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Abstract

When dealing with the control of a large number of interacting systems, the fact that the flow
of information has to be limited becomes an essential feature of the control design. The first
consequence of the limited information flow constraint is that the signals that the controllers and
the systems exchange have to be quantized. Though quantization has already been extensively
considered in the control literature, its analysis from the point of view of the information flow
demand has been considered only recently.

Limiting the information flow between a plant and a controller will necessary lead to a perfor-
mance degradation of the feedback loop, and we expect a trade-off between the achievable perfor-
mance and the amount of information exchange allowed in the loop.

Most of the success of modern digital communication theory in the last fifty years is due to the
contributions of information theory, which proposed a symbolic based analysis of the communication
channel performance. The same goal is much more difficult to be reached in digital control theory.

The present paper proposes an attempt towards this direction. The main contribution of this
paper is to provide a complete analysis of the trade-off between performance and information flow
in the simple case of the stabilization of a scalar linear system by means of a memoryless quantized
feedback map.

Keywords: Stability, stabilization, communication constraint, quantized feedback, chaotic control,
symbolic dynamics, Markov chains, entropy.

AMS subject classification: 93D15, 37B10, 37E05

1 Introduction

The stabilization by quantized feedback controllers has been widely investigated in the last few years
(see [6, 26, 3, 25, 20, 7, 2, 9, 23] and the reference therein). There are two different situations in which
quantization reveals to be a central feature in the control design. The first is related to control systems
in which either the sensors or the actuators limitations impose that their measures or their commands
can take a limited number of different values. In this case the number of quantization levels provides
a measure of the sensor or of the actuator complexity. Another situation in which quantization plays
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an important role is when plants and controllers exchange information through digital communication
channels with limited capacity. In this last case, the measures and the commands need to be quantized
before being communicated and the number of quantization levels is strictly related with information
flow between the components of the control system and so with the capacity required to transmit the
control information.

Two different approaches have been proposed in the literature to solve the control problem with
quantized feedback. The first approach considers memoryless feedback quantizers. In particular in [6]
there is a first mathematical analysis of control systems with uniform quantized feedback, while in [26, 2]
a first bound of the number of quantization intervals needed to stabilize a linear system is proposed. In
[7] logarithmic quantizers are shown to yield Lyapunov stability. In [9] a chaos based quantized controller
has been proposed and a first comparison between uniform, logarithmic and chaotic quantized feedback
controllers has been presented in the scalar case. In [23] performance of uniform quantized feedback
controllers are analyzed for general linear systems.

The second approach considers quantized feedback controllers with an internal state. In particular
[3] proposes a stabilization technique in which the quantizer is scaled according to the state growth. In
[25] this technique is used to show the relation between the degree of instability of the system to be
controlled and the number of quantization levels of the feedback quantizer. The same relation has be
found independently in [20] in a different context.

In general the analysis of memoryless quantized feedback controllers is hard, while the results become
quite neat for quantized feedback controllers with infinite memory. Notice that, while it is reasonable to
allow a memory structure on sensors and actuator when designing control systems under communication
constraint [25, 20], in situations in which quantization is due to sensors or to actuators poorness, only
the memoryless quantized feedback controller becomes a reasonable model.

The present paper considers memoryless quantized controllers for which, as we mentioned, a math-
ematical analysis is more complicated. The relation between controller complexity and controller per-
formance is investigated by using information theoretic and combinatorial techniques. One of the main
contributions of this paper is showing that the controller performance has to be described by two conflict-
ing parameters, one evaluating the steady state, and the other evaluating the transient of the controlled
system. Roughly speaking we proved that, for a fixed controller complexity, good steady state implies
bad transient and vice versa.

More precisely in this paper we consider the stabilization problem for discrete time linear systems
with one-dimensional state, namely a system described by the equation

xt+1 = axt + ut .

While in the classical control setting this stabilization problem is completely trivial and there is very
little to be said, in the memoryless quantized feedback setting non trivial issues already come up in this
simple situation. In this set up a memoryless quantized feedback is a control law ut = k(xt), where
k(·) is a quantized (i.e. piecewise constant) map. Let N be the number of distinct values which k(·) is
allowed to take. The number N will provide a measure of the information flow in the feedback loop.
In the literature referenced above several different quantized stabilizing strategies have been proposed
in this context. Moreover, in [2, 26] it has been found the minimum value of N (as a function of |a|)
ensuring the existence of a memoryless quantized controller yielding stability (but not convergence) of
the system.

The aim of this paper is to compare the different quantized control strategies proposed in the litera-
ture in terms of complexity and performance and to establish a number of results showing fundamental
limitations of quantized control. To be more precise about performance, notice first that, if the original
system is unstable, a state feedback with finitely many quantization intervals can only yield the so
called practical stabilization, namely the convergence of any initial state belonging to a bigger bounded
region I into another smaller target region of the state space J . The ratio C between the measure of
the starting region and the target region is called contraction and it provides a description of the steady
state properties of the closed loop system. Beyond C, the expected time T needed to shrink the state
of the plant from the starting set to the target set will measure the transient controller performance.
Notice that these two parameters represent a particular way of evaluating the steady state and the
transient performance of the controller. There are other possible choices. For instance it is possible to

2



evaluate the transient by means of a quadratic like index. Some preliminary investigations show that the
techniques proposed in this paper can be applied also in this set up and yield similar trade-off results.

We will evaluate the relations between the parameters N, C, T and a in a series of different stabiliza-
tion strategies. In all cases we will see that, for fixed a, as C grows, either N has to grow or T has to
grow. However different strategies exhibit different growth rates of the two parameters N and T . In all
cases an increasing value of |a| either requires to increase N or yields a degradation of C and T . These
results extend the relations between N and |a| proposed in [2, 26] and complete the analysis started in
[9], where however the parameter T was interpreted as the sup norm of the entrance time and where a
stronger notion of stability was considered. The relations between the parameters N, C, T pointed out
in the examples are in accordance with some fundamental bounds which are proved in the second part of
the paper, proving in this way the optimality of the proposed quantized controller synthesis techniques.

Now we present an outline of the contents of this paper and of our main results. In Section 2 we
present all basic definitions and notations. In particular we introduce the concepts of stability and
almost stability and we state precisely the problems we want to solve. Moreover we introduce some
basic tools from the ergodic theory of piecewise affine maps. Using these we show that the expected
entrance time T is always finite if we have almost stability.

Section 3 is devoted to the introduction and the discussion of a general stabilization strategy based
on nesting an initial given quantized stabilizer.

Section 4 is devoted to the analysis of some examples. We show that, by nesting the quantized dead-
beat controller in a suitable way, we can obtain a variety of different quantized stabilizers, which can
be analyzed in terms of the parameters N and T as functions of a and C. There are three particularly
significant cases. The first is the quantized dead beat control which is obtained by using uniform
quantized feedback. In this case N grows linearly in C and |a| and T tends to the constant 1. The second
is the logarithmic quantized feedback strategy. In this case instead both N and T grow logarithmically
in C. The last one is the chaotic quantized feedback strategy. In this last case only almost stability can
be achieved and N tends to the constant d|a|e while T grows linearly in C. Notice that the first and
the last strategies present dual characteristics of N and T as functions of C. It is interesting to observe
that, if we take any linear feedback ut = kxt, with k ∈ R, such that the linear closed loop system
xt+1 = (a+k)xt is asymptotically stable, then the expected entrance time T of this controlled system is
such that T/ log C tends to a constant which is a decreasing function of |a + k|. Hence the logarithmic
regime corresponds to the performance which can be obtained through the allocation of the eigenvalue
inside the unit circle and the absolute value of this eigenvalue determines the logarithmic rate.

In Section 5 we obtain universal bounds relating T , N , and C for fixed |a|. The main results are
presented in Theorems 3, 4, and Corollaries 3, and 2. All these results, except Theorem 4 needs the
assumption |a| > 2. Corollary 3 says two things: first, in order to obtain expected entrance time
T growing at most logarithmically with respect to C, we need a number of quantization intervals N
growing at least logarithmically with respect to C. Second, if we use a number of quantization intervals
N growing at most logarithmically with respect to C, we obtain expected entrance times T growing at
least logarithmically with respect to C. Moreover the corollary furnishes a quantitative trade-off between
the two ratios T/ log C and N/ log C which turns out to be interesting if related to the previous comment
on the logarithmic regime which can be obtained in the linear feedback case. Another consequence of
the results presented in this section is that the chaos based stabilization strategy is somehow optimal
since its performance can not be improved without paying this with a greater information flow. Finally,
Theorem 5 shows that any stabilization strategy yielding stability has the ratio N/ log C bounded from
below.

For proving the results in Section 5 we need to use the tools of combinatorial analysis of the symbolic
dynamics associated to piecewise affine maps. This is developed in Section 6 which contains the deeper
mathematical result of this paper which is Theorem 6. This theorem provides a new bound on the
number of the paths on a graph with possibly infinite uncountable edges, when this graph has some
specific properties. This theorem is very general and has potential applications also in other situations
such as in the analysis of quantized feedback systems when the state is multi-dimensional [10].

We conclude this introduction with few remarks to better stress the reasons why we limited our
analysis to scalar state space systems. These, from an application viewpoint, may be seen as a relatively
uninteresting family of systems to be considered. However, this simple case already contains all the
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interesting issues of the coupling between control and information and mathematically leads to non-
trivial problems. The completeness of the results obtained in this paper, because of the simplified set up
we chose, will provide the guidelines for the future investigations on more general situations (see [10]).
Observe finally that first order systems can be considered as simplified models of more general systems
and that one important case in which control under communication constraint is relevant is just when
many simple systems have to be controlled by a unique centralized controller.

Notation We present here some notations which will be used in the paper. If A,B are two sets, then
A \B := {a ∈ A : a 6∈ B}. Given a map f : A → B and B1 ⊆ B we define

f−1(B1) := {a ∈ A : f(a) ∈ B1} .

The symbol AN denotes the set of all sequences taking values on the set A, while symbol A∗ denotes
the set of all finite words over the alphabet A. The symbol #A denotes the cardinality of A.

The symbol R+ denotes the set of all positive real numbers. If a ∈ R+, then dae means the minimum
integer greater than or equal to a and log a is the natural logarithm of a. Given a, b ∈ R, a∧ b and a∨ b
denote the minimum and the maximum between a and b, respectively. Given K ⊆ R, K denotes the
closure of K, while ∂K denotes the boundary set of K.

Let I be an interval in R. Given any function f : I → R we define

supp (f) := {x ∈ I : f(x) 6= 0}.

For any J ⊆ I we denote 1J the function defined on I which is 1 in J and 0 on I \ J and it is called the
indicator function of J . With the symbol L1(I) we mean the set of the absolutely integrable functions
which is a normed space with norm

||f ||1 :=
∫

I

|f(x)|dx ∀f ∈ L1(I).

If P : L1(I) → L1(I) is a linear continuous operator, then the symbol ||P||1 denotes the induced norm
of P. The symbol L∞(I) means the set of the bounded functions on I which is a normed space as
well. A function f ∈ L1(I) such that f(x) ≥ 0 for all x ∈ I and such that ||f ||1 = 1 is called a density
function on I. It induces a probability measure on I which will be denoted by Pf , while the symbol Ef

will denote the expected value with respect to Pf . The probability measure and the expected value with
respect to uniform Lebesgue measure on I will be simply denoted by the symbols P and E, respectively.

2 Problem statement

Consider the following discrete-time, one-dimensional linear model

xt+1 = axt + ut, (1)

where a ∈ R. Most of the paper is devoted to the stabilization problem and so it is assumed that |a| > 1.
Some results however holds true also for stable systems and so for |a| ≤ 1.

Let k : R→ R be a piecewise constant function with only finitely many discontinuities. If we use k
as a static feedback in the system (1), namely we let ut = k(xt), we obtain the closed loop system

xt+1 = Γ(xt), (2)

where Γ(x) := ax + k(x) is a piecewise affine map with a fixed slope a. Autonomous systems like (2)
in which Γ is piecewise affine can exhibit a very wild behavior. Their dynamical properties have been
extensively studied in the past [15, 18, 5].

Remark: In fact, the definition we gave is not precise if we do not define what happens at the boundary
points of the intervals. We assume there is a finite family of disjoint open intervals Ih such that
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D := ∪hIh is dense in R and such that k(x) = uh for every x ∈ Ih. In this way the associated closed
loop map is defined as a map

Γ : D → R

Γ(x) = ax + uh if x ∈ Ih .
(3)

In order to consider iterations of Γ we need to restrict the domain by considering

Ω =
∞⋂

n=0

Γ−n (D) . (4)

It is clear that Γ(Ω) ⊆ Ω. Notice that R \ Ω is a countable subset of R and since most of the questions
considered in this paper are related to mean properties, it will be sufficient to consider Γ as a map
defined on Ω, disregarding all the orbits which will eventually get to a discontinuity point.

However, in those situations in which it is necessary to understand how the dynamics is defined at
the boundaries, it is necessary to define the dynamics of Γ on all R. This is done by considering, for
any x0 ∈ R, the left and right limit of Γ(x) for x → x0 denoted by Γ(x0−) and Γ(x0+) and by defining
the enlarged set of orbits as

XΓ = {(xt) ∈ RN | xt+1 = Γ(xt+) or xt+1 = Γ(xt+) ∀t ∈ N} . (5)

The subset XΓ ∩ ΩN consists in the orbits of Γ on Ω and it is in bijection with Ω through the initial
condition.

It is obvious that, by using quantized feedback controllers only a “practical stability” can be obtained
as detailed in the following definitions.

Definition: Invariance and almost invariance. Given a closed interval I, we say that I is Γ-
invariant if every orbit (xt) of Γ with x0 ∈ I is such that xt ∈ I for every t. It is almost Γ-invariant if
the assertion above is true for almost every initial condition x0 with respect to the Lebesgue measure.
When an interval I is invariant or almost invariant we will use in any case the notation Γ : I → I.

Definition: Stability and almost stability. Given two closed intervals J ⊆ I, we say that Γ is
(I, J)-stable if I and J are invariant by Γ and if for every orbit (xt) of Γ with x0 ∈ I, there exists an
integer t ≥ 0 such that xt ∈ J . We say that Γ is almost (I, J)-stable if I and J are almost invariant
and the convergence to J as defined above occurs for almost all initial condition in the orbit x0 ∈ I,
with respect to the Lebesgue measure. A quantized feedback map k : R → R is said to be (almost)
(I, J)-stabilizing if the corresponding closed loop map Γ is (almost) (I, J)-stable.

Remark: For what concerns almost invariance and almost stability it is sufficient to work with Γ on
the set Ω as defined in (4). The concepts of invariance and of stability depend also on the dynamics on
boundary points and so the orbits have to be considered as defined in (5).

