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Abstract

Quantized feedback control has been receiving much attention in the control community
in the past few years. Quantization is indeed a natural way to take into consideration in
the control design the complexity constraints of the controller as well as the communication
constraints in the information exchange between the controller and the plant. In this paper
we analyze the stabilization problem for discrete time linear systems with multidimensional
state and one-dimensional input using quantized feedbacks with a memory structure, fo-
cusing on the trade off between complexity and performance. A quantized controller with
memory is a dynamical system with a state space, a state updating map and an output
map.

The quantized controller complexity is modelled by means of three indices. The first
index L coincides with the number of the controller states. The second index is the number
M of the possible values that the state updating map of the controller can take at each
time. The third index is the number N of the possible values that the output map of
the controller can take at each time. The index N corresponds also to the number of the
possible control values that the controller can choose at each time.

In this paper the performance index is chosen to be the time T needed to shrink the
state of the plant from a starting set to a target set. Finally, the contraction rate C, namely
the ratio between the volumes of the starting and target sets, is introduced. We evaluate
the relations between these parameters for various quantized stabilizers, with and without
memory, and we make some comparisons. Then we prove a number of results showing the
intrinsic limitations of the quantized control. In particular we show that, in order to obtain
a control strategy which yields arbitrarily small values of T/ ln C (requirement which can
be interpreted as a weak form of the pole assignability property), we need to have that
LN/ ln C is big enough.

Keywords: Stabilization, communication constraints, dynamic quantizers, quantized feed-
back.
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1 Introduction

The stabilization problem by quantized feedback has been widely studied in the last few years:
see [1, 2, 4, 5, 7, 13, 16, 18, 19] and the reference therein. Quantization can not be avoided
in the digital control setting and it is indeed a natural way to insert into the control design
complexity constraints of the controller and communication constraints of the channels which
connect the controller and the plant.

In this paper we consider the stabilization problem for general discrete time linear systems
with one-dimensional input and full state observation. The quantized feedbacks considered here
possess a memory structure. In this paper we try to extend some of the results obtained in
[7, 8] under the assumptions that the state is one dimensional and the feedback is memoryless.

The main focus of this paper is on the trade off between controller complexity and the
closed loop stability performance. The controller complexity will be described by three integer
parameters. The number L of discrete states of the controller will measure the computational
complexity of the control algorithm. The number N of quantization subsets of the controller
output map and the number M of quantization subsets of the controller state updating map
are related to the information flow which is needed for the data transmission between the plant
and the controller. The mean time T needed to shrink the state of the plant from a starting
set to a target set will instead measure the controller performance.

We can expect a trade-off between the complexity and the performance indices, namely, to
obtain small times T we need controllers with high complexity indices L, N, M . In order to
quantify this trade-off we introduce another parameter C, called the contraction rate, which
coincides with the ratio between the volumes of the starting and target sets.

This framework constitutes a common general setting in which various quantized control
strategies already appeared in the literature (including the quantized controller with memory
proposed in [2, 18, 14, 15]) can be analyzed and compared on the basis of these indices. We
then prove a number of results showing intrinsic limitations of the quantized control. The only
hypothesis we need on the plant is that its state matrix A possesses a real eigenvalue. As
far as the quantized controller instead we need to impose some geometric characteristics on
the quantization subsets of the state updating map. In this way, we can establish inequality
constraints between the performance parameter T and the complexity parameters L, N , M ,
and the contraction C. The geometric hypotheses imposed on the quantization subsets of the
state updating map make the dependence on M of these inequalities quite involved. For this
reason we prefer to consider it fixed and to use these bounds to study the relations of the
parameters T , L, N , M and C only.

In particular we show that, under these assumptions, in order to obtain a controller yielding
the value of the ratio T/ ln C arbitrarily small, requirement which can be interpreted as a weak
form of the pole assignability property in the classical linear feedback theory, we need to have
that the controller complexity is such that LN/ ln C is big enough. On the other hand, the
various examples presented show that this is also a sufficient condition: a logarithmic growth
of L or of N with respect to C insures arbitrarily small logarithmic time rate. These constraint
results are obtained through the use of symbolic dynamics representations of the closed loop
maps (which turn out to be piecewise affine maps) and combinatorial results established in [8]
for the one-dimensional case. We believe that this kind of analysis is missing in the literature
on quantized control. The only complexity parameter considered in the literature is N and
the results proposed consists in lower bounds on N , depending only on the system, which
guarantee the existence of a quantized asymptotic stabilizer. This can be obtained at a price
however of an unlimited number of discrete states, namely, L = +∞. In [8] the above result
on logarithmic growth was proven in the special case of one-dimensional state systems and
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memoryless quantized feedbacks L = 1.
In the remaining part of the introduction we specify the problem, we introduce all as-

sumptions, definitions and notations used in the paper and we provide an interpretation of
the control under communication constraints in out context. Sections 2 and 3 are devoted to
a careful analysis of some examples of quantized feedback stabilization techniques for which
we evaluate the various complexity and performance indices. We first consider a memoryless
uniform quantizer like the one considered in [16]. Then we show that, by nesting scaled version
of this quantizer, we obtain a quantized feedback map with performance similar to the loga-
rithmic quantizer proposed in [5]. Then we consider dynamic quantized stabilizers illustrating
the zooming in/zooming out procedure proposed in [2, 18, 15]. In Section 4 we introduce
the symbolic dynamics formalism, we recall some results established in [8] and we prove some
inequality constraints. Section 5 contains some concluding remarks.

1.1 Problem statement

Consider a linear discrete time system
{

xt+1 = Axt + But

yt = Gxt ,
(1)

where xt ∈ Rn, ut ∈ Rm and yt ∈ Rp and where A ∈ Rn×n, B ∈ Rn×m and G ∈ Rp×n. A
controller in our set up is a system

{
st+1 = f(st, yt)
ut = k(st, yt) ,

(2)

where st ∈ S and where f : S×Rp → S and k : S×Rp → Rm. A controller is called quantized if
the set S is finite or denumerable and if for each s ∈ S the map k(s, ·) : Rp → Rm is quantized,
namely, there exists a finite or denumerable family Ks = {K1

s ,K2
s , . . . , KNs

s } of disjoint subsets
of Rp such that

Ns⋃

j=1

Kj
s = Rp

and such that the map k(s, ·) is constant on each Kj
s . Notice that, since S is finite or denumer-

able, then also the map f(s, ·) : Rp → S will be quantized, since for each s ∈ S there will exist
a finite or denumerable family Fs = {F 1

s , F 2
s , . . . , FMs

s } of disjoint subsets of Rp such that

Ms⋃

i=1

F i
s = Rp

and such that the map f(s, ·) is constant on each F i
s . The subsets Kj

s will be called input
quantization subsets while subsets F i

s will be called state quantization subsets of the quantized
controller. Notice that, for every fixed s ∈ S, the map x 7→ (f(s, x), k(s, x)) is constant on the
intersections F i

s ∩ Kj
s and so also this map can be considered quantized with at most NsMs

quantization subsets. We will assume that the initial condition s0 of the controller state is
fixed and it will be denoted by the symbol 0. Notice that a quantized controller is completely
defined by the quadruple (S, f, k, 0).

The interconnection of the system and the controller yields the closed loop system
{

xt+1 = Γ(st, xt)
st+1 = Λ(st, xt) ,

(3)
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where Γ(s, x) = Ax + Bk(s,Gx) and Λ(s, x) = f(s,Gx). Observe that for each s ∈ S the map
Γs := Γ(s, ·) is a piecewise affine map, namely,

Γs(x) = Ax + Buj
s if x ∈ G−1(Kj

s).

Observe moreover that the dynamical system (3) is a hybrid system since its dynamic behavior
is the result of the combination between a system with a continuous state and a system with
discrete state. In fact, we can define a map

(Λ, Γ) : S × Rn → S × Rn

(Λ, Γ)(s, x) = (Λ(s, x), Γ(s, x)) .

Since the initial discrete state is fixed, to any x ∈ Rn we can associate, through (Λ, Γ), the
double orbit (st, xt) = (Λ,Γ)t(0, x). We denote by Πx the canonical projection from S ×Rn to
Rn so that we have xt = Πx(Λ, Γ)t(0, x).

The problem considered in this paper can be formulated as follows:

Problem: Given three subsets 0 ∈ V ⊆ W ⊆ Z ⊆ Rn, find a quantized controller (S, f, k, 0)
such that the closed loop system satisfies the following properties:

1. For any x ∈ W , the evolution Πx(Λ, Γ)t(0, x) ∈ Z for every t ∈ N.

2. For any x ∈ W , there exists t0 ∈ N such that Πx(Λ,Γ)t(0, x) ∈ V for every t ≥ t0.

A controller satisfying the above properties is called (Z, W, V )-stabilizing and the corre-
sponding closed loop (Λ,Γ) is said to be (Z, W, V )-stable.

