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Abstract

In this paper a distributed algorithm for clock synchronization is proposed. This algorithm is based

on an extension of the linear consensus algorithm which is able to synchronize a family of identical

double integrators. Since in reality the various clocks may have different drifts, the algorithm needs to

be designed in such a way that it works correctly also in case of heterogeneous double integrators. We

start by reviewing an unrealistic synchronous implementation of the clock synchronization algorithm,

that has been recently proposed in the context of noisy double integrators. The main contribution of

this paper is to propose a realistic pseudo-synchronous implementation of this algorithm. This pseudo-

synchronous algorithm is shown to be a perturbation of the synchronous one and so, through arguments

related the center manifold theorem, it is proved to be locally convergent under the assumption of absence

of process noise, measurement noise and propagation delays. However, through numerical simulations,

the performance of this algorithm is evaluated also in the case the communication delays are not

negligible, the clock drifts are time-varying and the communication channels are unreliable. Moreover,

again through numerical simulations, the strategy we propose in this paper is compared with other

fully distributed strategies recently proposed in the literature. While being slightly slower to reach the

asymptotic synchronization, our strategy seems to significantly outperform the other strategies in terms

of robustness to process and measurement noises and time-varying clock drifts.

I. INTRODUCTION

One of the key problems in wireless sensor networks (WSNs) is time synchronization. Sensor networks

are used in a large number of applications which cover a wide range of fields, such as, surveillance,
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targeting systems, monitoring areas, intrusion detection, vehicle tracking and mapping. In many of these

applications it is essential that the nodes act in a coordinated and synchronized fashion requiring global

clock synchronization, that is, all the nodes of the network need to refer to a common notion of time. For

instance, consider the problem of tracking a moving target using proximity sensors, where some nodes are

deployed in the environment and their proximity sensors detect when the moving object passes in their

vicinity [1]. Assuming the position of the sensors is known, it is essential that the instants of detection are

precisely timestamped for determining the trajectory of the moving object. Clearly, the precision of the

tracking algorithm based on this system is limited by the accuracy of the clock synchronization. Other

interesting applications, which need a time-synchronization service, are habitat monitoring [2], power

scheduling and TDMA communication schemes [3], and rapid synchronized coordination of powerlines

nodes in electric power distribution networks for catastrophic power-outage prevention [4].

In designing a time synchronization algorithm for WSNs, several problems need to be considered.

Indeed, WSNs are often composed by a large number of units and so the complexity of a time synchro-

nization algorithm needs to scale well with the number of clocks in the network. Often in WSNs nodes

can appear and disappear and the communication topology can change. Moreover, the communication

is often unreliable and information packets can be lost due to interference. Finally, there may be time

delays between the clock readings of two distinct devices. These delays are due for example to the

software access time required to read the local clock, to the propagation delay, and to the reading time at

the receiver clock. Concerning time delays, of note is the paper [5], where the authors characterized the

fundamental limitations on synchronizing clocks over networks. In particular it is shown that determining

all the unknown parameters, i.e., skews and offsets of all clocks as well as all the communication links,

is impossible. Although there are algorithms that try to mitigate the effects of the delays (see e.g., [6]),

the general trend is to solve this problem at hardware level by trying to read the clocks right before

packet transmission and as soon the packet arrives, as discussed in [7].

A wide variety of protocols have been proposed to address the problem of time synchronization in

WSNs, as surveyed in [8], [9], [10], [11]. Depending upon the architectures adopted, these protocols can

be divided into three categories: tree-structure-based, cluster-structure-based, and fully distributed.

In tree-structure-based protocols a hierarchical structure is created within the network. Initially, one

node is elected to be the global clock reference, then a spanning tree rooted at this node is built.

Afterwards, each node synchronizes itself with its parent by compensating its offset and its relative

clock drift using its parent clock readings as the direct reference. The most representative protocols in

this class are the Time-synchronization Protocol for Sensor Network (TPSN) [12], the Flooding Time



Synchronization Protocol (FTSP) [7], the Lightweight Tree-based Synchronization (LTS) [13] and Tiny-

sync [14]. Although these strategies can be easily implemented, they suffer from two main limitations.

The first limitation is that they require high overhead to maintain the tree-structure and they are sensitive

to network topology changes. Indeed, if the root or a non-leaf node dies or a new node is added, then it is

necessary to rebuild the tree, at the price of additional implementation overhead and possibly long periods

in which the network or part of it is poorly synchronized. The second limitation is that, depending on

how the tree is built, it might happen that two clocks, which are physically close and can communicate

with each other, belong to two different branches of the tree, thus possibly having large clock differences.

This is particularly harmful in those applications such as TDMA communication which requires good

synchronization of each node with its neighbors.

On the other hand, in cluster-based protocols, sensors are grouped into clusters according to their

geographical locations. Within each cluster a node is elected as cluster-head. All nodes of the same

cluster synchronize themselves with the corresponding cluster-head, and each cluster-head synchronizes

itself with an another cluster-head. Typical protocols in this class include Pairwise Broadcast Synchro-

nization (PBS) [15], the Reference Broadcast Synchronization (RBS) [16], Hierarchy Referencing Time

Synchronization (HRTS) [17]. Like the tree-structure-based protocols, also the cluster-based protocols

suffer from large overhead necessary to divide the network in cluster and to elect the reference nodes

and they are somewhat sensitive to node failures.

The last approach is to have a fully distributed architecture, where there are no reference nodes and

all nodes run exactly the same algorithm. These protocols have the advantage of being highly scalable

and very robust to node failure and new node appearance. Indeed, recently, several fully distributed

algorithms for clocks synchronization based on consensus algorithms have appeared and it is generally

believed that the distributed consensus-based architectures are robust with the respect to link and node

failure. This fact can be proved in the case the standard first order consensus algorithm is employed, for

instance see [18], [19]. Concerning higher order consensus strategies, to the best of our knowledge, there

are no theoretical characterizations of the above robustness properties, even though they appear to be

evident in simulations. The authors in [20] introduced a protocol, inspired by the fireflies integrate-and-

fire synchronization mechanism, able to compensate for different clock offsets but not for different clock

skews. Alternatively, the algorithm proposed in [21], adopting a first order consensus algorithm [22],

compensates for the clock skews but not for the offsets, i.e., at the end of the synchronization process

all clocks will measure a constant time difference from the other clocks.

Distributed protocols that can compensate for both clock skews and offsets are the Distributed Time-



Sync Protocol in [6] and the Average Time-Sync Protocol in [23]. The first one is based on the cascade

of two distributed least-squared algorithms, while the second one is based on the cascade of two first

order consensus algorithms. They both are proved to synchronize a network of clocks in the absence of

noise and time-delays and they also show good performance in experimental testbeds. Of note is the fact

that these strategies are highly nonlinear and do not lead to a theoretical characterization of the effects

of noise on the steady-state performance, i.e., the distribution of synchronization errors.

Differently, [24] proposed a synchronization algorithm that can be formally analyzed not only in the

noiseless scenario in terms of rate of convergence, but also in a noisy setting in terms of the steady-

state synchronization error. This algorithm compensates for both initial offsets and differences in internal

clock speeds and is based on a Proportional-Integral (PI) consensus based controller that treats the

different clock speeds as unknown constant disturbances and the different clock offsets as different initial

conditions for the system dynamics. A similar approach, based on the second order consensus algorithm,

has been proposed by the same authors in [25] to deal with the synchronization of networks of noisy non-

identical double integrators. In [25], both convergence guarantees as well optimal design using standard

optimization tools when the underlying communication graph is fixed and known, are provided.

It is important however to remark that the protocols in [24], [25] are proposed in a synchronous imple-

mentation, namely, all nodes are assumed to communicate at the same time instants which are multiple

integers of a given sampling time T , while the other protocols mentioned above are all asynchronous, i.e.,

they do not need a specific coordination for the communication. Clearly the assumption made in [24],

[25], is unrealistic for implementing any clock synchronization algorithm over WSNs since nodes data

transmissions and algorithm updating steps cannot occur exactly at the same time. Indeed, in a fully

distributed synchronization algorithm, these operations can be performed by the nodes relying only on

their local time estimates and, in absence of synchronization, these estimates differ from each other.

The main contribution of this paper is to propose a realistic implementation of the strategy presented

in [25] in the context of WSNs. We refer to this implementation as the pseudo-synchronous algorithm.

Differently from the synchronous version proposed in [25], in the pseudo-synchronous algorithm each

clock is not assumed to communicate with the other clocks synchronously at (absolute) time t = kT , k =

0, 1, 2, . . ., but instead it is assumed that it performs the transmission whenever its time estimate is equal

to kT . Consequently, in the pseudo-synchronous algorithm, clocks data transmissions associated with

the k-th iteration are not performed synchronously. In this paper we show that the pseudo-synchronous

algorithm is a perturbation of the synchronous version proposed in [25] and hence, through arguments

related to the center manifold theorem, we can prove its convergence under the following assumptions:



• the initial time estimates are sufficiently close to each other (namely we prove only the local

convergence of the algorithm);

• absence of process noise, measurement noise and propagation delays.