Assume that Γ is almost (I, J)-stable. The first entrance time function

T(I,J) : I ∩ Ω → N ∪ {+∞}
is defined by

T(I,J)(x) = inf{n ∈ N | Γnx ∈ J} =
∞∑

n=1

1I\J (Γnx) . (6)

We put T(I,J)(x) := +∞ if Γtx 6∈ J for all t. Notice that the map T(I,J) is always finite exactly when
we have stability, while it is almost surely finite when we have almost stability.

Remark: Notice that, if we want to extend the function T(I,J) to the all I, we can not use definition (6).
Indeed, there is a possible ambiguity for orbits touching discontinuity points since, given x ∈ I, there
can be infinitely many orbits having x as initial condition and therefore Γnx is not uniquely defined. In
this case definition (6) should be replaced as follows: we say that T(I,J)(x) = n if every orbit (xt) ∈ XΓ

such that x0 = x is such that xt ∈ J for any t ≥ n and if there exists an orbit (xt) ∈ XΓ such that
x0 = x and such that xn−1 6∈ J .

5



The expected value of the entrance time with respect to a density function f on I is given by

Ef (T(I,J)) =
∫

I

T(I,J)(x)f(x)dx.

It is clear that

Ef (T(I,J)) =
∫

I

[ ∞∑
n=1

1I\J(Γnx)f(x)

]
dx =

∞∑
n=1

nPf [T(I,J) = n] =
∞∑

n=0

Pf [T(I,J) > n] .

In the sequel, for any given (almost) (I, J)-stabilizing quantized feedback k yielding an (almost) (I, J)-
stable piecewise affine closed loop map Γ, we will use the symbol T(k) or T(Γ) to denote the relative
expected entrance time E(T(I,J)) with respect to the uniform density function on I. Notice that this
quantity depends only on the restriction of Γ to I\J and so we can assume that Γ is defined only on I\J .
For this reason the right parameter measuring the information flow will be the number of quantization
intervals in I \ J which will be denoted by symbols N(k) or N(Γ). Finally the ratio between the length
of I and the length of J will be called contraction rate and will be denoted by C(k) or C(Γ).

The performance analysis of the quantized stabilization consists in determining, for a given C > 1,
N ∈ N and T > 0, whether there exists or not a (almost) stabilizing quantized feedback k such that
C(k) = C, N(k) = N and T(k) = T , or, in other words, in estimating the set

A := {(C, N, T ) : there exists k such that C(k) = C,N(k) = N,T(k) = T}

Remark: The analysis proposed in this paper can be extended to a family of more general performance
measures. Let

V : I → R

be such that 0 ≤ V (x) ≤ 1 for every x ∈ I and V (x) = 0 for every x ∈ J . Another measure of the
transient properties of the closed loop system is the following number

E

( ∞∑
n=0

V (Γnx)

)
.

It is clear that, if V (x) = 1I\J(x), then the previous cost coincides with the expected entrance time in
J . If V (x) is a general continuous function, then, for any α ∈ [0, 1] we have that

α1I\J(α)(x) ≤ V (x) ≤ 1I\J(x),

where J(α) := {x ∈ I : V (x) ≤ α}. This fact implies that

αE(TJ(α)) ≤ E
( ∞∑

n=0

V (Γnx)

)
≤ E(T(I,J)).

This shows that the dependence of this generalized performance index and of the expected entrance
time on the parameters C(Γ) and N(Γ) will be similar.

2.1 The Perron-Frobenius operator for piecewise affine maps

In this subsection we recall some standard results on the ergodic theory of piecewise affine maps and
we will present a first preliminary result asserting that the expected entrance time is always finite for
almost (I, J)-stable piecewise affine maps.

Let Γ : I → I be a piecewise affine map with fixed slope a and assume here that |a| > 1. It is a
standard fact that Γ induces a linear transformation

PΓ : L1(I) → L1(I)
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called the Perron-Frobenius operator associated with Γ which is uniquely defined by the following duality
relation ∫

I

(g ◦ Γ)(x)f(x)dx =
∫

I

g(x)(PΓf)(x)dx (7)

for all g ∈ L∞(I), f ∈ L1(I). It can be shown that the operator PΓ is bounded with ||PΓ||1 ≤ 1 and it
maps probability densities into probability densities. An important interpretation of PΓ is as follows.
If we have a continuous random variable X defined on I whose density is f , then the density of the
transformed random variable X ◦Γ is PΓf . A final important property of the Perron-Frobenius operator
PΓ is that PΓn = Pn

Γ .
The relevance of the Perron-Frobenius operator in our investigations is due to the fact that

Pf [T(I,J) > n] =
∫

I\J
Pn

Γf(x)dx

which follows by iterating (7) and by taking g(x) = 1I\J(x). This shows that the asymptotics of this
operator and so its spectral properties will be relevant for our purposes.

We have the following result.

Lemma 1 Let Γ be almost (I, J)-stable. If h(x) ∈ L1(I) is an invariant density of PΓ, then

supp h ⊆ J.

Proof First we show that, since J is invariant by Γ, the fact that supp f ⊆ J implies that supp Pk
Γf ⊆ J .

Indeed, if K ⊆ I \ J , then Γ−1(K) ⊆ I \ J and so
∫

K

(PΓf)(x)dx =
∫

Γ−1(K)

f(x)dx = 0.

We show now that, if h is invariant by PΓ, then also h1J and h1I\J are invariant by PΓ. Indeed, for
any g ∈ L∞(I), f ∈ L1(I) we have that

∫

I

g(x)(PΓh1J)(x)dx =
∫

J

g(x)(PΓh1J)(x)dx =
∫

J

g(x)(PΓh)(x)dx =

=
∫

I

g(x)1J(x)(PΓh)(x)dx =
∫

I

g(x)(h1J)(x)dx

where in the first equality we used the fact that supp h1J ⊆ J . This shows that h1J is invariant. Since
both h and h1J are invariant, so is h1I\J , as well.

Finally, if we assume by contradiction that there exists a non-zero invariant density of PΓ not
supported inside J , then for the above considerations, there also exists a non-zero invariant density
supported inside I \ J . Let us call it h0. We can find δ > 0 and a subset K ⊆ I \ J of nonzero Lebesgue
measure such that h0(x) > δ for every x ∈ K. Consequently, h0 − δ1K is a non-negative function.
Therefore also Pn

Γ (h0− δ1K) = h0−Pn
Γ (δ1K) is non-negative for all n ≥ 0. Since h0 is 0 on J , it follows

that Pn
Γ1K is 0 on J for every n. This implies that

∫

Γ−n(J)

1K(x)dx =
∫

J

(Pn
Γ1K)(x)dx = 0

which implies that K ∩ Γ−n(J) has zero Lebesgue measure for all n ≥ 0, which contradicts the almost
(I, J)-stability of Γ.

To obtain a good characterization of the spectral properties of PΓ we need to restrict the type of
densities to be considered. Let BV(I) ⊆ L1(I) be the subspace of L1(I) constituted by the bounded
variation functions on the interval I. More precisely, if we define the variation of a function f as

∨
f := sup

{
n−1∑

i=1

|f(xi+1)− f(xi)| xi ∈ I, x1 < x2 < · · · < xn

}
,
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then
BV(I) := {f : I → R :

∨
f < ∞}.

Equip now the space BV(I) with the new norm

|||f ||| :=
∨

f + ||f ||1 .

It is a classical fact that PΓ(BV(I)) ⊆ BV(I) and that PΓ|BV(I) is bounded with respect to the norm
||| · |||. Using now the Lasota-Yorke inequality [15] and the spectral theorem of Ionescu-Tulcea and
Marinescu [12] the following facts can be shown to hold true

(i) Let σ1 be the set of eigenvalues of modulus 1 of PΓ seen as an operator on L1(I). Then this set is a
finite multiplicative group. Moreover each of these eigenvalues has a finite dimensional eigenspace
contained in BV(I).

(ii) The Perron-Frobenius operator PΓ on BV(I) admits the following decomposition

PΓ =
∑

λ∈σ1

λQλ + R (8)

where Qλ are finite rank operators on BV(I) and R is a bounded operator on BV(I) such that

(a) Qλ ◦R = R ◦Qλ = 0 for all λ ∈ σ1;

(b) Qλ ◦Qλ′ = 0 for all λ, λ′ ∈ σ1 such that λ 6= λ′;

(c) Qλ ◦Qλ = Qλ for all λ ∈ σ1;

(d) |||Rn||| ≤ cγn for all n ∈ N, where c is a positive constant and 0 < γ < 1.

An important consequence of the above results is that the spectrum of PΓ in BV(I) is composed of
a finite set of eigenvalues on the unit circle (with finite dimensional eigenspaces) and of another part
contained in a disk of radius strictly smaller than 1.

We now state and prove the main result of this section.

Proposition 1 Let Γ be an almost (I, J)-stable piecewise affine map. Then, there exists a constant
K > 0 such that

Ef (T(I,J)) ≤ K|||f |||
for every probability density f ∈ BV(I).

Proof Notice preliminarily that there exists ν ∈ N such that λν = 1 for every λ ∈ σ1. This implies
that

Pν
Γ =

∑

λ∈σ1

Qλ + Rν

This implies that for any density f ∈ BV(I) we have that Qλf is invariant by Pν
Γ . Since Pν

Γ is the
Perron-Frobenius operator for the map Γν which is almost (I, J)-stable, then, by Lemma 1, we have
that supp Qλf ⊆ J . Using this fact and formula (8) we obtain

Pf [T(I,J) > n] =
∫

I\J
(Pn

Γf)(x)dx =
∫

I\J
(Rnf)(x)dx ≤ cγn|||f |||

and hence

Ef (T(I,J)) =
+∞∑
n=0

Pf [T(I,J) > n] ≤ c

1− γ
|||f ||| .
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3 Nested quantized feedback strategies

Consider the linear discrete time system (1), where |a| > 1, and consider two intervals J ⊆ I. We want
to stabilize it through a quantized state feedback, i.e. we want to find a quantized feedback map k such
that the closed loop system (2) drives (almost) any initial state x0 ∈ I into a state evolution which,
after a transient, enters the interval J . Several solutions to this problem can be proposed. In fact we
will show that, starting from a base quantized feedback, it is possible to construct a family of quantized
feedbacks by iterating the base one.

More precisely, suppose that we have found a (I, J)-stabilizing quantized feedback k1(x) and a
(J,K)-stabilizing quantized feedback k2(x). Then it is clear that the quantized feedback

k(x) =
{

k1(x) if x ∈ I \ J
k2(x) if x ∈ J \K

(9)

will be (I, K)-stabilizing. The analogous conclusion is less straightforward in case we we start from
almost stabilizing quantized feedbacks. In the sequel we will show that this is indeed the case, namely,
if k1(x) is almost (I, J)-stabilizing and k2(x) is almost (J,K)-stabilizing, then k(x) is almost (I, K)-
stabilizing.

Let Γ : I → I be a almost (I, J)-stable piecewise affine map with fixed slope a such that |a| > 1 and
let PΓ be the Perron-Frobenius operator associated with Γ. From any density function f ∈ L1(I) it is
possible to define a probability measure µ on J as the image of the measure Pf through the map

ψ(x) := ΓT(I,J)(x)(x),

where T(I,J)(x) is the first entrance time function of Γ. More precisely, if A ⊆ J is a measurable set,
then

µ(A) := Pf [ψ−1(A)]. (10)

The following result gives important information on the measure µ.

Proposition 2 For any density f ∈ L1(I), the measure µ defined in (10) is absolutely continuous with
respect to the Lebesgue measure and its corresponding density h is given by

h = 1Jf +
+∞∑

j=1

1JPΓ(1I\JPj−1
Γ f) . (11)

Moreover, there exists a constant H > 0 only depending on Γ such that

|||h||| ≤ H|||f ||| , ∀f ∈ BV(I).

Proof Let A ⊆ J be a measurable set. Then,

µ(A) = Pf [ψ−1(A)] =
+∞∑
j=0

Pf [ψ−1(A) ∩ {T(I,J)(x) = j}]

=
+∞∑
j=0

Pf [Γ−j(A) ∩ {T(I,J)(x) = j}] = Pf [A] +
+∞∑
j=1

Pf [Γ−j(A) ∩ Γ−j+1(I \ J)].
(12)

Notice that

Pf [Γ−j(A) ∩ Γ−j+1(I \ J)] =
∫

I

1Γ−j(A)(x)1Γ−j+1(I\J)(x)f(x)dx

=
∫

I

1Γ−1(A)(x)
[
1I\J(x)Pj−1

Γ f(x)
]
dx

=
∫

A

PΓ(1I\JPj−1
Γ f)(x)dx =

∫

A

hj(x)dx,

9



where hj(x) := 1J(x)PΓ(1I\JPj−1
Γ f)(x). Using this relation in (12) and the fact that hj(x) are non

negative we obtain, by Fatou’s lemma, that

µ(A) = Pf [A] +
+∞∑

j=1

∫

A

hj(x)dx =
∫

A


1J (x)f(x) +

+∞∑

j=1

hj(x)


 dx

which shows that the series
∑+∞

j=1 hj(x) converges in L1 sense. Hence, the function h, defined in (11),
is in L1 and µ is absolutely continuous with respect to the Lebesgue measure with density h.

We now show that there is also convergence in the norm ||| · ||| if f ∈ BV(I). First notice that, by
Yorke inequality [15, formula (6.1.12)], for all g ∈ BV(I) we have

∨
(g1J) ≤ 2

∨
g +

2
|I| ||g||1

which implies that

|||g1J ||| ≤ 2
∨

g +
(

1 +
2
|I|

)
||g||1 ≤

(
2 +

2
|I|

)
|||g|||.

Using the previous inequality we can argue that

|||1JPΓ(1I\JPj−1
Γ f)||| ≤

(
2 +

2
|I|

)
|||PΓ||| · |||1I\JPj−1

Γ f |||. (13)

Using now the spectral decomposition for PΓ we can estimate this last term as

|||1I\JPj−1
Γ f ||| = |||Rj−1f ||| ≤ cγj−1|||f |||, (14)

where we used the same arguments used in Proposition 1. Putting together estimates (13), and (14),
we finally obtain that the sum (11) indeed converges in the norm ||| · ||| and, moreover, we have that

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

+∞∑

j=1

1JPΓ(1I\JPj−1
Γ f)

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
≤

(
2 +

2
|I|

) |||PΓ|||c
1− γ

|||f |||

which yields the thesis.