In the case when V = W = Z we are simply requiring to remain inside V if we start from
V . The case V = W has been considered in [19], where it is called containability. The general
case, beyond containability, also requires an attraction towards the smallest target subset V .
In case when Z = W we will simply talk of (W,V )-stability. In this paper we assume that W
and V are convex subsets of finite non-zero n-dimensional Lebesgue measure.

There are some important complexity and performance parameters to be considered in the
above problem. On the one hand, the number L of the states of the controller state space S
gives a measure of the complexity of the control algorithm and so of its computational demand
(of course we consider only that part of S really used by the controller in driving the system
from W to V ). On the other hand, N = sups Ns and M = sups Ms provide instead a measure
of the required information flow between the system and the controller. Of course we would
like to have all these integer parameters as small as possible. This will clearly depend on the
contraction rate C = λ[W ]/λ[V ], where λ is the Lebesgue measure in Rn, which describes how
small is the target set with respect to the starting set. It is important however to consider
another index which should give an idea of the performance of the transient behavior of the
closed loop system in its convergence from W to V . Many choices are possible. Here we will
consider the entrance time map T(W,V ) : W → N ∪ {+∞} defined as

T(W,V )(x) = min{t ∈ N | Π(Λ, Γ)t+n(0, x) ∈ V ∀n ≥ 0} .

There are various ways to obtain a performance index from this map. Here we will consider
the expected value T = E[T(W,V )] of this map with respect to the uniform probability density
on W . Motivated by the results obtained in [7, 8] in the one-dimensional case, we expect a
trade-off between T and the complexity parameters L, M and N as functions of C, illustrating
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a general feature of the control problem under computation and communication constraints:
there is a strict link between the amount of information transmitted and elaborated in the
control process and the level of performance that can be reached.

If (Λ, Γ) is (Z,W, V )-stable, then we can introduce two (Λ, Γ)-invariant subsets of S × Rn

which are naturally linked to the definition of (Z,W, V )-stability. Indeed, consider

W̄ :=
⋃

t∈N
(Λ,Γ)t({0} ×W ) ⊇ {0} ×W (4)

V̄ := {(Λ, Γ)t(0, x) : (0, x) ∈ S ×W, (Λ, Γ)t+n(0, x) ∈ S × V, ∀n ≥ 0} ⊆ S × V (5)

Notice that (Λ, Γ) is (Z, W, V )-stable if and only if Πx(W̄ ) ⊆ Z and for any (s, x) ∈ W̄ , there
exists t0 ∈ N such that (Λ,Γ)t0(s0, x0) ∈ V̄ . The previously defined entrance time map can be
reformulated more compactly in terms of V̄ as follows

T(W,V̄ ) : W → N

T(W,V̄ )(x) = inf{t ∈ N | (Λ, Γ)t(0, x) ∈ V̄ } .

We then also have T := E[T(W,V̄ )].
In this paper we assume that the input space is one-dimensional m = 1 and that we have full

state observation p = n and G = I. Also we assume (A,B) to be a reachable pair. Under these
assumptions it is well known that, if we forget quantization issues, we can find a memoryless
linear controller u = Kx such that the closed loop map xt+1 = (A + BK)xt is asymptotically
stable. Actually, reachability permits to assign arbitrarily the eigenvalues of A + BK. If all
eigenvalues are equal to 0 we obtain a dead-beat controller: in this case any initial state is
driven to zero in at most n steps. If instead all eigenvalues are located in the open ball B(0, δ),
with δ < 1, we can obtain bounds like ||xt|| ≤ const δt on the state evolution. Consequently,
in this case entrance time T will depend on the contraction C in such a way that T/ ln C ∼ δ.
In other terms all the values of the ratio T/ ln C can be achieved by allocating the eigenvalues
in a suitable way. According to the previous interpretation, if a function f(C) is such that
f(C)/ lnC → δ, then we will call δ the logarithmic time rate of f .

A natural question to be posed in the quantized control context is for which values of
the complexity parameters L, M and N (as functions of C) we can obtain the same type of
stabilization results which could be obtained with linear feedback controllers. In particular,
we are interested in evaluating for which values of L, M and N we can obtain the dead-beat
controller, or arbitrarily small logarithmic time rate. These parameters will be evaluated for
the various examples presented in Sections 2 and 3. General bounds will be established in
Section 4.

1.2 Control under communication constraints

In this section we will give an interpretation of the control under communication constraints
in the context of the quantized control proposed in this paper. The example below is helpful
for understanding this interpretation.

Example Assume we have a number of vehicles moving on the plane according to the dynamic
equations

xt+1 = xt + ut

yt+1 = yt + vt ,
(6)

where xt and yt are the two coordinates of one of these vehicles and ut, vt are the control
inputs. Assume that this vehicle can not measure its position, but that it receives through
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a communication channel an approximation of its position from a remotely positioned sensor,
such as a camera positioned remotely, for instance on a satellite. Because of the great number
of vehicles the sensor has to deal with, a very limited information rate is allowed from the sensor
to the vehicle. Choose the following control strategy. Define the quantized map k : R→ R as

k(z) :=





1/2 if − 1 < x < 0
−1/2 if 0 < x < 1
0 otherwise

and
k(s, x, y) := (δsk(δ−sx), δsk(δ−sy)) ∀s ∈ Z .

Notice that k(s, x, y) is the scaling of k(0, x, y) and that it divides R2 into 5 quantization
subsets. Notice moreover that, if |x| ≤ δs and |y| ≤ δs and (x′, y′) = Γ(s, x, y), then |x′| ≤ δs+1

and |y′| ≤ δs+1 whenever we choose δ ≥ 1/2. We finally introduce the state updating map

f(s, x, y) :=
{

s + 1 if |x| ≤ δs and |y| ≤ δs

s− 1 otherwise

It is clear that, under the previous assumptions, the control law
{

st+1 = f(st, xt, yt)
ut = k(st, xt, yt)

yields the exponential convergence of the closed loop system since the state (xt, yt) converges to
zero as δt. Therefore the best convergence rate is given by δ = 1/2, while δ > 1/2 guarantees
some robustness. Notice that in this case M = 2 and that the combined map (f, k) has 5
quantization subsets. This is an example of the zooming strategy proposed in [2] and illustrated
in Section 3.

Notice that in this example the sensor has to send to each vehicle only one of the five
possible scaled quantization subsets the vehicle belongs to. The vehicle needs to know the
scaling factor s and to this aim it needs to know only the updating map and the initial scaling
s0. This works only in case we assume that there is no transmission error. In fact, a difference
between the sensor scaling factor and the vehicle scaling factor will cause instability. So it is
necessary an absolute reliability when the sensor informs the vehicle about its being inside the
set [−δst , δst ]2 in order to maintain the synchronization between the encoder and the decoder
state. The transmission of both the state and of the quantization subset prevents this problem.
However, it requires the same transmission rate needed by memoryless quantized feedback
strategies.

Notice moreover that, from a more technological point of view, the communication com-
plexity indices M and N appear to be much more critical design parameters than the index
L describing the memory requirement of the control algorithm. It is our opinion that, under
noisy communication, the presence of many states can make the state synchronization problem
more critical and so we expect that L should be more relevant in this case.

The idea illustrated in the previous example can be generalized in the context of general
quantized controllers as follows. Define the map

q : S × Rn → N× N

such that q(s, x) = (i, j) if and only if x ∈ F i
s ∩Kj

s . Notice that there exist maps f̄ : N×N→ S
and k̄ : N×N→ R such that f = f̄ ◦q and k = k̄ ◦q. Control under communication constraints
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can be formalized as illustrated in the following picture by letting the sensor/encoder to be

ENCODER
{

st+1 = f(st, xt)
(it, jt) = q(st, xt)

by letting the controller/decoder to be

DECODER
{

st+1 = f̄(st, it, jt)
ut = k̄(st, it, jt)

- SYSTEM

CHANNEL

DECODER ENCODER

?

¾

6

xtut

it, jt it, jt

2 Memoryless feedback quantizers

In this section we will consider the class of quantized controllers which have no memory, namely,
S = {0}, L = 1. These controllers, called memoryless quantized feedback, are determined by a
single quantized map

ut = k(xt).

2.1 Uniform quantized feedback

The simplest way to obtain quantized feedback maps is by quantizing linear feedback maps
uniformly or logarithmically. More precisely, define a uniform quantizer to be any quantized
map q : R→ R such that |z − q(z)| ≤ 1/2. We can take for instance

q(z) = k + 1/2 for all z such that k < z < k + 1. (7)

Define moreover the scaled version of q(z) as

q∆(z) := ∆q
( z

∆

)
.

