. As a straightfor-
ward corollary of this result, we proposed a novel trace inequality.

Furthermore, we illustrated a relevant application of this majorization inequality to the �eld of distributed estimation
over sensor networks. More precisely, we analyzed a randomized version of the distributed Kalman �lter proposed in
[6]. A mean�square analysis was carried out and an upper�bound on the trace of the error variance was proposed using
the previously presented trace inequality. It was shown moreover that the problem of minimizing this upper�bound
is convex, while the original problem is not.

More generally, the proposed result applies to the analysis of jump�Markov linear systems where the transition
matrix is an i.i.d. random process. Another relevant example of application in this framework is the case of a linear
plant controlled by a linear time�varying feedback, in which at each time instant a feedback matrix K(t) is drawn
from a �xed set of matrices K1, . . . ,KN and in which the designer only chooses the probability that the various
feedback matrices are applied.

Many numerical experiments support the conjecture that the statement of Theorem 4 holds true also in the case of
stochastic, possibly non-normal, matrices. We expect an eventual proof of such a conjecture to leverage on arguments
di�erent from the ones we used here. In fact, normality is a key assumption in our proof and we do not see how to
take advantage of stochasticity in our arguments.
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