From the previous proposition and from Propositions 1 we can argue that the composed quantized
feedback k(x) defined in (9) is always almost (I, K)-stabilizing. The previous result can be used also to
obtain an estimate of the expected entrance time T(k). Let T(I,J)(x) for k1 and T(J,K)(x) be the first
entrance time function for k2. It is clear that the first entrance time function T(I,K)(x) of the quantized
feedback k is given by

T(I,K)(x) = T(I,J)(x) + T(J,K)

(
ΓT(I,J)(x)

1 (x)
)

.

This implies that

Ef (T ) =
∫

J

T(I,J)(x)f(x)dx +
∫

J

T(J,K)

(
ΓT(I,J)(x)

1 (x)
)

f(x)dx = Ef (T(I,J)) + Eh(T(J,K)) ,

where h is the probability density on J obtained form f as shown in the previous proposition.
This shows a way to estimate the expected entrance time of k(x). As far as the number of quantiza-

tion intervals, it is clear that we have simply that N(k) = N(k1) + N(k2). Finally, the contraction rate
of the overall quantized feedback is the product of the contraction rates of the component quantized
feedbacks, i.e., C(k) = C(k1)C(k2).

The previous considerations can be used to obtain a class of (almost) stabilizing quantized feedbacks
starting from one. Indeed, assume that k(x) is a (almost) (I, J)-stabilizing quantized feedback with
contraction rate C(k) = C, N(k) quantization intervals and expected entrance time T(k). Let

F (x) :=
x

C
+ β

10



be a affine map such that J = F (I). It is clear that the quantized feedback

F ◦ k ◦ F−1 : F (I) → F (I)

is (almost) (F (I), F 2(I))-stabilizing. Observe that the corresponding closed loop map is F ◦ Γ ◦ F−1.
The same construction can be iterated, obtaining for every i = 0, 1, . . . , τ − 1 the quantized feedback
F i ◦ k ◦ F−i which is (almost) (F i(I), F i+1(I))-stabilizing. The quantized feedback defined as follows

k(τ)(x) := F i ◦ k ◦ F−i(x) if x ∈ F i(I) \ F i+1(I)

will be (almost) (I, F τ (I))-stabilizing with contraction rate C(k(τ)) = C(k)τ and N(k(τ)) = τN(k)
quantization intervals. As far as the expected entrance time T(k(τ)) is concerned, it is difficult in
general to estimate its dependence on the number τ of iterations.

Consider the map
Ψ : I → I : x 7→ F−1 ◦ ΓT(I,J)(x)(x), (15)

where T(I,J)(x) is the first entrance time function for k. It follows from Proposition 2 that Ψ transforms
absolutely continuous measures into themselves so that also in this case we can consider the associated
Perron-Frobenius operator

PΨ : L1(I) → L1(I).

It is easy to see that
PΨf = C−1(h ◦ F ),

where h is the density which is obtained from f as shown in (11).
It is clear from the previous considerations that

T(k(τ)) =
τ−1∑

i=0

EPi
Ψf (T(I,J)) , (16)

where f is the uniform probability density on I. From Propositions 2 and 1 we obtain

T(k(τ)) ≤
τ−1∑

i=0

K|||Pi
Ψf ||| ≤

τ−1∑

i=0

KHi|||f ||| ≤ K

H − 1
Hτ |||f ||| . (17)

This is not a very good estimate, since we expect that in many situations the growth should be linear in
τ . For instance, if the uniform density on I is invariant, then we have that T(k(τ)) = τT(k). In this case
from a triple (C, N, T ) ∈ A we can obtain a sequence of triples (Cτ , τN, τT )) ∈ A, for all τ ∈ N. This
method will be used in the following subsections to obtain three specific quantized feedback strategies.

In general we can not guarantee that Ψ will possess invariant probability densities and it seems to
be very difficult to obtain estimates which are better than (17). Notice indeed that Ψ is also a piecewise
affine map but in general with an infinite number of continuity intervals. For this type of maps the
theory is quite weak: invariant probability densities are not guaranteed to exist and we may lose the
spectral structure of the corresponding Perron-Frobenius operator we had in the finite case (see [4] for
more details). There is however a case in which things go smooth namely when T (x) is bounded. In
this case Ψ is an expanding piecewise affine map with only a finite number of continuity intervals and
in this case invariant densities do exist and the Perron-Frobenius operator PΨ admits the usual spectral
decomposition (8). In this case we have the following result.

Proposition 3 Assume that T (x) is bounded. Then, there exists a probability density f and a bounded
sequence {aτ} such that

T(k(τ)) = τEf (T ) + aτ . (18)

Proof Let f be the uniform probability density on I. Let moreover ν ∈ N be such that λν = 1 for every
λ ∈ σ1 and let Q =

∑
λ Qλ. Observe that for all j ∈ N we have QPj

Ψ = Pj
Ψ − Rj and that QPν

Ψ = Q.
This implies that, if we decompose j = lν + r, with l ∈ N and r ∈ {0, . . . , ν − 1}, we have that

Pj
Ψ = QPr

Ψ + Rj .

11



Define

f = Q


1

ν

ν−1∑

j=0

Pj
Ψf


 .

Then, if τ − 1 = lν + r, we have that

τ−1∑
j=0

Pj
Ψf − τf = lQ

(
ν−1∑
j=0

Pj
Ψf

)
+ Q

(
r∑

j=0

Pj
Ψf

)
+

τ−1∑
j=0

Rjf − τf

= (lν − τ)f + Q

(
r∑

j=0

Pj
Ψf

)
+

τ−1∑
j=0

Rjf

Notice that
∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
(lν − τ)f + Q




r∑

j=0

Pj
Ψf


 +

τ−1∑

j=0

Rjf

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
≤ ν|||f |||+ |||Q|||




ν−1∑

j=0

|||Pj
Ψ|||


 |||f |||+ C

1− γ
|||f |||

is bounded in τ . Observe finally that

|T(k(τ))− τEf (T )| =
∣∣∣∣∣∣

∫

I

T (x)




τ−1∑

j=0

Pj
Ψf(x)− τf(x)


 dx

∣∣∣∣∣∣
≤

∫

I

T (x)

∣∣∣∣∣∣

τ−1∑

j=0

Pj
Ψf(x)− τf(x)

∣∣∣∣∣∣
dx .

The result now follows by applying Proposition 1.

This has the following consequence. If the triple (C, N, T ) is in A and corresponds to a situation in
which the entrance time function is bounded, then we can obtain a sequence of triples (Cτ , τN, τT+aτ ) ∈
A, for all τ ∈ N, where T is the expected entrance time with respect to a suitable probability density
and {aτ} is a bounded sequence.

4 Three stabilizing quantized feedback strategies

The method presented in the previous section will be used in the following subsections to obtain three
specific quantized feedback strategies. In the sequel we assume for simplicity that I = [−1, 1] and
J = [ε, ε], with ε ≤ 1 and so we have that C = 1/ε. In this section we will simply write C,N,T dropping
the explicit dependence from k. All probabilistic considerations in this section will be carried on with
respect to the uniform probability on I.

4.1 Deadbeat quantized feedback strategy

The first strategy, which has been analyzed in a certain detail by Delchamps in [6], consists in approxi-
mating the 1-step deadbeat controller k(x) := −ax by its quantized version, i.e., by a uniform quantized
function k(x) such that −ax− ε ≤ k(x) ≤ −ax + ε. One possibility is to take

k(x) := −(2h + 1)ε for h
2ε

a
< x ≤ (h + 1)

2ε

a
(19)

which yields the closed loop map Γ(x) illustrated in Figure 1.
This controller drives any state belonging to I into J in one step. In this case we have that

N = 2
⌈
|a|C − 1

2

⌉
∼ |a|C

and that

T =
∞∑

n=1

P[TJ ≥ n] = P[TJ ≥ 1] = 1− P[J ] = 1− 1/C ,

12
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Figure 1: The map Γ associated with the quantized feedback defined in (19).

where f(C) ∼ g(C) means that f(C)/g(C) tends to 1 as C →∞.
Using the nesting strategy presented above we can construct a τ steps deadbeat quantized feedback

simply iterating the 1 step deadbeat quantized feedback. We only need to pay attention to the fact
that the uniform density in I is invariant with respect to the map Ψ defined in (15). This happens if
|a|(C−1)/2 is an integer. Assume that this is the case and denote it by n. We obtain a triple contraction
rate, quantization intervals, expected entrance time equal to

(
2n + |a|
|a| , 2n,

2n

2n + |a|
)
∈ A .

Using the strategy presented above, we can iterate the construction τ times, obtaining in this way a
sequence of triples ((

2n + |a|
|a|

)τ

, 2τn, τ
2n

2n + |a|
)
∈ A, n, τ ∈ N.

which provides a family of quantized feedbacks parameterized by the two integers τ, n. We are mainly
interested in understanding what asymptotic behavior can be obtained of N and T as C →∞. To this
aim observe that

N/|a|
TC1/T

=
(

2n + |a|
|a|

)− |a|2n

∈ [1/e, 1].

Making the change of variable

C =
(

2n + |a|
|a|

)τ

, n =
|a|
2

(C
1
τ − 1) (20)

we obtain

N/|a| = τ(C
1
τ − 1)

T = τ(1− C−
1
τ )

where τ is any function of C that, by (20), can be chosen arbitrarily subject to the fact that τ(C)/ log C
is bounded from above. If in particular τ is fixed, we obtain

N/|a| ∼ τC
1
τ

T ∼ τ .

13
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Figure 2: The map Γ associated with the quantized feedback defined in (23).

If instead we think of τ as a possible function of C, we can distinguish two different behaviors: the case
when τ(C)/ log C → 0 and the case when τ(C) ∼ K log C. In the first case we have that

N/|a| ∼ TC1/T . (21)

and moreover N/ log C →∞, namely we have a superlogarithmic growth of the number of quantization
intervals, while the expected entrance time have a sublogarithmic growth T/ log C → 0. In the second
situation when τ(C) ∼ K log C we have that both N and T grow logarithmically in C. More precisely,
we have that

N/|a| ∼ K(e1/K − 1) log C
T ∼ K(1− e−1/K) log C

(22)

4.2 Logarithmic quantized feedback strategy

The second strategy is based on the quantized feedback (we assume a > 0, the case a < 0 being
completely analogous)

k(x) =
{ −a + 1 if ε ≤ x ≤ 1

+a− 1 if −1 ≤ x ≤ −ε
(23)

where
ε =

a− 1
a + 1

.

In this way we obtain an almost (I, J)-stabilizing quantized feedback where I = [−1, 1] and J = [−ε, ε].
The graph of closed loop map Γ)x) is illustrated in Figure 2.

In this case we have a contraction rate 1/ε and 2 quantization intervals. The expected entrance time
can be found by noticing that

Γ−n(I \ J) = [−1,−εn] ∪ [εn, 1],

where εn = 1− 2/(a + 1)an, which implies that the expected entrance time is

∞∑
n=0

P[T(I,J) > n] =
∞∑

n=0

P[Γ−n(I \ J)] =
2

a + 1

∞∑
n=0

a−n =
2a

a2 − 1

14



In general, when we do not restrict to positive a, we obtain a triple contraction rate, quantization
intervals, expected entrance time equal to

( |a| − 1
|a|+ 1

, 2,
2|a|

|a|2 − 1

)
∈ A.

Using the strategy presented above, we can iterate the construction τ times. In this case it is less
obvious to show that the Lebesgue measure is invariant with respect to the map Ψ defined from Γ as in
(15). To show this observe preliminarily that, if we assume that Γ(x) = x for all x ∈ J , then

lim
n→∞

Γn(x) = ΓT(I,J)(x)(x), for almost all x ∈ I

which implies that Γn(x) converges to ΓT(I,J)(x)(x) in distribution. Observe moreover that, if the density
function fn of the random variable Γn(x) is of the form

fn(a) =
{

αn if a ∈ J
βn if a ∈ I \ J,

then also fn+1 has the same structure with αn+1 = 2βn/|a|+ αn and βn+1 = βn/|a|. This implies that

lim
n→∞

fn(a) =
{

1/ε if a ∈ I1

0 if a ∈ I0 \ I1

from which we can argue that the Lebesgue measure is invariant with respect to the map Ψ.
These facts allow us to obtain a sequence of triples

(( |a|+ 1
|a| − 1

)τ

, 2τ,
2|a|

|a|2 − 1
τ

)
∈ A, τ ∈ N.

Making the change of variable

C =
( |a|+ 1
|a| − 1

)τ

, τ =
log C

log(|a|+ 1)− log(|a| − 1)

we obtain

N/|a| =
2
|a|

log C

log(|a|+ 1)− log(|a| − 1)

T =
2|a|

|a|2 − 1
log C

log(|a|+ 1)− log(|a| − 1)

These expressions motivate the fact that this this quantized feedback is called logarithmic quantizer.
The strategy obtained in this way coincides with the one proposed in [7, 9] which yields a Lyapunov
stability.

4.3 Chaotic quantized feedback strategy

In [9] another possible quantized feedback yielding almost stability has been proposed. This control
strategy exploits the chaotic behavior of the state evolution inside I = [−1, 1] produced by the feedback
map

k0(x) := −(2h + 1) for
2
a
h < x ≤ 2

a
(h + 1), (24)

when we have that |a| ≥ 2. In this way we have that, for almost every initial condition x0, the state
evolution xt is maintained inside the interval I and is dense in this interval. For this reason xt will visit
the interval J = [−ε, ε]. Therefore, if we modify this feedback map in J as follows

k(x) =
{

k0(x) if x ∈ I \ J
k1(x) if x ∈ J

(25)
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Figure 3: The map Γ associated with the quantized feedback defined in (25).

where k1(x) is any quantized feedback making J invariant (take for instance k1(x) = εk0(x/ε)) we obtain
that the state will move chaotically inside I till it will enter the interval J and there it will be entrapped.
In this way we obtain a feedback map requiring

N = d|a|e

quantization intervals. The closed loop map Γ(x) is shown in Figure 3 in case a = 2.
In this case the evaluation of the expected entrance time can be done using Markov chain techniques.

Assume that ε = 2−n. It is clear that, for evaluating the expected entrance time, we can refer to the
system with feedback k0(x). Define the sets Ii := [−i2−n,−(i−1)2−n]∪ [(i−1)2−n, i2−n], i = 1, . . . , 2n.
In this way we have that J = I1. Assuming that that initial state x0 is uniformly distributed in I, we
can argue that

P[x0 ∈ Ii] = 2−n.

The initial distribution is described by the row vector

π := 2−n [ 1 1 · · · 1 1 ] ∈ R1×2n

.