It is easy to see that this quantizer has quantization intervals of length ∆ and that |z−q∆(z)| ≤
∆/2. We know that there exists a linear state feedback

ut = kxt

yielding a closed loop system which control to zero any initial state in n steps. The first strategy
is simply to choose the quantized feedback

k(x) = q∆(kx).
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Since the system is reachable, we can assume with no loss of generality that (A,B) is in
the controller canonical form, namely

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 1
−a0 −a1 · · · −an−2 −an1




B =




0
0
...
0
1




.

In this case the dead-beat controller is given by the feedback matrix

k = [ a0 a1 · · · an−1 ].

If x = (x1, . . . , xn−1, xn) ∈ Q∆ := [−∆/2,∆/2]n ⊆ Rn and if x′ = (x′1, . . . , x
′
n−1, x

′
n) =

Ax + Bq∆(kx), then it is clear that

x′1, . . . , x
′
n−1 ∈

[
−∆

2
,
∆
2

]

Moreover, notice that

|x′n| =
∣∣∣∣∣−

n∑

i=1

ai−1xi + q∆

(
n∑

i=1

ai−1xi

)∣∣∣∣∣ ≤
∆
2

and hence we have that x′ ∈ Q∆. In this way we showed that the hypercube Q∆ is invariant
with respect to the closed loop map Γ(x) := Ax + Bk(x).

Notice that this quantized feedback yields a quantization partition inside Q∆ which results
by cutting Q∆ by equidistant hyperplanes which are orthogonal to the vector (a0, . . . , an−1) ∈
Rn. Notice moreover that, if x ∈ Q∆, then |kx| ≤ a∆/2, where

a :=
n−1∑

i=0

|ai|. (8)

This implies that only 2
⌈

a
2

⌉
levels of the quantized map k(x) = q∆(kx) are active and so this

quantized feedback requires
N = 2

⌈a

2

⌉

quantization subsets inside Q∆. With a little more effort we can obtain the same goal with
N = dae quantization subsets.

The technique just presented allows to obtain a quantized feedback making a hypercube
Q∆ invariant. A simple modification of the above construction leads to a class of (Q∆, Qε)-
stabilizing feedbacks, as shown in the following proposition (see [16]).

Proposition 1 [16] For every ε < ∆, there exists a (Q∆, Qε)-stabilizing feedback with

N =
⌈
a
∆
ε

⌉

quantization subsets in Q∆ and entrance time T(Q∆,Qε) such that

E[T(Q∆,Qε)] = n−
( ε

∆

)n (∆/ε)n − 1
∆/ε− 1
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Proof Consider the quantized feedback

k(x) = qε(kx).

The same arguments presented above ensures that in at most n steps this controller drives
the any state in Rn into Qε and moreover we have that inside Q∆ this feedback has da∆/εe
quantization subsets. The only thing that needs to be proved is the expected entrance time.
Notice that

E[T(Q∆,Qε)] =
∞∑

k=0

P[T(Q∆,Qε) ≥ k + 1] =
n−1∑

k=0

P[T(Q∆,Qε) ≥ k + 1] =
n−1∑

k=0

(1− P[T(Q∆,Qε) ≤ k])

Since

{x ∈ Q∆ : T(Q∆,Qε)(x) ≤ k} =
[
−∆

2
,
∆
2

]k

×
[
− ε

2
,
ε

2

]n−k
,

then

E[T(Q∆,Qε)] = n−∆−n
n−1∑

k=0

∆kεn−k

which yields the result.

Notice that the contraction rate C in the above case is C = (∆/ε)n. Hence we have, for
C → +∞

N =
⌈
aC1/n

⌉
∼ aC1/n

T = E[T(Q∆,Qε)] = n− C−1/n 1− C−1

1− C−1/n
∼ n

where the last approximation, which holds when C is big enough, shows that in this case
the expected entrance time tends to be independent of the contraction C. Notice that these
estimates are in agreement with the results given in [7, 8].

If instead of considering uniform quantized approximations of linear state feedback, we
consider logarithmic quantized approximations we obtain what has been proposed in [5]. A
logarithmic quantizer is any quantized map q : R→ R such that |z − q(z)| ≤ δ|z| where δ > 0.
This technique has the advantage to be less demanding in terms of the number quantization
subsets. This is paid by a bigger expected entrance time, which grows at least logarithmically
as a function of the contraction rate. We prefer not to investigate in detail the properties
and the performance of this technique. Instead, we will present an alternative method which
provides similar results but which is simpler to be analyzed.

2.2 Nested quantizers

Different stabilization performance can be obtained by nesting quantized feedbacks. This
method is inspired by the zooming techniques proposed in [2]. Assume we have three subsets
W1 ⊇ W2 ⊇ W3 and two feedback quantizers: k1 which is (W1,W2)-stabilizing and k2 which is
(W2,W3)-stabilizing. Define the nested quantized feedback k(x) defined by

k(x) =
{

k1(x) x ∈ W1 \W2

k2(x) x ∈ W2

9



where W1 \W2 := {x ∈ W1, x 6∈ W2}. It is clear that k(x) is (W1,W3)-stabilizing. Moreover,
if Ni is the number of quantization subsets of ki inside Wi, we have that the number N of
quantization subsets used by k in W1 is bounded by N1 + N2. The evaluation of the expected
entrance time is more difficult and we will return to this question shortly.

This construction can be repeated as many times as we want. Let us see what we obtain by
considering a nesting of the stabilizing feedbacks constructed in the previous section. Assume
again for simplicity that the system (1) is already in the controller canonical form. Fix ∆ > 0
and 0 < δ < 1 and consider a quantized feedback k̄ such that

Γ̄n(Q∆) ⊆ Qδ∆

where Γ̄(x) := Ax + Bk̄(x). Notice that this quantized feedback requires da/δe quantization
subsets inside Q∆, where a is defined in (8). Consider the scaled quantized feedback ki(x) :=
δik̄(δ−ix). It is easy to verify that the corresponding closed loop map, which is Γi(x) :=
δiΓ̄(δ−ix), is such that

Γn
i (Qδi∆) ⊆ Qδi+1∆.

The nested quantized feedback defined as

k(x) := ki(x) if x ∈ Qδi∆ \Qδi+1∆ (9)

will be (Q∆, Qδr∆)-stabilizing with contraction rate δ−rn and rda/δe quantization subsets. As
far as the mean entrance time E[T(Q∆,Qδr∆)] is concerned, we clearly have that E[T(Q∆,Qδr∆)] ≤
rn, but we would like to have better estimates.

Consider the map
Ψ : Q∆ → Q∆ : x 7→ δ−1Γ̄n(x)(x),

where n(x) := T(Q∆,Qδ∆)(x) ≤ n is the first entrance time function for k̄. In this way we obtain
that the first entrance time for k is

T(Q∆,Qδr∆)(x) =
r−1∑

i=0

T(Q∆,Qδ∆)(Ψ
i(x)) .

The map Ψ is a piecewise affine map and it induces an operator

P : L1(Q∆) → L1(Q∆)

mapping probability densities on Q∆ into themselves. This is called the Perron-Frobenius
operator associated with Ψ and it satisfies the following duality relation [9]

∫

Q∆

(g ◦Ψ)(x)f(x)dx =
∫

Q∆

g(x)(Pf)(x)dx (10)

for all g ∈ L∞(Q∆), f ∈ L1(Q∆). Consequently, we can write

Tr := E[T(Q∆,Qδr∆)] =
r−1∑

k=0

Egk
[T(Q∆,Qδ∆)]

where gk = Pkg and g is the uniform probability density in Q∆ and where the symbol Egk

means that the expected value of with respect to the density gk. We have the following result.
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Theorem 1 Assume that the initial state is uniformly distributed on Q∆. Then there exists a
P-invariant probability density g such that

Tr = rT̄ + ar ∀r ∈ N
where {ar} is a bounded sequence and where

T̄ := Eg[T(Q∆,Qδ∆)]

is the expected entrance time from Q∆ to Qδ∆ with respect to the probability density g.

We do not furnish here a proof of this result but we make a few comments. In the one-
dimensional case n = 1 it is proven in [8]. The proof is based on the well-known spectral prop-
erties of the Perron Frobenius operator of one-dimensional piecewise affine maps on bounded
variation densities. The multi-dimensional case is mathematically more delicate but can be
treated in a similar way using the results in [3] and [17] which allows to have a similar spectral
theory working on the quasi-Holder densities. Details will be discussed elsewhere.

