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Abstract. The problem of reliably transmitting a real-valued random vector through a dig-
ital noisy channel is relevant for the design of distributed estimation and control techniques over
networked systems. One important example consists in the remote state estimation under communi-
cation constraints. In this case, an anytime transmission scheme consists of an encoder –which maps
the real vector into a sequence of channel inputs– and a decoder –which sequentially updates its
estimate of the vector as more and more channel outputs are observed. The encoder performs both
source and channel coding of the data. Assuming that no channel feedback is available at the trans-
mitter, this paper studies the rates of convergence to zero of the mean squared error. Two coding
strategies are analyzed: the first one has exponential convergence rate but it is expensive in terms
of its encoder/decoder computational complexity, while the second one has a convenient computa-
tional complexity, but sub-exponential convergence rate. General bounds are obtained describing
the convergence properties of these classes of methods.
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1. Introduction. Reliable transmission of information among the nodes of a
network is known to be a relevant problem in information engineering. It is indeed
fundamental both when the network is designed for pure information transmission, as
well as in scenarios in which the network is deputed to accomplish some specific tasks
requiring information exchange. Important examples include: networks of processors
performing parallel and distributed computation [2, 42], or load balancing [13, 14, 30];
wireless sensor networks, in which the final goal is estimation and decision making
from distributed measurements [19, 21, 45, 15]; sensors/actuators networks, such as
mobile multi-agent networks, in which the final goal is control [20, 32, 29, 33]. Dis-
tributed algorithms to accomplish synchronization, estimation, or localization tasks,
necessarily need to exchange quantities among the agents, which are often real-valued.
Assuming that transmission links are digital, a fundamental problem is thus to trans-
mit a continuous quantity, i.e. a real number or, possibly, a vector, through a digital
noisy channel up to a certain degree of precision.

This paper is concerned with the problem of efficient, real-time transmission of a
finite-dimensional Euclidean-space-valued state through a noisy digital channel. We
shall focus on anytime transmission algorithms, i.e. algorithms which can be stopped
anytime while providing estimations of increasing precision. These algorithms are
particularly suitable for applications in problems of distributed control.

As especially pointed out in a series of works by A. Sahai and S. Mitter [35, 36, 37],
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there is a specific feature distinguishing the problem of information transmission for
control from the problem of pure information transmission. This is related to the
different sensitivity to delay typically occurring in the two scenarios. Indeed, while the
presence of sensible delays can often be tolerated in the communication performance
evaluation, such delays can be detrimental for the system performance in several
control applications. Here, the fundamental question is not only where, but also when
the information is available. For this reason, it is often desirable to use transmission
systems for control applications which are able to provide estimates whose precision
increases with time, so as providing a reasonable partial information transmission
anytime the process is stopped.

On the other hand, the computational complexity of the transmission schemes is
a central issue. In fact, nodes in wireless networks are usually very simple devices with
limited computational abilities and severe energy constraints. Applicable transmission
systems should be designed performing a number of operations which remains bounded
in time, both in the encoding and in the decoding. Hence, an analysis of the tradeoffs
between performance and complexity of the transmission schemes is required.

In many problems of information transmission, there is the possibility to take
advantage of the feedback information naturally available to the transmitter. Known
results in Information Theory [9] show that feedback can improve the capacity of
channels with memory, or multiple access channels1, as well as reduce latency and
computational complexity. In many cases of practical interest, however, feedback in-
formation is incomplete, or difficult to be used. Also, there are many situations, for
instance in the wireless network scenario, in which the transmitter needs to broadcast
its information to many different receivers and hence feedback strategies to acknowl-
edge the receipt of past transmissions could be unfeasible. For these reasons, in the
present paper we shall restrict ourselves to the case in which there is no feedback
information.

A fundamental characteristic of digital communication for control applications
concerns the nature of information bits. In the traditional communication theory,
information bits are usually assumed to be equally valuable, and they are consequently
given the same priority by the transmission system designer. In fact, design paradigms
of modern low-complexity codes [27, 34] –based on random sparse graphical models
and iterative decoding algorithms– treat information bits as equally valuable. While
such an assumption is typically justified by the source-channel separation principle,
this principle does not generally hold when delay is a primary concern. For instance,
it is known that separate source-channel coding is suboptimal in terms of the joint
source-channel error exponent [10, 11]. In fact, in many problems of information
transmission for control or estimation, different information bits typically require
significantly different treatment.

As an example, particularly relevant for the topics addressed in this paper, as-
sume that a random parameter, uniformly distributed over a unitary interval, has
to be reliably transmitted through a digital noisy channel (see [5] and references
therein for the analysis of the information theoretic limits of this problem on the
bandwidth-unlimited Gaussian channel). Such a parameter may be represented by
its dyadic expansion, which is a stream of independent identically distributed bits.
Clearly, such information bits are not equally valuable, since the first one is more
significant than the second one, and so on. This motivates the study of unequal error

1Whereas a classic result due to Shannon shows that feedback does not improve the capacity of
a discrete memoryless channel.
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protection codes [28, 4]. One of the challenges posed by information transmission for
control/estimation applications is to come up with design paradigms for practical,
low-complexity, unequal error protection codes.

In this paper, we shall propose two classes of coding strategies for the anytime
transmission of real-valued random vectors through a digital noisy channel. In both
cases, the transmission scheme consists of an encoder, mapping the real vector into a
sequence of channel inputs, and of a decoder, sequentially refining the estimate of the
vector as more and more channel outputs are observed. The first strategy is charac-
terized by good performance in terms of the convergence of the mean squared error,
but it is expensive in terms of encoder/decoder computational complexity. On the
other hand, the second class of strategies have convenient computational complexity,
but worse convergence rate.

In order to keep the use of information-theoretical techniques at a minimum, we
shall confine our exposition to the binary erasure channel (BEC), and defer any dis-
cussion on the possible extensions to general discrete memoryless channels to the con-
cluding section. In the BEC, a transmitted binary signal is either correctly received,
or erased with some probability ε. While this channel allows for an elementary treat-
ment, it is of its own interest in many scenarios. In [6], the techniques proposed here
have been applied in order to obtain a version of the average consensus algorithm
working in presence of digital erasure communication channels between the nodes.

The rest of this paper is organized as follows. Sect. 2 formally states the prob-
lem. Sect. 3 presents an upper bound to the possible error convergence of any coding
scheme over the BEC. In Sect. 4 we introduce the class of encoder/decoder schemes
used throughout the paper and which are based on a preliminary vector quantization
of the continuous vector to be transmitted. In Sect. 5, trade-offs between perfor-
mance and computational complexity are investigated. First, a simple linear-time
encodable/decodable repetition scheme is analyzed in Sect. 5.1. Then, the main re-
sult is presented in Sect. 5.2, showing that finite-window coding schemes are able
to achieve only sub-exponential error decays. In Sect. 6, random linear convolu-
tional codes are shown to achieve exponential error rates at the cost of computational
complexity growing quadratically in time. Finally, some Monte Carlo simulations of
finite-window coding schemes are reported in Sect. 7.

We end this introduction by establishing some notation. Throughout the paper,
R and N will denote the sets of reals and naturals, respectively. For a subset A ⊆ B,
|A| will denote the cardinality of A, A = B \A its complement, and 1A : B → {0, 1}
its indicator function, defined by 1A(x) = 1 if x ∈ A, and 1A(x) = 0 otherwise. The
natural logarithm will be denoted by ln, while log will stand for the logarithm in base
2. For x ∈ [0, 1], we shall use the notation H(x) := −x log x − (1 − x) log(1 − x) for
the binary entropy of x with the standard convention 0 log 0 = 0. For two sequences
of reals (at)t∈N and (bt)t∈N, both the notations at = O(bt) and bt = Θ(at) will mean
that at ≤ Kbt for some constant K, while at = o(bt) will mean that limt at/bt = 0.
A sequence at, t = 1, 2, . . . is sometimes denoted with the symbol a = (at)

∞
t=1, while

with the symbol a = (at)
T
t=1 we will mean its truncation to t = 1, . . . , T .