Assuming that the iterated state xt is uniformly distributed in each quantization interval Ii, then the
structure of the closed loop map Γ0(x) = ax + k0(x) ensures that also the updated state xt+1 = Γ0(xt)
will be uniformly distributed in each quantization interval. Moreover we have that

P[xt+1 ∈ Ij |xt ∈ Ii] = Πij ,
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where Πij is the i, j-element of the matrix

Π =
1
2




0 0 0 0 · · · 0 0 1 1
0 0 0 0 · · · 1 1 0 0
...

...
...

...
. . .

...
...

...
...

0 0 1 1 · · · 0 0 0 0
1 1 0 0 · · · 0 0 0 0
1 1 0 0 · · · 0 0 0 0
0 0 1 1 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 1 1 0 0
0 0 0 0 · · · 0 0 1 1




∈ R2n×2n

.

Then (see [13]) the expected first entrance time in the state 1 is given by the formula

T = E(T(I,J)) =
d

dz
w(z)|z=1 ,

where

w(z) :=
πΠ(z)e1

eT
1 Π(z)e1

and where Π(z) :=
∑

n≥0 Πnzn and e1 := [1 0 · · · 0]T . Since πΠ = π, then

πΠ(z) :=
1

1− z
π.

It can be seen that
eT
1 Π(z)e1 = 1 + 2−n zn

1− z
,

obtaining in this way

w(z) =
1

zn + (1− z)2n

and
T =

d

dz
w(z)|z=1 = 2n − n .

In this way we obtained the triple
(2n, 2, 2n − n) ∈ A .

Using the strategy presented above we can iterate this construction τ times. It can be shown that also
in this case the Lebesgue measure is invariant with respect to the closed map Ψ defined from Γ as in
(15). To show this we use the same kind of reasoning used in the previous subsection. Again, by defining
Γ in such a way that Γ(x) = x for all x ∈ J , we have that the random variable Γn(x) converges to
ΓT(I,J)(x)(x) in distribution. Observe moreover that, if the density function fn of the random variable
Γn(x) is constant in each quantization interval Ii, then it can be shown that also fn+1 has the same
property. This implies that also the limit density will be a function which is constant in each set Ii and
in particular in J . From this we can argue that the Lebesgue measure is invariant with respect to the
map Ψ. These facts allow us to obtain a sequence of triples

(2τn, τ2, τ2n − τn) ∈ A, n, τ ∈ N.

The previous reasoning can be extended to any situation in which |a| is an integer. In this case it can
be obtained sequence of triples

(|a|τn, τ |a|, τ |a|n − τn) ∈ A, n, τ ∈ N.

17



which provides a family of quantized feedbacks parameterized by the two integers τ, n. We are mainly
interested in understanding what asymptotic behavior can be obtained for N and T as C →∞. To this
aim observe that

T
N
|a|C

|a|
N

= 1− n

|a|n ∈ [1− 1
e log |a| , 1] .

Making the change of variable

C = |a|τn, n =
log C

τ log |a| (26)

we obtain that

N/|a| = τ

T = τC
1
τ − log C

log |a|
where τ is any function of C that, by (26), can be chosen arbitrarily subject to the fact that τ(C)/ log C
is bounded from above. If in particular τ is fixed, we obtain

N/|a| = τ

T ∼ τC
1
τ .

If instead we think of τ as a possible function of C, we can distinguish the case when τ(C)/ log C → 0
and the case when τ(C) ∼ K log C. In the first case we have that

T ∼ N
|a|C

|a|
N (27)

and moreover N/ log C → 0, namely a sublogarithmic growth of the number of quantization intervals,
while the expected entrance time have a superlogarithmic growth T/ log C →∞. In the second situation
when τ(C) ∼ K log C we have that both N and T grow logarithmically in C. More precisely, we have
that

N/|a| = K log C

T =
(
Ke1/K − 1

log |a|
)

log C
(28)

Chaotic stabilizers can also be considered for non integers slopes a. Some preliminary results on this
case have been obtained in [9]. In [8] the following more refined result is proved.

Theorem 1 Let a be such that |a| > 2, I = [−1, 1] and J = [−ε, ε], where 0 < ε < 1. There exists an
almost (I, J)-stabilizing quantized feedback k : I → R such that

N = d|a|e+ 1
T ≤ KC,

where K is a positive constant only depending on a.

Remark: The following table summarizes the properties of the different quantized feedback strategies.

N/|a| T

τ steps deadbeat quantizer τC
1
τ τ

Logarithmic quantizer
2
|a|

log C

log(|a| − 1)− log(|a|+ 1)
2|a|

|a|2 − 1
log C

log(|a| − 1)− log(|a|+ 1)

τ steps chaotic quantizer τ τC
1
τ
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transient
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performance

Figure 4: The qualitative relations between the parameters |a|, N , C and T . The parameter C describes
the steady state performance, the parameter 1/T describes the transient performance, the curves de-
scribes the trade-off between these two parameters for fixed N and |a|. Different curves refer to different
values of N and |a|.

This table highlights the relations between the parameters |a|, N , C and T . In all cases it is
possible to see that the steady state performance parameter C and transient performance parameter T
are conflicting, namely, for fixed |a| and N , an increasing value of C implies an increasing value of T
and vice versa. Moreover, both the performance parameters are improved when increasing N and are
worsened when increasing |a|. A qualitative description of the relations between the parameters |a|, N ,
C and T is given in Figure 4.

This suggests that looking for the stabilizing quantized feedback with minimal quantization intervals
is a rather naive approach to the quantized control problem. Indeed, in case we don’t consider the
transient performance described by the parameter T , the optimal strategy would be clearly the chaos
based one. However, this provides only a partial view of the problem, since in fact the different strategies
provide closed loop systems with different trade-off relations between the performance parameters T and
C.

5 Bounds of the performance of a quantized feedback system

In this section we will present some general bounds involving the parameters C(Γ),N(Γ),T(Γ). These
will be obtained by means of a symbolic representation of the dynamical system and using basic com-
binatorial arguments.

5.1 Symbolic descriptions of the dynamical system

Let Γ : I → I be a piecewise affine map with fixed slope a. Let J ⊆ I be another almost invariant
interval. We can write

J = J1 ∪ J2 ∪ · · · ∪ JM , I = I1 ∪ I2 ∪ · · · ∪ IN ∪ J ,
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where the Ih’s and the Jl’s are disjoint open intervals on which Γ is affine. In the sequel we will use
the shorthand notation C = C(Γ), N = N(Γ) and T = T(Γ). In this section we will always consider Γ
defined on the set Ω as defined in (4). Define the finite sets

I = {I1, I2, . . . IN}, J = {J1, J2, . . . JM}

and define a map ψ : Ω → (I ∪ J )N by

ψ(x)n = ωn if Γn(x) ∈ ωn . (29)

Notice that the above map is well defined by the way in which Ω has been defined. Consider the language
Σ∗(Γ) over the alphabet I∪J which is the subset of (I∪J )∗ consisting of all the finite words appearing
in the infinite sequences in the range of ψ. If |a| > 1, then Γ is locally expanding and, as a consequence,
the map ψ is injective. Indeed, it follows from (29) that x ∈ ω0 ∩ · · · ∩Γ−nωn for every n. On the other
hand it follows from the simple bound (33) presented below that the length of this interval goes to 0
for n → +∞, this yields injectivity. This implies that all the dynamical and statistical properties of
the map Γ can be read out from the language Σ∗(Γ). Notice, for further use, the following properties
of simple verification:

1. ω0ω1 · · ·ωn ∈ Σ∗(Γ) if and only if ω0 ∩ Γ−1ω1 ∩ . . . ∩ Γ−nωn 6= ∅.
2. For all ω0ω1 · · ·ωn ∈ Σ∗(Γ) the map Γn+1 is affine on the interval ω0 ∩ Γ−1ω1 ∩ . . . ∩ Γ−nωn.

3. If ω0ω1 · · ·ωn and ν0ν1 · · · νm are in Σ∗(Γ) and none of the two happens to be the initial subword
of the other, then the two intervals ω0 ∩ Γ−1ω1 ∩ . . . ∩ Γ−nωn and ν0 ∩ Γ−1ν1 ∩ . . . ∩ Γ−mνm are
disjoint.

As we mentioned above, language Σ∗(Γ) contains all the dynamical and statistical properties of the
map Γ. In particular this is true for the expected entrance time. Indeed, as the following lemma shows,
the expected entrance time can be estimated by knowing how the number of words in Σ∗(Γ) grows
with respect to their length. More precisely, denote by γn the number of distinct words in sublanguage
Σ∗(Γ) ∩ I∗ of length n, i.e.,

γn := #{ω0ω1 · · ·ωn−2ωn−1 ∈ Σ∗(Γ) ∩ I∗} . (30)

Then we have the following result.

Lemma 2 Given any n ∈ N we have that

P[T(I,J) = n] ≤ P[J ]
γn

|a|n (31)

P[T(I,J) ≥ n] ≥ P[I \ J ]− P[J ]
n−1∑

k=1

γk

|a|k . (32)

Proof As mentioned above, the family of intervals of the form

ω0 ∩ Γ−1(ω1) ∩ · · · ∩ Γ−(n−1)(ωn−1) ∩ Γ−n(ωn) ω0, . . . , ωn−1 ∈ I, ωn ∈ J

constitute a partition of the set of points of I which end inside J in exactly n steps. Moreover, since Γn

is affine on each of these intervals, it follows that

P[ω0 ∩ Γ−1(ω1) ∩ · · · ∩ Γ−(n−1)(ωn−1) ∩ Γ−n(ωn)] ≤ P[J ]
|a|n . (33)

Therefore, if we let

γ̃n := #{ω0ω1 · · ·ωn−2ωn−1 ∈ Σ∗(Γ) | ω0ω1 · · ·ωn−2ωn−1 ∈ I∗ and ωn−1 ∈ J } ,
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we can argue that

P[T(I,J) = n] ≤ P[J ]
γ̃n+1

|a|n ≤ P[J ]
γn

|a|n ,

where we used the fact that for all n ≥ 1 have that γ̃n+1 ≤ γn.
We prove now the second assertion by induction on n. The assertion is trivial for n = 1. Assume by

induction that the assertion holds for n and let us prove it for n + 1. We can now write

P[T(I,J) ≥ n + 1] = P[T(I,J) ≥ n]− P[T(I,J) = n] ≥ P[T(I,J) ≥ n]− P[J ]
γn

|a|n

≥ P[I \ J ]− P[J ]
n−1∑

k=1

γk

|a|k − P[J ]
γn

|a|n = P[I \ J ]− P[J ]
n∑

k=1

γk

|a|k .

Notice that P[J ] = C−1. This implies that formula (32) can be rewritten as

P[T(I,J) ≥ n] ≥ 1− C−1 − C−1
n−1∑

k=1

γk

|a|k . (34)

from which we can argue that for any arbitrarily fixed n ∈ N we have that

T = E(T(I,J)) =
+∞∑
n=1

P[T(I,J) ≥ n] ≥
n∑

n=1

P[T(I,J) ≥ n] ≥ n(1− C−1)− C−1
n∑

n=1

n−1∑

k=1

γk

|a|k . (35)

If we can establish upper bounds on γk, through (35) we can thus achieve lower bounds on T. The
following theorem provides the most relevant contribution of this paper, since it presents a bound on
the growth of γk depending on the number of quantization intervals N. The proof of this theorem is
very long and it will be presented in the last section.

Theorem 2 Assume that |a| > 2. Then

γk

|a|k ≤ 2

[
r∧k∑
s=1

(
k − 1
s− 1

) (r

s

)(s

r

)s
](

NM

k ∧ NM
e

)k∧NM
e

∀k ≥ 1 , (36)

where r ∈ {1, . . . ,N} is independent of k, but may depend on the specific system, while M depends only
on |a|.

Remark: In symbolic dynamics [17] the set Ψ(Ω) (where the closure is to be intended in the product
topology of (I ∪ J )N) is called shift. It can be shown that its topological entropy is log |a|. As a
consequence, for every ε > 0, there exists Mε > 0 such that

γk ≤ Mε(|a|+ ε)k (37)

This type of estimate is of no use for our purposes for two reasons: first because the geometric growth
rate |a| + ε causes a too quick growth in the double summation in (35), making impossible any useful
estimate. Second, because it is not clear how explicitly Mε depends on the map Γ. In fact, the estimate
(36) is uniform with respect to all the possible piecewise affine maps having slope a and N quantization
intervals. Notice moreover that for large k (k ≥ max{N,N/Me}), (36) can be written as

γk ≤ (Mk)N|a|k

where M is a suitable constant only depending on a. This is clearly a much better estimate than (37).

Using Theorem 2 we obtain a lower bound estimate on T.

21



Corollary 1 For any n ∈ N we have that

T ≥ n(1− C−1)− 2C−1

[
r∧n−1∑

s=1

(
n

s + 1

) (r

s

)(s

r

)s
] (

NM

n− 1 ∧ NM
e

)n−1∧NM
e

. (38)

Proof From Theorem 2 we can argue that

n−1∑

k=1

γk

|a|k ≤ 2
n−1∑

k=1

r∧k∑
s=1

(
k − 1
s− 1

) (r

s

)(s

r

)s
(

NM

k ∧ NM
e

)k∧NM
e

= 2
r∧n−1∑

s=1

n−1∑

k=s

(
k − 1
s− 1

) (r

s

)(s

r

)s
(

NM

k ∧ NM
e

)k∧NM
e

≤ 2
r∧n−1∑

s=1

(r

s

) (s

r

)s n−1
max
k=s





(
NM

k ∧ NM
e

)k∧NM
e





n−1∑

k=s

(
k − 1
s− 1

)

= 2

[
r∧n−1∑

s=1

(
n− 1

s

) (r

s

)(s

r

)s
](

NM

n− 1 ∧ NM
e

)n−1∧NM
e

,

(39)

where we used the identity (88) and the bound (93) of the Appendix.
From (39) we can further obtain

n∑
n=1

n−1∑

k=1

γk

|a|k ≤ 2
n∑

n=1

r∧n−1∑
s=1

(
n− 1

s

) (r

s

)(s

r

)s
(

NM

n− 1 ∧ NM
e

)n−1∧NM
e

= 2
r∧n−1∑

s=1

n∑
n=s+1

(
n− 1

s

) (r

s

)(s

r

)s
(

NM

n− 1 ∧ NM
e

)n−1∧NM
e

≤ 2
r∧n−1∑

s=1

(r

s

)(s

r

)s n
max

n=s+1





(
NM

n− 1 ∧ NM
e

)n−1∧NM
e





n∑
n=s+1

(
n− 1

s

)

= 2

[
r∧n−1∑

s=1

(
n

s + 1

) (r

s

)(s

r

)s
](

NM

n− 1 ∧ NM
e

)n−1∧NM
e

,

where again we used the identity (88) and the bound (93). From this (38) follows by a simple substitu-
tion.