Let us go back to the nesting. Notice that C = δ−nr. From this it follows that, if Nr

denotes the number of quantization subsets and Tr the expected entrance time, then

Nr ∼ ra/δ = arC
1

rn Tr ∼ T̄ r

where T̄ is defined in Theorem 1. Notice that T̄ ≤ n. The number r of nestings can be
considered as a supplementary parameter which can be varied with C, as C goes to ∞. In fact,
if we keep r fixed, we obtain that the number of quantization subsets grows slower with respect
to the strategy presented in Proposition 1, while the expected entrance time is still independent
of C, but it is bigger. Another possibility is to vary r with C keeping the parameter δ fixed.
In this way r grows logarithmically in C as

r =
1
n

lnC

ln(δ−1)

which implies that

Nr ∼ a

δn

ln C

ln(δ−1)
Tr ∼ T̄

n

ln C

ln(δ−1)
(11)

The growth of the number of quantization subsets needed here is sharply smaller with respect
to the previous cases. This is paid in terms of performance. Indeed, while in the previous case
we obtained an expected entrance time which was independent of C, here we have that the
expected entrance time grows logarithmically with C. This is an alternative way to obtain a
logarithmic quantized feedback with respect to what is proposed in [5].

Remark: The nested quantizer, by the way it has been defined, will have the quantization
subsets obtained by cutting each single subset Qδi∆ \ Qδi+1∆ with a bunch of parallel hyper-
planes. In this way, in general, the final quantization of Q∆ will not be obtained by cutting Q∆

with parallel hyperplanes. However there is an easy way to obtain such a quantization with
the same complexity and performance parameters. First observe that

ki(x) = ∆δi+1 q

(
kx

∆δi+1

)
,

where k ∈ R1×n is the linear dead-beat controller. This implies that the nested quantized
feedback defined as

k̄(x) := ki(x) if kx ∈ Iδi∆ \ Iδi+1∆ ,

where Iδi∆ := {kx ∈ R : x ∈ Qδi∆}, has the same properties of the nested quantized feedback
defined in (9) and moreover its quantization subsets is obtained by cutting Q∆ with hyperplanes
which are orthogonal to k.
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3 Quantized controllers with memory

In the literature various time-varying quantized feedbacks have been proposed. They are all
based on the same intuitive idea which both the logarithmic quantized feedback strategy and
the strategy based on nesting is based on. Namely, the most convenient quantized feedback
should be accurate only when the state is closed to the target, while it may be quite imprecise
when the state is far from the objective. All these time-varying strategies can be seen in the
unified framework proposed in [2] called zooming. The idea is quite simple. Use the same
feedback but scaled in such a way that it is rough when the state is big and it become fine
when the state approaches the origin. Here we recall this method putting it in our framework.
Then we will analyze the properties and performance of this method. We will present in detail
two techniques which are two particular cases of the general scheme presented at the end of
the section.

3.1 One step zooming

In this subsection we will present the simplest possible version of the zooming method. Assume
that the controller state space S = Z and that we are given a family of open subsets Ls ⊆ Rn,
s ∈ Z, such that

(i) Ls ⊆ Ls−1 for all s ∈ Z;

(ii)
⋃

s∈Z Ls = Rn;

(iii)
⋂

s∈Z Ls = {0}.
Assume moreover that we have found a map k : S × Rn → R such that the closed loop map
Γs(x) = Γ(s, x) = Ax + Bk(s, x) is such that

Γs(Ls) ⊆ Ls+1.

The controller is defined as

st+1 =
{

st + 1 if Γ(st, xt) ∈ Lst+1

st − α otherwise

ut = k(st, xt)

(12)

This strategy ensures the convergence to zero for any initial state x0 ∈ Rn and s0 ∈ S, if the
integer α is chosen big enough compared to the degree of instability of the system (1). Notice
that, in our setting, we can more precisely say that the controller (S, f, k, s0) is (Ls0 , Ls0+r)-
stabilizing for every r ∈ N. Or also that, for every s1 ∈ Z, there exists r1 ∈ N such that
(S, f, k, s0) is (Ls1 , Ls1−r1 , Ls1+r)-stabilizing for every r ∈ N.

This is the general description of the zooming method. Now we give more concrete example
of this technique by presenting a specific choice of the family of subsets Ls ⊆ Rn, s ∈ Z and
of the map k : S × Rn → R satisfying the previous conditions. Assume again that, with no
loss of generality, (A,B) is in the controller canonical form. In the previous section we have
shown how to construct a quantized feedback map k̄ : Rn → R such that the closed loop map
Γ̄(x) := Ax + Bk̄(x) is such that

Γ̄n(Q∆) ⊆ Qδ∆

where ∆ > 0, δ < 1. Notice that this quantized feedback required N = da/δe quantization
subsets inside Q∆, where a is defined in (8). We modify k̄ by deleting all the quantization
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hyperplanes of k̄ not intersecting Q∆. There is only one quantized map which can be obtained
in this way and which is equal to the old k̄ in Q∆. Notice that the quantized map obtained in
this way has still N = da/δe quantization subsets.

Exactly as we did in the previous section, we can obtain a scaled version ki(x) := δik̄(δ−ix)
of the quantized feedback k̄(x). The corresponding closed loop map Γi(x) := δiΓ̄(δ−ix) con-
tracts the states in Qδi∆ into Qδi+1∆ in n steps. Define now the subsets Ls ⊆ Rn the quantized
maps k(s, ·), s ∈ Z as follows

Lin+j := Γj
i (Qδi∆)

k(in + j, x) := ki(x)
∀i ∈ Z, j = 0, 1, . . . , n− 1

It is easy to verify that this is a zooming strategy satisfying the above conditions and that it
yields (L0, Lnr)-stability for every r ∈ N.

We want to evaluate now the entrance time of this strategy. Fix r ≥ 0 and assume that
s0 = 0 and that x0 ∈ L0. We recall that

T(L0,Lnr)(x0) = T(L0,L̄nr)(x0) = min{t0 ∈ N | (st, xt) ∈ L̄nr, ∀t ≥ t0} ,

where L̄s denotes [s,∞)×Ls ⊆ S×Rn. It is clear that in this case we have simply T(L0,L̄nr)(x0) =
nr and so the evaluation of the expected time is trivial. In conclusion this (L0, Lnr)-stabilization
strategy exhibits the following parameters

1. The contraction is C = δ−nr

2. Number of states is L = nr.

3. Number of quantization subsets of f(s, x) is M = 2.

4. Number of quantization subsets of k(s, x) is N = da/δe.
5. Expected entrance time T = nr.

In fact, the combined map (f, k) has only N + 1 quantization subsets.

3.2 Two steps zooming

In this subsection we will present another version of the zooming method which yields different
performance. Assume in this case that we have found a map k : S × Rn → R such that the
closed loop map Γs(x) = Γ(s, x) = Ax + Bk(s, x) is such that

a) Γs(Ls) ⊆ Ls and Γs(Ls+1) ⊆ Ls+1.

b) For any x ∈ Ls there exists t ∈ N such that Γt
s(x) ∈ Ls+1.

These two conditions are equivalent to the requirement that k(s, x) is (Ls, Ls+1)-stabilizing.
The controller is defined as

st+1 =





st + 1 if Γ(st, xt) ∈ Lst+1

st if Γ(st, xt) ∈ Lst \ Lst+1

st − α otherwise

ut = k(st, xt)

(13)

Also this strategy ensures the convergence to zero for any initial state x0 ∈ Rn and s0 ∈ S,
if the integer α is chosen big enough. Interpretation in terms of our stability concepts can be
done exactly as in the case of one-step zooming.
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Also in this case we analyze this method for a specific choice of Ls ⊆ Rn and k : S×Rn → R.
Take again the same quantized feedback map k̄ : Rn → R considered above and its scaled
versions ki(x). Define Ls ⊆ Rn and k(s, ·), s ∈ Z as follows

Ls := Qδs∆

k(s, x) := ks(x)
∀s ∈ Z

The evaluation of the expected entrance time for this strategy is less obvious. Fix r ≥ 0
and assume that s0 = 0 and that x0 ∈ L0. We want to evaluate E[T(L0,L̄r)] assuming that x0

is distributed in L0 = Q∆ according to the uniform probability density g.
Consider the map

Φ : Q∆ → Q∆ : x 7→ δ−1Γ̄n(x)(x),

where n(x) := T(L0,L̄1)(x) is the one step entrance time function. Notice that in this case we
have that 1 ≤ T(L0,L̄1)(x) ≤ n. In this way we obtain that

T(L0,L̄r)(x) =
r−1∑

i=0

T(L0,L̄1)(Φ
i(x)) .