2. Problem formulation. We shall now provide a formal description of the
problem. Let x be a random variable taking values on X ⊆ R

d. We shall assume
that x has an a priori probability law which is absolutely continuous with respect to
the Lebesgue measure, and denote by f(x) the probability density of x. Further, we
shall assume that E||x||2+δ < +∞ for some δ > 0. At time t ∈ N, the communication
channel has input yt, and output zt, taking values in some finite alphabets Y, and
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Z, respectively. Transmission is assumed to be memoryless, i.e., given the current
input yt, the output zt is assumed to be conditionally independent from the previous
inputs (ys)

t−1
s=1 and outputs (zs)

t−1
s=1, as well as from the vector x. The conditional

probability of zt = z given yt = y will be assumed stationary and denoted by p(z|y).
We shall consider in detail the binary erasure channel (BEC) in which Y = {0, 1},
Z = {0, 1, ?}, and

p(?|0) = p(?|1) = ε , p(0|0) = p(1|1) = 1 − ε , p(1|0) = p(0|1) = 0 .

Here, ? stands for the erased signal, and ε ∈ [0, 1[ for the erasure probability.

The anytime transmission scheme consists of an encoder and a sequential de-
coder.2 The encoder consists of a family of maps Et : X → Y, specifying the symbol
transmitted through the channel at time t, yt = Et(x). With this family of maps
we can associate the global map E : X → YN which specifies the infinite string that
the encoder generates from x. The decoder instead is given by a family of maps
Dt : Zt → X , describing the estimate x̂t = Dt((zs)

t
s=1) of x obtained from the string

(zs)
t
s=1 that has been received until time t. With this family of maps we can associate

naturally the global map D : ZN → XN. This is represented in the following scheme

X Et
- Yt Channel

- Zt Dt
- X

x - (ys)
t
s=1

- (zs)
t
s=1

- x̂t

(2.1)

where Et := πt ◦ E and where πt : YN → Yt is the projection of a sequence in YN into
its first t symbols

In order to evaluate the performance of a scheme, we define the root mean squared
error (mean with respect to both the randomness of x ∈ X and with respect to the
possible randomness of the communication channel) at time t by

∆t := (E||x − x̂t||2)1/2 . (2.2)

In this paper, we shall be concerned with the rate of decay of ∆t for different anytime
transmission schemes. All the coding strategies which will be analyzed are character-
ized by a root mean squared error ∆t converging to zero like 2−βtα

for some constants
β > 0 and 0 < α ≤ 1. More precisely we shall seek to find α, β such that

∆t ≤ p(t)2−βtα

(2.3)

for some polynomial p(t). When (2.3) holds, the coding strategy will be said to achieve
a degree of convergence α and rate of convergence β. When α = 1 we shall simply
say that we have an exponential convergence. In this case β is referred to as the
exponential convergence rate. In the sequel, various strategies will be compared in
terms of the parameters α and β that can be achieved, and such parameters will be
related to the required computational complexity.

2Our definition of anytime transmission scheme does not formally coincide with that in the
Anytime Information Theory of S. Mitter and A. Sahai. Our usage of the term “anytime” has to
be understood in the broader sense it has in Artificial Intelligence, where anytime algorithms are
algorithms whose quality of results improves gradually as computation time increases [46].
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2.1. Application to state estimation under communication constraints.

The problem illustrated in the previous paragraph is related to the state estimation
problem under communication constraints (see [39, 40, 23, 38, 24, 25, 26] and refer-
ences therein). Assume we are given a discrete time stochastic linear system

x(t+ 1) = Ax(t) + v(t) , x(0) = x0 , (2.4)

where x0 ∈ R
n is a random vector with zero mean, v(t) ∈ R

n is a zero-mean white
noise, x(t) ∈ R

n is the state sequence, and A ∈ R
n×n is a full rank, unstable matrix.

Suppose that a remotely positioned receiver is required to estimate the state of
the system, while observing the output of a binary erasure channel only. Then, it is
necessary to design a family of encoders Et and of decoders Dt. At each time t ≥ 0,
the encoder Et takes x(0), . . . , x(t) as input, and returns the symbol yt ∈ {0, 1}, which
is in turn fed as an input to the channel. The receiver observes the channel output
symbols z0, . . . , zt, from which the decoder Dt has to obtain an estimate x̂(t) of the
current state.

If we have that v(t) = 0 for every t ≥ 0, then the only source of uncertainty is
due to the initial condition x0. Hence, in this case, the encoder/decoder task reduces
to obtaining good estimates of x0 at the receiver side. Indeed, in order to obtain a
good estimate x̂(t) of x(t), the receiver has to obtain the best possible estimate x̂(0|t)
of the initial condition x(0) from the received data y0, . . . , yt, and then it can define
x̂(t) := Atx̂(0|t). In this way, one has x(t) − x̂(t) = At(x(0) − x̂(0|t)), so that the
problem reduces to finding the best way of coding x(0) in such a way that expansion
of At is well dominated by the contraction of x(0) − x̂(0|t). The same technique can
be applied if v(t) is small with respect to x0 as clarified by the following example.

Example 1. Consider the following unstable scalar discrete time linear system

x(t+ 1) = ax(t) + v(t) , x(0) = x0 ,

where a > 1 and where x0 is a random variable with probability density f(x) and v(t) is
a sequence of independent, identically distributed random variables with zero mean and
variance σ2

v , which are independent of x0. Assume that a state estimation algorithm is
run, based on the noiseless model x(t + 1) = ax(t) by estimating the initial condition
x0 from data transmitted until time t. As before, we shall denote this estimate by
x̂(0|t). From x̂(0|t), we form the estimate x̂(t) := atx̂(0|t) of x(t). The estimation

error at time t will be e(t) := x(t)− x̂(t) = at(x(0)− x̂(0|t))+∑t−1
i=0 a

t−1−iv(i), so that

E[e(t)2] = a2t
E[(x(0) − x̂(0|t))2] + σ2

v
1−a2t

1−a2 . This error depends both on the error in
the estimation of the initial condition, and on the wrong model we used. As we shall
see, our techniques yield an estimation error on x(0) of the form E[(x(0)− x̂(0|t))2] =
Cζ(t), where C depends only on the probability density f(x) and ζ(t) is a function
converging to zero depending only on the communication channel characteristics and
on the coding strategy. Therefore,

E[e(t)2] = a2t

[

Cζ(t) + σ2
v

1 − a−2t

a2 − 1

]

.

In case C is much larger than σ2
v , there will be an initial time regime in which the

error is not influenced by the model noise but only by the estimation of the initial
condition x(0).
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3. The limit of performance on the binary erasure channel. Observe that,
in case of noiseless channel, the function mapping x into (x̂0, . . . , x̂t−1) is a quantizer
assuming at most 2t values. It is well-known in the theory of vector quantization [18]
that, if Q : X → X is a quantizer assuming m values, then

(E||x −Q(x)||2)1/2 ≥ C−m
−1/d , (3.1)

where C− is a positive constant only depending on the dimension d, and the a priori
density f(x). This shows that ∆t ≥ C−2−t/d for all t ∈ N. Hence, it is not possible
to obtain a convergence degree α greater than 1 with an exponential convergence rate
β larger than 1/d. In this section, we shall present a tighter upper bound on the
exponential convergence rate of ∆t on the BEC with erasure probability ε.

Consider the general scheme (2.1). The error pattern associated to the output
sequence (zt) ∈ ZN is the sequence (ξt) ∈ {c, ?}N componentwise defined by ξt = c
if zt ∈ {0, 1} (this corresponds to a correct transmission), and ξt =? if zt =? (this
corresponds to an erased signal). Observe that, given the encoder E and the decoder
D, the error pattern (ξt)t∈N is a random variable independent of the source vector
x. This property will allow us to present for the BEC almost elementary proofs of
results holding true also for general discrete memoryless channels.

