
CommunicationConstraints in theAverage

ConsensusProblem

Ruggero Carli a, Fabio Fagnani b, Alberto Speranzon c, Sandro Zampieri a

aDepartment of Information Engineering, Università di Padova, Via Gradenigo 6/a, 35131 Padova, Italy
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In memory of Antonio Lepschy

Abstract

The interrelationship between control and communication theory is becoming of fundamental importance in many distributed
control systems, such as the coordination of a team of autonomous agents. In such a problem, communication constraints
impose limits on the achievable control performance. We consider as instance of coordination the consensus problem. The
aim of the paper is to characterize the relationship between the amount of information exchanged by the agents and the rate
of convergence to the consensus. We show that time-invariant communication networks with circulant symmetries yield slow
convergence if the amount of information exchanged by the agents does not scale well with their number. On the other hand,
we show that randomly time-varying communication networks allow very fast convergence rates. We also show that, by adding
logarithmic quantized data links to time-invariant networks with symmetries, control performance significantly improves with
little growth of the required communication effort.

Key words: Consensus, Multi-agent Coordination, Convergence Rate, Logarithmic Quantization, Random
Networks, Mixing Rate of Markov Chains

1 Introduction

Multi-agent systems have many advantages compared
to single-agent systems, including improved flexibility,
sensing and reliability. When it comes to design con-
trol strategies for coordination, mobile agent systems
need to be able to exchange information, such as the
position, velocity, or other relevant quantities to solve
a given task. For the coordination to be effective they
need to rapidly reach a consensus on the shared data.
The problem of designing strategies that guarantee the
shared data to convergence (asymptotically) to common
value is called coordinated consensus or state agreement
problem. From the seminal work by Tsitsiklis [45],
Olfati-Saber and Murray [36] and Jadbabaie et al. [24],
in which the consensus problem was firstly defined, in
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system theoretical terms, the field has rapidly grown
and attracted the attention of many researchers, see for
example [43,17,26,18,39,41,29], and the recent survey
paper [35]. The interest in these type of problems is not
limited to the field of mobile agents coordination but
also involves problems of synchronization [42,28,27] and
distributed estimation [31,9].
Most of the literature is concerned with the design of
control strategies that yield consensus. In the classical
framework, each agent is modelled as an omnidirec-
tional antenna with a short reliable communication
range [24,43,10]. This results in a communication net-
work whose topology changes with the agents’ position.
Design and analysis of decentralized control laws for
these systems are in general hard tasks. One of the
main difficulties is that the connectivity of the net-
work is not guaranteed to be preserved under dynami-
cal constraints. Simplified models have been proposed
in [24,36,38] where the authors consider switching sys-
tems with switching rule that does not dependent on
the agents’ position and for which they derive only suf-
ficient conditions for consensus. In [33], in the context
of multi-agent flocking, virtual potential functions are
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also used in order to constraint the agents to form par-
ticular lattices, thus relaxing the connectivity condition
of the networks. A similar approach is considered in [43]
where authors use tools from non-smooth analysis to
design and analyze consensus controllers. Robustness to
communication link failure [10] and the effects of time
delays [36] have been also considered.
The aim of this paper is to characterize the relation-
ship between the amount of information exchanged by
the agents and the achievable control performance. We
model the communication network by a directed graph,
in which an arc represents information transmission
from one agent to another one. With this model the
amount of information exchanged, or communication
effort, is related to the number of neighbors of each
agent. If we consider convergence rate to the average
value of the initial conditions as control performance
index, we expect that the more the graph is connected
the better the performance. The main result of the pa-
per is a mathematical characterization of this fact.
We assume that the graph topology is independent of
the relative agents’ positions and we analyze both de-
terministic time-invariant communication graphs (as
in [17,41,18]) and stochastically varying communication
graphs (as in [22]). Furthermore, since the focus of the
paper is on how communication affects coordination,
we assume that the agents are described by a first or-
der model, as considered in [24,36,10]. This results in
a tractable mathematical problem although some ideas
can be partially extended to more general linear models.
We first study time-invariant communication networks.
Under some assumptions, described in sections 2 and 3,
it turns out that weighted directed graphs, for which
the adjacency matrix is doubly stochastic, are commu-
nication graphs that guarantee the average consensus,
with a degree of efficiency that is related to the spectral
properties of such matrix. Such matrix can be inter-
preted as a Markov chain. The consensus convergence
rate turns out to be related to the mixing rate of the
chain, for which bounds are available in literature [4].
Here we have gathered them and presented from a dif-
ferent viewpoint. Spectral properties of doubly stochas-
tic matrices can be characterized in a easier way if we
impose symmetries on the matrices themselves, and
thus on the associated communication graph. Markov
chains and graphs satisfying symmetries, called Cayley
graphs, are widely studied in the literature [3,30,46]. It
is known that symmetries described by Abelian groups
yield rather poor convergence rates [2]. By modelling
the communication network as Cayley graphs defined on
Abelian groups we determine a new bound on the con-
sensus convergence rate. This extends available bounds
on the mixing rate of Markov chains defined on such
groups [12,4,40]. The main result, presented in section 4,
shows that, imposing symmetries in the communication
network, and thus in the control structure, yields con-
vergence rates that degrades, as the number of agents
increases, if the amount of information exchanged by
the agents does not scale well with their total number.

The idea of imposing symmetries on the communication
graph is not new [11,37,41]. In particular in [41] the au-
thors show, for particular symmetries, that it is possible
to obtain better performance by increasing the number
of incoming arcs on each vertex. Further results have
been obtained in [9]. In this contribution we extend
these results to a broader class of graphs with symme-
tries and we propose a tight bound on the performance
that is achievable in this case.
In section 5 we consider stochastically time-varying so-
lutions. In these strategies the communication graph
is chosen randomly at each time step over a family of
graphs with the constraint that the number of incoming
arcs in each vertex is constant. A mean square analysis
shows that we can improve the convergence rate ob-
tained with fixed communication graphs. This fact con-
tinue to hold true even if the random choice is restricted
to families of Cayley graphs. In this case, compared
to time-invariant solutions, imposing symmetries does
not yield a performance degradation. A similar analysis
has been proposed in [22,9] where a different model of
randomly time-varying communication graph was pro-
posed.
Another important contribution of the paper, described
in section 6, consists in using other types of data trans-
mission in coordinated control. More precisely, we in-
troduce in the communication graph another type of
arc that represents transmission of logarithmic quan-
tized data. Exact data transmission is very expensive
with respect to the required communication rate and
it is well-known [14,15] that logarithmic quantization
allows a more efficient use of the available communica-
tion bandwidth. A preliminary analysis of coordinated
control strategies involving logarithmic quantized data
transmission has been proposed in [25]. The analysis is
very complicated in general whereas it is tractable for
Cayley graphs. Through some examples it is showed
that logarithmic quantized data transmission improves
substantially the control performance with a limited
increase of the total bandwidth.

2 Problem Formulation

Consider N > 1 identical systems whose dynamics are
described by the following discrete time state equations

x+
i = xi + ui i = 1, . . . , N ,

where xi ∈ R is the state of the i-th system, x+
i repre-

sents the updated state and ui ∈ R is the control input.
More compactly we can write

x+ = x + u , (1)

where x, u ∈ RN . The goal, in the consensus problem, is
the design of a feedback control law u = Kx with K ∈
RN×N such that, for any initial condition x(0) ∈ RN ,
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the closed loop system x+ = (I + K)x yields

lim
t→∞

x(t) = α1 (2)

where 1 := (1, . . . , 1)T and where α is a scalar depend-
ing on x(0) and K.
The fact that in the matrix K the element i, j is differ-
ent from zero, means that the system i needs the state of
the system j in order to compute its feedback action and
thus communication needs to occur between the systems.
A good description of the information flow required by
a specific feedback K is given by the directed graph GK

with set of vertices {1, . . . , N} in which there is an arc
from j to i whenever in the feedback matrix K the ele-
ment Kij 6= 0. The graph GK is said to be the commu-
nication graph associated with K. Conversely, given any
directed graph G with set of vertices {1, . . . , N}, we say
that a feedback K is compatible with G if GK is a sub-
graph of G (we use the notation GK ⊆ G). We say that
the consensus problem is solvable on a graph G if there
exists a feedback K compatible with G and solving the
consensus problem. From now on we always assume that
G contains all loops (i, i) since each system has access to
its own state.
With such model of the network, we are interested in
obtaining a matrix K compatible with a given graph,
yielding the consensus and maximizing a suitable per-
formance index. The simplest control performance index
is the exponential rate of convergence to the consensus
point. Clearly, any effective feedback matrix K must en-
sure that nonzero states having equal components cor-
respond to equilibrium points of the closed loop system,
because in this case no control action is necessary. This
happens if and only if K1 = 0. From now on we impose
this condition on K. In this context it is easy to see that
the consensus problem is solved if and only if the follow-
ing three conditions hold:

(i) 1 is the only eigenvalue of I + K on the unit circle
centered in 0;

(ii) the eigenvalue 1 has algebraic multiplicity one and
1 is its eigenvector;

(iii) all the other eigenvalues are strictly inside the unit
disk centered in 0.