The map Φ is a piecewise affine map. Let

Q : L1(Q∆) → L1(Q∆)

be the associated Perron-Frobenius operator (see (10)). We can write

Tr := E[T(L0,L̄r)] =
r−1∑

k=0

Egk
[T(L0,L̄1)]

where gk = Qkg and g is the uniform probability density in Q∆. We have the following result
which can be proved as Theorem 1.

Theorem 2 Assume that s0 = 0 and x0 is uniformly distributed on Q∆. Then there exists a
Q-invariant probability density g̃ such that

Tr = rT̃ + ar ∀r ∈ N

where {ar} is a bounded sequence and where

T̃ := Eeg[T(L0,L̄1)]

is the expected entrance time from L0 to L̄1 with respect to the probability density g̃.

Notice that this strategy appears to be more efficient with respect to the 1-step zooming
also in terms of the number of the quantized controller states. Indeed, in the 2-steps zooming
strategy each controller state transition corresponds to a contraction of δn while to obtain the
same in the 1-step zooming case it is necessary to have n state transitions. In other words, the
set Lr in the 2-steps zooming coincides with the set Lnr in the 1-step zooming and so to reach
we need only r state transitions in the 2-steps zooming, and nr state transitions in the 1-step
zooming.

In conclusion in this case we have the parameters

1. The contraction is C = δ−nr
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2. Number of states is L = r.

3. Number of quantization subsets of f(s, x) is M = 3.

4. Number of quantization subsets of k(s, x) is N = da/δe.
5. Expected entrance time T ∼ T̃ r.

In fact, the combined map (f, k) has only 2N + 1 quantization subsets.
In the following table the performance and the complexity of the nesting technique, the one

the step zooming technique and the two steps zooming technique are compared.

nesting zooming1 zooming2
contraction C δ−nr δ−nr δ−nr

expected time T T̄ r nr T̃ r

states L 1 nr r

quantization of k N rda/δe da/δe da/δe
quantization of f M 1 2 3

(14)

Observe that, if we consider the index L not critical in the quantized controller design,
then the zooming strategies clearly overperform the nesting strategies. This is true if we
assume noiseless communication. As we pointed out above, in case of noisy communication,
the problem of maintaining the synchronization between the encoder and the decoder state
makes the design of the quantized controller with memory much more complex.

Remark The zooming control strategy presented above can be generalized by modifying the
state updating map given in (12) and in (13). Indeed, we can take more in general an updating
map like

st+1 =





st + β if Γ(st, xt) ∈ Lst+β
...

st + 2 if Γ(st, xt) ∈ Lst+2 \ Lst+3

st + 1 if Γ(st, xt) ∈ Lst+1 \ Lst+2

st if Γ(st, xt) ∈ Lst \ Lst+1

st − 1 if Γ(st, xt) ∈ Lst−1 \ Lst

st − 2 if Γ(st, xt) ∈ Lst−2 \ Lst−1
...

st − γ if Γ(st, xt) ∈ Lst−γ \ Lst−γ+1

st − α otherwise

where α, β, γ are integers such that β > 0 and α > γ ≥ 0. The zooming and the nesting can
be seen as extremes of this general quantized control methodology.

4 General performance bounds

In this section we study some general performance limitations of quantized control schemes,
showing in particular that the controllers proposed in the previous section can not be improved
much. To obtain these results we have to make some further assumptions on the quantized
controllers we consider. These assumptions are verified by all examples treated so far.
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Assume that the map (Λ,Γ) is (Z, W, V )-stable with Z bounded. In the examples treated
in Section 3 the set S was infinite. However, in this section S denotes only the subset of states
really used by the controller in shrinking W into V and this is assumed to be finite. The
number of its element is denoted by L. We also assume that Ns and Ms are finite numbers for
any s ∈ S. Moreover we assume that the map k(s, x) has the form

k(s, x) = qs(ksx),

where qs : R → R is a scalar quantized map and ks ∈ R1×n. This hypotheses is equivalent to
the fact that the quantization subsets Kj

s are obtained by cutting Rn with parallel hyperplanes
orthogonal to a given vector. For what concerns the partitions Fs, we introduce the integer
νs which is the maximum number of intervals in which the straight line ρR is divided by the
partition Fs as ρ varies in Rn and we define ν = maxs νs. In the results we are going to
establish we assume that ν is a finite fixed parameter. Notice that in the example on 1 step
zooming we gave in the previous section, νs is periodically varying in s, while in the example
on 2 steps zooming νs is constant.

We then make a geometric assumption on the sets V and W which roughly amounts to
require that both V and W are not ‘too skinny’ in some dimension. Formally, for a fixed γ > 0,
we assume that

λ(W )
d(W )n

≥ γ ,
λ(V )
d(V )n

≥ γ ,

where λ(·) is the Lebesgue measure and d(·) is the diameter of a set in Rn.
We also assume A to have a real non-zero eigenvalue µ. This may be a serious limitation,

but it is mainly made for the sake of simplicity. The general case leads to problems similar to
considering quantization in more than one direction and will be treated elsewhere.

To resume, we have introduced two new parameters: ν which measures the complexity of
the family of partitions Fs and γ which is connected with the shape of V and W . Moreover
we have also considered a real eigenvalue µ of the matrix A. These three parameters will be
kept fixed in the sequel, as well M which, on the other hand, is strictly linked to ν.

In the rest of this section we are going to establish some trade-off inequality constraints
involving the performance parameters C and T = E[T(W,V̄ )], where V̄ was defined (5), and
the two complexity parameters L and N . Actually, it is possible and useful to condense the
role of L and N into just one complexity parameter N defined as the number of quantization
subsets F i

s∩Kj
s effectively visited by the controller in transient evolution from W into V . More

precisely, N is the number of quantization subsets F i
s ∩Kj

s for which

{s} × (F i
s ∩Kj

s) 6⊆ V̄

and for which there exists x ∈ W and t ∈ N such that

(Λ, Γ)t(0, x) ∈ {s} × (F i
s ∩Kj

s) .

The inequalities we will prove will be in terms of T , C and N, while the constants appearing
will only depend on µ, ν and γ. Notice that

N ≤
∑

s∈S

NsMs ≤ NML . (15)

This implies that, if we keep also M fixed, all the inequalities in terms of T , C, N we will
obtain can be translated into inequalities in terms of T , C, N and L.

Our strategy in obtaining the trade-off inequalities will be the following. We will first
use a one-dimensional reduction technique and some ideas in [8] to lower bound the expected
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entrance time T in terms of the number of the words of a language emerging from the symbolic
description of the closed loop dynamics. We will then use a general result in [8] to lower bound
this number of words in terms of N. Finally we will combine the various pieces together and
obtain the inequalities.

4.1 A one-dimensional reduction

With no loss of generality we can assume that the eigenvector corresponding to the eigenvalue
µ is e1, the first element of the canonical basis of Rn. Given any W ⊆ Rn, we define W2 to be
the projection of W on the last n− 1 components. For any fixed x2 ∈ Rn−1, define

Wx2 :=
{

x ∈ R :
[

x
x2

]
∈ W

}
(16)

We will denote by l(Wx2) the one-dimensional Lebesgue measure of Wx2 . Define the length of
W as

l(W ) = sup
x2∈Rn−1

l(Wx2) .

If V̄ ⊆ S × Rn we define
V̄s = {x ∈ Rn | (s, x) ∈ V̄ }

and
l(V̄ ) = sup

s∈S
l(V̄s) .

The linear contraction of the pair (W, V̄ ) is defined as

Cl(W, V̄ ) =
l(W )
l(V̄ )

.

We can decompose

E
[
T(W,V̄ )

]
=

∫

W2




∫

Wx2

T(W,V̄ )(x1, x2) dx1


 1

λ(W )
dx2 =

∫

W2

E
[
T(Wx2 ,V̄ )

] l(Wx2)
λ(W )

dx2 (17)

where
E

[
T(Wx2 ,V̄ )

]
=

∫

Wx2

T(W,V̄ )(x1, x2)
dx1

l(Wx2)

depends on x2 and is calculated with respect to the 1-dimensional uniform probability density
on Wx2 . This shows that, if we obtain bounds on E[T(Wx2 ,V̄ )], then we can transfer them on
E[T(W,V̄ )] using (17). To estimate E[T(Wx2 ,V̄ )] we will use a symbolic dynamics technique as in
[8]. As a first step we need to introduce a symbolic description of the dynamics.

4.2 A symbolic description of the dynamics

Let
A = {(s, i, j) ∈ S × N2 | s ∈ S , i = 1, . . . , Ms , j = 1, . . . , Ns} .