Clearly, from a practical point of view, the above assumptions represent important limitations when

dealing with synchronization algorithms running over WSNs. To partially overcome these limitations,

we provide a set of numerical simulations showing that the effectiveness of the algorithm is not affected

even when the two above assumptions do not hold. In particular, our simulations seem to suggest that

the pseudo-synchronous algorithm converges even if the initial time estimates are quite different from

each other, namely they suggest that the basin of attraction is large and that it does not depend on the

number of clocks.

Additionally, in the section devoted to simulations, we implement an asynchronous version of the

PI strategy introduced in [25]. In particular a numerical comparison with the distributed strategies

proposed in [6] and in [23], is performed. While being slightly slower to asymptotically converge to the

synchronization, the asynchronous version of the PI strategy significantly outperforms the other strategies

in terms of robustness to process and measurement noises and time-varying clock drifts.

The outline of the paper is as follows. In Section II the clock model for each clock is presented,

together with the formulation of the clock synchronization problem. In Section III the Pseudo-Synchronous

algorithm is described. Its convergence properties are characterized in Section IV. Numerical examples

for comparing our strategy with other fully distributed strategies are provided in Section V. Finally, we

gather out our conclusions in Section VI. Moreover, since the center manifold theorem for discrete time

systems is not easy to find in the literature, for sake of completeness we prefered to add an appendix in

which the version of the center manifold theorem needed in the paper is stated and proved.

A. Mathematical preliminaries

Before proceeding, we collect some useful definitions and notations. In this paper G = (V,E) denotes

an graph where V = {1, . . . , N} is the set of vertices and E ⊆ V ×V is the set of (directed) edges. The

graph G is said to be undirected if (i, j) ∈ E implies (j, i) ∈ E. A path in G consists of a sequence

of vertices (i1, i2, . . . , ir) such that (ij , ij+1) ∈ E for every j ∈ {1, . . . , r − 1}. A graph G is strongly

connected if for any pair of vertices (i, j) there exists a path connecting i to j. Given a node i, by Ni
we denote the set of neighbors of i, namely, Ni = {j ∈ V | (j, i) ∈ E , i 6= j}. Moreover, by di we

denote the cardinality of Ni, i.e., di = |Ni|. Given a matrix M ∈ RN×N , we define the induced graph

GM = (VM , EM ) in which VM := {1, . . . , N} and in which (j, i) ∈ EM if Mij 6= 0. Given a graph



G = (V,E), the matrix M is adapted to (or compatible with) G if V = VM and E ⊇ EM . Now we give

some notational conventions. Given a vector v ∈ RN and a matrix M ∈ RN×N , we let vT and MT

denote respectively the transpose of v and of M . With the symbols 1 we denote the N -dimensional vector

having all the components equal to 1. Given v = [v1, . . . , vN ]T ∈ RN , diag{v} or diag{v1, . . . , vN} mean

a diagonal matrix having the components of v as diagonal elements. Moreover, ‖v‖ denote the Euclidean

norm of v. Finally we let R and R>0 denote, respectively, the set of real numbers and the set of strictly

positive real numbers. The set of non-negative natural numbers is denoted by N.

II. THE CLOCK SYNCHRONIZATION PROBLEM

A. The mathematical modeling of a clock

We start by proposing a model of each local clock which captures the main difficulty of the problem

we want to solve, namely the fact that the time is an unknown variable, which has to be estimated.

Assume that each clock has an oscillator capable to produce an event at time t(k), k ∈ N. The clock

has to use these ticks in order to estimate the time. The following cumulative function well describes the

time evolution of the tick counter that can be implemented in the clock

s(t) =

∞∑
k=0

1(t− t(k))

where 1 is the unit step function, i.e.,

1(t) =

 0 t ≤ 0

1 t > 0

In this way the counter output is the step shaped function shown in Figure 1. Notice that the function

f(t) :=
1

t(k + 1)− t(k)
for all t ∈ [t(k), t(k + 1)[, (II.1)

can be interpreted as the oscillator frequency at time t and that s(t) '
∫ t
−∞ f(σ)dσ. Typically a nominal

value f̂ of f(t) is known together with a lower bound fmin and an upper bound fmax such that f(t) ∈

[fmin, fmax]. From the counter one can build a time estimate x′(t) by letting

x′(t) = x′(t0) + x′′(t0)[s(t)− s(t0)], (II.2)

where x′′(t0) is an estimate of the oscillation period 1/f(t) in the period [t0, t]. It is reasonable to

initialize x′′(t) to 1/f̂ . Both x′(t) and x′′(t) can be modified when the unit obtains information allowing

it to improve its time and oscillator frequency estimates. Assume that these corrections are applied at



t(0) t(1) t(2) t(k) t(k+1) t

s(t)

Fig. 1. The graphs of s(t) (continuous line) and of its approximation
∫ t

−∞ f(σ)dσ (dashed line).

time instants Tup(h), h ∈ N, called updating time instants. In this case we have 1 x′(Tup(h)+) = x′(Tup(h)) + u′(h)

x̂′′(Tup(h)+) = x′′(Tup(h)) + u′′(h)
(II.3)

where u′ and u′′ denote the control inputs applied to x′ and x′′, respectively.

Clearly, for t ∈ (Tup(h), Tup(h+ 1)), the value of x′′ is kept constant, i.e, x′′(t) = x′′(Tup(h)+), while

the value of x′ is updated according to (II.2)

x′(t) = x′(Tup(h)+) + x′′(Tup(h)+)[s(t)− s(Tup(h))].

Now, for t ∈ R, define the state of the clock to be the two-dimensional real vector x(t) = [x′(t) x′′(t)]T ,

t ∈ R, and define the control input of the clock to be the two-dimensional real vector u(h) :=

[u′(h) u′′(h)]T , h ∈ N. Observe that Equation II.3 can be rewritten as

x
(
Tup(h)+

)
= x (Tup(h)) + u(h).

1Given the time t, with the symbol t+ we mean the time just after t. More formally we assume that all our functions are

simultaneously left continuous and piecewise continuous; for a such given function f , with a slight abuse of notation, with

f(t+) we mean limt→t+ f(t).



Moreover, for t ∈ (Tup(h), Tup(h+ 1)), x′ is updated according to (II.2), i.e.,

x′(t) = x′
(
Tup(h)+

)
+ (s(t)− s(Tup(h)))x′′

(
Tup(h)+

)
while x′′ remains constant, i.e, x′′(t) = x′′ (Tup(h)+). In compact form, for t ∈ (Tup(h), Tup(h+ 1)),

we can write

x (t) =

 1 s(t)− s(Tup(h))

0 1

x (Tup(h)+
)

(II.4)

B. Networked clocks’ synchronization

Assume now that we have a network composed by N clocks. For i ∈ {1, . . . , N}, let fi(t) be the

evolution of the oscillator frequency of the clock i. We assume that the nominal values, the lower

and upper bounds f̂ , fmin, fmax are the same for all the clocks. Moreover, for i ∈ {1, . . . , N}, let

xi(t) = [x′i(t) x
′′
i (t)]

T denote the local state of the clock i. In our model we assume that the clocks can

exchange their local state according to a graph G having {1, . . . , N} as set of vertices and in which there

is an edge from j to i whenever the clock j can send its state xj to the clock i. Specifically, we assume

that each clock i broadcasts the value of its state xi(t) to all its neighboring nodes, at some time instants

Ttx,i(h), h ∈ N. In general, due to the transmission delays, the information xi(Ttx,i(h)) is received by

clock j ∈ Ni at a delayed time Trx,i,j(h) which can be conveniently described as

Trx,i,j(h) = Ttx,i(h) + γi,j(h) (II.5)

where γi,j(h) is a nonnegative real number representing the deliver delay between i and j.

Each node i can use any information it receives from the neighboring nodes to perform a control

at the time instants Tup,i(h), h ∈ N. The objective is to design a control strategy yielding the clock

synchronization, i.e., such that there exist constants a ∈ R>0 and b ∈ R such that synchronization errors

ei(t) := x′i(t)− (at+ b), i = 1, . . . , N (II.6)

converge to zero or remain small. In the next section we describe three different examples of synchro-

nization algorithm.

III. THE PSEUDO-SYNCHRONOUS CLOCK SYNCHRONIZATION ALGORITHM

Before describing the clock synchronization algorithm we focus in this paper, we present two other

possible solutions. The first, even if unrealistic, will be helpful in the presentation of the realistic solution

we will propose, the second is instead briefly described for sake of completeness, but will not be analyzed

in this paper. In this Section we make the following assumptions.