Under these conditions the convergence rate can be de-
fined as follows. Let P be any matrix such that P1 = 1
and assume that its spectrum σ(P ) is contained in the
closed unit disk centered in 0. We define the essential
spectral radius of P as

ρ(P ) = max{|λ| s.t. λ ∈ σ(P ) \ {1}} . (3)

As in [35], the goal this paper is to clarify the relation
between the graph connectivity and ρ(P ). An interesting
particular case considered in the literature is the average
consensus [36]. This corresponds to a situation where
the control law yields the consensus at the average of

the initial states. These control laws are called average
consensus controllers in [36]. It is easy to see that K is
an average consensus controller if and only if 1T K =
0. Notice that this condition is automatically true for
symmetric matrices K satisfying K1 = 0. From this
choice of performance we can formulate the following
control problem: Given a graph G, find a matrix K such
that K1 = 0, 1T K = 0, GK ⊆ G and minimizing ρ(I +
K).
When we are dealing with average consensus controllers
it is meaningful to consider the displacement from the
average, or disagreement vector as defined in [36],

∆(t) := x(t)− (
N−11T x(0)

)
1 . (4)

Since K1 = 0, ∆(t) satisfies the closed loop equation

∆+ = (I + K)∆ . (5)

Moreover, since 1T K = 0, we have that 1T x(t) =
1T x(0) for every t. In this case we can represent

∆(t) = x(t)− (
N−11T x(t)

)
1 .

Notice finally that the initial conditions ∆(0) are such
that

1T ∆(0) = 0 . (6)
Hence the asymptotic behavior of our consensus prob-
lem can equivalently be studied by looking at the evo-
lution (5) on the hyperplane characterized by condi-
tion (6). The index ρ(I + K) seems in this context ap-
propriate for analyzing how performance is related to
the communication effort associated to a graph.

3 Doubly Stochastic Matrices in Consensus

If we restrict to control laws K making I + K a non-
negative matrix, namely a matrix with all elements non-
negative, condition K1 = 0 imposes that I + K is a
stochastic matrix. If, moreover, we also have 1T K = 0,
then I +K is doubly stochastic. Since the spectral struc-
ture of stochastic and doubly stochastic matrices is quite
well known, this observation allows to understand eas-
ily what conditions on the graph ensure the solvability
of the consensus problem. To exploit this we need to re-
call some notation and results on directed graphs (the
reader can further refer to textbooks on graph theory
such as [21] or [13]).

Fix a directed graph G with set of vertices V and set of
arcs E ⊆ V × V . The adjacency matrix A is a {0, 1}-
valued square matrix indexed by the elements in V de-
fined by letting Aij = 1 if and only (i, j) ∈ E . Define the
in-degree of a vertex j as indeg(j) :=

∑
i Aij and the

out-degree of a vertex i as outdeg(i) :=
∑

j Aij . Vertices
with out-degree equal to 0 are called sinks. A graph is

3



called in-regular (out-regular) of degree k if each ver-
tex has in-degree (out-degree) equal to k. A path in G
consists of a sequence of vertices i1i2 . . . . . . ir such that
(i`, i`+1) ∈ E for every ` = 1, . . . , r − 1; i1 (resp. ir) is
said to be the initial (resp. terminal) vertex of the path.
A cycle is a path in which the initial and the terminal
vertices coincide. A vertex i is said to be connected to a
vertex j if there exists a path with initial vertex i and
terminal vertex j. A directed graph is said to be con-
nected if, given any pair of vertices i and j, either i is
connected to j or j is connected to i. A directed graph
is said to be strongly connected if, given any pair of ver-
tices i and j, i is connected to j.
Given any directed graph G we can consider its strongly
connected components, namely maximal strongly con-
nected subgraphs Gk, k = 1, . . . , s, with set of vertices
Vk ⊆ V and set of arcs Ek = E ∩ (Vk × Vk) such that the
sets Vk form a partition of V . The various components
may have connections among each other. We define an-
other directed graph TG with set of vertices {1, . . . , s}
such that there is an arc from h to k if there is an arc in
G from a vertex in Vk to a vertex in Vh. It can be shown
that TG is a graph without cycles. The following propo-
sition is the straightforward consequence of a standard
results on stochastic matrices [20, pag. 88 and pag. 95].

Proposition 1 Let G be a directed graph and assume
that G contains all loops (i, i). Then, the consensus prob-
lem is solvable on G iff TG is connected and has only one
sink vertex. Moreover, if the above conditions are satis-
fied, any K such that I + K is stochastic, GK = G and
Kii 6= −1 for every i = 1, . . . , n solves the consensus
problem.

Remark 2 An analogous result has been proposed in [38]
where the solvability of the consensus is related to the
existence of a spanning tree in the graph G.

When the graph G satisfies the properties of Proposi-
tion 1, a particularly simple solution of the consensus
problem can be obtained by defining P as follows

Pij =
{

1/ indeg(i) if (j, i) ∈ E ,

0 otherwise

and by letting K := P − I. In this case the closed loop
dynamics have the following form

x+
i = xi +

1
indeg(i)

∑

j 6=i, (j,i)∈E
(xj − xi) . (7)

Again, if we restrict to K such that I + K is nonneg-
ative, we can relate the existence of average consensus
controllers to the structure of the graph by mean of stan-
dard results on stochastic matrices.

Proposition 3 Let G be a directed graph and assume
that G contains all loops (i, i). Then, the average con-

sensus problem is solvable on G iff G is strongly con-
nected. Moreover, if the above conditions are satisfied,
any K such that I + K is doubly stochastic, GK = G and
Kii 6= −1 for every i = 1, . . . , n solves the average con-
sensus problem.

Notice that, in the special case when the graph G is
undirected, namely (i, j) ∈ E if and only if (j, i) ∈ E ,
we can find solutions K to the consensus problem that
are symmetric and that therefore are automatically dou-
bly stochastic. One example can be obtained as follows
[35]. Let A be the adjacency matrix of the undirected
graph G, which is a symmetric matrix. Take the Lapla-
cian matrix L ∈ RN×N of G being defined by letting
Lij = −Aij if i 6= j and by letting Lii =

∑
k 6=i Aik =

indeg(i)−1 = outdeg(i)−1. Then we have that K = −εL
yields the average consensus for all ε such that 0 < ε <
(maxi{indeg(i) − 1})−1. Instead, again taking a undi-
rected graph G, in general the law given by (7) does not
yield a symmetric matrix K and neither an average con-
sensus controller.
When P is a stochastic matrix, the problem of minimiz-
ing the essential spectral radius ρ(P ) or, equivalently, of
maximizing 1 − ρ(P ) (which is called the spectral gap
of the associated Markov chain) over the matrices P ’s
compatible with a given graph is a very classical problem
in the theory of Markov chains and recently some very
effective algorithms have been proposed for this maxi-
mization limited to the case in which P is a symmetric
matrix [7].

4 Symmetric Controllers

The analysis of the consensus problem and the corre-
sponding controller synthesis becomes more treatable if
we limit our search to graphs G and matrices K exhibit-
ing symmetries. We show, however, that these symme-
tries limit the achievable performance in terms of con-
vergence rate.
In order to treat symmetries on a graph G in a general
setting, we introduce the concept of Cayley graph de-
fined on Abelian groups [3,2]. Let G be any finite Abelian
group (internal operation will always be denoted +) of
order |G| = N , and let S be a subset of G containing zero.
The Cayley graph G(G,S) is the directed graph with
vertex set G and arc set E = {(g, h) : h− g ∈ S}. Notice
that a Cayley graph is always in-regular, the in-degree
of each vertex is |S|. Notice a Cayley graph G(G,S) is
strongly connected if and only if the set S generates the
group G. If S is such that −S = S we say that S is
inverse-closed. In this case the graph obtained is undi-
rected.
Symmetries can be introduced also on matrices. Let G be
any finite Abelian group of order N . A matrix P ∈ RG×G

is said to be a Cayley matrix over the group G if

Pi,j = Pi+h,j+h ∀ i, j, h ∈ G .
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It is clear that for a Cayley matrix P there exists a
π : G → R such that Pi,j = π(i − j). The function
π is called the generator of the Cayley matrix P . No-
tice that, if π and π′ are generators of the Cayley ma-
trices P and P ′ respectively, then π + π′ is the genera-
tor of P + P ′ and π ∗ π′ is the generator of PP ′, where
(π∗π′)(i) :=

∑
j∈G π(j)π′(i−j) for all i ∈ G. This shows

that P and P ′ commute. Notice finally that, if P is a
Cayley matrix generated by π, then GP is a Cayley graph
with S = {h ∈ G : π(h) 6= 0}. Moreover, it is easy to see
that for any Cayley matrix P we have that P1 = 1 if and
only if 1T P = 1T . This implies that a Cayley stochastic
matrix is automatically doubly stochastic. In this case
the function π associated with the matrix P is a proba-
bility distribution on the group G. Among the multiple
possible choices of the probability distribution π, there
is one which is particularly simple, namely π(g) = 1/|S|
for every g ∈ S. Given a Cayley graph G we can define

ρCayley
G = min{ρ(I+K)|I+KCayley stochastic, GK ⊆ G} .