For j ≤ t, let

λt
j :=

∑

j≤s≤t 1{ξs=c} (3.2)

be the random variable describing the number of non-erased outputs observed between
time j and t. Clearly,

P(λt
j = l) =

(

t− j + 1

l

)

εt−j+1−l(1 − ε)l , l = 0, . . . , t− j + 1 . (3.3)

The simple observation above allows one to prove the following result.
Theorem 3.1. Assume transmission over the BEC with erasure probability ε ∈

[0, 1]. Then, the estimation error of any coding scheme as in (2.1) satisfies

∆t ≥ C− 2−tβ(d,ε) , (3.4)

for all t ≥ 0, where

β(d, ε) := −1

2
log

(

ε+ (1 − ε)2−2/d
)

(3.5)

and C− is a constant depending only on the dimension d and the a priori density
f(x).

Proof. Conditioned on the infinite error pattern (ξs)s∈N, the channel reduces
to a deterministic map, so that the composition of all the maps in (2.1) becomes a

quantizer from X to itself with a range of cardinality not larger than 2λt
1 . From this

fact and from (3.1), we can deduce that E
[

||x− x̂t||2|λt
1 = l

]

≥ C2
−2−2l/d. Therefore,

E
[

||x− x̂t||2
]

=
∑t

l=0 E
[

||x− x̂t||2|λt
1 = l

]

P(λt
1 = l)

≥ C2
−

∑t
l=0 2−2l/d

(

t
l

)

εt−l(1 − ε)l

= C2
−

(

ε+ (1 − ε)2−2/d
)t

(3.6)

From the inequality above, the claim follows.
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Remark 1. The Shannon capacity of the BEC (measured in bits per channel
use) equals 1 − ε, which is the average number of non-erased bits per channel use. It
can be directly verified that3

β(d, ε) <
1

d
(1 − ε) , ∀ε ∈]0, 1[ . (3.7)

The inequality (3.7) shows that the estimation error of any coding scheme after t uses
of a digital noisy channel is exponentially larger than that of a quantizer whose image
has cardinality (1− ε)t. In fact, the latter is the lower bound one would have obtained
by simply using a rate distortion argument. Indeed, a closer look at (3.6) reveals
that the second summation is asymptotically dominated by the term corresponding to
l = l∗t := ⌊t 1−ε

21/dε+1−ε
⌋, while the average number of unerased bits is given by E[λt

1] =

(1 − ε)t. Hence, the exponential rate is dominated by atypical channel realizations,
i.e. by the events {λt

1 = l∗t } of probability exponentially vanishing in t.
It is not hard to see that (3.4) continues to hold true even if the encoder has access

to noiseless (even non-causal) output feedback.4 A fortiori, (3.4) holds in the case
of partial or noisy feedback, which is the typical situation occurring in the network
scenarios outlined in Sect. 1. In case of perfect causal feedback, the bound (3.4) is
achieved by the encoder which keeps on transmitting the most significant bit of the
dyadic expansion (see Sect. 4) of x until this is correctly received. However, it is not
clear what can be done if the feedback is noisy, partial, or not available (as in the
applications outlined in Sect. 1). In Sect. 5.1 we shall propose some simple schemes
which are not able to achieve exponential error rates, but have low computational
complexity, while in Sect. 6 we shall present schemes achieving exponential error
rates at the cost of higher computational complexity.

4. Quantized encoding schemes. In this paper, we shall propose and compare
different coding strategies. All of them are based on a separation between the quan-
tization of the continuous vector and the channel coding. In the literature, vector
quantizers with special structure have been proposed, called tree-structured vector
quantizers [18]. Consider a map S : X → {0, 1}N, and, for all t ∈ N, the map
St := πt ◦ S, where πt : {0, 1}N → {0, 1}t is the truncation operator defined above.
Finally, let S−1

t be a right inverse of St. Then, we can define a tree-structured vec-
tor quantizer [18, pag.410] which is the family of maps Qt : X → X defined as
Qt := S−1

t ◦St. It can be seen [18] that if E||x||2+δ < +∞ for some δ > 0, then, there
exists a tree-structured vector quantizer (Qt) such that

(E||x −Qt(x)||2)1/2 ≤ C+2−t/d , (4.1)

where C+ is a positive constant depending only on the dimension d and the a priori
density f(x). Observe that the right-hand side of (4.1) differs from the right-hand
side of (3.1) only by a constant independent of the quantizer’s range size m = 2t,
i.e. tree-structured quantizers are not suboptimal for their rate of convergence.

Remark 2. The upper bound (4.1) is easy to be obtained if X = [0, 1]. Indeed,
in this case, one can take S to be the map which associates with x its binary expan-
sion. We can apply this argument in case X is a bounded subset of R. In case X
is unbounded, tree-structured quantizers can be determined satisfying the upper bound

3See also Fig.6.1.
4In fact, it is tempting to conjecture that a tighter bound could possibly be proven for the

exponent in the absence of feedback.
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(4.1) (see Lemma 5.2 in [31]). The extension from the scalar to the vector case is
straightforward.

Notice that, if x′, x′′ ∈ X are such that St(x
′) = St(x

′′), then

E||x′ − x′′||2 ≤ E(||x′ −Qt(x
′)|| + ||x′′ −Qt(x

′′)||)2
≤ 2E||x′ −Qt(x

′)||2 + 2E||x′′ −Qt(x
′′)||2 ≤ 2C2

+2−2t/d .
(4.2)

With a slight abuse of terminology, the map S associated with a tree-structured
vector quantizer will be called a dyadic expansion map. We now show how a trans-
mission scheme can be built starting from S and a family of its truncations’ right
inverses S−1

t .
Consider a sequence of integers m1,m2, . . . ∈ N such that mt−1 ≤ mt for all t and

a family of maps

Ẽt : Ymt → Y , D̃t : Zt → Ymt . (4.3)

We can define the map Ẽ : YN → YN by letting the value of Ẽ((ws)
∞
s=1) at time t equal

to Ẽt(w1, . . . , wmt). We also put Ẽt := πt ◦ Ẽ . Notice that, since Ẽt((ws)
∞
s=1)) depends

on w1, . . . , wmt only, then Ẽt is actually a map from Ymt to Yt. Finally encoders and
decoders are defined by Et := Ẽt ◦ Smt and Dt := S−1

mt
◦ D̃t. The overall sequence of

maps is described by the following scheme

X Smt
- Ymt

Ẽt
- Yt Channel

- Zt D̃t
- Ymt

S−1
mt

- X

x - (ws)
mt
s=1

- (ys)
t
s=1

- (zs)
t
s=1

- (ŵs(t))
mt
s=1

- x̂t .

(4.4)

In other words, in this scheme we first use the dyadic expansion map to transform x
into a string of bits (w1, w2, . . . , wmt , . . .) and then we encode the latter into a sequence
of channel inputs. The received data are decoded by a block decoder providing an
estimated version (ŵ1(t), ŵ2(t), . . . , ŵmt(t)) of (w1, w2, . . . , wmt) (whose components
in general depend on t) which is translated to an estimate x̂t of x.

5. Low-complexity coding schemes. In this section, tradeoffs between com-
putational complexity and performance of the coding schemes are investigated. First,
in Sect. 5.1, a simple linear-time encodable/decodable scheme is analyzed, showing
that the estimation error converges to zero sub-exponentially fast with degree α = 1/2.
Then, in Sect. 5.2, lower bounds on the estimation error are obtained: It is shown that
encoding schemes with finite memory (i.e. that can be implemented by finite-state au-
tomata controlled by the dyadic expansion of the source vector), have estimation error
bounded away from zero, while finite-window linear-time encodable schemes (i.e. such
that each channel input can be written a deterministic function of a finite number of
bits of the dyadic expansion of the source vector) cannot achieve a convergence degree
larger than 1/2.

5.1. A repetition coding scheme. Let St : X → {0, 1}t be the truncated
dyadic expansion map introduced in Sect. 4, and let S−1

t : {0, 1}t → X be one of
its right inverses. If a coding scheme with E = S were simply used, i.e. if the bits
of the dyadic expansion were directly sent through the channel, then the estimation
error ∆t would not converge to 0 as t → ∞. Indeed, with probability ε the first bit
of S(x) would be lost with no possibility of recovering it. It is therefore necessary to
introduce redundancy in order to cope with channel erasures. The simplest way to
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do that consists in using repetition schemes. Of course, since the different bits of the
binary expansion S(x) require different levels of protection, they need to be repeated
with a frequency which is monotonically increasing in their significance.