Assumption 3.1: We assume that the oscillator frequencies are unknown but constant, i.e., for i ∈

{1, . . . , N}, fi(t) = f̄i for all t ∈ R>0.

Assumption 3.2: We assume that the delays are negligible, i.e., for i ∈ {1, . . . , N}, Trx,i,j(h) =

Ttx,i(h), for all j ∈ Ni and for all h ∈ N.

We will come back on time-varying oscillator frequencies and on not negligible delays in Section V,

devoted to simulations. Observe that, under Assumption 3.1, Equation (II.4) becomes

xi (t) =

 1 f̄i(t− Tup,i(h))

0 1

xi (Tup,i(h)+
)
. (III.1)

A. An unrealistic synchronous algorithm

This version is unrealistic, but constitutes the starting point for a more realistic implementation. We

first assume that, for all i ∈ {1, . . . , N}, Tup,i(h) = Ttx,i(h) = hT where T ∈ R>0 is a sampling time,

namely, we impose that all the nodes perform their transmissions and the updatings at the same time.

Moreover we impose the following linear correction law

ui(h) = −F
N∑
j=1

Kij [xj(hT )− xi(hT )] (III.2)

where F ∈ R2×2 and Kij are the elements of a matrix K with Kij = 0 if (j, i) is not an edge of the

communication graph G. In this way the protocol requires the transmission of the state xj(hT ) from the

node j to the node i if and only if Kij 6= 0. This implementation is unrealistic, because it is not possible

for the nodes to act at the same time instants hT , since they have not a common time coordinate system.

If we define the state

x(h) := [x′1(hT ), . . . , x′N (hT ), x′′1(hT ), . . . , x′′N (hT )]T ∈ R2N

it can be verified2 that this synchronous algorithm evolves according to the following equation

x(h+ 1) = Ax(h) (III.3)

where

A =

 I TD

0 I

 I 0

0 I

−
 f11K f12K

f21K f22K

 (III.4)

with fij being the elements of the matrix F and D := diag{f̄1, . . . , f̄N}. In case the matrix A yields

the clock synchronization, namely the convergence of the N clock profiles x′i(hT ) to a common ramp

shaped function, we will call this matrix a synchronizing matrix.

2The proof of this fact is a simplified version of the proof of Proposition 4.3.



Remark 3.3: The above synchronous algorithm has been analyzed in [26] under the assumption that

K is a symmetric matrix such that K1 = 0. It has been shown that, in order to obtain a synchronizing

matrix A, we need to impose that f22 = 0. In [26] it is assumed that also f12 = 0, since this limitation

does not prevent from finding a solution and has the advantage that each clock needs to transmit only

one real number corresponding to the first component of its state. From [27] it can argued that, given a

connected undirected graph G, building the matrix K as follows

Kij =


− 1

max{di,dj} if (i, j) ∈ E and i 6= j

−
∑

j 6=iKij if i = j

0 otherwise

(III.5)

and choosing f11 = 1
2 and f21 = 1

fmaxT
, we obtain a matrix A which is synchronizing for all oscillator

frequencies f̄i, i ∈ {1, . . . , N} such 0 < f̄i < fmax. Notice that the proposed construction of K, inspired

to the transition matrix of the Metropolis-Hastings algorithm, requires only local information, since every

node needs to know only the degree of its neighbor nodes.

B. An asynchronous algorithm

In this algorithm we assume that any node j decides to broadcast at completely random times Ttx,j(h)

its state xj(Ttx,j(h)) to its neighbors. Since we are assuming that there are no delays, any neighbor node

i of j receives xj(Ttx,j(h)) at the same time Ttx,j(h) and instantaneously operates the correction

xi(Ttx,j(h)+) = xi(Ttx,j(h))− FKij [xj(Ttx,j(h))− xi(Ttx,j(h))] (III.6)

where F ∈ R2×2 and Kij are the elements of a matrix K. In this way, the updating time instants for the

node i coincide with the transmission time instants of all its neighbor nodes.

C. A pseudo-synchronous algorithm

As we noticed above, the synchronous algorithm is unrealistic, since, in any realistic setting, the nodes

are unable to carry out their transmissions synchronously. Indeed in a fully distributed synchronization

algorithm, these operations can be performed by the nodes relying only on their local time estimates and,

in absence of synchronization, these estimates differ from each other. Here we propose a realistic version

of the synchronous algorithm. We will call it pseudo-synchronous algorithm. In order to describe the

pseudo-synchronous algorithm, we first specify how the nodes select the transmission and the updating

time instants. Assume that node i, i ∈ {1, . . . , N}, knows its neighbors in the graph G, namely the set

Ni, and assume that, as for the synchronous algorithm, we have two matrices matrix F ∈ R2×2 and



x’i(t)

Ttx,i(h) tTtx,i(h+1)

hT

(h+1)T

Tup,i(h) Tup,i(h+1)

Fig. 2. In this Figure we show how the time instants Ttx,i(h) and Tup,i(h) are related to the state evolution x′i(t).

K ∈ RN×N . Finally let T be a positive parameter which is a priori known by all the clocks. Differently

from the synchronous implementation, now T does not denote a sampling interval but just a positive

constant common parameter needed to determine when the transmissions have to occur. Then we have

the following definitions:

• The transmission time instants are defined by

Ttx,i(h) := inf{t : x′i(t) ≥ hT}

namely the i-th node transmits when its time estimate x′i(t) becomes greater than or equal to hT

for the first time. This is an example of an event based decision.

• The updating time instants are defined by

Tup,i(h) := max {Ttx,j(h) | j ∈ Ni ∪ {i} } ,

namely the node i updates its state only after the completion of all its neighbor nodes communication

actions, included its own transmission.

Notice that, from the above definitions, we always have that Tup,i(h) ≥ Ttx,i(h). Moreover, Ttx,i(h) and

Tup,i(h) can be determined by the node i relying only on its local information. Figure 2 depicts the

relation between the evolution of the time estimate x′i(t) and the time instants Ttx,i(h) and Tup,i(h).

According to the pseudo-synchronous algorithm, during the h-th iteration each node i performs the

following actions:



• At instant time Ttx,i(h) the node i broadcasts to its neighbors the state xi(Ttx,i(h)).

• For all j ∈ Ni, at time Ttx,j(h) the node i receives from the node j the value xj(Ttx,j(h)), it

computes the difference xj(Ttx,j(h))− xi(Ttx,j(h)) and, it stores it in the memory.

• At time Tup,i(h) the node i updates its state using all the stored data as follows

xi(Tup,i(h)+) = xi(Tup,i(h))− F
∑
j∈Ni

Kij [xj(Ttx,j(h))− xi(Ttx,j(h))] . (III.7)

Some remarks are now in order.

Remark 3.4: Observe that we could equivalently define Ttx,i(h) as follows Ttx,i(h) := min{t : x′i(t) =

hT} with the only additional attention to the case in which it happens that x′i(Tup,i(h)) < (h+ 1)T and

that x′i(Tup,i(h)+) > (h+ 1)T since there would exist no time t in which x′i(t) = (h+ 1)T . Indeed in

this case we would need to define Ttx,i(h+ 1) = Tup,i(h).

Remark 3.5: There exist scenarios in which the algorithm we proposed does not work. For instance in

case the nodes do not know which are their neighbors or in case we might have packet losses. In these

situations a node i can not wait until it receives all the data before updating its state. A way to solve

this problem is to change the definition of the updating time Tup,i(h) as follows

Tup,i(h) := inf{t : x′i(t) ≥ hT + ε} (III.8)

where ε is a constant such that 0 < ε < T . In this case the correction ui(h) will be computed in the

same way as before, but considering only the information that the node i has received before Tup,i(h).

Observe that this version of the algorithm makes it suitable also for dealing with cases in which there

may be node failures, node insertions and packet losses in the communication network. In this case also

the weights Kij need to be changed and adapted to the number of the received information packets.

There are various ways of doing this as suggested in [18].

Remark 3.6: Observe that, in case we choose F such that f12 = f22 = 0, then at Ttx,i(h) the node i

needs to broadcast to its neighbor nodes only the first component x′i(Ttx,i(h)) of the state xi(Ttx,i(h))

which we know is equal to hT . In other words in this case the information transmitted is essentially only

the integer h and not a real number. This is useful in case the transmission is done through a digital

channel with low bit rate.