It turns out that ρCayley
G can be evaluated or estimated

in many cases. Moreover, it clearly holds that ρCayley
G ≥

ρds
G . Before continuing we give some short background

notions on group characters and on harmonic analysis
on groups, which are the basis of our main results.

4.1 Cayley stochastic matrices on finite Abelian groups

We briefly review the theory of Fourier transform over
finite Abelian groups (see [44] for a comprehensive treat-
ment of the topic). Let G be a finite Abelian group of
order N , and let C∗ be the multiplicative group of the
nonzero complex numbers. A character on G is a group
homomorphism χ : G → C∗, namely a function χ from
G to C∗ such that χ(g + h) = χ(g)χ(h) for all g, h ∈ G.
Since we have that χ(g)N = χ(Ng) = χ(0) = 1 for any
g ∈ G, it follows that χ takes values on the N th-roots
of unity. The character χ0(g) = 1 for every g ∈ G is
called the trivial character. The set of all characters of
the group G forms an Abelian group with respect to the
pointwise multiplication. It is called the character group
and denoted by Ĝ. The trivial character χ0 is the zero of
Ĝ. Moreover, Ĝ is isomorphic to G, and its cardinality
is N . If we consider the vector space CG of all functions
from G to C with the canonical Hermitian form

< f1, f2 >=
∑

g∈G

f1(g)f2(g)∗ ,

it follows that the set {N−1/2χ | χ ∈ Ĝ} is an orthonor-
mal basis of CG. The Fourier transform of a function
f : G → C is defined as

f̂ : Ĝ → C , f̂(χ) =
∑

g∈G

χ(−g)f(g) .

The cyclic case is instrumental to study characters for
any finite Abelian group. Indeed, a well known result in
algebra [23] states that any finite Abelian group G is iso-
morphic to a finite direct sum of cyclic groups. Hence,
in order to study characters of G, we can assume that
G = ZN1 ⊕ · · · ⊕ ZNr

. It can be shown [4] that the
characters of G are precisely the maps (g1, g2, . . . , gr) 7→
χ(1)(g1)χ(2)(g2) · · ·χ(r)(gr) with χ(i) ∈ ẐNi

for i =
1, . . . , r. In other terms, Ĝ is isomorphic to ẐN1 ⊕ · · · ⊕
ẐNr .
Fix now a Cayley matrix P on the Abelian group G gen-
erated by the function π : G → R. The spectral structure
of P is very simple. To see this, first notice that P can
be interpreted as a linear function from CG to itself sim-
ply by considering, for f ∈ CG, (Pf)(g) :=

∑
h Pghf(h).

Notice that the trivial character χ0 corresponds to the
vector 1 having all components equal to 1. It is easy to
see that each character χ is an eigenfunction of P with
eigenvalue π̂(χ). Since the characters form an orthonor-
mal basis it follows that P is diagonalizable and its spec-
trum is given by σ(P ) = {π̂(χ) | χ ∈ Ĝ}. We can in-
terpret a character as a linear function from C to CG as
the mapping χ : C → CG : z 7→ zχ. Its adjoint is the
linear functional χ∗ : CG → C f 7→< f, χ >. With this
notation, N−1χχ∗ is a linear function from CG to itself,
projecting CG on the eigenspace generated by χ. In this
way, P can be represented as

P =
∑

χ∈Ĝ

π̂(χ)N−1χχ∗ .

Conversely, it can easily be shown that, given any θ̂ :
Ĝ → C, the matrix

P =
∑

χ∈Ĝ

θ̂(χ)N−1χχ∗ ,

is a Cayley matrix generated by the Fourier transform θ̂.
Suppose now that P = I + K is the closed loop matrix
of the system. The displacement from the average ∆(t),
defined in (4), can be represented as

∆(t) = (I −N−1χ0χ
∗
0)x .

Notice that since (5) and (6) hold, then

∆(t) = P t∆(0) =
1
N

∑

χ6=χ0

π̂(χ)tχ < ∆(0), χ > .

Hence,

||∆(t)||2 =
1
N

∑

χ 6=χ0

|π̂(χ)|2t| < ∆(0), χ > |2 .

This shows in a very simple way, in this case, the role of
ρ(P ) = max

χ6=χ0
|π̂(χ)| in the rate of convergence.
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4.2 The essential spectral radius of Cayley matrices.

The particular spectral structure of Cayley matrices al-
lows to obtain asymptotic results on the behavior of the
essential spectral radius ρ(P ) and therefore on the rate
of convergence of the corresponding control scheme. Let
us start from some examples.

Example 4 Consider the group ZN and the Cayley
graph G(ZN , S), where S = {0, 1}. Consider the proba-
bility distribution π on S described by π(0) = 1− k and
π(1) = k, where k ∈ [0, 1]. The characters are given by

χ`(j) = ei 2π
N `j , j ∈ ZN , ` = 0, . . . , N − 1 .

The Fourier transform of π is

π̂(χ`) =
∑

g∈S

χ(−g)π(g) = 1− k + ke−i 2π
N ` ,

with ` = 1, . . . , N − 1. It can be shown that we have
consensus stability if and only if 0 < k < 1 and, in this
case we have

ρCayley
G = min

k
max

1≤`≤N−1

∣∣∣1− k + ke−i 2π
N `

∣∣∣ .

The optimality is obtained when ` = 1 and k = 1/2
yielding

ρCayley
G =

(
1
2

+
1
2

cos
(

2π

N

)) 1
2

' 1− π2

2
1

N2

where the last approximation is for N →∞.

Example 5 Consider the group ZN and the Cayley
graph G(ZN , S), where S = {−1, 0, 1, }. For the sake of
simplicity we assume that N is even; similar results can
be obtained for odd N . Consider the probability distri-
bution π on S described by π(0) = k0, π(1) = k1, and
π(−1) = k−1. The Fourier transform of π is in this case
given by

π̂(χ`) =
∑

g∈S

χ(−g)π(g) = k0 + k1e
−i 2π

N ` + k−1e
i 2π

N ` ,

with ` = 1, . . . , N − 1. We thus have

ρCayley
G = min

(k0,k1,k−1)
max

1≤`≤N−1

∣∣∣k0 + k1e
−i 2π

N ` + k−1e
i 2π

N `
∣∣∣ .

Symmetry and convexity arguments [8,6] allow to con-
clude that a minimum is of the type k1 = k−1. With this
assumption the minimum is achieved for

k0 =
1− cos

(
2π
N

)

3− cos
(

2π
N

) , k1 = k−1 =
1

3− cos
(

2π
N

)

and we have

ρCayley
G =

1 + cos
(

2π
N

)

3− cos
(

2π
N

) ' 1− 2π2 1
N2

(8)

where the last approximation is meant for N →∞.

Notice that in the first example the optimality is ob-
tained when all the nonzero elements of π are equal. This
is not a general feature since the same does not happen
in the second example. Notice moreover that in this ex-
ample, as N tends to infinity, the optimal solution tends
to k0 = 0, k1 = k−1 = 1/2. This shows that the solution
that optimizes ρCayley

G can be very different from the law
suggested in (7). The case of communication exchange
with two neighbors (example 5) offers a better perfor-
mance compare to the case with one neighbor (exam-
ple 4). However, in both cases ρCayley

G → 1 for N → +∞.
This fact is more general: if we keep bounded the number
of incoming arcs in a vertex, the essential spectral radius
for Abelian stochastic Cayley matrices always converges
to 1. This negative behavior has already been noticed in
the literature [6,41,32,9]. In [32] it is shown that some
random rewiring can correct this slow convergence rate.
The next result provides a bound which proves that this
bad performance is a general feature of this class of con-
sensus algorithms.

Theorem 6 Let G be any finite Abelian group of order N
and S ⊆ G be a subset containing zero. Let moreover G be
the Cayley graph associated with G and S. If |S| = ν +1,
then

ρCayley
G ≥ 1− CN−2/ν , (9)

where C > 0 is a constant independent of G and S.

In order to prove theorem 6 we need the following tech-
nical lemma.

Lemma 7 Let T = R/Z ∼= [−1/2, 1/2[. Let 0 ≤ δ <
1/2 and consider the hypercube V = [−δ, δ]k ⊆ Tk. For
every finite set Λ ⊆ Tk such that |Λ| ≥ δ−k, there exist
x̄1, x̄2 ∈ Λ with x̄1 6= x̄2 such that x̄1 − x̄2 ∈ V .

PROOF. For any x ∈ T and δ > 0, define the follow-
ing set

L(x, δ) = [x, x + δ] +Z ⊆ T .

Observe that for all y ∈ T, L(x, δ) + y = L(x + y, δ).
Now let x̄ = (x̄1, . . . , x̄k) ∈ Tk and define

L(x̄, δ) =
k∏

i=1

L(x̄i, δ) .