In the following subsections we will exploit the previous result to obtain bounds describing the
trade-off between the number of quantization intervals N and the expected entrance time T for a
given almost (I, J)-stable piecewise affine map Γ with contraction rate C. Three situations will be
distinguished. First, we will consider the regime when N/ log C is sufficiently small. It contains the
case when N/ log C → 0, namely the regime of sublogarithmic growth of N in C: the corresponding
expected entrance time T will exhibit a superlogarithmic growth in C. The second case considered will
be a sort of a dual of the first one, since we will assume that T/ log C is sufficiently small. It contains
the case when T/ log C → 0, namely the regime of sublogarithmic growth of T in C: this time the
corresponding number of quantization intervals N will exhibit a superlogarithmic growth in C. From
these two cases we will then be able to study in detail a third situation, the logarithmic regime, which
is when both N and T exhibit a logarithmic growth. In this case we will establish quantitative bounds
relating the ratios N/ log C and T/ log C.

22



5.2 The regime of sublogarithmic growth of N in C.

In this subsection we will assume that N/ log C is small enough. In this case it is convenient to proceed
the estimates in (38) as follows

r∧n−1∑
s=1

(
n

s + 1

) (r

s

)(s

r

)s

≤
r∧n−1∑

s=0

(
n

s + 1

) (r

s

)
=

(
n + r

r + 1

)
=

n

r + 1

(
n + r

r

)

≤ 1√
π

n

r + 1

(
1 +

n

r

)r

er ≤ n

(
1 +

n

N

)N

eN ,

where we used the bound (91), the fact that 2
(r+1)

√
π
≤ 1 and that

(
1 + n

r

)r
er is an increasing function

in r. We obtain in this way

T ≥ n

[
1− C−1 −

(
1 +

n

N

)N

ANC−1

]
, (40)

where A := e(
M
e +1). We are now ready to prove the following result:

Theorem 3 There exist K1 > 0, β1 > 0 and C1 > 1 such that

C ≥ C1 and
N

log C
≤ β1 =⇒ T ≥ K1NC1/N . (41)

Proof If in (40) we choose n =
⌈
DNC1/N

⌉
for some constant D > 0 which will be fixed later, we have

that
T

NC1/N
≥

⌈
DNC1/N

⌉

NC1/N


1− C−1 −

(
1 +

⌈
DNC1/N

⌉

N

)N

ANC−1




≥ D

[
1− C−1 −

(
1 +

DNC1/N + N
N

)N

ANC−1

]

= D

[
1− C−1 −

(
2C−1/N + D

)N

AN

]
.

(42)

Assume now that N ≤ β log C for some β which will be chosen later. This implies that

(2C−1/N + D)A ≤ (2e−1/β + D)A

By choosing β and D small enough, we obtain that (2e−1/β + D)A ≤ 1/2. Let β1 and D1 be possible
solutions of the this inequality. In this situation we can argue that

T
NC1/N

≥ D1[1− C−1 − (1/2)N] ≥ D1[1/2− C−1]

and so there exist C1 > 1 and K1 > 0 such that (41) holds true.

Theorem 3 will be important for later results on the logarithmic regime. Notice moreover that the
bound established in Theorem 3 resembles the relation (27) between the expected entrance time and the
number of quantization intervals that can be obtained when using the nested chaotic scheme proposed
in Subsection 4.3. However, there is a difference and in fact the bound provided by Theorem 3 is not
tight in this case. Consider for simplicity the case in which τ = 1 so that we have a simple chaotic
quantized feedback. In this case we have N = d|a|e quantization intervals and this, by Theorem 3, yields
the bound

T ≥ K1C
1/d|a|e.

However, this is not a good bound since we expect in this case that T ∼ C. In fact, this bound can be
improved in this particular case by using Proposition 5 that is a modification of Theorem 2 in which r
is fixed equal to 1.
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Corollary 2 There exist K1 > 0, and C1 > 1 such that

C ≥ C1 and N = d|a|e =⇒ T ≥ K1C .

Proof By Proposition 5 we can argue that

γk

|a|k ≤ 2

(
NM

k ∧ NM
e

)k∧NM
e

≤ 2e
NM

e = 2e
d|a|eM

e .

Let A := e
d|a|eM

e . Then, by (35) this implies that

T ≥ n(1− C−1)− C−12
(

n

2

)
A = n[1− C−1 − C−1(n− 1)A] .

Let n = dDCe for some constant D > 0 which will be fixed later. We have that

T
C
≥ D

[
1− C−1 − (dDCe − 1) AC−1

] ≥ D
[
1− C−1 −DA

]

and this implies the thesis.

5.3 The regime of sublogarithmic growth of T in C.

In this subsection we will assume instead that T/ log C is small enough. In this case it is convenient to
proceed the estimates in (38) as follows

r∧n−1∑
s=1

(
n

s + 1

) (r

s

)(s

r

)s

≤ 1√
π

n−1∑
s=1

(
n

s + 1

) (
1 +

r − s

s

)s

es
(s

r

)s

=
1√
π

n−1∑
s=1

(
n

s + 1

)
es ≤ 1√

π

n∑
s=0

(
n

s

)
es−1 =

1√
eπ

(1 + e)n ,

where again we used the bound (91). We thus obtain

T ≥ n(1− C−1)− C−1 2√
eπ

(1 + e)n

(
NM

n− 1 ∧ NM
e

)n−1∧NM
e

≥ n(1− C−1)− C−1An−1

(
NM

n− 1 ∧ NM
e

)n−1∧NM
e

,

(43)

where A := 2(1+e)2

e
√

π
and where the last inequality holds if n ≥ 2. We are now ready to prove the following

result.

Theorem 4 There exist K2 > 0, γ2 > 0 and C2 > 1 such that

C ≥ C2 and
dTe
log C

≤ γ2 =⇒ N ≥ K2dTeC
1
dTe . (44)

Proof We first show that we can find C ′ > 1 and γ > 0 such that

C ≥ C ′ and
dTe
log C

≤ γ =⇒ dTe ≤ NM

e
. (45)

Assume by contradiction that dTe > NM/e. Then, choosing n := dTe + 1, it follows from (35) and
(43) that

T ≥ (dTe+ 1)(1− C−1)− C−1AdTee
NM

e ≥ (dTe+ 1)(1− C−1)− C−1 (eA)dTe (46)
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which implies that

0 ≥ C(dTe −T + 1)− (eA)dTe − dTe − 1

≥ C − (eA)dTe − dTe − 1

≥ C − (eA)γ log C − γ log C − 1 = C − Cγ log eA − γ log C − 1 .

(47)

If we choose γ < (log eA)−1, it is clear that there exists C ′ > 1 such that

C − Cγ log eA − γ log C − 1 > 0

for all C ≥ C ′. For such values of C, (47) can not hold. Hence (45) must hold.
Assume now that (45) holds true and choose again n := dTe+ 1 in (43). Then we obtain

T ≥ (dTe+ 1)(1− C−1)−
(

NMA

dTe
)dTe

C−1 . (48)

Solving with respect to N, we obtain

N ≥ dTe
AM

[C(dTe−T+1)−dTe−1]1/dTe ≥ dTe
AM

[C−dTe−1]1/dTe ≥ dTe
AM

[C−γ log C−1]1/dTe . (49)

Observe finally that

lim
C→∞

C − γ log C − 1
C

= 1

which implies that for any ε > 0 there exists C ′′ > 0 such that C−γ log C−1 > (1−ε)C for all C > C ′′.
From this we can argue that

N ≥ dTe
AM

[(1− ε)C]1/dTe ≥ 1− ε

AM
dTeC1/dTe .

By letting K2 := 1−ε
AM , C2 := C ′ ∨ C ′′ and γ2 := γ we have thus proved the thesis.

Also in this case it is interesting to compare the bound provided by the previous theorem with the
relation (21) between the number of quantization intervals and the expected entrance time that can be
obtained when using the nested strategy proposed in subsection 4.1. In this case this comparison shows
that, up to a multiplication by a constant, the bound is tight.

5.4 The logarithmic regime

We have the following direct consequence of previous theorems.

Corollary 3 There exists C0 > 1 and two functions F,G : R+ → R+ which are decreasing and con-
verging to 0 at +∞, such that for all C > C0 we have that

N
log C

≥ F

( dTe
log C

)
and

dTe
log C

≥ G

(
N

log C

)
(50)

Proof Notice first that the function f :]0, 1] → R : x 7→ xe1/x is strictly decreasing and its image is
[e,+∞). Let C0 := C1 ∨ C2, where C1, C2 are the constants introduced, respectively, in Theorems 3
and 4. Define the function

F (x) =
{

1 ∧ β1 if 0 ≤ x ≤ K1f(1 ∧ β1)
f−1(x/K1) if x > K1f(1 ∧ β1) ,

where K1 and β1 are the constants provided by Theorem 3. This function is decreasing and such that
F (+∞) = 0. We want to show that, if C > C0, then

N
log C

≥ F

( dTe
log C

)
.
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If N/ log C > 1 ∧ β1, then
N

log C
> max

x∈R+
F (x) ≥ F

( dTe
log C

)

If instead N/ log C ≤ 1 ∧ β1, then by Theorem 3 we can argue that

T
log C

≥ K1
N

log C
C1/N = K1f

( dNe
log C

)

which implies that
N

log C
≥ f−1

(
T

K1 log C

)
= F

(
T

log C

)
.

In the same way it can be shown that

dTe
log C

≥ G

(
N

log C

)

where

G(x) =
{

1 ∧ γ2 if 0 ≤ x ≤ K2f(1 ∧ β1)
f−1(x/K2) if x > K2f(1 ∧ γ2) ,

where K2 and γ2 are the constants provided by Theorem 4.

Remark: The constraint provided by the previous corollary are illustrated in Figure 5 which shows
explicitly the region in which the pairs (N/ log C,T/ log C) can not belong to. Observe moreover that
the functions F (x) and G(x) in the previous corollary which determines the boundary of this region
tend to 0 as the function f(x) = xe1/x. This is in agreement with the behavior of the logarithmic regime
exhibited in the nesting of both dead-beat quantized feedbacks and of chaotic quantized feedbacks (see
(22) and (28)). This implies that, up to multiplicative constants, our bounds appear to be quite tight
and that the examples presented in Section 4 can not be improved much.

5.5 The case when |a| ≤ 2

All previous results have been obtained under the assumption |a| > 2. In fact, part of the results
presented in this subsection can be extended to the case |a| ≤ 2. Indeed, in this case, using the second
part of Theorem 6, we obtain the estimate

γk

2k
≤

[
r∧k∑
s=1

(
k + s− 1
2s− 1

) (r

s

)(s

r

)s
] (

NM

k ∧ NM
e

)k∧NM
e

By similar arguments used to deal with the case |a| > 2 we obtain

T ≥ n(1− C−1)− C−12

[
r∧n−1∑
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(
n + s

2s + 1

) (r

s

)(s

r

)s
](

NM

n− 1 ∧ NM
e

)n−1∧NM
e (

2
|a|

)n−1

for all n ∈ N. Observing that

r∧n−1∑
s=1

(
n + s

2s + 1

) (r

s

)(s

r

)s

≤ 1√
π
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s=1

(
2n− 1
2s + 1

)
es ≤ 1√

π
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(
2n− 1
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)
e2s+1 ≤ 1√

π
(1 + e)2n−1 ,

we thus obtain

T ≥ n(1− C−1)− C−1 2√
π

(1 + e)2n−1

(
NM

n− 1 ∧ NM
e

)n−1∧NM
e (

2
|a|

)n−1

≥ n(1− C−1)− C−1An−1

(
NM

n− 1 ∧ NM
e

)n−1∧NM
e

,
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Figure 5: The grey region in this figure represents the set in which the pairs (N/ log C,T/ log C) can
not belong to.

where A := 4(1+e)3

|a|√π
and where the last inequality holds if n ≥ 2. The previous inequality looks exactly

like (43). This immediately implies that Theorem 4 holds true also for |a| ≤ 2. We can instead only
recover a part of Corollary 3: (50) remains true for small values of γ, as it is easy to see from the proof
we gave.

5.6 Stabilizing quantized feedbacks

In this section we will show that quantized control strategies yielding stability or even almost stability,
but with only a countable subset of points never entering inside J , require a number of quantization
intervals which grows at least logarithmically in C. The result is based on Theorem 7 which in the last
section.

Theorem 5 If Γ is almost (I, J)-stable and if the set of points in I never entering inside J is at most
countable, then there exists β > 0, only depending on a, such that

N/ log C ≥ β

for all C > 1.

Proof Using (87) we can argue that

n−1∑

k=1

γk

|a|k ≤ e
N
e

+∞∑

k=0

(
k + 2N− 1

2N− 1

)(
2
|a|

)k

=
e

N
e

(
1− 2

|a|
)2N

=
(

e1/e|a|2
(|a| − 1)2

)N

.

By letting A := e1/e|a|2
(|a|−1)2 , from (34) we can argue that

P[T(I,J) ≥ n] ≥ 1− C−1 −ANC−1 ≥ 1− C−1(1 + A)N . (51)
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Since Γ is almost stable, by Proposition 1 we have that E(T(I,J)) < +∞ which implies that

lim
n→∞

P[T(I,J) ≥ n] = 0 .

From this and from (51) we can argue that 1− C−1(1 + A)N ≤ 0 which implies that

N ≥ log C

log(1 + A)
.

6 Estimation of paths in a class of weighted graphs

For proving our main result, namely Theorem 2, we introduce a class of weighted graphs and we propose
a method for bounding the number of paths on this graphs. In the last section we will show how this
bound can be used for proving Theorem 2. We use this strategy which consider this graph abstraction
because the general result we are going to prove is useful to deal with more general situations, such as
quantized controller with memory or the case in which the state of the system is multidimensional (see
[10]).

Consider a direct graph G on a vertex set X (which is not necessarily finite or countable). For any
choice of X1, . . . ,Xk ⊂ X we define Fk[x1 ∈ X1, . . . ,xk ∈ Xk] to be the set of paths x1 · · ·xk ∈ X ∗ on
the graph G such that x1 ∈ X1, . . . ,xk ∈ Xk.

Assume the the graph G has the following structure. We assume there exist a finite partition

X = X1 ∪ X2 ∪ · · · ∪ XN ,

a subset XP ⊆ X and a function q : X →]0, 1[ with the following properties:

(A) There exist numbers q1, . . . , qN ∈]0, 1[ such that

q(x) ≤ qi , ∀x ∈ Xi

q(x) = qi , ∀x ∈ XP,i := XP ∩ Xi .