Remark 3.7: Equation (III.7) describing the dynamics of pseudo-synchronous algorithm shows how

the states evolve only at times Tup,i(h), h ∈ N, i ∈ {1, . . . , N}. It is worth remarking however that, for

t ∈]Tup,i(h), Tup,i(h+ 1)[, the i-th node updates its local state according to (II.4) and (III.1), namely,

x′i(t) = x′i(Tup,i(h)+) + [si(t)− si(Tup,i(h)+)]x′′i (Tup,i(h)+)

= x′i(Tup,i(h)+) + f̄i(t− Tup,i(h)+)x′′i (Tup,i(h)+)
(III.9)



where si(t) is the evolution of i-th node counter, and

x′′i (t) = x′′i (Tup,i(h)+). (III.10)

IV. A DISCRETE TIME NONLINEAR SYSTEM MODEL FOR THE PSEUDO-SYNCHRONOUS ALGORITHM

In this section we discuss the convergence properties of the pseudo-synchronous algorithm and we state

the main result of the paper. Before doing so, we first show that the evolution of the pseudo-synchronous

algorithm can be modeled by a discrete time nonlinear system that can be written as a perturbation

of the discrete time linear system (III.3)- (III.4) describing the evolution of the synchronous algorithm

introduced in Section III-A. For simplicity, from now on, we will assume that f12 = f22 = 0, restriction

which will not prevent us to find a solution to our problem and that has the advantage that only one

component of the state needs to be transmitted. In order to model the pseudo-synchronous algorithm

through a discrete time nonlinear system, we need to fix some sampling time instants, since the pseudo-

synchronous algorithm is continuous-time, while the synchronous algorithm (III.3) is discrete-time. A

suitable definition is given by letting

T (h) := min
i
{Ttx,i(h)} . (IV.1)

Loosely speaking T (h) represents the first time instant in which the estimate of a node reaches the value

hT . From T (h) we can define the states x′i(h) := xi(T (h)) and x′′i (h) := xi(T (h)) and the vectors

x′(h) := [x′1(h), . . . , x′N (h)]T , x′′(h) := [x′′1(h), . . . , x′′N (h)]T ∈ RN

x(h) := [x′1(h), . . . , x′N (h), x′′1(h), . . . , x′′N (h)]T ∈ R2N .

Remark 4.1: Observe that the way we build the discrete time state evolution x′i(h) and x′′i (h) from

the continuous time state evolution x′i(t) and x′′i (t) is such that state vector x(h) has to belong to a

strict subset of R2N . Precisely, we necessary have that x′i(h)− hT ≤ 0 for all i ∈ {1, . . . , N} and that

there exists ī ∈ {1, . . . , N} such that x′
ī
(h) = hT . This holds under the hypothesis that the entries of

x′′(t) are kept non-negative, which is a reasonable constraint to be imposed to any clock synchronization

algorithm which makes sense. Indeed, this last hypothesis simply imposes that the clocks are not allowed

”to go back”. In fact, since x′′i (t) represents the estimate that i-th clock has of the inverse of its oscillator

frequency f̄i, and, since by Assumpion 3.1 the i-th clock knows that for sure these frequency can not be

less that fmin, then it is reasonable to impose that x′′i (t) ≥ 1/fmin.



Define now

δT (h) := T (h+ 1)− T (h)− T

δTtx,i(h) := Ttx,i(h)− T (h) (IV.2)

δTup,i(h) := Tup,i(h)− T (h)

and the vectors

δTtx(h) := [δTtx,1(h), . . . , δTtx,N (h)]T (IV.3)

δTup(h) := [δTup,1(h), . . . , δTup,N (h)]T . (IV.4)

The quantities δTup,i(h) and δTtx,i(h) accounts for the lack of synchronicity in performing the updating

and transmitting actions, while δT (h) measures the length of the h-th sample period with the respect to

T . The following lemma shows how δT (h), δTtx(h) and δTup(h) depends on the state x(h).

Lemma 4.2: Consider the quantities δT (h), δTtx(h) and δTup(h) defined above. Then:

1) They are functions of h and of the state x(h).

2) They depend continuously on the state x(h).

3) They are zero if

x(h) =

 hT1

D−11

 ,
where we recall that D = diag{f̄1, . . . , f̄N}.

Proof:

1,2) From the definition of δTtx,i(h) and δTup,i(h), i ∈ {1, . . . , N}, one can see that

δTtx,i(h) = Ttx,i(h)− T (h) =
hT − x′i(T (h))

f̄ix′′i (T (h))
=
hT − x′i(h)

f̄ix′′i (h)
(IV.5)

and that

δTup,i(h) = max
j s.t. Kij 6=0

{δTtx,j(h)} . (IV.6)

From (IV.5) and (IV.6), it directly follows that δTtx,i(h), δTup,i(h), i ∈ {1, . . . , N}, are functions of h

and are continuous functions of the state x(h). As far as δT (h) is concerned we proceed as follows.

Observe first that

δT (h) = min
i

{
Ttx,i(h+ 1)

}
− T (h)− T = min

i

{
Ttx,i(h+ 1)− T (h)

}
− T

= min
i

{
Ttx,i(h+ 1)− Tup,i(h) + Tup,i(h)− T (h)

}
− T

= min
i

{
Ttx,i(h+ 1)− Tup,i(h) + δTup,i(h)

}
− T.



Since we have already proved that δTup,i(h) depends on h and depends continuously on x(h), it remains

to prove that the same thing holds for the quantity Ttx,i(h+ 1)− Tup,i(h). In fact observe that

Ttx,i(h+ 1)− Tup,i(h) =
(h+ 1)T − x′i(Tup,i(h)+)

f̄ix′′i (Tup,i(h)+)
. (IV.7)

On the other hand we have that

x′′i (Tup,i(h)+) = x′′i (T (h))− f21

∑
j∈Ni

Kij

[
hT − x′i(Ttx,j(h))

]
= x′′i (h) + f21

∑
j∈Ni

Kijx
′
i(Ttx,j(h))

(IV.8)

x′i(Tup,i(h)+) = x′i(Tup,i(h))− f11

∑
j∈Ni

Kij

[
hT − x′i(Ttx,j(h))

]
= x′i(Tup,i(h)) + f11

∑
j∈Ni

Kijx
′
i(Ttx,j(h))

(IV.9)

where we used the fact that
∑

j∈Ni
Kij = 0. Now notice finally that

x′i(Ttx,j(h)) = x′i(T (h)) + f̄i δTtx,j(h)x′′i (T (h)) = x′i(h) + f̄i δTtx,j(h)x′′i (h)

x′i(Tup,i(h)) = x′i(T (h)) + f̄i δTup,i(h)x′′i (T (h)) = x′i(h) + f̄i δTup,i(h)x′′i (h)

Substituting the previous formulas in (IV.7) and considering that we have already proved that δTtx,i(h), δTup,j(h),

i ∈ {1, . . . , N}, are functions of h and are continuous functions of x(h), we obtain that Ttx,i(h+ 1)−

Tup,i(h) is a function of h and is continuous function of x(h), which yields the assertion.

3) One can see that from (IV.5) it follows that, if x′(h) = hT1, then δTtx(h) = 0. Moreover, if

δTtx(h) = 0, from (IV.6) we have also that δTup(h) = 0. Now observe that, if δTtx(h) = δTup(h) = 0

then Tup,i(h) = T (h) for all i. Therefore, from (IV.9) and (IV.8) we can argue that x′(Tup,i(h)+) =

x′(Tup,i(h)) = x′(T (h)) = hT and that x′′(Tup,i(h)+) = x′′(Tup,i(h)) = x′′(T (h)) = f̄−1
i . On the other

hand from the previous equalities and from (IV.7) we get Ttx,i(h+ 1)−Tup,i(h) = T and so δT (h) = 0.

The following proposition shows how the pseudo-synchronous algorithm can be written as a discrete

time nonlinear system that is a perturbation of linear system (III.3). Now for any v ∈ RN define

M(v) := Kdiag{v} − diag{K v}.

Proposition 4.3: The state x(h) of the pseudo-synchronous algorithm evolves according to the follow-

ing equations

x(h+ 1) = Ax(h) + Φ
(
δT (h), δTtx(h), δTup(h)

)
x(h) (IV.10)

where

A =

 I TD

0 I

 I 0

0 I

−
 f11K 0

f21K 0

 (IV.11)



and

Φ
(
δT (h), δTtx(h), δTup(h)

)
=

 Φ11 Φ12

Φ21 Φ22


with

Φ11 = f21

(
diag{δTup(h)} − δT (h) I

)
DK

Φ12 = δT (h)D +
(
− f11I − f21(T + δT (h))D + f21diag{δTup(h)}D

)
M(δTtx(h))D

Φ21 = 0

Φ22 = −f21M(δTtx(h))D

Proof: Observe that, according to the definitions given (IV.1) and in (IV.3), we have that Tup,i(h) ≤

T (h+ 1) ≤ Tup,i(h+ 1). Therefore, from (III.9) it follows that

x′i(h+ 1) = x′i(Tup,i(h)+) + f̄i (T (h+ 1)− Tup,i(h))x′′i (Tup,i(h)+) (IV.12)

Consider the term x′i(Tup,i(h)+). From Equation (III.7) it follows

x′i(Tup,i(h)+) = x′i(Tup,i(h))− f11

∑
j∈Ni

Kij

(
x′j(Ttx,j(h))− x′i(Ttx,j(h))

)
and hence

x′i(h+1) = x′i(Tup,i(h))−f11

∑
j∈Ni

Kij

(
x′j(Ttx,j(h))− x′i(Ttx,j(h))

)
+f̄i (T (h+ 1)− Tup,i(h))x′′i (Tup,i(h)+).