Also in this case we observe that L(x̄, δ)+ȳ = L(x̄+ȳ, δ)
for every ȳ ∈ Tk. Consider now the family of subsets

{L(x̄, δ), x̄ ∈ Λ} .
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We claim that there exist x̄1 and x̄2 in Λ such that x̄1 6=
x̄2 and such that L(x̄1, δ) ∩ L(x̄2, δ) 6= ∅. Indeed, if not,
we would have that

1 ≥ m

( ⋃

x̄∈Λ

L(x̄, δ)

)
=

∑

x̄∈Λ

m (L(x̄, δ)) = |Λ|δk ≥ 1

where m(·) is the Lebesgue measure on Tk and
where we used the hypothesis |Λ| ≥ δ−k. However,
since all L(x̄1, δ) are closed, it is not possible that
m

(⋃
x̄∈Λ L(x̄1, δ)

)
= 1. Notice finally that

L(x̄1, δ) ∩ L(x̄2, δ) 6= ∅ ⇔ L(0, δ) ∩ L(x̄2 − x̄1, δ) 6= ∅
⇔ x̄2 − x̄1 ∈ V .

2

PROOF. [Theorem 6] With no loss of generality we can
assume that G = ZN1⊕ . . .⊕ZNr

. Assume we have fixed
a probability distribution π supported on S. Let P be
the corresponding stochastic Cayley matrix. It follows
from previous considerations that the spectrum of P is
given by

σ(P ) =
{ N1−1∑

k1=0

. . .

Nr−1∑

kr=0

π(k1, . . . , kr)e
i 2π

N1
k1`1 · · · ei 2π

Nr
kr`r

: `1 ∈ ZN1 , . . . , `r ∈ ZNr

}

Denote by k̄j = (kj
1, . . . , k

j
r), for j = 1, . . . , ν, the non-

zero elements in S, and consider the subset

Λ =
{ (

r∑

i=1

k1
i `i

Ni
, . . . ,

r∑

i=1

kν
i `i

Ni

)
+Zν

: `1 ∈ ZN1 , . . . , `r ∈ ZNr

}
⊆ Tν .

Let δ = (
∏

i Ni)−1/ν and let V be the corresponding
hypercube in Tν defined as in Lemma 7. We want to
show that there exists ¯̀= (`1, . . . , `r) ∈ ZN1×· · ·×ZNr ,¯̀ 6= 0 such that

(
r∑

i=1

k1
i `i

Ni
, . . . ,

r∑

i=1

kν
i `i

Ni

)
+Zν ∈ V .

We consider two cases.

(1) If there exists ¯̀ = (`1, . . . , `r) ∈ ZN1 × · · · × ZNr ,¯̀ 6= 0 such that
(

r∑

i=1

k1
i `i

Ni
, . . . ,

r∑

i=1

kν
i `i

Ni

)
+Zν = 0 ∈ V (10)

then clearly we can conclude.

(2) Assume now there are no ¯̀= (`1, . . . , `r) ∈ ZN1 ×
· · · × ZNr , ¯̀ 6= 0 satisfying condition (10). In this
case it can be shown that two different ¯̀′, ¯̀′′ ∈
ZN1 × · · · ×ZNr yield

(
r∑

i=1

k1
i `′i
Ni

, . . . ,

r∑

i=1

kν
i `′i
Ni

)
+Zν 6=

(
r∑

i=1

k1
i `′′i
Ni

, . . . ,

r∑

i=1

kν
i `′′i
Ni

)
+Zν ,

namely different elements inZN1×· · ·×ZNr always
lead do distinct elements in Λ. This implies that
|Λ| =

∏
i Ni = δ−ν and so we are in a position to

apply Lemma 7 and conclude that there exist two
different ¯̀′, ¯̀′′ ∈ ZN1 × · · · ×ZNr such that

[(
r∑

i=1

k1
i `′i
Ni

, . . . ,

r∑

i=1

kν
i `′i
Ni

)
+Zν

]
−

[(
r∑

i=1

k1
i `′′i
Ni

, . . . ,

r∑

i=1

kν
i `′′i
Ni

)
+Zν

]
∈ V

and hence
(

r∑

i=1

k1
i `i

Ni
, . . . ,

r∑

i=1

kν
i `i

Ni

)
+Zν ∈ V ,

where ¯̀= ¯̀′ − ¯̀′′ 6= 0 .

Consider now the eigenvalue

λ =
N1−1∑

k1=0

. . .

Nr−1∑

kr=0

π(k1, . . . , kr)e
i( 2π

N1
k1`1+···+ 2π

Nr
kr`r)

= π(0) +
ν∑

j=1

π(kj
1, . . . , k

j
r)e

i( 2π
N1

kj
1`1+···+ 2π

Nr
kj

r`r) .

Its norm can be estimated as follows

|λ| ≥ π(0) +
ν∑

j=1

π(kj
1, . . . , k

j
r) cos

(
2π

N1
kj
1`1 + . . .

· · ·+ 2π

Nr
kj

r`r

)

≥ π(0) +
ν∑

j=1

π(kj
1, . . . , k

j
r) −

ν∑

j=1

π(kj
1, . . . , k

j
r)

2π2

N2/ν

≥ 1− 2π2 1
N2/ν

and so we can conclude. 2

Theorem 6 in particular implies that, if we consider a se-
quence of Abelian Cayley graphs G(GN , SN ) such that
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|GN | = N and |SN | grows less then logarithmically in
N and we consider a sequence of Cayley stochastic ma-
trices PN compatible with G(GN , SN ), then, necessarily,
ρ(PN ) converges to 1. This had already been shown, for
adjacency matrices, in [2]. Notice that in Example 5 we
have that ν = 2 and we have an asymptotic behavior
ρCayley
G ' 1 − 2π2N−2, while the lower bound of The-

orem 6 is, in this case, 1 − 2π2N−1. We can wonder
whether it is possible to achieve the bound performance.
In other words, we would like to understand whether the
lower bound we have just found is tight or not. In the
following example we show that this is the case.

Example 8 Consider the group ZN where we suppose
that N = Mν . Consider the Cayley graph G(ZN , S),
where S = {0, 1,M,M2, . . . ,Mν−1} and assume that the
probability distribution π on S is described by π(0) =
π(1) = π(M) = . . . = π(Mν−1) = 1

ν+1 . The Fourier
transform of π is in this case given by

π̂(χ`) =
∑

g∈S

χ(−g)π(g) =
1

ν + 1

(
1 +

ν−1∑

h=0

ei 2π
N Mh`

)

with ` = 1, . . . , N − 1. We will show that, for all ` =
1, . . . , N − 1 we have that

|π̂(χ`)| ≤ 1− 1
ν + 1

1
M2

(11)

This fact will be shown by induction on ν. The fact that
the assertion holds for ν = 1 follows from Example 4.
Assume now that the assertion holds for ν − 1. Let `0, `1
such that 0 ≤ `0 ≤ M − 1, 0 ≤ `1 ≤ Mν−1 − 1 and
` = `0 + M`1. If `0 6= 0 then

|π̂(χ`)| ≤ 1
ν + 1

∣∣∣1 + ei 2π
Mν Mν−1`

∣∣∣ +
1

ν + 1

∣∣∣∣∣
ν−2∑

h=0

ei 2π
Mν Mh`

∣∣∣∣∣

≤ 1
ν + 1

∣∣∣1 + ej 2π
M `0

∣∣∣ +
ν − 1
ν + 1

Since (11) holds for ν = 1 we have that

1
2

∣∣∣1 + ej 2π
M `0

∣∣∣ ≤ 1− 1
2

1
M2

and hence

|π̂(χ`)| ≤ 2
ν + 1

(
1− 1

2
1

M2

)
+

ν − 1
ν + 1

≤ 1− 1
ν + 1

1
M2

If `0 = 0, then ` = M`1 and so

|π̂(χ`)| = 1
ν + 1

∣∣∣∣∣1 +
ν−1∑

h=0

ei 2π

Mν−1 Mh`1

∣∣∣∣∣

=
1

ν + 1

∣∣∣∣∣2 +
ν−2∑

h=0

ei 2π

Mν−1 Mh`1

∣∣∣∣∣

≤ ν

ν + 1

∣∣∣∣∣
1
ν

(
1 +

ν−2∑

h=0

ei 2π

Mν−1 Mh`1

)∣∣∣∣∣ +
1

ν + 1

From the inductive hypothesis it follows that

∣∣∣∣∣
1
ν

(
1 +

ν−2∑

h=0

ei 2π

Mν−1 Mh`1

)∣∣∣∣∣ ≤ 1− 1
ν

1
M2

.

Hence

|π̂(χ`)| ≤ ν

ν + 1

(
1− 1

ν

1
M2

)
+

1
ν + 1

≤ 1− 1
ν + 1

1
M2

This bound proves that there exists a circulant graph G
with ν incoming edges in any vertex such that

ρCayley
G ≤ 1− 1

ν + 1
1

N2/ν
.

proving in this way that the bound proposed by the previ-
ous theorem is tight.