For any (s, i, j) ∈ A, the subset F i
s ∩Kj

s can be decomposed as the union of maximal disjoint
affine intervals in the direction of e1. The family of all such intervals is denoted by Ii,j

s . Let

I :=
⋃

(s,i,j)∈A
Ii,j

s
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We can associate to (Λ,Γ), a sublanguage of (A×I)∗ as follows. From any initial state x0 ∈ W
and s0 = 0, the closed loop system generates an evolution (st, xt), t ∈ N. With this evolution
we can associate the word (s0, i0, j0, I0)(s1, i1, j1, I2) · · · (st, it, jt, It) ∈ (A × I)∗ such that for
every k = 0, 1, . . . , t we have that xk ∈ F ik

sk
, xk ∈ Kjk

sk and xk ∈ Ik ∈ Iik,jk
s . The sublanguage

of (A× I)∗ constituted by all these words as x0 varies in W and t ∈ N will be denoted by Σ∗.
If V̄ ⊆ S × Rn, we define

Σ∗(V̄ ) = {(s0, i0, j0, I0)(s1, i1, j1, I1) · · · (st, it, jt, It) ∈ Σ∗ | {sk} × Ik 6⊆ V̄ , ∀k = 0, 1, . . . , t} .

For any I ∈ Ii,j
0 with I ⊆ W the symbol γt(I, V̄ ) denotes the number of distinct words of

length t in Σ∗(V̄ ) starting from the symbol (0, i, j, I). Moreover, if I ⊆ W is any interval in
the direction of e1. We define

γt(I, V̄ ) =
M0∑

i=1

N0∑

j=1

γt(I ∩ F i
0 ∩Kj

0 , V̄ ) . (18)

The following result shows why the symbolic representation of the closed loop system is
helpful for estimating the probability distribution of the entrance time.

Lemma 1 Let I ⊆ W be any interval in the direction of the first coordinate. For any t ∈ N
we have that

P[T(I,V̄ ) = t] ≤ Cl(I, V̄ )−1 γt(I, V̄ )
|µ|t (19)

P[T(I,V̄ ) ≥ t] ≥ 1− Cl(I, V̄ )−1 − Cl(I, V̄ )−1
t−1∑

k=1

γk(I, V̄ )
|µ|k . (20)

where P here denotes the uniform probability on I.

Proof Fix i0 ∈ {1, . . . , M0} and j0 ∈ {1, . . . , N0} and consider the word

(0, i0, j0, I0)(s1, i1, j1, I1) · · · (st−1, it−1, jt−1, It−1) ∈ Σ∗(V̄ ) ,

where I0 = I ∩ F i0
0 ∩Kj0

0 . By definition of Σ∗(V̄ ), the interval

(I0) ∩ (Γ−1
0 I1) ∩ · · · ∩ (Γ−1

0 · · ·Γ−1
st−2

It−1) (21)

is non-empty and the map Γst−1Γst−2 · · ·Γ0 is affine on it. Notice now that the value of the
state st is completely determined from st−1 from the fact that we know that xt−1 ∈ F

it−1
st−1 .

Hence,

l(I0 ∩ (Γ−1
0 I1) ∩ · · · ∩ (Γ−1

0 · · ·Γ−1
st−2

It−1) ∩ (Γ−1
0 · · ·Γ−1

st−1
V̄st)) ≤

l(V̄st)
|µ|t ≤ l(V̄ )

|µ|t .

Since intervals (21) relative to different words are pairwise disjoint, we obtain

P[T(I,V̄ ) = t] =
l({x ∈ I | T(I,V̄ )(x) = t})

l(I)
≤ l(V̄ )
|µ|t

γt(I, V̄ )
l(I)

= Cl(I, V̄ )−1 γt(I, V̄ )
|µ|t .

This proves (19). Estimation (20) immediately follows from (19).

From this we obtain that, for any choice of t ∈ N, we have

E
[
T(I,V̄ )

]
=

+∞∑

t=1

P[T(I,V̄ ) ≥ t] ≥
t∑

t=1

P[T(I,V̄ ) ≥ t] ≥ t(1−Cl(I, V̄ )−1)−Cl(I, V̄ )−1
t∑

t=1

t−1∑

k=1

γk(I, V̄ )
|µ|k .

(22)
Our fundamental goal is now to determine upper bounds on γk(I, V̄ ), when I is any interval

in the direction of e1. In order to do this, we will first exhibit a graph representation of the
language Σ∗(V̄ ) and we will then use a result established in [8].
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4.3 The Markovian representation

The language Σ∗(V̄ ) can be represented by a graph as follows. Consider the directed graph
with set of vertices Σ∗(V̄ ) and set of edges E given by

(ω0ω1 · · ·ωt−1 → ω0ω1 · · ·ωt−1ωt) ∈ E ⇐⇒ ω0ω1 · · ·ωt−1ωt ∈ Σ∗(V̄ ) . (23)

Notice that the words in Σ∗(V̄ ) starting from ω0 ∈ Σ∗(V̄ ) are in one-to-one correspondence
with the finite paths on the graph starting from the vertex ω0. This representation of Σ∗(V̄ )
will be called a Markov representation. This can be simplified by considering an equivalence
relation on the vertices. With each word ω0ω1 · · ·ωt ∈ Σ∗(V̄ ), we associate its symbolic future

futΣ(ω0ω1 · · ·ωt) =
{
ω0ω1 · · ·ωk | ω0 = ωt and ω0ω1 · · ·ωtω1 · · ·ωk ∈ Σ∗(V̄ )

}
,

which is a subset of Σ∗(V̄ ). More roughly, the symbolic future of a word ω0ω1 · · ·ωt is the set
of words whose concatenation with ω0ω1 · · ·ωt is in Σ∗(V̄ ).

The concept of geometric future of a word ω0ω1 · · ·ωt ∈ Σ∗(V̄ ) can be introduced as follows.
Assume that ωk = (sk, ik, jk, Ik) for k = 0, 1, . . . , t. Then

fut(ω0ω1 · · ·ωt) := (futd(ω0ω1 · · ·ωt)), futc(ω0ω1 · · ·ωt))

where
futd(ω0ω1 · · ·ωt)) := st

is called the discrete geometric future and

futc(ω0ω1 · · ·ωt) = Γst−1 · · ·Γs0

(
I0 ∩ (Γ−1

s0
I1) ∩ . . . ∩ (Γ−1

s0
· · ·Γ−1

st−1
It)

)

the continuous geometric future.
Straightforward considerations (see also [3, 8]) show that two words have the same symbolic

future if and only if they have the same geometric future.
Using these equivalences it is possible to simplify the Markov representation of Σ∗(V̄ )

introduced above (see [11] for a general treatment of this reduction method). Define X to be
the quotient of the set Σ∗(V̄ ) by the equivalence relation

ω′0 · · ·ω′t′ ≡ ω′′0 · · ·ω′′t′′ ⇔ futΣ(ω′0 · · ·ω′t′) = futΣ(ω′′0 · · ·ω′′t′′) . (24)

The elements of X will be called states and they will be denoted by the symbol x. The symbol
〈ω0ω1 · · ·ωt〉 represents the state consisting of the equivalent class which contains the word
ω0ω1 · · ·ωt. The equivalence relation defining X ensures that any state x ∈ X has a well
defined geometric future fut(x). In fact, the geometric future fut(x) uniquely determines the
state x. Edges can be naturally redefined on X to obtain a new labelled graph denoted G which
is still a Markov representation of Σ∗(V̄ ). The words in Σ∗(V̄ ) starting from ω0 ∈ Σ∗(V̄ ) are in
one-to-one correspondence with the finite paths on G starting from the state 〈ω0〉. This implies
that if I ∈ Ii,j

0 , then γt(I, V̄ ) is exactly the number of distinct paths of length t in G starting
from the vertex 〈(0, i, j, I)〉.

4.4 Estimations of paths on the graph

In this subsection we will recall a result established in [8] which estimates the number of paths
on a graph with some structure. Consider a direct graph G on a vertex set X (which is not
necessarily finite or denumerable). We set from some notation. If X1, . . . ,Xk ⊂ X , we define
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γk[x1 ∈ X1, . . . ,xk ∈ Xk] to be the number of paths x1 · · ·xk ∈ X ∗ on the graph G such that
x1 ∈ X1, . . . ,xk ∈ Xk.

The conditions that G must satisfy are the following. We assume there exists a finite
partition

X = X1 ∪ X2 ∪ · · · ∪ XN ,

a subset XP ⊆ X and a function q : X →]0, 1[ with the following properties:

(A) There exist numbers q1, . . . , qN ∈]0, 1[ such that

q(x) ≤ qi , ∀x ∈ Xi

q(x) = qi , ∀x ∈ XP
i := XP ∩ Xi .