(IV.13)

Now notice that, for i ∈ {1, . . . , N}, T (h) ≤ Tup,i(h) ≤ T (h + 1), T (h) ≤ Ttx,i(h) ≤ T (h + 1) and

Ttx,j(h) ≤ Tup,i(h) for all j ∈ Ni ∪ {i}. Hence, from (III.10) we can deduce that

x′′i (Tup,i(h)) = x′′i (h)

x′′i (Tup,i(h)+) = x′′i (h+ 1)

x′′i (Ttx,j(h)) = x′′i (h), ∀j ∈ Ni ∪ {i} , (IV.14)

and that

x′i(Tup,i(h)) = x′i(h) + f̄i (Tup,i(h)− T (h))x′′i (Tup,i(h)) = x′i(h) + f̄iδTup,i(h)x′′i (h)

x′j(Ttx,j(h)) = x′j(h) + f̄j (Ttx,j(h)− T (h))x′′j (Ttx,j(h)) = x′j(h) + f̄jδTtx,j(h)x′′j (h)

x′i(Ttx,j(h)) = x′i(h) + f̄i (Ttx,j(h)− T (h))x′′i (Ttx,j(h)) = x′i(h) + f̄iδTtx,j(h)x′′i (h) (IV.15)



Moreover we can write

f̄i (T (h+ 1)− Tup,i(h))x′′i (Tup,i(h)+) = f̄i (T (h+ 1)− T (h)− T + T + T (h)− Tup,i(h))x′′i (h+ 1)

= f̄iTx
′′
i (h+ 1) + f̄iδT (h)x′′i (h+ 1)− f̄iδTup,i(h)x′′i (h+ 1) (IV.16)

where in the last equality we used the definition of δT (h) provided in (IV.3). Plugging expressions given

in (IV.15) and in (IV.16) into Equation (IV.13), we get

x′i(h+ 1) = x′i(h) + f̄iTx
′′
i (h+ 1)− f11

∑
j∈Ni

Kij

(
x′j(h)− x′i(h)

)
+ (IV.17)

− f11

∑
j∈Ni

KijδTtx,j(h)
(
f̄jx
′′
j (h)− f̄ix′′i (h)

)
+ f̄iδT (h)x′′i (h+ 1)+

+ f̄iδTup,i(h)
(
x′′i (h)− x′′i (h+ 1)

)
As far as the variable x′′i is concerned, observe that, from Equation (III.7) we can write that

x′′i (h+ 1) = x′′i (Tup,i(h)+)

= x′′i (Tup,i(h))− f21

∑
j∈Ni

Kij

(
x′j(Ttx,j(h))− x′i(Ttx,j(h))

)
Plugging expressions given in (IV.14) and (IV.15) into the above equation, we get that

x′′i (h+ 1) = x′′i (h)− f21

∑
j∈Ni

Kij

(
x′j(h)− x′i(h)

)
+ (IV.18)

− f21

∑
j∈Ni

KijδTtx,j(h)
(
f̄jx
′′
j (h)− f̄ix′′i (h)

)
Observe now that the term

∑
j∈Ni

Kij δTtx,j(h)
(
f̄jx
′′
j (h)− f̄ix′′i (h)

)
is the i-th entry of the vector

M(δTtx(h))Dx′′(h), the term f̄iδT (h)x′′i (h+1) is the i-th entry of the vector δT (h)Dx′′(h+1) and the

term f̄i (Tup,i(h)− T (h)) (x′′i (h)− x′′i (h+ 1)) is the i-th entry of the vector diag{δTup(h)}D (x′′(h)− x′′(h+ 1)).

It follows that the N equations in (IV.17) can be collected in

x′(h+ 1) =x′(h) + TDx′′(h+ 1)− f11Kx
′(h)− f11M(δTtx(h))Dx′′(h) (IV.19)

+ δT (h)Dx′′(h+ 1) + diag{δTup(h)}D
(
x′′(h)− x′′(h+ 1)

)
while the N equation in (IV.18) can be collected in

x′′(h+ 1) =x′′(h)− f21Kx
′(h)− f21M(δTtx(h))Dx′′(h). (IV.20)

Plugging (IV.20) into (IV.19) and rearranging the equations we get the conclusion.



Observe that the above system can be written as the sum of the synchronous system (III.3) and

some perturbative terms which arise since the clocks do not carry out synchronously their transmitting

and updating actions. The following result characterizes the asymptotic synchronization of the pseudo-

synchronous algorithm in terms of synchronization error e(h) defined as

e(h) = x′(h)− 1

N

(
1Tx′(h)

)
1.

Theorem 4.4: Consider the system (IV.10) and assume that the design parameters f11, f21 and K are

such that the matrix A defined in (IV.11) is synchronizing according to the notion given in subsection

III-A. Then, for all ε > 0, there exist neighborhoods W ′,W ′′ ⊆ RN of the origin such that, if

x′(0) ∈ α1+W ′ ∃α ∈ R

x′′(0) ∈ D−11+W ′′
(IV.21)

then the following properties hold true:

1) limh→∞(T (h+ 1)− T (h)) = T̄ where |T̄ − T | ≤ ε.

2) The synchronization error e(h) converges exponentially fast to 0, i.e., there exists C > 0 and

0 ≤ ρ < 1 such that

||e(h)|| ≤ Cρh||e(0)||.

Proof: In order to proof the theorem we need to find a suitable state transformation able to translate

the synchronization into the stability of a suitable nonlinear discrete time system. Then the center manifold

theorem will be applied. First consider any N ×N orthonormal matrix matrix having N−1/21T as the

first row and let U ∈ RN−1×N the matrix formed by the last N − 1 rows of this matrix. Let moreover w

be a nonzero vector such that wTK = 0. Notice that we have U1 = 0, UUT = I . Notice moreover

that, since K1 = 0 and M(v)1 = 0, than we have that K = KUTU and M(v) = M(v)UTU . Define the

variables x̄′(h) := Ux′(h), x̄′′(h) := UDx′′(h)(h) and r(h) = wTx′′(h) − wTD−11. Introduce finally

the vector x̄(h) := [x̄′(h)T x̄′′(h)T ]T . From these definitions and from (IV.10) we can argue that

x̄′′(h+ 1) = x̄′′(h)− f21UDKU
T x̄′(h)− f21UDM(δTtx(h))UT x̄′′(h)

and that

r(h+ 1) = r(h)− f21w
TM(δTtx(h))UT x̄′′(h).



Moreover, from some simple computations we can obtain moreover that

x̄′(h+ 1) = [I − f21TUDKU
T − f11UKU

T ]x̄′(h) + T x̄′′(h)

+ [f21Udiag{δTup(h)}DKUT − f21δT (h)UDKUT ]x̄′(h)

+ [−f21TUDM(δTtx(h))UT + f21Udiag{δTup(h)}DM(δTtx(h))UT

− f11UM(δTtx(h))UT + δT (h)I − f21δT (h)UDM(δTtx(h))UT ]x̄′′(h)

Summarizing, we have that

x̄(h+ 1) = Āx̄(h) + Φ̄(δTtx(h), δTup(h), δT (h))x̄(h)

r(h+ 1) = r(h) + η(δTtx(h), δTup(h), δT (h))x̄(h)

where

Ā =

 I − f11UKU
T − f21TUDKU

T TI

−f21UDKU
T I


and where

Φ̄
(
δT (h), δTtx(h), δTup(h)

)
=

 Φ̄11 Φ̄12

Φ̄21 Φ̄22

 , η
(
δT (h), δTtx(h), δTup(h)

)
=
[
η1 η2

]
with

η1 = 0

η2 = −f21w
TM(δTtx(h))UT

and

Φ̄11 = f21Udiag{δTup(h)}DKUT − f21δT (h)UDKUT

Φ̄12 = −f21TUDM(δTtx(h))UT + f21Udiag{δTup(h)}DM(δTtx(h))UT

−f11UM(δTtx(h))UT + δT (h)I − f21δT (h)UDM(δTtx(h))UT

Φ̄21 = 0

Φ̄22 = −f21UDM(δTtx(h))UT

Notice that Φ̄ and η are continuous functions of δTtx(h), δTup(h) and δT (h), which, by Lemma 4.2, are

continuous functions of x(h). Finally, taking into consideration Remark 4.1, we can argue that x(h) is a

continuous function of x̄(h), r(h). Therefore we can conclude that Φ̄ and η are continuous functions of



x̄(h), r(h). On the other hand, x̄(h) = 0, r(h) = 0 implies that x′(h) = α1 for some α ∈ R and that

x′′(h) = D−11, and, by Lemma 4.2, these two facts imply that δTtx(h), δTup(h) and δT (h) are zero.