The question at this point is the following: Is the Cay-
ley structure on the matrix or the Cayley structure on
the graph that prevents to obtain good performance?
In other words, do there exist stochastic matrices sup-
ported by Abelian Cayley graphs that exhibit better per-
formance than what imposed by the bound (9)? Notice
that, in order to make fair comparisons, we need to limit
to doubly stochastic matrices. We conjecture that for
doubly stochastic matrices supported on Abelian Cay-
ley graphs the bound (9) continues to hold. What about
other graphs? An easy way to restrict to doubly stochas-
tic matrices is by imposing that they are symmetric and
so that the corresponding graphs are undirected. If A is
the adjacency matrix of a ν-regular undirected graph,
then, P = ν−1A is doubly stochastic. For these graphs,
we recall a basic asymptotic lower bound by Alon and
Boppana [1] on the second eigenvalue

lim inf
N→+∞

ρ(P ) ≥ 2
√

ν − 1
ν

,

where the lim inf is intended to be performed along the
family of all ν-regular undirected graphs having N ver-
tices. Ramanujan graphs (see [30] and references therein)
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are those ν-regular undirected graphs achieving the pre-
vious bound, namely such that ρ(P ) = 2ν−1

√
ν − 1.

Hence, through these graphs, it would be possible to
keep the essential spectral radius bounded away from 1,
while keeping the degree fixed (see also [34]). In fact,
there are plenty of Ramanujan graphs (for instance any
complete graph), but it is still an open problem if for any
N and ν there exists a Ramanujan graph with N ver-
tices and degree ν. There are only partial results in this
direction. For example it is possible to prove that, if ν is
such that ν−1 is the power of a prime, then there exist a
sequence of Ramanujan graphs with a growing number
of vertices and of fixed degree ν. Moreover, when avail-
able, these constructions are quite complicated and the
fact that they strictly depend on the choice of particular
number of vertices makes them not so interesting from
our point of view. However, it is interesting to notice
that graphs behaving similarly to the Ramanujan ones
are not so unlikely. Indeed Friedman [19] showed that for
ν sufficiently large and fixed, in the average, ρ(P ) with
P = ν−1A, remains bounded away from 1 as N → +∞.

5 Time-varying Strategies

In the previous sections we showed that controllers
with symmetries behave quite poorly. One possibility
to achieve better performance is to resort on Ramanu-
jan graphs or to undirected regular graphs generated
randomly. An alternative way to increase performance,
while maintaining the symmetry of the controllers, is by
a time-varying strategy in which at every time instant
the communication graph is chosen randomly in a set
of Cayley graphs. Such strategies yield a mean square
convergence rate that is higher and, more importantly,
independent of the number of systems.

5.1 Time-varying Cayley Graphs

Fix an Abelian group G and a number ν < |G|. We
consider a sequence of subsets St ⊆ G that are randomly
generated in the following way.
Let αi(t), i = 1, . . . , ν, be ν independent sequences of
independent random variables taking value on G and
uniformly distributed in such a set. We put

St = {α0(t) = 0, α1(t), . . . , αν(t)} .

Notice that in St there might be repetitions and so its
cardinality may be less than ν + 1.
Fix k0, k1, . . . , kν ≥ 0 such that

∑
j kj = 1 consider the

sequence of probability distributions πt on G supported
on the sequence of sets St defined as

πt(g) =

{
kj if g = αj(t)

0 otherwise.

Let Pt be the stochastic Cayley matrix associated with
πt. If we consider the feedback matrix Kt := I − Pt, we
obtain the closed loop system becomes x(t+1) = Ptx(t),
which is an instance of jump Markov linear system [16,5].
The state x(t) becomes a random variable that evolves
according to

x(t) =
t∏

s=1

Psx(0) , (12)

where x(0) is a random variable independent of the pro-
cesses αi(t).
We want to study the asymptotic behavior of x(t). Since
we are interested in achieving average consensus, we
consider the displacement from the average ∆(t) :=
x(t)−N−111T x(0) = (I−N−1χ0χ

∗
0)x(t), which is gov-

erned by

∆(t) =
t∏

s=1

Ps∆(0) ,

where ∆(0) is now a random variable taking values on
RG such that < ∆(0), χ0 >= 0 and independent of the
set of variables {αi(t)}. In this probabilistic context it is
natural to study the asymptotic behavior of E||∆(t)||2.
This is the result we obtain:

Proposition 9

E||∆(t)||2 =




ν∑

j=0

k2
j




t

E||∆(0)||2 .

PROOF. We know we can represent

Pt =
∑

χ∈Ĝ

π̂t(χ)N−1χχ∗ .

Hence,

t∏
s=1

Ps =
∑

χ∈Ĝ

[
t∏

s=1

π̂s(χ)

]
N−1χχ∗ .

Let us study the average of the squared norm of the
various eigenvalues.

E




∣∣∣∣∣
t∏

s=1

π̂s(χ)

∣∣∣∣∣

2

 =

t∏
s=1

E
[
|π̂s(χ)|2

]
.

Since

π̂t(χ) = k0 +
ν∑

j=1

kjχ(−αj(t)) ,

9



we obtain

E
[
|π̂t(χ)|2

]
= k2

0 +
ν∑

j=1

k0kj [E [χ(αj(t))] + E [χ(αj(t))∗]]

+
ν∑

j=1

ν∑

`=1

kjk`E [χ(αj(t))χ(α`(t))∗] .

(13)

It is immediate to verify that E[χ(αj(t))] = 0 when
χ 6= χ0, E[χ(αj(t))χ(α`(t))∗] = 0 when j 6= ` and
E[|χ(αj(t))|2] = 1. Substituting in (13) we then obtain

E
[
|π̂t(χ)|2

]
= k2

0 +
ν∑

j=1

k2
j =

ν∑

j=0

k2
j , ∀χ 6= 0 .

We finally have

E||∆(t)||2 =
∑

χ 6=χ0

E




∣∣∣∣∣
t∏

s=1

π̂(χ)

∣∣∣∣∣

2

 1

N
E| < ∆(0), χ > |2

=




ν∑

j=0

k2
j




t

E||∆(0)||2 .

2

Notice that

min





ν∑

j=0

k2
j

∣∣∣∣∣∣
kj ≥ 0 ,

ν∑

j=1

kj = 1



 =

1
ν + 1

and it is obtained by choosing kj = 1/(ν + 1) for all j.
With such a choice we have thus obtained the following
mean convergence result

E||∆(t)||2 =
(

1
1 + ν

)t

E||∆(0)||2 .

This performance is much better than what we had ob-
tained so far, since in this case the rate of convergence
remains constant with respect to N .

Remark 10 As any average result, it is not immediately
evident how the average computation above reflects on
the behavior of the system when we consider a generic
sequence St of subsets chosen at random. A simple stan-
dard probabilistic argument however allows us to show
that such a convergence rate is indeed achieved by almost

every sequence St. Fix any c > 1 and notice that for ev-
ery χ ∈ Ĝ,

P

(
t∏

s=1

|π̂s(χ)| ≥
(

c

ν + 1

)t
)

=

= P

(
t∑

s=1

ln |π̂s(χ)| ≥ t ln
c

ν + 1

)
. (14)

Notice that Ys = ln |π̂s(χ)| is a sequence of independent
identically distributed random variables taking values on
[−∞, 0]. The idea is to apply Chebyschev inequality. To
overcome the problem of possible unboundedness of Ys,
we consider two different cases. Suppose that there exist
a χ ∈ Ĝ such that π̂s(χ) assumes the value 0 with prob-
ability p > 0. In this case we can simply estimate

P

(
t∏

s=1

|π̂s(χ)| ≥
(

c

ν + 1

)t
)
≤ (1− p)t . (15)

If instead the event {π̂s(χ) = 0} has probability zero, then
the random variable Ys is bounded and can be estimated
as follows. First notice that, using Jensen inequality, we
have

E[Ys] = E[ln |π̂s(χ)|] ≤ lnE[|π̂s(χ)|] = ln
1

ν + 1
.

Let

δ := ln
c

ν + 1
−E[Ys] = ln c+ln

1
ν + 1

−E[Ys] ≥ ln c > 0 .

We can now estimate

P

(
t∑

s=1

ln |π̂s(χ)| ≥ t ln
c

ν + 1

)
= P

(
t∑

s=1

Ys ≥ t ln
c

ν + 1

)

= P

(
t∑

s=1

(Ys − E[Ys]) ≥ tδ

)
≤ Var[Ys]

δ2t2
(16)

A straightforward application of Borel-Cantelli lemma
now allows to conclude from relations (15) and (16) that,
for almost every sequence St of subsets,

t∏
s=1

|π̂s(χ)| <
(

c

ν + 1

)t

for t sufficiently large and for every χ ∈ Ĝ. From this we
also obtain that, for almost every sequence St,

||∆(t)||2 ≤
(

c

ν + 1

)t

||∆(0)||2 for t sufficiently large .

Considering that c can be chosen arbitrarily close to 1,
this proves our claim.
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From an implementation point of view this strategy has
an evident drawback: the same random choice done at
every time instance has to be done by all systems. This
seems to require a supervised communication of this in-
formation to every system. A possible way to overcome
this limitation is by imposing that each agent uses the
same pseudorandom number generator starting from the
same seed.