(B) There exist positive numbers D1 and α1 such that, for every x′ ∈ X and q ∈]0, 1[,

γt[x1 = x′ ,x2 , . . . ,xt ∈ X , q(xt) ≥ q] ≤ D1
q(x′)

q
αt

1 .

(C) There exist positive numbers D2 and α2 such that, for every x′ ∈ X and i ∈ {1, . . . ,N},

γt[x1 = x′ ,x2 , . . . ,xt−1 ∈ X \ XP ,xt ∈ Xi] ≤ D2α
t
2 .

Then, if we define

γt =
N∑

h=1

sup
x′∈Xh

γt[x1 = x′,x2 , . . . ,xt ∈ X ], h = 1, . . . ,N

we have the following result.

Theorem 3 [8] There exists r ∈ {1, . . . ,N} and a constant H only depending on α1, α2, D1,
and D2 such that:

(1) If α1 > α2, then

γt ≤
[

r∧t∑

s=1

(
t− 1
s− 1

) (r

s

) (s

r

)s
](

NH

t ∧ NH
e

)t∧NH
e

αt
1 . (25)

(2) If α1 ≤ α2, then

γt ≤
[

r∧t∑

s=1

(
t + s− 1
2s− 1

)(r

s

)(s

r

)s
](

NH

t ∧ NH
e

)t∧NH
e

αt
2 . (26)

where e denotes the Neper constant and a ∧ b denotes the minimum of the two numbers a and
b.
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4.5 Application to the expected entrance time estimate

We now show that the graph G constructed in Subsection 4.3 indeed satisfies the assumptions
of previous theorem. We start by defining the partition. For any (s, i, j) ∈ A such that
{s} × (F i

s ∩Kj
s) 6⊆ V̄ define

Xs,i,j = {x ∈ X | fut(x) ⊆ {s} × F i
s ∩Kj

s} .

The number of nonempty Xs,i,j as defined above is bounded from above by the number N
defined at the begining of Section 4.

We now define XP as the subclass of X consisting of the states of the type 〈(s, i, j, I)〉,
where I is any interval which coincides with the intersection of Kj

s and any straight line in the
direction of e1. Finally, for any x ∈ X , we define

q(x) =
l(futc(x))

l(Z)
.

Let
qs,i,j = sup{q(x) |x ∈ Xs,i,j} .

Elementary geometric considerations show that q(x) is constant for all x ∈ XP
s,i,j := Xs,i,j∩XP .

Let qs,i,j be its value. This shows that assumption (A) holds. The assumptions (B) and (C)
follow from the following lemmas.

Lemma 2 Let x′ ∈ X . Then

γt[x1 = x′,x2, . . . ,xt ∈ X , q(xt) ≥ q] ≤ q(x′)
q

|µ|t−1 .

Proof Let sj = futd(xj). Notice that the intervals of the form

futc(x′) ∩ Γ−1
0 futc(x2) ∩ · · · ∩ Γ−1

0 · · ·Γ−1
st−1

futc(xt) x2, . . . ,xt ∈ X
constitute a family of disjoint subintervals of futc(x′). This shows that

l[futc(x′)] ≥
∑

x2,...,xt∈X
l
[
futc(x′) ∩ Γ−1

0 futc(x2) ∩ · · · ∩ Γ−1
0 · · ·Γ−1

st−1
futc(xt)

]
.

Notice moreover that Γst−1 · · ·Γ0 is affine on each of these intervals and so we have that

l
[
futc(x′) ∩ Γ−1

0 futc(x2) ∩ · · · ∩ Γ−1
0 · · ·Γ−1

st−1
futc(xt)

]
≤ l[futc(xt)]

|µ|t−1

if x′x2 · · ·xt−1xt is a possible path on the graph and it is 0 otherwise. This yields the result.

Lemma 3 For every x′ ∈ X , and (s, i, j) ∈ A we have that

γt[x1 = x′ ,x2 , . . . ,xt−1 ∈ X \ XP ,xt ∈ Xs,i,j ] ≤ (2ν)t−2 .

Proof We notice that there is an edge connecting a state x′ =< (s, i, j, I) > to another state
x′′ if and only if Γs(futc(x′))∩ futc(x′′) 6= ∅. Since the map Γs is affine on the interval futc(x′),
then Γs(futc(x′)) is also an interval which will be split by at most ν subintervals by the partition
Fs′ where s′ = Λ(s, F i

s). Therefore at most 2ν followers of the state x′ can be in X \ XP . The
result follows by applying this argument.

Using Theorem 3, estimation (22) and decomposition (17) we obtain a lower bound esti-
mation on E[T(W,V̄ )].
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Theorem 4 Assume that |µ| > 2ν. There exists r ∈ {1, . . . ,N} and a constant H, only
depending on µ, ν and γ, such that, for all t ∈ N, we have the following:

T ≥ t
[
1− (γC1/n)−1

]
− (γC1/n)−1




r∧t−1∑

s=1

(
t

s + 1

) (r

s

)(s

r

)s




(
NH

t− 1 ∧ NH
e

)t−1∧NH
e

. (27)

Proof It follows from definition (18), Theorem 3 and standard combinatorial techniques that

t−1∑

k=1

γk(I, V̄ )
|µ|k ≤

t−1∑

k=1

[
r∧k∑

s=1

(
k − 1
s− 1

) (r

s

)(s

r

)s
](

NH

k ∧ NH
e

)k∧NH
e

≤
[

t−1∑

k=1

r∧k∑

s=1

(
k − 1
s− 1

) (r

s

)(s

r

)s
](

NH

t− 1 ∧ NH
e

)t−1∧NH
e

≤
[

r∧t−1∑

s=1

(r

s

)(s

r

)s
t−1∑

k=s

(
k − 1
s− 1

)](
NH

t− 1 ∧ NH
e

)t−1∧NH
e

≤
[

r∧t−1∑

s=1

(
t− 1

s

) (r

s

)(s

r

)s
](

NH

t− 1 ∧ NH
e

)t−1∧NH
e

.

With similar techniques it follows that

t∑

n=1

n−1∑

k=1

γk(I, V̄ )
|µ|k ≤




r∧t−1∑

s=1

(
t

s + 1

)(r

s

)(s

r

)s




(
NH

t− 1 ∧ NH
e

)t−1∧NH
e

.

A simple substitution in (22) now yields

E
[
T(I,V̄ )

]
≥

t
[
1− Cl(I, V̄ )−1

]− Cl(I, V̄ )−1




r∧t−1∑

s=1

(
t

s + 1

) (r

s

)(s

r

)s




(
NH

t− 1 ∧ NH
e

)t−1∧NH
e

.

(28)

Using (17) and (28) we obtain

E
[
T(W,V̄ )

]
=

∫

v∈W2

E
[
T(Wx2 ,V̄ )

] l(Wx2)
λ(W )

dx2 ≥
∫

v∈W2

[
t
[
1− Cl(Wx2 , V̄ )−1

]− Cl(Wx2 , V̄ )−1·

·



r∧t−1∑

s=1

(
t

s + 1

) (r

s

) (s

r

)s




(
NH

t− 1 ∧ NH
e

)t−1∧NH
e


 l(Wx2)

λ(W )
dx2

= t(1− C̃−1)− C̃−1




r∧t−1∑

s=1

(
t

s + 1

)(r

s

)(s

r

)s




(
NH

t− 1 ∧ NH
e

)t−1∧NH
e

(29)
where

C̃−1 =
∫

v∈W2

Cl(Wx2 , V̄ )−1 l(Wx2)
λ(W )

dx2 =
l(V̄ )λ(W2)

λ(W )
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and where λ(W2) denotes the (n−1)-dimensional Lebesgue measure of W2. Since, l(V̄ ) ≤ d(V )
and λ(W2) ≤ d(W )n−1, we obtain

C̃−1 ≤ d(V )d(W )n−1

λ(W )
≤ γ−1

(
λ(V )
λ(W )

) 1
n

.

Inserting it in (29) we obtain the result.

Remark: In the case |µ| ≤ 2ν an estimation very similar to (27) can be obtained using, in an
analogous way, the second part of Theorem 3.

4.6 The main results

Using the technical results of previous subsection, we can now obtain inequality constraints
involving T , C, and N.

Theorem 5 There exist H1 > 0, β1 > 0 and C1 > 1, only depending on µ, ν and γ, such that

C ≥ C1 and
dT e
ln C

≤ β1 =⇒ N ≥ H1dT eC
1

dnTe , (30)

where dT e is the smallest integer bigger than or equal to T .