Observe finally that, since

Ā =

 U 0

0 U

A
 UT 0

0 UT

 ,
then, as shown in [26], Ā is an asymptotically stable matrix if and only if the matrix A is synchronizing.

Finally notice that, (IV.21) implies that x̄(0) and r(0) belong to a suitably small neighbor of the origin.

We are therefore in a position to apply Theorem A.1 in the appendix, which is a simplified version of

the center manifold theorem, obtaining in this way the thesis.

Remark 4.5: We underline that the previous theorem provides only a local stability result, namely, it

only ensures that clocks will reach asymptotic synchronization if their initial states are not too far apart.

Moreover, we do not have theoretical results about the behavior of the proposed algorithm with respect

to delays/noises. Observe that the iteration of the algorithm is described by a nonlinear discrete-time

system and that the main difficulty is that we don’t have to prove the stability of this system but only

the synchronization. The first part of the paper was to translate the original synchronization problem into

a stability problem of a reduced order nonlinear system. To obtain stability results for nonlinear system

there are essentially three methods: linearization, center manifold and Lyapunov function. Linearization,

which does not work in our case, and center manifold theorem allow to prove only local stability. In

order to prove global stability, or to obtain estimates of the basin of attraction, we would need to find

a Lyapunov function for our nonlinear system. A Lyapunov function would permit also to obtain a

theoretical analysis of the algorithm in the presence of delays/noises by using input to state stability

techniques. Unfortunately, we have not been able to find a Lyapunov function for our nonlinear system

so far. However, though the convergence is theoretically guaranteed only if the initial states are not too far

apart, simulations seem to suggest that the pseudo-synchronous algorithm converges for initial conditions

belonging to quite large neighborhoods whose sizes, in general, do not go to zero as N increases.

Remark 4.6: Concerning the parameter ρ, our numerical simulations suggest that it is drastically

affected by the communication topology G and, in turn, by the matrix K. In particular assume that

K is built according to the Metropolis weights and let ρess the essential spectral radius of the matrix

I −K, namely, the absolute value of the largest eigenvalue different from 1 of the matrix K. It is well

known that ρess measures the speed of convergence of the standard consensus algorithm adopting the

doubly stochastic matrix I−K. It has been proved in the literature that, for many families of graphs, the

value of ρess goes to 1 as N goes to ∞, namely, the larger the graph is, the slower the corresponding



consensus algorithm is. In our simulations we have noticed that, as ρess goes to 1, also the value of

the parameter ρ in Theorem 4.4 goes to 1. It will be our future work to provide an upper bound on ρ,

eventually depending on the value of the essential spectral radius of the matrix I −K.

V. NUMERICAL EXAMPLES

A. Implementation examples of the pseudo-synchronous algorithm

In this section we provide two examples illustrating the approach proposed in this paper. Specifically,

in Example 5.1 we simulate the pseudo-synchronous algorithm starting from different initial conditions,

in Example 5.2 we simulate the effects of the communication delays and packet losses.

Example 5.1: In this simulation we consider a strongly connected random geometric graph with N =

50 points uniformly distributed in the unit square, and then placing an edge between each pair of points

at distance less than 0.4. We simulate the behavior of the pseudo-synchronization algorithm illustrated in

Section III-C. We assume that f̄i are uniformly chosen in [fmin, fmax] and we distinguish three cases

1) fmin = 1− 10−1, fmax = 1 + 10−1;

2) fmin = 1− 10−2, fmax = 1 + 10−2;

3) fmin = 1− 10−3, fmax = 1 + 10−3;

In all the three cases we assume that f̂ = 1. In the synchronization algorithm we assume that T = 100 s,

and we choose the algorithm parameter according to what suggested in Remark 3.3, namely we choose

f11 = 1/2, f21 = 1/(fmaxT ) and the matrix K built according to (III.5). The results obtained are

reported in Figure 3 where we plot the trajectories of the quantity logN−1/2‖e(h)‖, generated starting

from different initial conditions. Precisely, in the first case x′i(0) is uniformly distributed in [0, 10], in

the second case x′i(0) is uniformly distributed in [0, 1], in the third case x′i(0) is uniformly distributed

in [0, 10−1], while in all cases we assume that x′′i (0) = f̂ = 1. The plots reported are the result of the

average over 1000 Monte Carlo runs, randomized with respect to both the graph and the initial conditions.

The dashed blue line refers to the initial conditions f̄i ∈ [0.9, 1.1], x′i(0) ∈ [0, 10], the solid red line to

f̄i ∈ [0.99, 1.01], x′i(0) ∈ [0, 1] and the dashed black line to f̄i ∈ [0.999, 1.001], x′i(0) ∈ [0, 0.1]. As

expected the smaller the uncertainties on the initial conditions are, the better the performance are, even

though, all the trajectories seem to converge exponentially to zero with the same rate of convergence.

Example 5.2: In this example we deal with two practical limitations that must be taken into account

when implementing the pseudo-synchronous algorithm over WSNs, namely, not negligible transmission

delays and packet losses. We recall that, for h ∈ N, we denote the deliver delay between j and i as γi,j(h),

i.e., Trx,i,j(h) = Ttx,i(h) + γi,j(h). Since the i-th node receives the information sent by the j-th node
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Fig. 3. Trajectories of the synchronization error generated by the pseudo-synchronous algorithm starting from different initial

conditions. The dashed blue line refers to the initial conditions f̄i ∈ [0.9, 1.1], x′i(0) ∈ [0, 10], the solid red line to f̄i ∈

[0.99, 1.01], x′i(0) ∈ [0, 1] and the dashed black line to f̄i ∈ [0.999, 1.001], x′i(0) ∈ [0, 0.1].

at time Ttx,j(h), at the delayed time Trx,j,i(h) we have that the difference x′j (Ttx,j(h)) − x′i (Ttx,j(h))

used in (III.7) must be replaced by x′j (Ttx,j(h))− x′i (Trx,j,i(h)). Accordingly the input applied by the

i-th node becomes

ui(Tup,i(h)) =
[
f11
f12

] ∑
j∈Ni

Kij

(
x′j (Ttx,j(h))− x′i (Trx,j,i(h))

)
. (V.1)

However, if we model γi,j(h) as a nonnegative random variable of mean γ̄ and variance σγ and if we

assume that the value of γ̄ is known to the clocks3, we could modify the above equation adding to the

term x′j (Ttx,j(h))− x′i (Trx,j,i(h)) a correcting term trying to compensate the effects due to the delivery

delay. More precisely, observe that

x′i (Ttx,j(h)) = x′i (Trx,j,i(h)− γj,i(h)) = x′i (Trx,j,i(h))− γj,i(h)f̄ix
′′
i (Trx,j,i(h)) ,

where the unknown quantities γj,i(h) and f̄i can be suitably approximated by γj,i(h) ≈ γ̄ and f̄i ≈ f̂ .

3The information about γ̄ might be available from a-priori statistical studies as suggested in [28].
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Fig. 4. Effects of the communication delays and packet losses on the performance of the pseudo-synchronous algorithm.

In this way we obtain x′i (Ttx,j(h)) ≈ x′i (Trx,j,i(h))− γ̄f̂x′′i (Trx,j,i(h)) and, thereby,

ui(Tup,i(h)) =
[
f11
f12

] ∑
j∈Ni

Kij

(
x′j (Ttx,j(h))− x′i (Trx,j,i(h))

)
+ γ̄f̂x′′i (Trx,j,i(h)) . (V.2)

As far as packet losses are concerned, we adopt the the modified version of the pseudo-synchronous

algorithm proposed in Remark 3.5 where, for h ∈ N and for i ∈ {1, . . . , N}, the updating time Tup,i(h)

is defined as in (III.8). Let N ′i represent the subset of nodes from which node i has received information

before the time instant Tup,i(h), i.e., N ′i = {j ∈ Ni |Trx,j,i(h) ≤ Tup,i(h)}, then, at time instant Tup,i(h),

node i will apply the input

ui(h) =
[
f11
f12

] ∑
j∈N ′

i

1

|N ′i |+ 1

(
x′j (Ttx,j(h))− x′i (Trx,j,i(h))

)
, (V.3)

or, if the correction term is applied, the input

ui(h) =
[
f11
f12

] ∑
j∈N ′

i

1

|N ′i |+ 1

(
x′j (Ttx,j(h))− x′i (Trx,j,i(h))

)
+ γ̄f̂x′′i (Trx,j,i(h)) . (V.4)

In this example, we assume that the graph G is generated as in the previous Example. We assume that

f̄i are uniformly distributed in [fmin, fmax] where fmin = 1− 10−1, fmax = 1 + 10−1. Again T = 100,

f11 = 1/2, f21 = 1/(2Tfmax). Moreover we set ε = 10. The initial conditions x′i(0) are uniformly

distributed in [0, 5] and x′′i (0) = f̂ = 1. The plot reported is the result of the average over 1000 Monte

Carlo runs, randomized with respect to both the graph and the initial conditions.