5.2 Time-varying with Bounded In-degree

In this section we consider a time-varying strategy sim-
ilar to the one presented in the previous section. The
difference is that here we do not limit the time-varying
matrices to be Cayley. We see that this generalization
does not lead to better performance. In this case we as-
sume that each system receives the state of ν systems
chosen randomly and independently. Because of this it
can happen that the resulting communication graph has
multiple arcs connecting the same pair of nodes.
Fix k0, k1, . . . , kν ≥ 0 such that

∑
j kj = 1. The feed-

back matrix is in this case

Kt = (k0 − 1)I +
ν∑

i=1

kiEi(t)

where Ei(t), i = 1, . . . , ν, are ν independent sequences
of independent random variables taking values on the
set of matrices

E := {E ∈ {0, 1}N×N : E1 = 1}

and uniformly distributed in such a set. The set E is
constituted by all matrices with entries 0 or 1 which
have exactly one 1 in each row. The closed loop system
becomes x(t + 1) = Ptx(t) where

Pt = k0I +
ν∑

i=1

kiEi(t) . (17)

As before, the state x(t) is a random variable which
evolves according to (12). The initial condition x(0) is a
random variable independent of the processes Ei(t).
Again, we want to study the asymptotic behavior of x(t).
Since the controllers we are using are not necessarily
average controllers, we can not longer use the variable
∆(t) := x(t)−N−111T x(0) to study convergence to the
consensus point. However we can prove the following re-
sult.

Theorem 11 There exists a scalar random variable α∗
such that

E||x(t)− α∗1||2 ≤ CρtE||(I −N−111T )x(0)||2 (18)

where

ρ = k2
0 +

N − 1
N

ν∑

i=1

k2
i , C =

1− 2k0 +
∑ν

i=1 k2
i

(1− ρ1/2)2

PROOF. Let Q(t) := E[x(t)x(t)T ]. Notice that

Q+ = E[PtxxT PT
t ] = E[E[PtxxT PT

t |Pt]] = E[PtQPT
t ]

= k2
0Q +

ν∑

i=1

k0ki(QE[ET
i ] + E[Ei]Q)

+
ν∑

i,j=1

i6=j

kikjE[Ei]QE[ET
j ] +

ν∑

i=1

k2
iE[EiQET

i ]

Notice that E[Ei] = N−111T . Moreover, for any M ∈
RN×N it holds

E[EiMET
i ] =

1
N

tr {M}I +
1

N2
1T M1(11T − I) .

These relations imply that

Q+ = k2
0Q +

ν∑

i=1

k0ki(N−111T Q + QN−111T )

+
ν∑

i=1

k2
i

(
N−1tr (Q)I + N−21T Q1(11T − I)

)

+
ν∑

i,j=1

i 6=j

kikj N−111T QN−111T .

Let us define w(t) = tr (Q(t)) = E||x(t)||2 and s(t) =
N−11T Q(t)1. Notice that

w+ =k2
0w + 2

(
ν∑

i=1

k0ki

)
s +

(
ν∑

i=1

k2
i

)
w

+




ν∑

i,j=1

i 6=j

kikj


 s =

(
ν∑

i=0

k2
i

)
w +

(
1−

ν∑

i=0

k2
i

)
s .

Moreover we have that

s+ = k2
0s + 2

(
ν∑

i=1

k0ki

)
s +

(
ν∑

i=1

k2
i

) (
1
N

w +
N − 1

N
s

)

+




ν∑

i,j=1

i 6=j

kikj


 s =

(
1
N

ν∑

i=1

k2
i

)
w +

(
1− 1

N

ν∑

i=1

k2
i

)
s .
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The previous two relations can be summarized as follows

[
w+

s+

]
=




∑ν
i=0 k2

i 1−∑ν
i=0 k2

i

1
N

∑ν
i=1 k2

i 1− 1
N

∑ν
i=1 k2

i




[
w

s

]
. (19)

We want now to estimate E||x(t + 1) − x(t)||2. Notice
that

E||x(t + 1)− x(t)||2 =
= trE(x(t + 1)− x(t))(x(t + 1)− x(t))T =

= tr Q(t + 1) + tr Q(t)− 2tr [(k0I + (1− k0)
1
N
11T )Q] =

=

(
ν∑

i=0

k2
i

)
w +

(
1−

ν∑

i=0

k2
i

)
s + w(t)− 2k0w

− 2(1− k0)s(t) =

(
1− 2k0 +

ν∑

i=0

k2
i

)
(w(t)− s(t)) .

Notice that, from equation (19) we can argue that

w(t)− s(t) =

(
k2
0 +

N − 1
N

ν∑

i=1

k2
i

)t

(w(0)− s(0))

and so

E||x(t+1)−x(t)||2 =

(
1− 2k0 +

ν∑

i=0

k2
i

)
ρt(w(0)−s(0))

(20)
where

ρ := k2
0 +

N − 1
N

ν∑

i=1

k2
i .

Standard arguments on complete metrics show that the
exponential convergence of the previous sequence im-
plies that x(t) must converge to some random vector x∗

in the L2-norm (E||y(t)||2)1/2. Moreover,

(E||x(t)− x∗||2)1/2 ≤
+∞∑
s=t

(E||x(s + 1)− x(s)||2)1/2

=

(
1− 2k0 +

ν∑

i=0

k2
i

)1/2

(w(0)− s(0))1/2
+∞∑
s=t

ρs/2 =

=
(

1− 2k0 +
∑ν

i=0 k2
i

(1− ρ1/2)2
(w(0)− s(0))

)1/2

ρt/2.

Notice finally that, if Y := I − N−111T , then
E||Y x(t)||2 = w(t) − s(t) and, since w(t) − s(t) tends
to zero, we can argue Y x∗ = 0 and this implies that
there exists a scalar random variable α∗ such that
x∗ = α∗1. 2

Notice that the ρ appearing in estimation (18) is the
exact exponential rate of convergence of E||x(t)−α∗1||2
in the sense that

lim
t→+∞

logE||x(t)− α∗1||2
t

= log ρ .

This is a straightforward consequence of relation (20).
Notice moreover that the strongest exponential rate of
convergence in (18) is given by

min
{

k2
0 +

N − 1
N

ν∑

i=1

k2
i

∣∣ k0, k1, . . . , kν ≥ 0,

k0 +
ν∑

i=1

ki = 0
}

=
N − 1

N(ν + 1)− 1
,

obtained by choosing

k0 =
N − 1

N(ν + 1)− 1
, and ki =

N

N(ν + 1)− 1
(21)

i = 1, . . . , ν. Notice that this convergence rate is smaller
than 1/(ν + 1), which is the rate obtained through the
time-varying strategy on Cayley graphs discussed be-
fore. However, for N → +∞, the two strategies yield the
same rate. From the average behavior we can prove a
performance result on generic random samples as we did
in previous case. The probabilistic tools needed become
however a bit more refined: matrices are not simultane-
ously diagonalizable and we have to use Oseledec ergodic
theorem for products of random matrices. This will be
presented elsewhere.
The most important difference between the two random
strategies presented here is that the time-varying strat-
egy on Cayley graphs yields convergence to the average
of the initial configuration, whereas the one presented
in this section does not reach the consensus at the ini-
tial average. Therefore, it is interesting to study how far
from the initial average the systems reach consensus. We
have the following exact result:

Proposition 12 Let α∗ be the random variable defined
in Theorem 11. Then

E|α∗−N−11T x(0)|2 =
∑ν

i=1 k2
iE||

(
I −N−111T

)
x(0)||2

N2[N(1− k2
0) + (1−N)

∑ν
i=1 k2

i ]
,

PROOF. Consider ∆(t) := x(t) − N−111T x(0). We
know from (5) that the dynamics of ∆(t) is described by
the equation ∆+ = Pt∆ where Pt is given in (17). For
this reason, by denoting Q(t) := E[∆(t)∆(t)T ], w(t) =
tr (Q(t)) = E||∆(t)||2 and s(t) = 1T Q(t)1/N , exactly
the same computation done in the proof of the previ-
ous result show that equation (19) still holds true. The
transition matrix has eigenvalues λ1 = 1, and λ2 =
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k2
0 + N−1

N

∑ν
i=1 k2

i . The second eigenvalue coincides with
the convergence rate ρ computed before. The time evo-
lution of w(t) and s(t) is thus given by

[w(t), s(t)]T = c1λ
t
1a1 + c2λ

t
2a2

where c1, c2 are constants and a1, a2 are the eigenvectors
associated to λ1 and λ2. Notice that a1 = (1 1)T . At
steady state the vector (w(∞), s(∞))T is aligned to the
dominant eigenvector a1 and thus w(∞) = c1. Simple
calculations yield

w(∞) =
∑ν

i=1 k2
i E||

(
I −N−111T

)
x(0)||2

N [N(1− k2
0) + (1−N)

∑ν
i=1 k2

i ]
,

This yields the result. 2

If we use the control gains k0, k1, . . . , kν as in (21), which
yield the fastest convergence rate, then we have

E|α∗ −N−11T x(0)|2 =
E|| (I −N−111T

)
x(0)||2

N2(N(1 + ν)− 1)
.