The encoder we propose here is of the following type: at time t, the bit yt to
be sent through the channel coincides with wjt , the bit in position jt of the dyadic
expansion S(x). The encoder in this way will depend on the choice of jt and fits in
the scheme proposed in (4.3) simply by taking mt := max{j1, j2, . . . , jt}.

In the scheme we propose jt is selected as follows. Fix a positive real q and define
τ0 = 0 and τk = ⌈q⌉ + ⌈2q⌉ + · · · + ⌈kq⌉ for k ∈ N. Notice that, for any t ∈ N, there
exists a unique k such that τk−1 + 1 ≤ t ≤ τk. Then, define jt := t − τk−1. In other
words, we have

(ys)
∞
s=1 = Ẽ((ws)

∞
s=1) = (w1, w2, . . . , w⌈q⌉, w1, w2, . . . , w⌈2q⌉, w1, w2, . . . , w⌈3q⌉, . . . . . .) .

(5.1)
In any scheme of this kind the decoding is elementary. The output of the decoder

(ŵj(t))
mt

j=1 ∈ {0, 1}mt may be given by

ŵj(t) =

{

zs if ∃s ≤ t such that j(s) = j and zs 6= ?
0 otherwise .

Notice that this decoding scheme has complexity growing linearly in t. Indeed, it
admits the following natural recursive implementation. First, initialize ŵj(0) = 0 for
all j = 0. Then, for all t ≥ 0, upon receiving zt+1 we compute (ŵj(t+ 1))

mt+1

j=1 as

ŵj(t+ 1) =

{

zt+1 if j = j(t+ 1) and zt+1 6=?
ŵj(t) otherwise .

(5.2)

Proposition 5.1. Consider the repetition coding scheme defined by (5.1) and
(5.2) on the BEC with erasure probability ε. Then, the root mean squared error
satisfies

∆t ≤ p(t)2−βt1/2

, (5.3)

where

β =
√

2q
d , p(t) = C1 if q < d log ε−1

2

β =
√

2q
d , p(t) = C2

√
t if q = d log ε−1

2

β = log ε−1

√
2q

, p(t) = C3 if q > d log ε−1

2

with C1, C2, C3 positive constants depending only on q, ε and d.
Proof. Let us fix some t ∈ N. Define υj := |{1 ≤ τ ≤ t | j(τ) = j}| ,

and observe that υj = 0 if j > mt. For j = 0, 1, . . . ,mt, consider the events
Aj := {ŵ1(t) = w1, . . . , ŵj(t) = wj , }, Bj := Aj \ Aj+1. Notice that the events

Bj are pairwise disjoint, and P

(

⋃mt−1
j=0 Bj

⋃

Amt

)

= 1 . Moreover, observe that

P(Bj) ≤ P(ŵj+1(t) 6= wj+1) ≤ ευj+1 .
Notice that, under the constraints posed by the event At

j we have that the first j

bits of S(x) and of S(x̂t) coincide. Hence, by (4.2), E[||x − x̂t||2 | At
j ] ≤ 2C2

+2−2j/d.
Now for simplicity we assume that t = τk for some k. In this case we have that
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mt = ⌈kq⌉. Moreover we have that υj = k + 1 − min{h : ⌈qh⌉ ≥ j}. Observe now
that, since j ≤ ⌈x⌉ if and only if j < x+ 1, we can argue that

min{h : ⌈qh⌉ ≥ j} = min{h : qh+1 > j} = min{h : h > (j−1)/q} =
⌊

1
q (j − 1)

⌋

+1 .

This implies that, for j = 0, 1, . . . , ⌈kq⌉, we have υj = k −
⌊

j−1
q

⌋

. Therefore,

∆2
t =

∑⌈kq⌉−1
j=0 E

[

||x− x̂t||2 |Bj

]

P(Bj) + E[||x− x̂t||2 |A⌈kq⌉]P(A⌈kq⌉)

≤ 2C2
+

[

∑⌈kq⌉−1
j=0 2−2j/dευj+1 + 2−2⌈kq⌉/d

]

≤ 2C2
+

[

∑⌈kq⌉−1
j=0 2−2j/dεk−⌊j/q⌋ + 2−2⌈kq⌉/d

]

≤ 2C2
+

[

∑⌈kq⌉−1
j=0 2−2j/dεk−j/q + 2−2qk/d

]

.

Since t = τk =
∑k

j=1⌈jq⌉ ≤ ∑k
j=1(qj + 1) = q

2k
2 + q+2

2 k , we have k ≥
√

2t
q − q+2

2q .

Then, the claim easily follows from a straightforward computation.

Remark 3. Notice that Proposition 5.1 implies that a convergence degree α = 1/2
is achievable for any choice of the positive parameter q, without any knowledge of the
value of the erasure probability ε ∈ [0, 1[. If one knows ε, then it is possible to optimize

the convergence rate β by choosing q = d log ε−1

2 .

5.2. A trade-off result between performance and complexity. We shall
now show how complexity limitations imply lower bounds to the error decay stronger
than Theorem 3.1. In particular we shall prove that, for certain class of encoders
(finite-window and finite-state automata), exponential decay of error can never be
achieved. As before, let us assume that S : X → {0, 1}N is the dyadic expansion
map introduced in Sect. 4, and consider encoders Ẽ : {0, 1}N → {0, 1}N of the form
Ẽ((ws)

∞
s=1)t = Ẽt(w1, . . . , wmt), for some finite integer mt, and a map Ẽt : Ymt → Y.

In general, Ẽt may actually depend on a proper subset of themt bits {1, 2, . . . ,mt}.
Consider the minimal Θt ⊆ {1, 2, . . . ,mt} which allows one to write

Ẽt((ws)
mt
s=1) = ft((ws)s∈Θt)

for a suitable function ft : Θt → {0, 1}. Let nt = |Θt|. The encoder Ẽ is called
finite-window if nt is bounded in t. With each encoder it is possible to associate, for
every j, t ∈ N, the quantity ωj(t) :=

∑

1≤s≤t 1Θs(j), counting the number of channel
inputs up to time t, which have been affected by wj . Define

χt :=
∑

j∈N
ωj(t) =

∑

s≤t
ns .

The quantity χt is related to the complexity of the encoder Ẽ . If the maps ft are
Z2-linear and separately computed, then χt provides an upper bound to the number
of binary operations implemented by the encoder up to time t. However, there could
be hidden recursive links among the ft capable to lower the real computational com-
plexity. In any case, for brevity, we shall refer to χt as the complexity function of the
encoder. The following is our main result, relating the root mean squared error ∆t to
the complexity function χt.
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Theorem 5.2. For any transmission scheme for the BEC, with erasure proba-
bility ε, consisting of an encoder with complexity function χt, it holds

∆t ≥ C 2−
√

1
d χtlog ε−1

, (5.4)

where C > 0 is a constant depending only on d, the erasure probability ε and the
density function f of the random vector x.