(B) There exist positive numbers D1 and α1 such that, for every x′ ∈ X , X ′′ ⊆ X , and k ≥ 2,

#Fk[x1 = x′ ,x2 , . . . ,xk−1 ∈ X ,xk ∈ X ′′] ≤ D1
q(x′)

infx′′∈X ′′ q(x′′)
αk−2

1 .

(C) There exist positive numbers D2 and α2 such that, for every x′ ∈ X , i ∈ {1, . . . ,N}, and k ≥ 2,

#Fk[x1 = x′ ,x2 , . . . ,xk−1 ∈ X \ XP ,xk ∈ Xi] ≤ D2α
k−2
2 .

Then, if we define

γk,h = sup
x′∈XP,h

#Fk[x1 = x′,x2 , . . . ,xk ∈ X ], h = 1, . . . ,N

γk =
N∑

h=1

γk,h ,

(52)

we have the following result.

Theorem 6 We have the following bounds:

(1) If α1 > α2, then

γk

αk
1

≤ 2

[
r∧k∑
s=1

(
k − 1
s− 1

) (r

s

) (s

r

)s
](

NM

k ∧ NM
e

)k∧NM
e

∀k ≥ 1 . (53)
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(2) If α1 ≤ α2, then

γk

αk
2

≤
[

r∧k∑
s=1

(
k + s− 1
2s− 1

) (r

s

)(s

r

)s
](

NM

k ∧ NM
e

)k∧NM
e

∀k ≥ 1 . (54)

The constant r ∈ {1, . . . ,N} is independent of k, but may depend on the specific graph, while M depends
only on the constants D1, D2, α1, α2.

The proof of the previous theorem is quite involved. For this reason we prefer to divide it into
various steps.

Remark As specified in the previous theorem M depends only on the constants D1, D2, α1, α2 and
r depends on the the specific graph. These conditions can be exchanged and the same bounds can be
shown to hold true in which instead r depends only on the constants D1, D2, α1, α2 and M depends on
the the specific graph. However, this exchange makes the bounds useless in general. Only in the specific
situation considered in Proposition 5 this point of view yields some advantages.

6.1 The proof of Theorem 6: hierarchies of paths

Assume with no loss of generality that the subsets X1,X2, . . . ,XN are ordered in such a way that

q1 ≥ q2 ≥ . . . ≥ qN .

For any choice of integers
0 = N0 < N1 < · · · < Nr−1 < Nr = N

we can partition XP into the subfamilies

X 1
P := {XP,N0+1, . . . ,XP,N1} , X 2

P := {XP,N1+1, . . . ,XP,N2} , . . . , X r
P := {XP,Nr−1+1, . . . ,XP,Nr} (55)

and consider moreover

X l+
P :=

r⋃

j=l

X j
P

X l := (X \ XP ) ∪ X l
P

X l+ := (X \ XP ) ∪ X l+
P .

For each k ∈ N, h = 1, . . . ,N, and l = 1, . . . , r, r + 1, define

γk,h,l := sup
x′∈XP,h

#Fk[x1 = x′,x2, . . . ,xk ∈ X l+] .

From these definitions it follows that X 1+
P = XP , X 1+ = X , and X (r+1)+ := X \ XP . This implies that

γk,h,1 = γk,h.
We present now two bounds on γk,h,l which will be used in the sequel. The first bound is based

on the decomposition of the paths in Fk[x1 = x′,x2, . . . ,xk ∈ X l+] according to the last exit from X l
P

among the indices j = 2, . . . , k:

Fk[x1 = x′,x2, . . . ,xk ∈ X l+] =



k⋃

j=2

Nl⋃

s=Nl−1+1

Fk[x1 = x′,x2, . . . ,xj−1 ∈ X l+,xj ∈ XP,s,xj+1, . . . ,xk ∈ X (l+1)+]





⋃

⋃
Fk[x1 = x′,x2, . . . ,xk ∈ X (l+1)+] .
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Applying Property (B) it follows that for all l = 1, . . . , r

γk,h,l ≤
k∑

j=2

Nl∑

s=Nl−1+1

sup
x′∈XP,h

#Fj [x1 = x′,x2, . . . ,xj−1 ∈ X l+,xj ∈ XP,s]·

· sup
x′′∈XP,s

#Fk−j+1[xj = x′′,xj+1, . . . ,xk ∈ X (l+1)+]+

+ sup
x′∈XP,h

#Fk[x1 = x′,x2, . . . ,xk ∈ X (l+1)+]

≤
k∑

j=2

Nl∑

s=Nl−1+1

D1
qh

qs
αj−2

1 γk−j+1,s,l+1 + γk,h,l+1 .

(56)

The second bound is based on the decomposition of the paths in Fk[x1 = x′,x2, . . . ,xk ∈ X l+]
according to the first entrance in X l+

P among the indices j = 2, . . . , k:

Fk[x1 = x′,x2, . . . ,xk ∈ X l+] =



k⋃

j=2

N⋃

s=Nl−1+1

Fk[x1 = x′,x2, . . . ,xj−1 ∈ X \ XP ,xj ∈ XP,s,xj+1, . . . ,xk ∈ X l+]





⋃

⋃
Fk[x1 = x′,x2, . . . ,xk ∈ X \ XP ] .

Applying property (C) it follows that

γk,h,l ≤
k∑

j=2

N∑

s=Nl−1+1

sup
x′∈XP,h

Fj [x1 = x′,x2, . . . ,xj−1 ∈ X \ XP ,xj ∈ XP,s]·

· sup
x′′∈XP,s

Fk−j+1[xj = x′′,xj+1, . . . ,xk ∈ X l+]+

+ sup
x′∈XP,h

Fk[x1 = x′,x2, . . . ,xk ∈ X \ XP ]

≤
k∑

j=2

N∑

s=Nl−1+1

D2α
j−2
2 γk−j+1,s,l + D2α

k−1
2 .

(57)

Notice that the previous bound holds true for l = 1, . . . , r, r + 1.
Define now

δk,l :=
N∑

h=Nl−1+1

γk,h,l, δ̃k,l :=
Nl−1∑

h=Nl−2+1

γk,h,l l = 1, . . . , r, r + 1

which imply that δk,r+1 = 0 for all k ∈ N. Observe that from (56) we can argue that

δk,l ≤
N∑

h=Nl−1+1




k∑

j=2

Nl∑

s=Nl−1+1

D1
qh

qs
αj−2

1 γk−j+1,s,l+1 + γk,h,l+1


 ≤

≤
k∑

j=2

D1

∑N
h=Nl−1+1 qh

qNl

αj−2
1

Nl∑

s=Nl−1+1

γk−j+1,s,l+1 +
Nl∑

h=Nl−1+1

γk,h,l+1 +
N∑

h=Nl+1

γk,h,l+1 ≤

≤ D1βl

k∑

j=2

αj−2
1 δ̃k−j+1,l+1 + δ̃k,l+1 + δk,l+1 = D1βl

k−2∑

j=0

αj
1δ̃k−j−1,l+1 + δ̃k,l+1 + δk,l+1 ,

where we define

βl :=

N∑

h=Nl−1+1

qh

qNl

. (58)
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On the other hand (57) implies that

δ̃k,l ≤ D2(Nl−1 −Nl−2)




k∑

j=2

αj−2
2 δk−j+1,l + αk−1

2


 ,

which, using the convention
δ0,l = 1 l = 1, . . . , r, r + 1 ,

is equivalent to

δ̃k,l ≤ D2∆Nl−1

k+1∑

j=2

αj−2
2 δk−j+1,l = D2∆Nl−1

k−1∑

j=0

αj
2δk−j−1,l ,

where we defined ∆Nl := Nl −Nl−1.
Summarizing we have the following two inequalities, holding for k ≥ 1

δk,l ≤ D1βl

k−2∑

j=0

αj
1δ̃k−j−1,l+1 + δ̃k,l+1 + δk,l+1 l = 1, . . . , r

δ̃k,l ≤ D2∆Nl−1

k−1∑

j=0

αj
2δk−j−1,l l = 1, . . . , r, r + 1 .

(59)

Define now the sequences ηk,l, η̃k,l for k = 0, 1, 2, . . . and l = 1, . . . , r, r+1 by letting ηk,r+1 = δk,r+1 = 0
for k = 0, 1, . . ., and satisfying, for every k ≥ 0, the following recursive relations

ηk,l = D1βl

k−2∑

j=0

αj
1η̃k−j−1,l+1 + η̃k,l+1 + ηk,l+1

η̃k,l = D2∆Nl−1

k−1∑

j=0

αj
2ηk−j−1,l .

(60)

Notice that, from the above recursive relations it follows that η0,l = 1 for every l. This implies,
in particular, that δk,l ≤ ηk,l for every k and l. In the sequel we will estimate ηk,l by using the zeta
transforms formalism.

Let

ηl(z) :=
+∞∑

k=0

ηk,lz
k, η̃l(z) :=

+∞∑

k=0

η̃k,lz
k .

Then by some standard manipulations from (60) we obtain

ηl(z) = D1βl
z

1− α1z
η̃l+1(z) + η̃l+1(z) + ηl+1(z)

η̃l(z) = D2∆Nl−1
z

1− α2z
ηl(z)

(61)

which yields

ηl(z) =
{[

D1βl
z

1− α1z
+ 1

]
D2∆Nl

z

1− α2z
+ 1

}
ηl+1(z) .

By iterating this formula we obtain

η1(z) =
r∏

l=1

{[
D1βl

z

1− α1z
+ 1

]
D2∆Nl

z

1− α2z
+ 1

}
, (62)

where we used the fact that ηr+1(z) = 1.
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6.2 The proof of Theorem 6: combinatorial bounds

We now want to estimate the coefficients ηk,1 of η1(z). We recall that γk = δk,1 ≤ ηk,1. In order to
obtain such bounds we will first need to work out some combinatorics.

Bounds on the coefficients of elementary symmetric polynomials

Consider the following polynomial in the indeterminates x and y

p(x, y) :=
r∏

l=1

{[βlx + 1] αly + 1} =
r∑

s=0

s∑
σ=0

p̄σ,sx
σys . (63)

The aim of this part of the section is to determine bounds on the coefficients p̄σ,s if we assume that

r∑

l=0

αl ≤ α,

r∑

l=0

βl ≤ β .

Consider preliminarily the polynomial

r∏

l=1

{αly + 1} =
r∑

s=0

pr
s(α1, . . . , αr)ys . (64)

The polynomial pr
s(α1, . . . , αr) are called elementary symmetric polynomials [11] and they can be ex-

pressed by the formula

pr
s(α1, . . . , αr) =

∑

1≤l1<···ls≤r

s∏

j=1

αlj .

We have the following first elementary result.

Lemma 3 Assume that
∑r

l=0 αl ≤ α. Then

pr
s(α1, . . . , αr) ≤

(r

s

)(α

r

)s

. (65)

Proof We will actually prove that bound (65) holds true and it is attained when αi = α/r for all
i = 1, . . . , r. For r = 2 it can be proven directly. For the general case, it is sufficient to notice that

pr
s(α1, α2, . . . , αr) =

= pr−2
s (α3, . . . , αr) + p2

1(α1, α2)pr−2
s−1(α3, . . . , αr) + p2

2(α1, α2)pr−2
s−2(α3, . . . , αr)

≤ pr−2
s (α3, . . . , αr) + p2

1

(
α1+α2

2 , α1+α2
2

)
pr−2

s−1(α3, . . . , αr) + p2
2

(
α1+α2

2 , α1+α2
2

)
pr−2

s−2(α3, . . . , αr)

= pr
s

(
α1+α2

2 , α1+α2
2 , α3, . . . , αr

)
.

We come back to the problem of finding bounds on the coefficients p̄σ,s of the polynomial (63).

Lemma 4 For every 1 ≤ s ≤ r and 0 ≤ σ ≤ s, the following bound holds

p̄σ,s ≤
( s

σ

)(
β

s

)σ (r

s

)(α

r

)s

. (66)

Proof Observe first that

p(x, y) =
r∏

l=1

{[βlx + 1] αly + 1} =
r∑

s=0

pr
s(α1(1 + β1x), . . . , αr(1 + βrx))ys .
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Moreover we have that

pr
s(α1(1 + β1x), . . . , αr(1 + βrx)) =

∑

1≤l1<···ls≤r

s∏

j=1

αlj

s∏

j=1

(1 + βlj x) =

=
∑

1≤l1<···ls≤r

s∏

j=1

αlj

s∑
σ=0

ps
σ(βl1 , . . . , βls)x

σ

from which we can argue that, using Lemma 3,

p̄σ,s =
∑

1≤l1<···ls≤r

ps
σ(βl1 , . . . , βls)

s∏

j=1

αlj ≤
( s

σ

)(
β

s

)σ ∑

1≤l1<···ls≤r

s∏

j=1

αlj =

=
( s

σ

) (
β

s

)σ

pr
s(α1, . . . , αr) ≤

( s

σ

) (
β

s

)σ (r

s

)(α

r

)s

.

To apply the result provided by the previous lemma to our problem, we need to have bounds on∑r
l=1 ∆Nl and

∑r
l=1 βl. While it is evident that

r∑

l=1

∆Nl = N ,

it is less clear how to bound the other sum. This will depend indeed on the way the subfamilies X i
P are

selected. It follows from (58) that

βl =
r−l∑

k=0

Nl+k∑

h=Nl+k−1+1

qh

ql
≤

r−l∑

k=0

∆Nl+k

qNl+k−1+1

qNl

=
qNl−1+1

qNl

r−l∑

k=0

∆Nl+k

qNl+k−1+1

qNl−1+1
.

(67)

Choose inductively the numbers Nl as follows

Nl = max
{

k ≥ Nl−1 + 1 | qk ≥ 1
2
qNl−1+1

}
. (68)

In this way we have that
qNl−1+1

qNl

≤ 2
qNl+k−1+1

qNl−1+1
≤ 2−k .

Inserting in (67) we thus obtain

βl ≤ 2
r−l∑

k=0

∆Nl+k2−k ∀l = 1, . . . , r (69)

which implies that

r∑

l=1

βl ≤ 2
r∑

l=1

r−l∑

k=0

∆Nl+k2−k = 2
r−1∑

k=0

(
r−k∑

l=1

∆Nl+k

)
2−k ≤ 2N

r−1∑

k=0

2−k ≤ 4N .

Hence it follows from Lemma 3 that in our case the coefficients p̄σ,s can be bounded as

p̄σ,s ≤
(r

s

)( s

σ

)(
ND2

r

)s (
4ND1

s

)σ

. (70)

Bounds on the coefficients of the power series
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Define the coefficients aσ,s
k by

(
1

1− α1z

)σ (
1

1− α2z

)s

=
+∞∑

k=0

aσ,s
k zk . (71)

The aim of this part of the section is to determine bounds on the coefficients aσ,s
k . Simple combinatorial

manipulation shows that

aσ,0
k =

(
k + σ − 1

σ − 1

)
αk

1 ∀σ ≥ 1 ∀k ≥ 0 . (72)

In general we have the bound given by the following lemma.