Notice that, if the initial states xi(0) of the systems are
independent and E

(
xi(0)2

)
= σ2 is the same for all i,

then,

E|| (I −N−111T
)
x(0)||2 = (N − 1)σ2 .

In this case the final formula becomes

E|α∗ −N−11T x(0)|2 =
N − 1

N2(N(1 + ν)− 1)
σ2 ,

which in particular shows that, as N → ∞, the mean
square distance of the consensus to the initial average
tends to zero as N−2.

6 Logarithmic Quantizers

In this section we present another strategy that allows
us to overcome the poor performance that are achievable
by time-invariant communication networks with symme-
tries. This can be done by allowing data exchange over
communication links that transmit logarithmic quan-
tized data. As well-known in the literature, logarithmic
quantizers provide a very efficient way of transmitting
control signals. More precisely, assume we want to drive
the state from a state region I to a target region J and
let C, called the contraction rate, be the ratio between
the measure of I and the measure of J . This parameter
describes the required relative precision of the consen-
sus. It is known that [14,15], while exact communica-
tion links, modelled by uniform quantizers, require chan-
nels able to transmit over an alphabet with cardinality

proportional to C, logarithmic quantizers need instead
an alphabet with cardinality growing only logarithmi-
cally in C. The simplest way to model for the effect of a
logarithmic quantizer is by introducing a multiplicative
noise. In this section we provide the instruments for an-
alyzing what happens if we introduce this kind of links
in the consensus problem.
Assume we have fixed an Abelian group G having N el-
ements and a subset S ⊆ G such that 0 ∈ S. Consider
the Cayley graph G associated with G and S. This has
to be interpreted as the un-noisy communication graph
with which we associate a Cayley stochastic matrix P0

compatible with G. Such a matrix corresponds to the
closed loop matrix obtained using these perfect commu-
nication links. We now consider the possibility that each
system i can transmit functions of the exact information
available at system i to some other systems. Such trans-
missions are logarithmically quantized and this effect is
approximated by introducing a multiplicative noise. We
impose that the Cayley symmetry of the overall struc-
ture is maintained. In order to achieve this, we define q
outputs

zs := Hsx, s = 1, . . . , q (22)

where Hs are Cayley matrices still compatible with G.
The i-th components of the outputs z1, . . . , zq represent
the information the i-th system transmits to the other
systems. In this way every system transmits q scalar
messages. We assume that each component of the output
zsi gets distorted by the multiplicative noise 1 + es,i. To
complete the model we have to specify which systems
receive this information and how this information is used
for the control. We assume again Cayley structure at the
level of controllers, namely we assume there exist Cayley
matrices Ps such that the closed loop dynamics can be
described as

x+ = P0x +
q∑

s=1

Ps(I + Es)Hsx ,

where Es = diag{es,1, . . . , es,N} is a diagonal matrix of
noise random variables. All noises es,i are assumed to
be independent, having zero mean and finite variance
δ2
s . Notice that the nonzero elements of the matrix Ps

specify what logarithmic link is active. More specifically,
(Ps)ij 6= 0 means that the signal (Hsx)j is transmitted
to the system i after being logarithmically quantized.
It is reasonable to assume that consensus configurations
x = cχ0 are equilibrium points, namely x+ = x under
any possible multiplicative noise. This happens if and
only if P01 = 1, and Hs1 = 0 for s = 1, . . . , q. This is
quite natural: data affected by multiplicative noise main-
tain the consensus convergence only if they converge to
0. Hence they must consist in differences.
The asymptotic behavior of this dynamical system can
be studied in a similar way to the random case treated
in Subsection 5.2 by considering Q = E[xxT ]. With the
position P = P0 +

∑
s PsHs, the evolution law for Q can
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be described as follows

Q+ = PQPT +
q∑

s=1

PsE
(
EsHsQHT

s Es

)
PT

s ,

Observe that, if M is any square matrix, then

E(EsMET
s )ij = E(esiMijesj) =

{
MiiE(e2

si) if i = j

0 if i 6= j
.

This implies that

Q+ = PQPT +
q∑

s=1

δ2
sPsdiag(HsQHT

s )PT
s , (23)

where we use the notation

diag{M} := diag{M1,1, . . . ,MN,N}.

Let Y := I − N−111T and define the signals y(t) :=
Y x(t) and xB(t) = N−111T x(t). Let moreover

w(t) := E[||y(t)||2] = trE[y(t)y(t)T ] = tr (Y Q(t)Y T )
ws(t) := E[||zs(t)||2] = tr (HsQ(t)HT

s ) (24)
s(t) := E[||xB(t)||2] = tr (N−1χ0χ

∗
0Q(t)N−1χ0χ

∗
0)

= N−1χ∗0Q(t)χ0 .

where the signals zs(t) are defined in (22).
In order to study the evolution of the above quantities,
we need a technical result on the trace operator for Cay-
ley matrices. Assume P is a Cayley matrix. We know
that P can be written as

P =
∑

χ∈Ĝ

θ(χ)N−1χχ∗ . (25)

Consider now the norm ||P ||2 :=
∑

χ∈Ĝ |θ(χ)|2. No-
tice that, if π id the generator of P , then θ(χ) = π̂(χ)
for all χ ∈ Ĝ, where π̂ is the Fourier transform of π.
Moreover by Parseval theorem we have that ||P ||2 =∑

χ∈Ĝ |π̂(χ)|2 = N
∑

g∈G |π(g)|2. We have the following
result.

Lemma 13 Assume that P is a Cayley matrix and D is
a diagonal matrix. Then,

tr (PDP ∗) = N−1||P ||2tr (D) .

PROOF. Assume that P is represented as in (25)). We
can write

PDP ∗ =
∑
χ,χ̄

θ(χ)θ(χ̄)N−1χχ∗DN−1χ̄χ̄∗

= N−1
∑
χ,χ̄

θ(χ)θ(χ̄)(χ∗Dχ̄)N−1χχ̄∗ .

Hence,

tr (PDP ∗) = N−1
∑
χ,χ̄

θ(χ)θ(χ̄)(χ∗Dχ̄)tr (N−1χχ̄∗) .

It is immediate to verify that

tr (N−1χχ̄∗) =

{
0 f χ 6= χ̄

1 if χ = χ̄

Moreover, we have that

χ∗Dχ =
∑

g∈G

χ(g)∗Dggχ(g) =
∑

g∈G

Dgg = tr (D)

Substituting in the expression above we finally obtain

tr (PDP ∗) = N−1
∑

χ

|θ(χ)|2tr (D) = N−1||P ||2tr (D) .

2

Using the above lemma, we obtain from (23) that

w+ = tr (Y PQPT Y T ) + N−1

q∑
s=1

δ2
s ||Y Ps||2ws

w+
r = tr (HrPQPT HT

r ) + N−1

q∑
s=1

δ2
s ||HrPs||2ws

s+ = s + N−1

q∑
s=1

δ2
s |λs|2ws (26)

where λs is defined by Psχ0 = λsχ0 (equivalently, λs =
π̂Ps(χ0)). Define w(t) to be the q-dimensional vector
with ws(t) at position s and moreover the q × q-matrix
L with

Lrs = N−1δ2
s ||HrPs||2

We have the following result.

Lemma 14 Assume that L 6= 0. Then we have

w(t)≤ (ρ2I + L)tw(0)

where the inequality is meant componentwise and where
ρ := ρ(P ) (namely the essential spectral radius of P as
defined in (3)).
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PROOF. Since P is a Cayley matrix, it can be written
as in (25). Then

tr (HrPQPT HT
r ) =

1
N

∑

χ6=χ0

|θ(χ)|2tr (HrQHT
r χχ∗)

≤ 1
N

max{|θ(χ)|2 : χ 6= χ0}
∑

χ 6=χ0

tr (HrQHT
r χχ∗)

= ρ2tr

(
HrQHT

r

1
N

∑
χ

χχ∗
)

= ρ2tr
(
HrQHT

r

)
= ρ2wr

Define now a sequence of q dimensional vectors w̄(t) as
follows. Let w̄(0) = w(0) and let

w̄+ = (ρ2I + L)w̄

By induction it can be proved that w(t) ≤ w̄(t) for all t
and this proves the inequality. 2

Define now the q-dimensional column vectors a, b defined
by letting

as = N−1δ2
s ||Y Ps||2 bs = N−1δ2

s |λs|2

We can now state and prove a general convergence result.

Theorem 15 Let ρ := ρ(P ) and let ρ̄2 be the induced
2-norm of the matrix ρ2I + L. Assume that L 6= 0 and
that ρ̄2 < 1. Then, there exists a scalar random variable
α∗ such that

E||x(t)− α∗1||2 ≤ Aρ2t + Bρ̄2t (27)

where

A = w(0)− ||a||
ρ̄2 − ρ2

||w(0)||

B =
( ||a||

ρ̄2 − ρ2
+

||b||
(1− ρ̄)2

)
||w(0)||

and where w(0) and w(0) are defined in (24).