Proof. Assume that, at time t, all the ωj(t) channel inputs affected by the j-th bit
wj have been erased. Then, there is clearly no way for the decoder to reliably recover
wj from the channel output. This implies that ∆2

t ≥ C1 supj∈N

{

2−2j/d εωj(t)
}

, for
some constant C1 > 0 only depending on d and f , independently from the way the
decoders are chosen. It will prove convenient to consider the looser bounds

∆2
t ≥ C1 sup

{

2−2jεωj(t) : 1 ≤ j ≤ s
}

≥ C1ψs(ω1(t), . . . , ωs(t)) , ∀ s ∈ N ,

where ψs(ω1, . . . , ωs) := 1
s

s
∑

j=1

2−2j/d εωj . Hence, for every possible s,

∆2
t ≥ C1 inf{ψs(ω1, . . . , ωs) : ω ∈Ms} (5.5)

where Ms :=
{

ω1, . . . , ωs ∈ (R+)s :
∑

j ωj = χt

}

. Since the function ψs is strictly

convex, it admits a unique minimum on the convex compact set Ms. Using Lagrange
multipliers, the unique stationary point (ω∗

j ) of ψs(ω1, . . . , ωs) on the hyperplane Ms

has to satisfy, for all j ≤ s, ω∗
j = ς − ρj, where, ρ := ln 4

d ln ε−1 = 2
d log ε−1 > 0, and

ς = χt

s + ρ s+1
2 . We have that ω∗ ∈ Ms if and only if ω∗

s ≥ 0 which is equivalent to

s ≤ 1
2

(

1 +
√

1 + 8χt

ρ

)

. A possible choice is provided by s∗ =
⌊

√

2χt/ρ
⌋

. We thus

obtain

∆2
t ≥ C1 inf

ω∈Ms∗

ψs∗(ω1, . . . , ωs) = ψs∗(ω∗
1 , . . . , ω

∗
s) = C1e

−ς ln ε−1

. (5.6)

We can estimate ζ∗ as follows

ς∗ = χt
—

q

2χt
ρ

� + ρ

—

q

2χt
ρ

�

+1

2 ≤ χt
q

2χt
ρ −1

+ ρ
2

(√

2χt

ρ + 1
)

=
√
ρ 2χt−ρ/2√

2χt−
√

ρ
≤ ρ

(√

2χt

ρ + 2
√

2−1
2
√

2−2

)

,

the last equality following from the assumption χt ≥ ρ. Inserting this last estimation
inside (5.6), the claim follows.

We have the following straightforward consequence for finite-window encoders
which show that the degree α = 1/2 can not be beaten.

Corollary 5.3. For any transmission scheme for the BEC, with erasure prob-
ability ε, consisting of a finite-window encoder with nt ≤ nmax for every t, it holds

∆t ≥ C 2−βt1/2

, (5.7)

where β =
√

nmax log ε−1

d and where C > 0 is a constant depending only on d, the

erasure probability ε and the density function f of the random vector x.
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Remark 4. In the case of the repetition encoders treated in Sect. 5.1, we have
that nmax = 1. If we compare (5.7) with (5.3), we have thus established that among
the repetition schemes (nmax = 1), the example treated in Sect. 5.1 is optimal from the
point of view of the asymptotic performance (both degree and rate of convergence).

The bound (5.4) implies that, in order to obtain exponential convergence of the
error, χt needs to grow at least quadratically in t or, equivalently, that 1

tχt, i.e. the
average number of bits of the dyadic expansion S(x) the channel inputs depend on,
grows at least linearly in t. Indeed, as we shall see, the random linear codes proposed
in Sect. 6 have exactly this property. However, observe that this does not imply that
linear-time encodable schemes cannot attain exponential error decays in any case,
since χt is, as already noticed, only an upper bound to the complexity of the encoder,
intended as the minimum number of operations required by any implementation of
the encoder. A possibility would be to consider maps ft which, despite being not
finite-window, can still be computed with bounded complexity in some recursive way.
The most obvious choice would be to consider finite-state automata schemes. Un-
fortunately, such schemes yield very poor performance, as it will be shown in the
next subsection. A less simple choice (and which will not pursued here) would be to
consider encoders obtained as serial concatenations of finite-window with finite-state
automata schemes.

5.2.1. Finite-state automata encoders. Encoders which can be implemented
as finite state automata yield very poor performance. In fact, the root mean squared
error ∆t in this case does not converge to 0 as t → +∞. Indeed, assume we are
given a finite state alphabet A and two maps ξ : A × {0, 1} → A, ρ : A × {0, 1} →
{0, 1}. Moreover, fix an initial state a∗ ∈ A. To the quadruple (A, ξ, ρ, a∗) we can
naturally associate an encoder Ẽ as follows. Given (ws)

∞
s=1 ∈ {0, 1}N, recursively

define (ys)
∞
s=1 = Ẽ((ws)

∞
s=1) by

{

at+1 = ξ(at, wt) a0 = a∗

yt = ρ(at, wt)

Notice that the state updating map ξ together with the initial condition a0 = a∗ yield
a sequence of maps ξ(t) : {0, 1}t → A such that at+1 = ξ(t)(w1, . . . wt). If we choose
t = t0 in such a way that 2t0 > |A|, the map ξ(t0) is necessarily not injective. Hence,
there exist two different input truncated sequences (w′

1, . . . , w
′
t0) and (w′′

1 , . . . , w
′′
t0)

such that ξ(t0)(w′
1, . . . , w

′
t0) = ξ(t0)(w′′

1 , . . . , w
′′
t0). Consider the event A = {wk =

w′
k, zk =? for k = 1, . . . , t0}. Clearly, conditioned on A, the decoder, for any t ≥ t0,

will decode incorrectly at least one information bit in the first t0 position with positive
probability independent from t. Hence, ∆2

t ≥ E
[

||x− x̂t||2 |A
]

P(A) ≥ 2−2t0/d
P(A).

6. A coding scheme with exponential error rates. The goal of this section
is to show that, removing the complexity bounds, exponential convergence can be
achieved. The proposed scheme will require quadratic computational complexity at
the encoder and cubic complexity at the decoder.

We shall use random coding arguments employing linear tree codes over the binary
field Z2. These arguments were first developed in the context of convolutional codes
[43, 44, 16], and recently applied in the framework of anytime information theory
[35, 37]. For the reader’s convenience, and since those results have not appeared
anywhere else in this form, we shall present self-contained proofs. The coding strategy
we shall propose is very close in spirit to those in [35, Th.5.1] and [37, Th.5.1], the
main difference being that we use linear convolutional codes instead of general random
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convolutional codes. Our choice has the double advantage of lowering the memory
and complexity requirements for the encoder and the decoder (see Sect. 6.3), and
improving the achievable error rate for a significant range of values of ε (see Theorem
6.3 and Remark 5).

6.1. A random causal linear coding scheme. In this section we shall identify
the binary set Y = {0, 1} with the binary field Z2 of the integers modulo 2.

Fix a rate 0 < R < 1 and any t let mt := ⌊Rt⌋. Consider a random, doubly
infinite, binary matrix φ ∈ Z

N×N

2 distributed as follows: φij = 0 for all j > Ri
(i.e. for all j ≥ mi+1), while {φij}1≤j≤Ri is a family of mutually independent random
variables with identical uniform distribution over Z2. As customary in random coding
arguments, we shall assume the random matrix φ to be independent from the source
vector x as well as from the channel, and known a priori both at the transmitting and
receiving ends. Let us naturally identify the random matrix φ with the corresponding
random Z2-linear operator Ẽ : Z

N
2 → Z

N
2 . Consider the truncated encoder

Ẽt : Z
mt
2 → Z

t
2 , Ẽt ((ws)

mt
s=1) := πt(φw) , (6.1)

where w ∈ Z
N
2 is such that πmtw = (ws)

mt
s=1. Now, let S : X → Z

N
2 be the dyadic

expansion map introduced in Sect. 4, and define the encoding scheme E : X → Z
N
2 as

the composition E = Ẽ ◦ S.
For the decoding part, we shall consider maximum a posteriori decoders D̃t. For

the special case of the BEC, given the channel outputs zt, the decoded block at time t,
(ŵs(t))

mt
s=1 = D̃t((zs)

t
s=1), is defined to be any vector in {0, 1}mt which is compatible

with the observed channel output (zs)
t
s=1. Formally, let Ξt := {s ∈ {1, . . . , t} : zs 6=?}

be the set of non-erased positions up to time t, and πΞt : Z
t
2 → Z

Ξt
2 be the canonical

projection. Then, a MAP decoder Dt : {0, 1, ?}t → Z
mt
2 maps the channel output

(zs)
t
s=1 into any binary string (ŵs(t))

mt
s=1 such that

πΞt Ẽt((ŵs(t))
mt
s=1) = πΞt(zs)

t
s=1 = πΞt Ẽt((ws)

mt
s=1) . (6.2)

Finally, the overall decoder is defined as the composition Dt := S−1
mt

◦ D̃t.