We assume that the delay γi,j , for all (i, j) ∈ G and for all h ∈ N, is uniformly distributed in the

interval [0, 1]. Moreover, we assume that any transmitted packet is correctly received with a probability



p = 0.8. We implement the pseudo-synchronous both without delay-compensation (blue line) and with

delay-compensation (red line) and the results obtained are reported in Figure 4 where we depicted the

behavior of the quantity logN−1/2‖e(h)‖. Clearly the presence of the delays and packet losses prevents

our algorithm to reach the asymptotic synchronization. However observe that, at the steady-state the

variable logN−1/2‖e(h)‖ oscillates within an interval whose amplitude is smaller that 10−1, i.e., one

order of magnitude less than the maximum value that the delays can assume. Finally we can see that the

correcting term introduced in (V.2) provides a significant improvement of the attainable performance.

B. An asynchronous implementation

The goal of this subsection is to show the effectiveness of the approach proposed in this paper also in

the asynchronous scenario that was shortly described in Section III-B. To do so, we propose a comparison

between a randomized implementation of (III.6) and the Average TimeSync algorithm (denoted hereafter

with the shorthand ATS), introduced in [23]. It is worth remarking that the ATS algorithm is a fully

distributed asynchronous algorithm, namely, it does not need any specific coordination among the nodes

for the communication. The algorithm is based on the cascade of two first order consensus algorithms and

it is shown to be provably convergent under the assumption of absence of process noise, measurement

noise and propagation delays. We proceed now by describing in more details the control law proposed

in (III.6). Let G = (V, E) be a generic undirected graph. Recall that, for j ∈ V , Nj denotes the set of the

neighbors of j in the graph G. At time Ttx,j(h), node j performs its h-th transmission broadcasting the

estimate x′j (Ttx,j(h)) to all its neighbors in the graph G. Under the assumption of no transmission delays

and no packet losses, we have that, for i ∈ Nj , node i receives the information x′j (Ttx,j(h)) exactly at

time Ttx,j(h) and, instantaneously, it applies the correction

ui(Ttx,j(h)) =

 f11

f21

(x′j(Ttx,j)(h)− x′i(Ttx,j)(h)
)

which yields the updating step

xi(Ttx,j(h)+) = xi(Ttx,j(h)) +

 f11

f21

(x′j(Ttx,j)(h)− x′i(Ttx,j)(h)
)
. (V.5)

Clearly, for all nodes ` which are not neighbors of node i, i.e., ` /∈ Ni, we have u`(Ttx,j(h)) = 0 and,

in turn, x`(Ttx,j(h)+) = x`(Ttx,j(h)). Defining the matrix Kj by

Kj :=
∑
i∈Nj

(
eie

T
i − eieTj

)
. (V.6)



we can write, in more compact form, that

x(Ttx,j(h)+) =

 I 0

0 I

−
 f11Kj 0

f21Kj 0

x(Ttx,j(h))

In the experimental results reported in the following examples, we assume that, for j ∈ {1, . . . , N}, the

transmissions time instants {Ttx,j(h), h ∈ N}, are generated according to a Poisson process of intensity

λ. Moreover, we assume that the Poisson processes generating {Ttx,i(h), h ∈ N} and {Ttx,j(h), h ∈ N}

are independent from each other if i 6= j.

Example 5.3 (Speed of convergence to synchronization): In this example we provide a comparison

between the asynchronous implementation above described and the ATS algorithm introduced in [23], with

the respect to the speed of convergence to the synchronization. We consider a undirected communication

graph G which is a strongly connected realization of a two-dimensional random geometric graph, where

vertices are 30 points uniformly distributed in the unit square, and there is a pair of edges (i, j) and

(j, i) whenever points i, j have a distance smaller than 0.4. In Figure 5, we depict for both strategies the

behavior of logN−1/2‖e‖ being e the synchronization error defined as e = Ωx′ where Ω = I − 1
N 11

T .

The dashed red curve refers to the approach proposed in this paper, while the solid blue curve to the

ATS algorithm. The two strategies have been simulated using the same transmission times. Moreover the

control parameters of both algorithms have been experimentally designed in order to maximize the speed

of convergence to the synchronization.

The plots reported have been obtained averaging over 1000 simulations; a different random geometric

graph and initial conditions are independently generated for each simulation. From Figure 5, one can see

that the ATS algorithm outperforms, with the respect to the speed of convergence, the performance of

the asynchronous implementation in (V.5).

Example 5.4 (Robustness with the respect to communication noises and time-varying oscillator frequencies):

In this example we assume that

1) the information exchanged by the nodes is affected by communication noise; and

2) the oscillator frequencies defined in (II.1) are time-varying.

Specifically, we assume that if x′j(Ttx,j(h)) is any information transmitted by node j to node i at

time Ttx,j(h), then node i receives the information x′j(Ttx,j(h)) + nj→i(h) where nj→i(h) is a white

noise of bounded support. As far as the oscillator frequencies are concerned, we assume that they are

modeled as saturated random walks, namely, for each i ∈ {1, . . . , N}, the value of fi is always within

the interval
[
f̂ − ε, f̂ + ε

]
for some ε such that 0 < ε < f̂ . In Figure 6, we depict the behavior of

logN−1/2‖e‖ being e the synchronization error defined as previously. The control parameters for both
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Fig. 5. Comparison in terms of speed of convergence between the algorithm proposed in this paper in its asynchronous

implementation (dashed red line) and the ATS algorithm (solid blue line).
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Fig. 6. Comparison in terms of robustness to communication noises and time-varying oscillator frequencies between the

algorithm proposed in this paper in its asynchronous implementation (dashed red line) and the ATS algorithm (solid blue line).



algorithms have been chosen experimentally in such a way to minimize the steady state value of ‖e‖.

The plots reported have been obtained averaging over 1000 simulations; a different random geometric

graph and initial conditions are independently generated for each simulation. From Figure 6, one can see

that the asynchronous implementation described in (V.5), outperforms, with the respect to robustness to

communication noises and time-varying oscillator frequencies, the ATS algorithm.

Remark 5.5: Besides the comparison provided in the previous two examples, it is worth stressing also

the fact that the ATS algorithm requires, in general, higher computational and memory capabilities than

the strategy in (V.5). Indeed, as described in [23], in implementing the ATS algorithm, each node has to

perform some updating actions which are nonlinear and has to keep in memory a number of variables

which is proportional to the number of its neighbors.

Remark 5.6: The Distributed Time-Sync Protocol is an another fully distributed algorithm recently

proposed in the literature to solve the clock synchronization problem, see [6]. The authors of [6], for

simplicity, restrict themselves to the case where all the clocks have exactly the same constant oscillator

frequency, but have different initial offsets. The offsets compensation is posed as a least-squares problem

which is solved in a distributed way through a gradient-based method. The authors mention that a similar

least-squares approach could be used also to solve the case of different clocks frequencies. We have run

a number of simulations implementing this cascade of two least-squares solvers and we have observed

that the performance of the this protocol is comparable with the performance of the ATS algorithm with

the respect to both the speed of convergence and the robustness to communication noise.

VI. CONCLUSIONS

In this paper we proposed a novel distributed clock synchronization algorithm based on the consensus

of higher order linear systems. This algorithm, called pseudo-synchronous algorithm, is proved to be a

perturbation of a synchronous algorithm which has been recently proposed in the context of synchroniza-

tion of noisy double integrators but which can not be directly implemented for the clock synchronization.

The pseudo-synchronous algorithm is proved to converge under suitable assumptions, namely absence of

process noise, measurement noise and propagation delays. Finally, the effectiveness of the algorithm is

verified also in presence of time-varying drifts, unreliable communications, packet losses and delivery

delays through numerical simulations.