PROOF. Notice that, as showed in the proof of Lemma
14, we have tr (Y PQPT Y T ) ≤ ρ2w. Define the sequence
w̄(t) as follows:

w̄(0) = w(0), w̄+ = ρ2w̄ + ||a|| ||w̄||

where w̄(t) := (ρ2I + L)tw(0). By induction it can be
proved that w(t) ≤ w̄(t) for all t. Using moreover the

fact that ρ̄2 > ρ2 (since L 6= 0), we can estimate

w̄(t) = ρ2tw(0) + ||a||
t−1∑

i=0

ρ2(t−1−i)||(ρ2I + L)iw(0)||

≤ ρ2tw(0) + ||a||
t−1∑

i=0

ρ2(t−1−i)ρ̄2i||w(0)|| =

=
(

w(0)− ||a||‖|w(0)||
ρ̄2 − ρ2

)
ρ2t +

( ||a|| ||w(0)||
ρ̄2 − ρ2

)
ρ̄2t

Notice now that

E[||xB(t + 1)− xB(t)||2] = E[||xB(t + 1)||2] + E[||xB(t)||2]
− 2trE[xB(t + 1)xB(t)T ] .

On the other hand, since

x+
B = xB + N−1

q∑
s=1

χ0χ
∗
0PsEsHsx

we have that

trE[xB(t + 1)xB(t)T ] = trE[xB(t)xB(t)T ]

+ N−1

q∑
s=1

tr [χ0χ
∗
0PsE(Es)HsE(x(t)xB(t)T )] = s(t) .

Using Lemma 14 we can then estimate as follows

E[||xB(t + 1)− xB(t)||2] = s(t + 1)− s(t) = bT w(t)
≤ bT (ρ2I + L)tw(0) ≤ ρ̄2t||b|| ||w(0)|| . (28)

This shows that xB(t) converges in mean square sense
to a random variable α∗1 and that

(E||xB(t)− α∗1||2)1/2 ≤
∞∑

s=t

(E||xB(s + 1)− xB(s)||2)1/2

≤ ||b||1/2 ||w(0)||1/2

1− ρ̄
ρ̄t . (29)

Final estimation (27) now immediately follows from the
splitting

E||x(t)−α∗1||2 = E||xB(t)−α∗1||2 +E||y(t)||2 . (30)

2

Notice that, since ρ̄ > ρ, then the rate of convergence is
determined by the parameter ρ̄, namely by the induced
2-norm of the matrix ρ2I + L.

As for the strategies illustrated in Chapter 5, it is also
here interesting to evaluate the mean square distance of
the consensus α∗ from the initial average N−11T x(0).
We have the following result.
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Proposition 16 Let α∗ be the random variable defined
in Theorem 15. Under the same hypotheses of Theo-
rem 15, we have that

E|α∗ −N−11T x(0)|2 ≤ 1
N

||b||
1− ρ̄2

||w(0)|| .

PROOF. Consider ∆(t) := x(t) − N−111T x(0) and
Q(t) := E[∆(t)∆(t)T ]. It is immediate to check that
Q(t) satisfies the same evolution law (23). More-
over, we have that y(t) = Y x(t) = Y ∆(t) and
zs(t) = Hsx(t) = Hs∆(t). If we define in this context
xB(t) = N−111T x(t) − N−111T x(0) we have that the
corresponding mean square values w(t), ws(t), s(t) have
exactly the same expression in terms of the matrix Q
and, as a consequence, they satisfy the same evolution
equations (26). In particular, we obtain that

s(t) = bT
t−1∑

j=0

w(j) .

Using Lemma 14 we can now estimate

|s(∞)| ≤ ||b||
1− ρ̄2

||w(0)|| ,

from which the thesis immediately follows. 2

In the sequel we apply previous results to analyze a par-
ticular but significant example.

Example 17 We assume we have the same exact com-
munication graph of Example 4, namely, the Cayley graph
G(ZN , S), where S = {0, 1}. We assume that P0 is the
stochastic Cayley matrix generated by the distribution
πP0(0) = 1 − k, and πP0(1) = k, where k ∈ [0, 1]. As-
sume moreover q = 1, namely that each system transmits
just one scalar signal. Precisely, define H1 to be the Cay-
ley matrix generated by the distribution πH1(0) = 1, and
πH1(1) = −1. This means that each system i transmits
the difference between its own state xi and the the state
xi−1 which is known exactly by the system i. It remains
to choose the matrix P1. Our objective is to choose P1 in
such a way that P = P0 + P1H1 = N−1χ0χ

∗
0. This can

be done by letting

πP1(g) =
g + 1−N

N
g = 1, . . . , N − 2

and k = N−1
N . Indeed, this definitions yield P1H1 with

the following generator

πP1H1(0) = 0 , πP1H1(1) =
2−N

N
, πP1H1(g) =

1
N

for all g = 2, . . . , N −1. With such a choice we have that
PH1 = PY = 0. Notice moreover that P1χ0 = λ1χ0

implies that

λ1 =
N−1∑
g=0

πP1(g) =
N−2∑
g=1

g + 1−N

N
=

N−1∑
g=1

− g

N

= − (N − 1)(N − 2)
2N

and so

b =
1
N

δ2
1 |λ1|2 = δ2

1

(N − 1)(N − 2)
2N2

.

Moreover we have that

||H1P1||2 = N

N−1∑
g=0

|πP1H1(g)|2 =
(2−N)2

N

+ (N − 2)
1
N

=
(N − 1)(N − 2)

N

which implies that

L =
1
N

δ2
1 ||H1P1||2 = δ2

1

(N − 1)(N − 2)
N2

Finally notice that Y P1 = (I −P )P1 = P1−λ1P and so

||Y P1||2 = N

N−1∑
g=0

|πP1(g)− λ1πP |2

= 2N
(N − 1)2(N − 2)2

4N2
+

N−2∑
g=1

∣∣∣∣−
g

N
+

(N − 1)(N − 2)
2N

∣∣∣∣
2

=

=
1
N

N−2∑
g=1

g2 − (N − 1)2(N − 2)2

4N2

=
(N − 1)(N − 2)(N2 + 3N − 6)

12N2

which implies that

a = δ2
1

(N − 1)(N − 2)(N2 + 3N − 6)
12N3

For big N we have that L ' δ2
1, a ' δ2

1
N
12 and b '

δ2
1
2 . In this case, since we have that ρ(P ) = 0, applying
Theorem 15, we obtain that

E||x(t)− α∗1||2 ≤ Bδ2t
1 (31)

where

B =
(

N

12
+

δ2
1

2(1− δ1)2

)
E||Hx(0)||2
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Instead, from Proposition 16 we obtain that

E|α∗−N−11T x(0)|2 ≤ 1
N

δ2
1

2(1− δ2
1)
E||Hx(0)||2 . (32)

Notice that, for small δ1, the convergence rate towards
the consensus established in (31) is much better than
what obtained without noisy data transmission. More pre-
cisely, suppose the our goal is to have convergence of the
initial states xi(0) ∈ [−M,M ] to a target configuration
xi(∞) ∈ [α − ε, α + ε] where α is a constant depending
only on the initial condition x(0) and ε describes the de-
sired consensus precision. This is a “practical stability”
requirement and it is the only goal achievable through
finite data rate transmission. In this case the contrac-
tion rate is C := M/ε. We assume that the exact data
transmissions are substituted by transmissions of preci-
sion ε uniformly quantized data. In this framework it is
known [15] that each uniform quantizer needs C different
levels and so the transmission of its data needs an alpha-
bet of C different symbols. On the other hand (see [15])
each logarithmic quantizer needs

2 log C

log
1 + δ1

1− δ1

different symbols. Let δ1 = 1/2. We know that the strat-
egy proposed in this example allows a convergence rate
ρ ' 1/2. In this case we need N uniform quantizers and
N(N−2) logarithmic quantizers. Thus, the total number
of symbols Ltot that needs to be transmitted during each
sampling period in order to obtain the consensus is

Ltot = NC +
2

log 3
N(N − 2) log C .

Without the logarithmic quantizers we need only Ltot =
NC symbols but we obtain a convergence rate ρ ' 1 −
2π2N−2. Observe that for large C the total number of
symbols Ltot in the two cases are slightly different, but we
obtain a manifest improvement in terms of rate of con-
vergence.
Finally, notice that the mean square distance of the con-
sensus from the initial average (32) is infinitesimal for
δ1 → 0.

7 Conclusions

We have derived bounds on the convergence rate to the
average consensus for a team of mobile agents that ex-
change information over time-invariant and randomly
time-varying communication networks with symmetries.
We have showed that, in time-invariant networks, sym-
metries yield rather slow convergence to the consensus.
In particular for such networks we have computed a tight
bound for the convergence rate. We have also showed

that, if the communication network is randomly time-
varying over a class of networks with symmetries, the
achievable performance is much higher. The last part of
the paper have been devoted to study the control perfor-
mance when agents also exchange logarithmically quan-
tized data. It has been shown that adding such links in
time-invariant networks with symmetries improves the
convergence rate with little growth of the required band-
width.
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