6.2. Performance analysis. We now analyze the coding scheme we have in-
troduced. Notice first of all that, the decoded block (ŵs(t))

mt
s=1 = D̃t((zs)

t
s=1) ∈ Z

mt
2

is uniquely defined, and correct, whenever the linear map πΞt Ẽt : Z
mt
2 → Z

Ξt
2 is injec-

tive. However, our analysis requires more detailed information regarding the location
of the uncorrectly decoded information bits when injectivity is lost. To this end,
let {δ1, δ2, . . . , δmt} be the canonical basis of Z

mt
2 , and, for 0 ≤ j ≤ mt, consider

the subspace5 Kj := span(δj+1, . . . , δmt) ⊆ Z
mt
2 . For 0 ≤ j ≤ mt, define the event

Aj := {ker(πΞt Ẽt) ⊆ Kj}. Also, let us define Bj := Aj−1 \ Aj , for 1 ≤ j ≤ mt. Ob-
serve that Aj ⊆ Aj−1, and that A0 coincides with the whole sample space Ω. Hence,
for every t ∈ N, the sample space admits the partition

Ω =
⋃

1≤j≤mt
Bj

⋃

Amt . (6.3)

Notice now that, from (6.2) we can deduce that (ws−ŵs(t))
mt
s=1 ∈ kerπΞt Ẽt. Therefore,

if Aj holds true, then (ŵs(t))
j
s=1 = (ws)

j
s=1, i.e. the first j bits of the quantization of

x are correctly decoded. We immediately get from (4.2) that, if Aj occurs, then

||x̂t − x||2 ≤ 4d2−2j/d , 0 ≤ j ≤ mt . (6.4)

5We shall use the standard convention span(∅) := {0}.
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The following result characterizes the average mean squared error of the random
coding scheme (E ,D) over the BEC. Here the average has to be considered with
respect to the randomness of the vector x, the channel, as well as the matrix φ. For
ε ∈ [0, 1] and d ∈ N, define

β′(d, ε, R) := min{ 1
dR,

1
2 min

0≤η≤1
D(η||1 − ε) + ⌊η −R⌋+} , (6.5)

where D(x||y) := x log x
y +(1−x) log 1−x

1−y denotes the binary Kullback-Leiber distance

and where ⌊x⌋+ := max{0, x}.
Theorem 6.1. Assume transmission over the BEC. Then, for all 0 < R < 1,

the average estimation error of the above-described random coding scheme satisfies

(

E||x − x̂t||2
)1/2 ≤ C

√
t2−β′(d,ε,R) t (6.6)

for all t ∈ N, where C > 0 is a constant depending only on d, R and ε.
Proof. Using (6.3) and (6.4), we obtain

E
[

||x̂t − x||2
]

=
mt
∑

j=1

E
[

||x̂t − x||2|Bj

]

P(Bj) + E
[

||x̂t − x||2|Amt

]

P(Amt)

≤
mt
∑

j=1

P(Bj)4d2
−2(j−1)/d + 4d2−2mt/d .

(6.7)
In order to estimate P(Bj), first we claim that the event Bj implies that the

column πΞt Ẽtδj belongs to the subspace πΞt ẼtKj . Indeed, Aj implies that there

exists some v ∈ Z
mt
2 such that πΞt Ẽtv = 0, and vi 6= 0 for some i ≥ j. On the

other hand, Aj−1 implies that such a v has vi = 0 for all i < j. Hence, if we define
v′ ∈ Z

mt
2 by v′i = 0 for i ≤ j, and v′i = vi for i > j, we have that v′ ∈ Kj and

0 = πΞt Ẽtv = πΞt Ẽtδj + πΞt Ẽtv
′. Therefore πΞt Ẽtδj = πΞt Ẽtv

′ ∈ πΞt ẼtKj , as claimed.

Observe that Ẽtδj is uniformly distributed over Hj := span(δ⌈j/R⌉, . . . , δt) ⊆ Z
t
2,

and independent from λt
⌈j/R⌉ (the latter being defined in (3.2)). It follows that πΞt Ẽtδj

takes any value in πΞtHj with probability 2−λt
⌈j/R⌉ . Since |πΞt ẼtKj| ≤ |Kj| = 2mt−j ,

we have that, for every k = 0, . . . , t− ⌈j/R⌉+ 1,

P(Bj |λt
⌈j/R⌉ = k) ≤ P(πΞt Ẽtδj ∈ πΞt ẼtKj |λt

⌈j/R⌉ = k) ≤ min{1, |Kj|2−k} = 2−⌊j+k−mt⌋+ .

From (3.3) it follows that

P(Bj) =
t−⌈j/R⌉+1

∑

k=0

P (Bj |λt
⌈j/R⌉ = k)P(λt

⌈j/R⌉ = k)

≤
t−⌈j/R⌉+1

∑

k=0

2−⌊j+k−mt⌋+
(

t−⌈j/R⌉+1
k

)

εt−⌈j/R⌉+1−k(1 − ε)k

≤ 2
t−⌈j/R⌉+1

∑

k=0

2−⌊j+k−mt+1⌋+2−(t−⌈j/R⌉+1)D( k
t−⌈j/R⌉+1

||1−ε)

≤ 2t2
−(t−j/R) min

0≤η≤1
D(η||1−ε)+⌊η−R⌋+}

(6.8)

where the second inequality follows from standard estimations of the binomial coef-
ficient (see e.g. [12]), and the last one by setting η = k

t−⌈j/R⌉+1 , and the estimates

R ≤ 1, mt ≤ Rt, j/R ≤ ⌈j/R⌉ ≤ j/R+ 1. Finally, (6.6) follows by substituting (6.8)
into (6.7).
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Standard probabilistic arguments allow one to prove the following corollary of
Theorem 6.1, characterizing the exponential error rate of a typical realization of the
random coding scheme (E ,D). Observe that the root mean squared error of the

coding scheme is given by
(

E
[

||x̂t − x||2|φ
])1/2

which is a function of φ, hence a
random variable.

Corollary 6.2. Assume transmission over the BEC with erasure probability ε.
Then, for all 0 < R < 1, with probability one,

(

E[||x− x̂t||2|φ]
)1/2 ≤ Ct3/22−β′(d,ε,R) t , (6.9)

for a positive constant C.

Proof. For t ∈ N, consider the event At :=
{

E[||x − x̂t||2|φ] ≥ t32−2t(β′(d,ε,R))
}

.

Form Markov’s inequality and Theorem 6.1, it follows that

P[At] ≤ t−322tβ′(d,ε,R)
E[||x− x̂t||2] ≤ Ct−2 ,

so that the series
∑

t P[At] is convergent and Borel-Cantelli lemma implies that, with
probability one, At occurs only for finitely many values of t ∈ N. Then, the claim
easily follows.

It is possible to derive another lower bound on the typical-case exponential error
rate achieved by the random scheme (E ,D), which turns out to be tighter than that
provided by Corollary 6.2 for certain values of R and ε. For every 0 ≤ R ≤ 1, define
γ(R) := min{x ∈ [0, 1] : H(x) ≥ 1 −R}, and

β′′(d, ε, R) := min

{

1

d
R,

1

2
min

γ(R)≤η≤1
{H(η) − 1 +R − η log ε}

}

.

The following result is proved in Appendix A.

Theorem 6.3. Assume transmission over the BEC with erasure probability ε.
Then, for all 0 < R < 1, δ > 0, with probability one

(

E[||x − x̂t||2|φ]
)1/2 ≤ Kt2−(β′′(d,ε,R)+δ)t , (6.10)

for a constant K > 0.