Lemma 5 Assume that α1 > α2. Then, for every s ≥ 0, σ ≥ 1 and k ≥ 0 we have

0 ≤ aσ,s
k ≤

(
α1

α1 − α2

)s

aσ,0
k .

Proof We start by proving that
aσ,1

k ≤ α1

α1 − α2
aσ,0

k

by induction on k. It is trivial if k = 0. Assume it to be true for k − 1 (with k ≥ 1) and let us prove it
for k. Then

aσ,1
k =

k∑

h=0

aσ,0
h αk−h

2 =
k∑

h=0

(
h + σ − 1

σ − 1

)
αh

1αk−h
2

=
k−1∑

h=0

(
h + σ − 1

σ − 1

)
αh

1αk−h
2 +

(
k + σ − 1

σ − 1

)
αk

1 = α2a
σ,1
k−1 +

(
k + σ − 1

σ − 1

)
αk

1 .

Using the induction we obtain

aσ,1
k ≤ α2α1

α1 − α2
aσ,0

k−1 +
(

k + σ − 1
σ − 1

)
αk

1 =
[

α2

α1 − α2

(
k + σ − 2

σ − 1

)
+

(
k + σ − 1

σ − 1

)]
αk

1

=
[

α2
α1 − α2

k

k + σ − 1
+ 1

](
k + σ − 1

σ − 1

)
αk

1 ≤
[

α2

α1 − α2
+ 1

] (
k + σ − 1

σ − 1

)
αk

1 =
α1

α1 − α2
aσ,0

k .

Finally assume that the assertion of the lemma holds true for s− 1. Then

aσ,s
k =

k∑

h=0

aσ,s−1
h αk−h

2 ≤
(

α1

α1 − α2

)s−1 k∑

h=0

aσ,0
h αk−h

2 =
(

α1

α1 − α2

)s−1

aσ,1
h ≤

(
α1

α1 − α2

)s

aσ,0
h .

6.3 The proof of Theorem 6: the final step

We now want to use the estimates obtained above for bounding the coefficients ηk,1.
From (62) we can argue that

η1(z) =
r∑

s=0

s∑
σ=0

p̄σ,s

(
1

1− α1z

)σ (
1

1− α2z

)s

zσ+s =
r∑

s=0

s∑
σ=0

p̄σ,s

+∞∑

h=0

aσ,s
h zh+σ+s

=
r∑

s=0

s∑
σ=0

+∞∑

k=σ+s

p̄σ,sa
σ,s
k−σ−sz

k =
+∞∑

k=0

r∧k∑
s=0

s∧k−s∑
σ=0

p̄σ,sa
σ,s
k−σ−sz

k ,

(73)
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where p̄σ,s was defined in (63) and aσ,s
k in (71). Hence we have

ηk,1 =
r∧k∑
s=0

s∧k−s∑
σ=0

p̄σ,sa
σ,s
k−σ−s .

Decompose ηk,1 as follows
ηk,1 = η′k,1 + η′′k,1 ,

where

η′k,1 =
r∧k∑
s=1

s∧k−s∑
σ=1

p̄σ,sa
σ,s
k−σ−s η′′k,1 =

r∧k∑
s=0

p̄0,sa
0,s
k−s (74)

Assume now that α1 > α2 and fix

M :=
8D1

α1
∨ 2D2

α1 − α2
∨ D2

α2
. (75)

Inserting bounds of Lemmas 4 and 5 we now obtain

η′k,1

αk
1

=
r∧k∑
s=1

s∧k−s∑
σ=1

p̄σ,s

aσ,s
k−σ−s

αk
1

≤
r∧k∑
s=1

s∧k−s∑
σ=1

( s

σ

) (r

s

) (
4ND1

s

)σ (
ND2

r

)s (
α1

α1 − α2

)s (
k − s− 1

σ − 1

)
αk−σ−s

1

αk
1

≤
r∧k∑
s=1

s∧k−s∑
σ=1

(r

s

)( s

σ

)(s

r

)s
(

NM

2s

)s+σ (
k − s− 1

σ − 1

)

≤
[

r∧k∑
s=1

(r

s

)(s

r

)s s∧k−s∑
σ=1

( s

σ

)(
k − s− 1

σ − 1

)]
r∧k
max
s=1

s∧k−s
max
σ=0

{(
NM

2s

)s+σ
}

,

Observe that
s∧k−s
max
σ=0

{(
NM

2s

)s+σ
}

=
(

NM

2s

)s ∨(
NM

2s

)2s∧k

and that, by (93),

r∧k
max
s=1

{(
NM

2s

)s}
≤

(
NM/2
k ∧ NM

2e

)k∧NM
2e

r∧k
max
s=1

{(
NM

2s

)2(s∧ k
2 )}

≤
(

NM

k ∧ NM
e

)k∧NM
e

which implies

r∧k
max
s=1

s∧k−s
max
σ=0

{(
NM

2s

)s+σ
}
≤

(
NM

k ∧ NM
e

)k∧NM
e

.

From this fact and using the combinatorial identity (89) we obtain

η′k,1

αk
1

≤
[

r∧k∑
s=1

(
k − 1
s− 1

) (r

s

)(s

r

)s
](

NM

k ∧ NM
e

)k∧NM
e

. (76)

On the other hand, assuming k ≥ 1, similar computations show that
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η′′k,1

αk
1

=
r∧k∑
s=1

p̄0,s

a0,s
k−s

αk
1

=

[
r∧k∑
s=1

(r

s

) (
ND2

r

)s (
k − 1
s− 1

)
α−s

2

]
αk

2

αk
1

≤
[

r∧k∑
s=1

(r

s

) (
NM

r

)s (
k − 1
s− 1

)]

≤
[

r∧k∑
s=1

(
k − 1
s− 1

) (r

s

)(s

r

)s
]

max
1≤s≤r∧k

{(
NM

s

)s}
,

which yields

η′′k,1

αk
1

≤
[

r∧k∑
s=1

(
k − 1
s− 1

) (r

s

)(s

r

)s
](

NM

k ∧ NM
e

)k∧NM
e

(77)

Putting together (76) and (77) we obtain the final bound

γk

αk
1

≤ ηk,1

αk
1

≤ 2

[
r∧k∑
s=1

(
k − 1
s− 1

) (r

s

)(s

r

)s
](

NM

k ∧ NM
e

)k∧NM
e

,

which proves Theorem 6 in the case when α1 > α2. Observe that M depends only on the parameters
α1, α2, D1, and D2.

In the case when α2 ≥ α1, we replace the estimate in Lemma 5 with

0 ≤ aσ,s
k ≤

(
k + s + σ − 1

s + σ − 1

)
αk

2 ∀s + σ ≥ 1 ∀k ≥ 0 (78)

and we fix
M =

8D1

α2
∨ 2D2

α2
.

Similar computations show that, for k ≥ 1, we can estimate

γk

αk
2

≤ ηk,1

αk
2

≤
[

r∧k∑
s=1

s∧k−s∑
σ=0

(r

s

) ( s

σ

) (
NM

2r

)s (
NM

2s

)σ (
k − 1

s + σ − 1

)]

≤
[

r∧k∑
s=1

(
k + s− 1
2s− 1

) (r

s

)(s

r

)s
](

NM

k ∧ NM
e

)k∧NM
e

.

(79)

The proof of Theorem 6 is now complete.

7 Proof of Theorem 2

The aim of this section is to obtain a representation of the language Σ∗(Γ) by a finite state automaton
or equivalently by a graph. This will be called a Markov representation of the language. Then we will
show that this representation satisfies conditions (A), (B) and (C) of the previous section and so we will
be in a position to apply the estimates proposed there.

7.1 The Markov representation

Assume Γ : I → I is any piecewise affine map. The graph representation of the language Σ∗(Γ) can be
constructed as follows. We define as the set of vertices the set V := Σ∗(Γ) and as set of edges E the set
given by

(ω0ω1 · · ·ωn−1 → ω0ω1 · · ·ωn−1ωn) ∈ E ⇐⇒ ω0ω1 · · ·ωn−1ωn ∈ Σ∗(Γ) . (80)
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Moreover we introduce the following labeling ξ : E → I ∪ J on the edges

ξ(ω0ω1 · · ·ωn−1 → ω0ω1 · · ·ωn−1ωn) = ωn .

Notice that Σ∗(Γ) coincides with the set of all the labeled words associated with the finite paths on
the graph starting from the empty word ε. This representation of Σ∗(Γ) will be called a Markov
representation. This can be simplified by considering an equivalence relation on the vertices. With each
finite word ω0ω1 · · ·ωn ∈ Σ∗(Γ), we associate its symbolic future

futΣ(ω0ω1 · · ·ωn) = {ω0ω1 · · ·ωk | ω0 = ωn and ω0ω1 · · ·ωnω1 · · ·ωk ∈ Σ∗(Γ)} ,

which is a subset of Σ∗(Γ). More roughly, the symbolic future of a word ω0ω1 · · ·ωn is the set of words
whose concatenation with ω0ω1 · · ·ωn is in Σ∗(Γ).

Consider also the geometric future which is

fut(ω0ω1 · · ·ωn) = Γn(ω0 ∩ Γ−1ω1 ∩ . . . ∩ Γ−nωn) .

The following result is in [5].

Proposition 4 Let ω0ω1 · · ·ωn and ν0ν1 · · · νm be two words in Σ∗(Γ). Then

fut(ω0ω1 · · ·ωn) = fut(ν0ν1 · · · νm) ⇐⇒ futΣ(ω0ω1 · · ·ωn) = futΣ(ν0ν1 · · · νm) (81)

Now define X to be the quotient of the set Σ∗(Γ) by the equivalence relation

ω′0 · · ·ω′n ≡ ω′′0 · · ·ω′′m ⇔ futΣ(ω′0 · · ·ω′n) = futΣ(ω′′0 · · ·ω′′m) . (82)

The elements of X will be called states and will be denoted by the symbol x. The symbol 〈ω0ω1 · · ·ωn〉
represents the state consisting of the equivalent class which contains the word ω0ω1 · · ·ωn. States
representable by words of length 1 will be called principal states. The equivalence relation defining X
ensures that any state x ∈ X has a well defined geometric future fut(x). In fact, the geometric future
fut(x) uniquely determines the state x. Edges and labels can be naturally redefined on X to obtain a
new labeled graph denoted G which is still a Markov representation of Σ∗(Γ) and so with the property
that the labeled sequences associated to the finite paths on G, starting from empty word, correspond to
all the possible sequences in Σ∗(Γ).

Notice that there is an edge connecting a state x′ to another state x′′ labeled with ω if and only
if fut(x′′) = Γ(fut(x′)) ∩ ω. This shows that the Markov representation G has the property that the
terminal state of any edge is determined by its initial state and by its label. This means that G is a
deterministic automaton. This implies, in particular, that there is a one to one correspondence between
paths x1x2 · · ·xk on the graph G starting from a principal state and words in Σ∗(Γ). In order to count
the number of words in Σ∗(Γ) of length k it will thus be equivalent to count the paths in G of the same
length k.

Example 1 We provide here a simple example which should clarify the concepts introduced so far.
Consider the piecewise affine map Γ : [−1, 1] → [−1, 1] defined as follows

Γ(x) :=
{

ax + 1 if − 1 < x < 0
ax− 1 if 0 < x < 1

where a = 1+
√

5
2 . The map Γ(x) is shown in Figure 6. Let I0 :=] − 1, 0[ and I1 :=]0, 1[. For this

particular choice of a we have that the set of states is finite

X = {〈I0〉, 〈I1〉, 〈I0I0〉, 〈I1I1〉} .

The graph G is shown in Figure 6.
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Figure 6: The map Γ of Example 1 and the graph G describing the language associated with its dynamics.

7.2 Properties of the Markov representation

Assume Γ : I → I is a piecewise affine map and that J ⊆ I is another invariant interval as in the
setting of Section . We want now to show that the just introduced Markov representation restricted to
Σ∗(Γ) ∩ I∗ (we are using the notation established in Section 5.1) satisfies the properties (A), (B) and
(C) introduced in the previous section. To this aim we define

XP := {〈I1〉, 〈I2〉, . . . , 〈IN〉}
Xi := {〈ω0ω1 · · ·ωkIi〉 ∈ X | ω0ω1 · · ·ωk ∈ Σ∗(Γ) ∩ I∗} = {x ∈ X | fut(x) ⊆ Ii}

X :=
N⋃

i=1

Xi = {x ∈ X | fut(x) ⊆ I \ J}

q : X → ]0, 1[ : x 7→ q(x) := P[fut(x)] .

and the graph G which coincides with the graph G restricted to the set of states X .
By taking qi = P[Ii] we have that property (A) holds true. The next two lemmas will show that also

properties (B) and (C) hold true with α1 = |a|, α2 = 2, D1 = |a|, and D2 = 1.

Lemma 6 Let x′ ∈ X , X ′′ ⊆ X , and k ≥ 2. Then

#Fk[x1 = x′,x2, . . . ,xk−1 ∈ X ,xk ∈ X ′′] ≤ P[fut(x′)]
infx′′∈X ′′ P[fut(x′′)]

|a|k−1 .

Proof Notice that the intervals of the form

fut(x′) ∩ Γ−1fut(x2) ∩ · · · ∩ Γ−(k−2)fut(xk−1) ∩ Γ−(k−1)fut(xk) x2, . . . ,xk ∈ X

constitute a family of disjoint subsets of fut(x′). This shows that

P[fut(x′)] ≥
∑

x2,...,xk−1∈X
xk∈X′′

P
[
fut(x′) ∩ Γ−1fut(x2) ∩ · · · ∩ Γ−(k−2)fut(xk−1) ∩ Γ−(k−1)fut(xk)

]
.
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Notice moreover that Γk−1 is affine on each of these intervals and that

Γk−1(fut(x′) ∩ Γ−1fut(x2) ∩ · · · ∩ Γ−(k−2)fut(xk−1) ∩ Γ−(k−1)fut(xk)) = fut(xk).

This implies that that

P
[
fut(x′) ∩ Γ−1fut(x2) ∩ · · · ∩ Γ−(k−2)fut(xk−1) ∩ Γ−(k−1)fut(xk)

]
≥ infx′′∈X ′′ P[fut(x′′)]

|a|k−1

if x′x2 · · ·xk−1xk ∈ Fk[x1 = x′,x2, . . . ,xk−1 ∈ X ,xk ∈ X ′′] and it is 0 otherwise. This yields the result.