We believe that, in the study of the pseudo-synchronous algorithm, there remain many interesting

open issues. Following Remark 4.5, we plan to explore the existence of a Lyapunov function in order to

estimate the basin of attraction of the nonlinear system (IV.10) and to perform a theoretical analysis of



the algorithm in presence of delays and noises by using input to state stability techniques. Alternatively,

to prove global stability, we plan to investigate the applicability of the contraction theory which has been

recently proposed in the study of synchronization of complex systems (see [29]). Additionally we plan

to propose variations of the pseudo-synchronous algorithm capable of adapting to time-varying scenarios

such as problem in which a node dies or a new node is added to the network. In particular, we envision

to endow each node with adaptive laws for the real-time tuning of the parameters f11, f12 based only on

the local information coming from neighboring nodes. Finally, a challenging open problem is to provide

a mathematical proof of the convergence of asynchronous implementation.

APPENDIX

A. The center manifold theorem

In the proof of Theorem 4.4 we need the convergence result stated in Theorem A.1, which is a version

of the center manifold theorem for discrete time systems. The center manifold theorem is very rarely

presented and almost never proved for discrete time systems. In [30] it is proposed a version in which the

functions defining the nonlinear system are assumed to be of a regularity which is actually not satisfied

in our case. For this reason, and also for sake of completeness, we propose in this appendix a version

of center manifold theorem in which the functions possess the right regularity.

Consider the following discrete time nonlinear system x(k + 1) = Ax(k) +B(x(k), z(k))x(k)

z(k + 1) = z(k) +D(x(k), z(k))x(k)
(A.1)

where x(k) ∈ Rn, z(k) ∈ Rm, A,B(·, ·) ∈ Rn×n and D(·, ·) ∈ Rm×n.

Theorem A.1: Consider system (A.1) and assume that

(i) the matrix A is asymptotically stable;

(ii) B(0, 0) = 0, D(0, 0) = 0 and B(x, z), D(x, z) are continuous in (x, z) = (0, 0).

Then

a) system (A.1) is stable; and

b) there exists ε, γ > 0 such that if ||x(0)|| < ε and ||z(0)|| < γ, then x(k) converges to zero as k

tends to infinity.

Notice that, under the assumptions of Theorem A.1, the linearization of the nonlinear system (A.1)

gives the linear system  x(k + 1)

z(k + 1)

 =

 A 0

0 I

 x(k)

z(k)





which is only marginally stable, since it has some eigenvalues that are equal to 1. For this reason the

theorem of linearization can not be applied. In order to prove Theorem A.1 we need a couple of lemmas.

Lemma A.2: Let A be an asymptotically stable matrix and let P be a positive definite matrix solution

of the discrete Lyapunov equation ATPA − P = −I . Then there exists a constant ν > 0 (depending

only on A and P ) such that, if the matrix B ∈ Rn×n satisfies the norm inequality ||B|| < ν, then

(A+B)TP (A+B)− P ≤ −1

2
I (A.2)

Proof: Observe that (A+B)TP (A+B)−P = BTPB +ATPB +BTPA− I and so (A.2) holds

true if and only if BTPB + ATPB + BTPA ≤ 1/2I . This happens if and only if, for all x ∈ Rn, we

have that

xT (BTPB +ATPB +BTPA)x ≤ 1

2
||x||2

Observe finally that

xT (BTPB +ATPB +BTPA)x ≤ ||P ||
(
2 ||A|| ||B||+ ||B||2

)
||x||2

and hence the assertion of the lemma holds true if we choose ||B|| small enough that

2 ||A|| ||B||+ ||B||2 ≤ 1

2||P ||

In order to present the next lemma we first need to introduce the following time-varying discrete time

linear system  x(k + 1) = Ax(k) +B(k)x(k)

z(k + 1) = z(k) +D(k)x(k)
(A.3)

where x(k) ∈ Rn, z(k) ∈ Rm, A, B(k) ∈ Rn×n and D(k) ∈ Rm×n.

Lemma A.3: Consider the system (A.3). If the matrix A is asymptotically stable, then there exists a

constant ν > 0 (depending only on A) such that, if ||B(k)|| < ν for k = 0, 1, . . . , k̄, then

||z(k)|| ≤ ||z(0)||+ C

{
max

i=0,1,...,k̄
||D(k)||

}
||x(0)||, ∀ k = 0, 1, . . . , k̄, k̄ + 1 (A.4)

where C is a positive constant depending only on A.

Proof: Let P > 0 such that ATPA−P = −I . Then, for the previous lemma, there exists a constant

ν > 0 such that, if ||B(k)|| ≤ ν for k = 0, 1, . . . , k̄, then

(A+B(k))TP (A+B(k))− P ≤ −1/2I, ∀ k = 0, 1, . . . , k̄

On the other hand, there exists θ > 0 such that θP ≤ 1/2I and so, letting V (x) := xTPx we obtain that

V (x(k + 1)) = x(k)T (A+B(k))TP (A+B(k))x(k) ≤ (1− µ)x(k)TPx(k) = (1− µ)V (x(k))



for all k = 0, 1, . . . , k̄. From this we argue that

V (x(k)) ≤ (1− µ)kV (x(0)), ∀k = 0, 1, . . . , k̄, k̄ + 1.

Notice now that there exist θ′, θ′′ > 0 such that θ′V (x) ≤ ||x||2 ≤ θ′′V (x) and so

||x(k)||2 ≤ θ′′V (x(k)) ≤ θ′′(1− µ)kV (x(0)) ≤ θ′′/θ′(1− µ)k||x(0)||2

for all k = 0, 1, . . . , k̄, k̄ + 1. Observe finally that

z(k) = z(0) +

k−1∑
i=0

D(i)x(i)

and so, for all k = 0, 1, . . . , k̄, k̄ + 1, we have that

||z(k)|| ≤ ||z(0)||+
k−1∑
i=0

||D(i)|| ||x(i)|| ≤ ||z(0)||+
{

max
i=0,1,...,k̄

||D(i)||
}

(θ′′/θ′)1/2
∞∑
i=0

(1− µ)i/2||x(0)||

Proof of Theorem A.1 We start by proving the stability. Let P the positive definite matrix such that

ATPA− P = −I and let V (x) := xTPx. Fix any arbitrary positive constants ε, γ such that

• B(x, z) and D(x, z) are continuous in {(x, z) : ||x|| < ε, ||z|| < γ};

• ||B(x, z)|| < ν in {(x, z) : ||x|| < ε, ||z|| < γ} where ν is the constant introduced in Lemma A.2.

We want to show that there exist positive constants ε′′, γ′′ such that, if ||x(0)|| < ε′′ and ||z(0)|| < γ′′,

then ||x(k)|| < ε and ||z(k)|| < γ for all k = 0, 1, . . ..

First let ε′ < ε and γ′ < γ positive constants such that, if ||x|| < ε′ and ||z|| < γ′, then ||Ax +

B(x, z)x|| < ε and ||z + D(x, z)x|| < γ. Let now m := min{V (x) : x such that ε′ ≤ ||x|| ≤ ε} and

finally introduce positive constants ε′′ < ε′ and γ′′ < γ′ such that

• V (x) < m for all x such that ||x|| < ε′′;

• γ′′ +CMε′′ < γ′, where M := max{||D(x, z)|| : x and z such that ||x|| ≤ ε′ and ||z|| < γ′} and

C is the constant introduced in Lemma A.3.

We prove now the following fact

FACT If ||x(0)|| < ε′′ and ||z(0)|| < γ′′, then we have that

||x(k)|| < ε′ and ||z(k)|| < γ′ and V (x(k)) < m (A.5)

holds for all k = 0, 1, . . ..



Proof: We prove by induction on k. It is clear that (A.5) holds for k = 0. Assume now that (A.5)

holds for all k = 0, 1, . . . , k̄. We want to show that (A.5) also for k̄ + 1. Indeed, notice that

||x(k)|| < ε, ||z(k)|| < γ, ∀k = 0, 1, . . . , , k̄

and so

||B(x(k), z(k))|| < ν, ∀k = 0, 1, . . . , , k̄

and hence, applying Lemma A.3, we can argue that

||z(k̄ + 1)|| ≤ ||z(0)||+ C

{
max

i=0,1,...,k̄
||D(x(i), z(i))||

}
||x(0)|| ≤ γ′′ + CMε′′ ≤ γ′

Moreover, since ||x(k̄)|| < ε′ and ||z(k̄)|| < γ′, then ||x(k̄ + 1)|| < ε and, by applying Lemma A.2,

V (x(k̄ + 1)) < V (x(k̄)) < m

Therefore ||x(k̄+ 1)|| < ε and V (x(k̄+ 1)) < m implies that ||x(k̄+ 1)|| < ε′ and so the fact is proved.

This fact proves the stability. It remains to be proved that x(k) converges to zero. Indeed, since

||x(k)|| < ε and ||z(k)|| < γ, then ||B(x(k), z(k))|| < ν for all k = 0, 1, . . ., and so, using the same

arguments used in Lemma A.3, we can argue that ||x(k)|| converges to zero exponentially.
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