Remark 5. It follows from Corollary 6.2 and Theorem 6.3 that, for all R < 1−ε
random causal linear codes achieve exponential convergence rate. Optimizing over
R ∈]0, 1 − ε[, this shows that the exponent

β(d, ε) := max
0≤R≤1

max{β′(d, ε, R), β′′(d, ε, R)} , (6.11)

is achievable. In Fig.6.1 the upper and lower bounds to the error exponent, i.e. β(d, ε)
and β(d, ε), are plotted as functions of the erasure probability ε, in the case d = 1.

Define β′(d, ε) := max{β′(d, ε, R) : R ∈ [0, 1]}, and β′′(d, ε) := max{β′′(d, ε, R) :

R ∈ [0, 1]}. Then, it is not difficult to see that limε↓0 β
′(d, ε) = 1/(d + 2), while

limε↓0 β
′′(d, ε) = 1/d. Hence, Theorem 6.3 becomes particularly relevant for small

erasure probabilities, showing that the noiseless error exponent 1/d (see Sect. 4) is
recovered in the limit of vanishing noise: this does not follow from the average-code
analysis of Theorem 3.1.
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Fig. 6.1. Upper and lower bounds to the achievable estimation error exponent achievable on
the BEC (as defined in (3.5), (6.11) and Remark 5, respectively) are plotted as a function of the
erasure probability ε for d = 1.

6.3. Computational complexity of the scheme. Observe that the number nt

of binary operations required in order to compute the channel input yt = Ẽt((ws)
mt
s=1),

equals the number of non-zero entries of the t-th row of the infinite random matrix
φ. By the way φ has been defined, nt is a binomial random variable of parameters
mt and 1/2. Hence, the number of binary operations required by the encoder up
to time t, χt :=

∑

s≤t ns, has binomial distribution of parameters 1
2mt(mt + 1) and

1/2. Therefore, the worst-case encoding complexity (worst case with respect to the
realization of φ) grows like 1

2R
2t2, while the strong law of large numbers implies

that the typical encoder complexity χt is such that χt/
1
4R

2t2 converges to 1 with
probability one. Thus, the encoder complexity (both worst-case and typical-case) is
quadratic in t. Further, observe that the memory requirements of the encoder are
quadratic in t for it is necessary to store mtt binary values in order to memorize the
finite truncation Et of the encoder E .

In order to evaluate the decoder’s computational complexity, observe that D̃t is
required to solve the Z2-linear system

πΞt Ẽt((ws)
mt
s=1) = πΞt(zs)

t
s=1 . (6.12)

at each time step t. This can be performed using Gaussian elimination techniques in
order to reduce the matrix πΞt Ẽt to a lower-diagonal form. Notice that a sequential
implementation is possible, i.e. the part of πΞt Ẽt which has been reduced in lower
triangular form at time t does not require to be further processed in future times
s > t. Since Gaussian elimination techniques require O(t3) operations, we can con-
clude that the decoder complexity is at most O(t3). On the other hand, it might
be possible to find algorithms for solving a linear system like (6.12) with number of
operations o(t3): see [41, pagg.247-248] for the analogous problem for linear systems
over the reals. However, the system (6.12) cannot be solved using fewer operations
than those required to verify that a given string v ∈ Z

mt
2 is a solution. Using argu-

ments similar to those outlined above, it is possible to show that, with probability
one, this requires Θ(t2) binary operations. In summary, the complexity of maximum
a posteriori decoding of linear convolutional codes on the BEC is at most O(t3) and
at least Θ(t2).

16



7. Simulation results for finite-window coding schemes. We shall now
present Monte Carlo simulation results for some finite-window Z2-linear coding schemes
with low-complexity iterative decoding. These schemes are based on ideas similar to
those of digital fountain codes (see [22][27, Ch.50]). The latter are widely used in
many applications, such as data storage, or reliable transmission on broadcast chan-
nels with erasures. The main additional challenge posed by our application consists
in providing unequal error protection to the source bits.

We propose the following random construction for finite-window encoders fitting
in the framework of Sect. 5. As usual, assume that we have a dyadic expansion S
mapping the vector x into an infinite string of bits (ws)

∞
s=1. We imagine that at each

time t the encoder produces a bit yt which is the (modulo-2) sum of a random number
of randomly chosen ws, namely

yt =
∑

s∈Θt
ws .

where Θt is a random subset of N. We assume that the cardinality of Θt is bounded,
i.e. |Θt| ≤ nmax.

More precisely, fix nmax ∈ N, and a probability distribution µ( · ) on {1, . . . , nmax}.
Randomly generate a sequence (nt)t∈N of independent random variables distributed
according to µ( · ). Let (νt( · ))t∈N be a sequence of probability distributions over N,
with νt( · ) possibly depending on (ns)s≤t. Then, for every t ≥ 1, consider the random
set Θt := {θ1,t, θ2,t, . . . , θnt,t}, where θi,t are independent random variables uniformly
distributed according to νt( · ). Notice that in this way we have that |Θt| ≤ nt ≤ nmax

and so the encoder complexity is linear in t.
For the decoding, a sequential implementation of the peeling algorithm is used,

this being the standard decoding technique for digital fountain codes [22][27, Ch.50].
Such an algorithm works on an iteratively updated infinite hypergraph6 Gt = (Vt,Ht)
as explained below. At t = 0, G0 is initialized with vertex set V0 = N and empty
hyperedge set H0 = ∅. The estimates (ŵs(0))s∈N

of the dyadic expansion S(x) are
in turn initialized arbitrarily in {0, 1}N. At each time t ≥ 1, first update Vt = Vt−1,
Ht = Ht−1, and ŵs(t) = ŵs(t+ 1) for all s ∈ N. Then:

• if zt =?, then quit; if zt 6=?, update Ht = Ht ∪ {Bt}, where Bt := Θt ∩ Vt;
• if |Bt| > 1, then quit; otherwise if Bt = {v} for some v ∈ Vt, set ŵv(t) =
zt +

∑

j∈Θt\{v} ŵj(t), eliminate v from Vt as well as from all the hyperedges
h ∈ Ht containing it;

• if |h| 6= 1 for all h ∈ Ht, quit; otherwise, if there is some h = {v} ∈ Ht, repeat
the previous step.

The above-described algorithm requires an order of χt =
∑

s≤t ns operations up to
time t, hence it has linear complexity in t. It is suboptimal with respect to the
maximum a posteriori decoding: it may fail to correctly estimate the first j bits of
the dyadic expansion S(x) even when that would be possible using the maximum a
posteriori decoder.

In Fig.7.1 we report Monte Carlo simulations of three finite-windows encoding
schemes, with nmax = 1, 2, 4 respectively. The degree distribution µ( · ) was chosen to
be the truncated soliton one [27, pag.592]

µ(1) :=
1

nmax
, µ(n) :=

1

n(n− 1)
∀ 2 ≤ n ≤ nmax . (7.1)

6The term hypergraph [3, pag.7] refers to a pair (V ,H), where V is a discrete set and H is a
subset of P(V), the power set of V .
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Fig. 7.1. Monte Carlo simulations of finite-window coding schemes on the BEC, with erasure
probability ε = 0.5. The performance of three coding schemes are compared: these schemes were
randomly generated accordingly to (7.1) and (7.2) with nmax = 1, 2, 4 respectively. In (a) the root
mean squared error ∆t is plotted as a function of the time t in log-linear scale. In (b) − 1√

t
log ∆t

is plotted as a function of t, together with the corresponding upper bounds
p

χt log ε−1 provided by
Theorem 5.2. The number of samples used is 200000.

The distributions νt have been selected as follows. We define ρ := 2
(

d log ε−1
)−1

,

st := ⌊
√

2χtρ−1⌋, and ςt = χt

st
+ ρ st+1

2 , where χt =
∑

s≤t ns. Then choose

νt(j) :=

{

η(ςt − ρj) if j ≤ st

0 if j > st ,
(7.2)

Our choice was suggested by the optimization problem in the right-hand side of (5.5).
It is clear from Fig.7.1(a) that the three schemes have subexponential error de-

cay and that increasing the degree allows one to obtain better convergence rates.
Fig.7.1(b) shows that the convergence degree is α = 1/2, as expected from the theory,
while it is possible to recognize the different values of β of the three schemes, in the
asymptotic limit of − 1√

t
log ∆t.