Lemma 7 Let x′ ∈ X and let i = 1, . . . ,N. Then

#Fk[x1 = x′,x2, . . . ,xk−1 ∈ X \ XP ,xk ∈ Xi] ≤ 2k−2 .

Proof As mentioned above, there is an edge connecting a state x′ to another state x′′ with label ω
if and only if fut(x′′) = Γ(fut(x′)) ∩ ω. Since the map Γ is affine on fut(x′), then Γ(fut(x′)) is an
interval and so at most two followers of a state can be nonprincipal. The result follows by applying this
argument.

It follows from Lemmas 6 and 7 that the graph G satisfies the properties (A), (B) and (C) and
hence Theorem 6 holds true in this case. Notice that this yields Theorem 2, since the γk defined in (30)
coincides with the γk defined in (30). Indeed, in this case we have that

γk,h = #Fk[x1 = 〈Ih〉,x2 , . . . ,xk ∈ X ]

so that γk =
∑

h γk,h coincides with the number of paths of length k in the graph G, starting from a
principal state and always remaining in X . This, by the previous discussion, corresponds to the number
of distinct subwords in Σ∗(Γ) ∩ I∗ of length k.

7.3 Estimation of the number of paths in the chaotic case

As mentioned in the remark after Theorem 6, in the bound (53) we can fix r instead of the constant M .
More precisely, instead of fixing the contraction factor equal to 1/2 in (68), we can choose any δ ∈]0, 1[.
In this case, instead of (70), we obtain

p̄σ,s ≤
(r

s

)( s

σ

) (
ND2

r

)s (
ND1

sδ(1− δ)

)σ

(83)

In the case α1 > α2, the only consequence on the subsequent computations is that the factor 1
δ(1−δ) will

enter in the definition (75) of M . On the other hand, also the number r depends on the contraction
factor δ. An important situation in which it is possible to take advantage of this degree of freedom is
the following.

If we fix δ := qN/q1 ∧ 1/2, then r = 1 and in this way we obtain a simplified bound on γk in which
however the constant M is a decreasing function of δ. In order to obtain an effective bound we need to
have bound from above on M and so a bound from below on qN/q1. In the context of piecewise affine
maps this means that we need to have bound from below on δ = P[IN]/P[I1]. An interesting situation
in which this is possible is when N = d|a|e, namely for the chaotic quantized stabilizers.

Proposition 5 Let |a| > 2 and N = d|a|e. There exist constants C1 > 1 and M > 0, only depending
on |a|, such that, if C > C1, then

γk

|a|k ≤ 2

(
NM

k ∧ NM
e

)k∧NM
e

∀k ≥ 1 . (84)
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Proof For the arguments presented above, we need only to prove that there exist constants δ1 > 0 and
C1 > 1, only depending on |a|, such that

C ≥ C1 ⇒ P[IN]
P[I1]

≥ δ1 .

First notice that 1 ≥ P[Γ(I1)] ≥ |a|P[I1], from which we can argue that P[I1] ≤ 1/|a|. Moreover,

P[IN] = 1− P[J ]−
N−1∑

h=1

P[Ih] ≥ 1− C−1 − (N− 1)P[I1] ≥ 1− C−1 − d|a|e − 1
|a|

and hence
P[IN]
P[I1]

≥ P[IN]
1/|a| ≥ |a| − |a|C−1 − d|a|e+ 1 C→∞−→ |a| − d|a|e+ 1 > 0 .

This proves the result.

7.4 Estimation of the number of paths in the stable case

In this section we will propose a bound on γk which holds true when Γ is (I, J)-stable or when Γ is almost
(I, J)-stable but with only a countable subset of points in I never entering inside J . For obtaining this
bound we need the following lemma.

Lemma 8 Assume that there exists a state x ∈ X such that there exist two distinct paths in the graph
G both starting and ending in x and not passing by x in any intermediate step (simple loops through x).
Then there is an uncountable set of points in I never entering inside J .

Proof The proof is based on a general argument on the symbolic description of a one-dimensional
expansive map as Γ which consists in constructing a sort of inverse of the map ψ defined in (29), see [5].

Given any loop ν = xx1 · · ·xk−1x in G, if we consider the open interval

Kν = fut(x) ∩ Γ−1(fut(x1)) ∩ · · · ∩ Γ−(k−1)(fut(xk−1)) ∩ Γ−k(fut(x)) ,

we have that Γk is affine on Kν and Γk(Kν) = fut(x). In particular, it follows that

P[Kν ] = P[fut(x)]|a|−k (85)

We now set some notation: if ν1 = xx1
1 · · ·x1

k1−1x and ν2 = xx2
1 · · ·x2

k2−1x are two loops through x, we
define the concatenation of ν1 and ν2 as the new loop

ν = ν1 ∧ ν2 = xx1
1 · · ·x1

k1−1xx2
1 · · ·x2

k2−1x .

Assume that there are two distinct simple loops ν1 and ν2 of length, respectively, k1 and k2 through
x. The corresponding open intervals K1 and K2 as defined above are then disjoint. Define now a map
Υ : {1, 2}N → I in the following way: given a sequence (an) ∈ {1, 2}N, consider the set

Ka1 ∩ Γ−ka1 (Ka2) ∩ Γ−ka1−ka2 (Ka3) ∩ · · · =
+∞⋂
n=1

Γ
−

n−1P
j=1

kaj

(Kan) . (86)

Since
q⋂

n=1

Γ
−

n−1P
j=1

kaj

(Kan)

is simply the closure of the open interval K associated to the loop νa1 ∧ νa2 ∧ · · · ∧ νaq , it follows that
it is non-empty and that, by (85), its size decreases of a factor

|a|
−

n−1P
j=1

kaj

.

40



Hence, this implies that the set in (86) consists of exactly one point x. We then put Υ((an)) = x. Call
∆ = Υ({1, 2}N). A standard argument of symbolic dynamics of one dimensional maps now show that
there exists ∆1 ⊆ ∆, at most countable, such that the counterimage set Υ−1(x) is a singleton for every
x ∈ ∆ \ ∆1. Indeed, it follows by the definition, that the only points x which have more than one
counterimage (and in fact exactly two) are those in the union of boundaries of the intervals

q⋂
n=1

Γ
−

n−1P
j=1

kaj

(Kan) ,

namely those in the subset:

∆1 =
+∞⋃
q=1

⋃
a1,...aq

∂




q⋂
n=1

Γ
−

n−1P
j=1

kaj

(Kan
)




which is clearly at most countable. Finally, the subset of points in ∆ which will never enter inside ∆1,

∆2 =
+∞⋂

k=0

Γ−k(∆ \∆1) ,

is clearly uncountable.
We claim that no point in ∆2 will ever enter inside J . Notice first that, by construction, ∆2 ⊆ Ω.

Take now x ∈ ∆2 and let (an) ∈ {1, 2}N be such that Υ(an) = x. Then,

Γka1 (Υ(an)) = Υ(ãn)

where (ãn) is the sequence defined by ãn = an+1 for all n ∈ N. This implies, in particular, that
Γka1 (x) ∈ ∆2 by the way ∆2 has been defined. Hence we have that for every x ∈ ∆2 either Γk1(x) or
Γk2(x) is also in ∆2. If, by contradiction, it would exist n0 such that Γnx ∈ J for every n ≥ n0, for
sure we could find n1 ≥ n0 such that y = Γn1x ∈ ∆2 ∩ J . Since ∆2 ⊆ K1 ∪ K2 it would follow that
y ∈ ∂K1 ∪ ∂K2 which is absurd by the way ∆2 has been defined.

Theorem 7 Assume that Γ is almost (I, J)-stable with an at most countable subset of points in I never
entering inside J . Then

γk

2k
≤

(
k + 2N− 1

2N− 1

)
e

N
e ∀k ≥ 1 . (87)

Proof Decompose the set XP into maximal subfamilies X 1
P ,X 2

P , . . . ,Xm
P in such a way that two principal

states belong to the same family if and only if there exists a loop in G connecting them. Also we can
assume the families are ordered in such a way that if there exists a path from x1 ∈ X i

P to x2 ∈ X j
P ,

then i ≤ j. Let Ni be the cardinality of X i
P . We thus have N =

∑m
i=1 Ni.

Given now any path ν of length k inside the graph G starting from a principal state, we can always
split it as

ν = ν1µ1ν2µ2 · · · νmµm

where νi is a path connecting two principal states in X i
P while νi is a path only consisting of non-principal

states. Assume νi has length k1
i and that µi has length k2

i . We thus have

k =
m∑

i=1

k1
i +

m∑

i=1

k2
i

The number of ways we can split k in the sum above is equal to
(

k + 2m− 1
2m− 1

)
.
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Once the number k1
i and k2

i have been fixed, we notice that the path νi can be chosen in Ni distinct
ways corresponding to the ways we can choose the initial principal state. This follows from the fact
that from any principal state in X i

P there is exactly one path reaching another element in X i
P because

otherwise there would be two distinct simple loops in G contradicting the result in Lemma 8. Notice
that using the fact that

∑m
i=1 Ni = N, by Lemma 3, the number of ways we can chose the family of

paths ν1, ν1, . . . , νm is bounded from above by

m∏

i=1

Ni ≤
(

N
m

)m

≤ e
N
e .

Once all the paths νi have been chosen, the remaining paths µi can be chosen in at most 2k2
i distinct

ways. Hence, the number of ways we can chose the family of paths µ1, µ1, . . . , µm is bounded from above
by 2k. We thus have the thesis.

8 Conclusions

In this paper some stabilizing quantized feedback strategies are proposed and their different properties
in terms of performance and communication requirements are compared. These strategies are based on
nesting one base quantized feedback. The performance, defined as the expected time needed to get from
a big initial state set into a smaller target state set, is analyzed by using the concept of Perron-Frobenius
operator associated with a nonlinear transformation.

The second part of the paper is devoted to the search of general bounds which could highlight the
trade-off existing between performance and information flow required by a quantized control technique.
This investigation is based on a symbolic representation of the closed loop nonlinear system. In this
way the system is described by a Markov chain with possibly infinite states. Counting the paths on the
graph which represents the Markov chain, it is possible to obtain bounds on the performance which yield
to some interesting trade-off relations. This method is based on a technical result which is expressed
in terms of general Markov chains and its proof, though quite long, is based on basic combinatorial
relations.

It is our hope that, as information theory has been a successful symbolic technique to treat digital
communication, a symbolic technique will be the right tool to deal with digital control as well. In fact,
although the present paper deals only with the static control of linear scalar systems, the symbolic
method proposed here seems to be very promising for treating more general situations. In [10] the same
method is applied for treating both the case in which a memory structure is allowed on the controller
and the case in which the system is multidimensional. We hope that this method will be useful to solve
also other questions which remain open. In our opinion the most important ones are the following:

1. In most of the contributions on control with communication constraint proposed in the literature it
is assumed that the channels are digital with finite rate but noiseless. In the future investigations
it will be important to allow the presence of errors in the data exchange between the plant and
the controller.

2. In our opinion more attention has to be devoted to the control problem with communication
constraint in those situations in which there are more interacting agents to be controlled to achieve
an joint control objective. In this case the communication constraint have to be imposed on the
data which are exchanged by the differently located agents.

3. In this paper we have been able to analyze the performance of some simple quantized feedback
strategies. It remains to obtain an algorithm able to provide an approximate performance evalua-
tion for any given specific quantized feedback. In our opinion a promising method could be based
on the approximation of the Perron-Frobenius operator by a finite state Markov chain which is
connected with the so called Ulam’s conjecture (see [19] and the references therein).
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A Appendix: Some useful elementary combinatorics

In the paper we use some elementary properties of the binomials. The first one is the following

m∑

j=0

(
l + j

j

)
=

(
m + l + 1

m

)
(88)

which follows by iterating the elementary identity
(

m + l + 1
m

)
=

(
m + l

m

)
+

(
m + l

m− 1

)
.

Another useful formula follows by comparing the binomial coefficients of the term zk in the polyno-
mial identity

(1 + z)n1(1 + z−1)n2 = (1 + z)n1+n2z−n2

which yields
(n1−k)∧n2∑

j=0

(
n1

k + j

)(
n2

j

)
=

(
n1 + n2

k + n2

)
. (89)

Another useful formula is given the following series of inequalities which holds true for all n,m ≥ 1 [1,
pag. 113]

(
n + m

m

)
≤

√
1
2π

(
1
n

+
1
m

) (
1 +

n

m

)m (
1 +

m

n

)n

≤

≤
√

1
2π

(
1
n

+
1
m

) (
1 +

n

m

)m

em ≤
√

1
2π

(
1
n

+
1
m

)
en+m .

(90)

From (90) we can argue that for all n ≥ 0 and m ≥ 1
(

n + m

m

)
≤ 1√

π

(
1 +

n

m

)m

em . (91)

Finally consider the function

f(x) :=
(

A

x

)Bx

.

This a unimodal function having a unique maximum in xM = A
e . This implies that for all x̄ > 0 we

have

max
0<x≤x̄

f(x) = f(x̄ ∧ xM ) =

(
A

x̄ ∧ A
e

)B(x̄∧A
e )

. (92)

Observe moreover that for all x̂ > 0 we have
(

A

x

)B(x∧x̂)

≤
(

A

x ∧ x̂

)B(x∧x̂)

which implies that

max
0<x≤x̄

(
A

x

)B(x∧x̂)

≤ max
0<x≤x̄

(
A

x ∧ x̂

)B(x∧x̂)

= max
0<x≤x̄∧x̂

f(x) =

(
A

x̄ ∧ x̂ ∧ A
e

)B(x̄∧x̂∧A
e )

. (93)
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[5] J. Buzzi. Intrinsic ergodicity of affine maps in [0, 1]d. Monat. fur Mathematik, 124:97–118, 1997.

[6] D.F. Delchamps. Stabilizing a linear system with quantized state feedback. IEEE Trans. Automat.
Control, AC-35:916–924, 1990.

[7] N. Elia and S.K Mitter. Stabilization of linear systems with limited information. IEEE Trans.
Automat. Control, AC-46:1384–1400, 2001.

[8] F. Fagnani Chaotic quantized feedback stabilizers: the scalar case. Communications in Information
and Systems, 4:53–72, 2004.

[9] F. Fagnani and S. Zampieri Stability analysis and synthesis for scalar linear systems with a quan-
tized feedback. IEEE Trans. Automat. Control, AC-48:1569–1584, 2003.

[10] F. Fagnani and S. Zampieri Quantized stabilization of linear systems: complexity versus perfor-
mance. IEEE Trans. Automat. Control, AC-49:1534–1548, 2004.

[11] T.W. Hungerford Algebra. Springer Verlag, 1974.
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