It should be underlined as the choices of the distributions µ and νt were not
optimized, but rather suggested by the literature on digital fountain codes and by
Theorem 5.2, respectively. A theoretical analysis of the behavior of finite-window
schemes, hopefully providing hints on the design of µ and νt, is left as a topic for
future research.

8. Conclusion and extensions. The problem of anytime reliable transmission
of a real-valued random vector through a digital noisy channel has been addressed.
Upper and lower bounds on the highest exponential rate achievable for the mean
squared error have been obtained assuming transmission over the BEC. Moreover, a
lower bound on the performance achievable by low-complexity coding schemes has
been derived. Such a bound shows that, for the mean squared error to decrease ex-
ponentially fast in the number of channel uses, the subsequent channel inputs have
to depend on a linearly growing number of information bits, i.e. bits of the dyadic
expansion of the source vector. Finally, simulation results for linear-complexity cod-
ing/decoding schemes have been proposed.

Using finer information-theoretic arguments, most of the results of this paper can
be extended to more general discrete memoryless channels. In particular, Theorem 3.1
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can be extended to general discrete memoryless channels, providing an upper bound β
on the achievable error rate which can be written as a function of the sphere-packing
exponent of the channel [17, pag.158]. Such a bound turns out to be strictly smaller
than the Shannon capacity of the channel, whenever the sphere-packing exponent is
finite at rates below capacity: see [8] for similar arguments in the more general context
of distributed computation over networks. Theorem 5.2 can be extended to general
discrete memoryless channels, showing that exponential error decays require that the
t-th channel input depends at least on a linear number of information bits. Using
arguments as in [44], Theorem 6.3 for random linear convolutional codes can be ex-
tended to the class of discrete memoryless channels which are symmetric with respect
to the action of the additive group of some finite field, showing the achievability of the
exponential error rate min

{

1
dR,

1
2Ex(R)

}

, where Ex(R) is the expurgated exponent
of the channel [17]. It is possible to extend Theorem 6.1 to arbitrary discrete mem-
oryless channels, using a random coset approach possibly followed by a quantization
as in [17, pagg.206-209] showing that the error rate β′(d, ε, R) := min

{

1
dR,

1
2Er(R)

}

is achievable, where Er(R) is the random coding exponent of the channel [17]. On
arbitrary discrete memoryless channels, linear (or coset) convolutional codes main-
tain linear encoding complexity, but their maximum a posteriori decoding is known
to be an NP-hard problem [1]. The error rate β′(d, ε, R) := min

{

1
dR,

1
2Er(R)

}

can
be shown to be achievable, on general discrete memoryless channels, by using random
non-linear convolutional codes as in [16, 35, 37]. However, observe that non-linear con-
volutional codes require exponential memory for the encoder, while their maximum
a posteriori decoding is also an NP-hard problem. Moreover, to our knowledge, no
result analogous to Theorem 6.3 is known to hold for non-linear random convolutional
codes.

Some of the questions raised in this paper have been left open. A particularly
relevant issue is the analysis and design of linear-complexity coding schemes achieving
exponential error rates. Another open problem consists in tightening the upper bound
on the achievable error exponent proved in Theorem 3.1, by better exploiting the ab-
sence of feedback. Finally, recall that the complexity analysis presented in Sect. 5.2
has been performed while assuming that the joint source-channel encoder could be
written as the composition of a fixed dyadic expansion map, and of a channel en-
coder, and that the a priori distribution of x is absolutely continuous with respect to
Lebesgue’s measure. Clearly, the former assumption does not put any restriction on
the encoder structure since every joint source-channel encoder can be decomposed in
this form, provided that one allows each channel input to depend on a possibly infinite
number of bits of the dyadic expansion. Our result on the complexity vs. performance
tradeoff was obtained by considering the loss in performance induced by restricting
each channel input to depend on a certain finite number of dyadic expansion bits. It
would be interesting to investigate how our results can be extended to more general
computational models and complexity measures for the encoder and the decoder.

Appendix A. Proof of Theorem 6.3. We shall prove Theorem 6.3 by means
of so-called code-expurgation arguments. The Hamming weight of a binary string
y ∈ Z

t
2 will be denoted by wH(y) := |{1 ≤ j ≤ t : yj = 1}|. For 0 ≤ j ≤ mt, and

h ≥ 0, let us consider the random variable Υt
j(h) := |{y ∈ Kj \Kj+1 : wH(Ẽty) = h}|,

counting the number of binary strings y whose first non-zero bit is the (j + 1)-th and
such that Ẽty has weight h. Observe that the causality of φ implies that, if y ∈ Kj ,

then Ẽty belongs to Lj := span (δs| ⌈(j + 1)/R⌉ ≤ s ≤ t) ⊆ Z
t
2. Further, since φδj+1

is uniformly distributed over Lj , and since the columns of φ are independent, we have
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that, if y ∈ Kj \Kj+1, then Ẽty is uniformly distributed over Lj . It follows that

E[Υt
j(h)] =

∑

y∈Kj\Kj+1
P(wH(Ẽty) = h) = |Kj \Kj+1|

(

lj
h

)

|Lj |−1 ≤ 2lj(H(η)−1+R) ,

where lj := (t− ⌈(j + 1)/R⌉+ 1) and η := h/l.
For every λ, ϕ > 0, by using the union bound and Markov’s inequality, we can

estimate the probability of the event Ft :=
⋃(1−λ)Rt

j=1

⋃ljγ(R+ϕ)
h=0 {Υt

j(h) ≥ 1} by

P (Ft) ≤ ∑

j,h E[Υt
j(h)] ≤ t22−tλϕ . Then, the series

∑

n P(Fn) is convergent, and
the Borel-Cantelli lemma implies that, with probability one, Fn occurs finitely many
times, i.e. there exists t0 ∈ N such that Υt

j(h) = 0 for all h < ljγ(R + ϕ), for all
t ≥ t0 and 1 ≤ j ≤ (1 − λ)Rt. An analogous argument shows that with probability
one Υt

j(h) ≤ 2lj(H(η)−1+R+ϕ)), for all ljγ(R+ ϕ) ≤ h ≤ lj , for sufficiently large t.
We are now ready to prove Theorem 6.3. For this, fix λ, ϕ ∈ (0, 1), and consider

the event Ht :=
⋃⌊(1−λ)Rt⌋

j=1 Gj
t , where

Gj
t :=

⋃ljγ(R+ϕ)
h=0

{

Υt
j(h) ≥ 1

}
⋃lj

h=ljγ(R+ϕ)

{

Υt
j(h) ≤ 2(t−⌈j/R⌉)(H(η)−1+R+η))

}

.

Then, for j = 1, . . . , ⌊(1 − λ)Rt⌋, the union bound yields the estimation

P(Bj |Ht) ≤
lj

∑

h=0

εh
E

[

Υt
j(h)|Ht

]

≤
lj

∑

h=ljγ(R+ϕ)

εh2lj(H(η)−1+R+η)) .

Hence, (6.3) and (6.4) imply that, for κ := 1 − λ)Rt

E[||x− x̂t||2|Ht] =
⌊κ⌋
∑

j=1

E[||x − x̂t||2|Ht ∩Bj ]P(Bj |Ht) + E[||x − x̂t||21A⌊κ⌋
|Ht)

≤
⌊κ⌋
∑

j=1

16d2−2j/d
lj
∑

h=ljγ(R+ϕ)

εh2lj(H(η)−1+R+ϕ)) + 16d2−2⌊κ⌋/d

≤ K ′t22−t(2β′′(d,ε,R)−ϕ) +K ′′t2−2κ ,

for some constants K ′,K ′′ > 0. Since, with probability one, there exists t0 ∈ N such
that Ht occurs for all t ≥ t0, for all such t we have

E[||x− x̂t||2|φ] ≤ K ′t22−t(2β′′(d,ε,R)−ϕ) +K ′′t2−2(1−λ)Rt/d .

Finally, the claim follows from the arbitrariness of ϕ, λ > 0.
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