Proof We prove it in the case when |µ| > 2ν, the other case being completely analogous.
Using the inequality (r

s

)
≤

(
1 +

r − s

s

)s

es

which can be deduced from the Stirling approximation, we obtain

r∧t−1∑

s=1

(
t

s + 1

)(r

s

)(s

r

)s
≤

t−1∑

s=1

(
t

s + 1

)
es ≤ A1(1 + e)t ,

for a suitable constant A1 > 0. Inserting it in (27) and assuming t ≥ 2, we obtain

T ≥ t(1− (γC1/n)−1)− (γC1/n)−1At−1
2

(
NH

t− 1 ∧ NH
e

)t−1∧NH
e

, (31)

for some constant A2 which, with no loss of generality, we can assume to be greater than 1 .
We now show that we can find C ′ > 1 and β1 > 0 such that

C ≥ C ′ and
dT e
ln C

≤ β1 =⇒ dT e ≤ NH

e
. (32)

Indeed, if dT e > NH/e, then, choosing t := dT e+ 1, it follows from (31) that

dT e ≥ (dT e+ 1)(1− (γC1/n)−1)− γ−1(eA2)dT e(γC1/n)−1

≥ (dT e+ 1)(1− (γC1/n)−1)− γ−1(eA2)β1 ln C(γC1/n)−1

(33)

By taking the limit for C → +∞ in (33) we obtain that necessarily β1 ln(eA2)− 1/n ≥ 0. The
claim is thus proven by choosing β1 < [n ln(eA2)]−1 and C ′ sufficiently large. Assuming now
that (32) holds true and choosing again t := dT e+ 1 in (31), we obtain

dT e ≥ (dT e+ 1)(1− (γC1/n)−1)− (γC1/n)−1

(
NHA2

dT e
)dT e

. (34)
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Solving with respect to N, we obtain

N ≥ dT e
A2H

[γC1/n − dT e − 1]1/dT e ≥ dT e
A2H

[γC1/n − β1 lnC − 1]1/dT e . (35)

Let C ′′ > 0 be such that

C > C ′′ ⇒ γC1/n − β1 lnC − 1 ≥ γ

2
C1/n .

If we choose C1 := C ′ ∨C ′′ and H1 = (A2H)−1(1∨ (γ/2)) (where ∨ denotes the maximum) we
obtain the result.

Remark The immediate application of the previous theorem shows that, for the class of
memoryless deadbeat quantized feedback such as the ones considered in the previous section
we have that T is constant and so we obtain the bound on N = N ≥ const C1/nT which
resembles the performance obtained there which was N ∼ const C1/T . The difference in the
exponents of C is due to the fact that the bound is consequence of an essentially one dimensional
analysis and that we did not use the hypothesis that the system was controllable. In other
words it is easy see that for the n-dimensional system in which

A =




µ 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 B =




1
0
...
0




it is possible to obtain the same performance as the scalar system xt+1 = µxt + ut.

Theorem 5 yields the following important corollary.

Corollary 1 There exist β1 > 0 and C1 > 1 and a positive continuous decreasing map δ :
R+ → R+ only depending on µ, ν and γ, such that

C ≥ C1 and
dT e
lnC

≤ β ≤ β1 =⇒ N
ln C

≥ δ(β) . (36)

Proof Consider H1, C1 and β1 as defined in Theorem 5 and assume, without loss of generality
that β1 ≤ 1/n. Result then immediately follows from Theorem 5 using the fact that the
function x 7→ xC

1
nx is decreasing on (0, ln C/n].

From this last result we can also easily obtain the following corollary.

Corollary 2 There exists C1 > 1 and a positive continuous decreasing map β : R+ → R+,
only depending on µ, ν and γ, such that

C ≥ C1 and
N

ln C
≤ δ =⇒ dT e

lnC
≥ β(δ) . (37)

In the the remaining of the section we will show that when |µ| > 2ν other results can be
obtained.

Theorem 6 Assume that |µ| > 2ν. Then there exist H2 > 0, β2 > 0 and C2 > 1, only
depending on µ, ν and γ, such that

C ≥ C2 and
N

ln C
≤ β2 =⇒ T ≥ H2NC

1
nN . (38)
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Proof Using again Stirling approximation and standard combinatorics we have that

r∧t−1∑

s=1

(
t

s + 1

) (r

s

)(s

r

)s
≤

N∑

s=1

(
t

s + 1

)(
N

s

)
=

(
n + N
N + 1

)

=
n

N + 1

(
n + N

N

)
≤ t

(
1 +

t

N

)N

eN ,

.

We obtain in this way

T ≥ t

[
1− (γC1/n)−1 − (γC1/n)−1

(
1 +

t

N

)N

AN

]
, (39)

for some A > 0. If in (39) we choose t =
⌈
DNC1/nN

⌉
for some constant D > 0 which will be

fixed later, we have that

T

NC1/nN
≥ D

[
1− (γC1/n)−1 −

(
2 + DC1/nN

)N
AN(γC1/n)−1

]

= D

[
1− (γC1/n)−1 −

(
2C−1/nN + D

)N
ANγ−1

]
.

(40)

Assume now that N ≤ β lnC for some β > 0 which will be chosen later. This implies that

T

NC1/nN
≥ D

[
1− (γC1/n)−1 −

(
(2e−1/nβ + D)A

)N
γ−1

]
(41)

If we choose D and β small enough, we obtain

(
(2e−1/nβ + D)A

)N
γ−1 ≤ 1/3 ∀N

If we now choose C1 in such a way that (γC1/n)−1 < 1/3 for C > C1, we obtain that (38) holds
with D1 = D/3 and β1 = β.

From previous result we easily obtain the following generalization of Corollary 1.

Corollary 3 Assume that |µ| > 2ν. Then there exists C2 > 1 and a positive continuous
decreasing map δ : R+ → R+, only depending on µ, ν and γ, such that

C ≥ C2 and
T

ln C
≤ β =⇒ N

lnC
≥ δ(β) . (42)

4.7 Some interpretative comments

Theorem 5 and Corollary 1 provide inequality constraints between the three parameters N, T
and C assuming that T/ ln C is sufficiently small. In particular Corollary 1 shows that, if we
want to obtain stabilization with sufficiently small logarithmic time rate, then the complexity
parameter N has to grow at least logarithmically in C. Actually Corollary 1 also establishes
an explicit quantitative link between T/ ln C and N/ ln C: indeed, it follows from the proof of
Corollary 1, that the map δ(β) in (36), for β sufficiently small, has the form

δ(β) = H1βω1/β (43)
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for some ω > 1. Notice that this fact applies even if the matrix A of the system to be controlled
is already asymptotically stable but not nilpotent. Of course, in that case we would obtain
logarithmic time rate without any control. However, if we want to decrease the logarithmic
time rate below a certain threshold, then we must use in any case a logarithmic number of
quantization subsets. Corollary 2 instead says that if N/ lnC remains bounded, we will obtain
expected entrance times T which will grow at least logarithmically in C. In other words,
sublogarithmic time growth, namely faster convergence, can not be obtained if we do not allow
superlogarithmic growth in the complexity parameter N. In the case when |µ| > 2ν we have
more precise results. In fact Corollary 3 says that in order to obtain any type of logarithmic
time rate behavior, then we must have N also growing logarithmically in C . We expect this
to be true for any non asymptotically stable situation, namely even when 1 ≤ |µ| ≤ 2ν, but we
have not been able to prove this, yet. Notice also that since N ≤ NML and M is considered
to be constant, Theorem 5, Corollaries 1 and 3 still holds true substituting NL at the place
of N. This yields the results we had anticipated in the introduction and shows that we can
not improve very much what it was obtained in the examples shown in the previous section.
Both in the nesting and in the zooming case we have indeed logarithmic growth with respect
to C both of the mean entrance time T and of the product NL as it can be seen from (11) and
from table 14. Moreover the relation between T/ lnC and NL/ lnC in these examples has the
same form of the one in (43): if we call T/ ln C = β, we have NL/ ln C = Hβω̃1/β for suitable
constants H and ω̃ which vary in the various cases.

Finally observe that, in principle, Theorem 6 leaves the possibility of having stabilization
with N/ ln C → 0 for C → +∞. Actually, memoryless quantized stabilization strategies with a
fixed N , not depending on C, do indeed exist and have been studied in [7, 8]. They only yield
what has been called ’almost stability’ in the sense that almost every point in the initial set W
is driven into the target set V . However their expected time T is finite and it was proven in
[6] to grow linearly with C in the one-dimensional case n = 1. This perfectly agrees with the
result expressed in Theorem 6.

5 Conclusions

We have introduced a general setting which allowed us to analyze quantized feedback stabilizers
of a linear discrete time system. We have introduced three indices N , M , and L describing the
complexity of the quantized feedback, a performance index T which is the expected time used
by the controller to drive the state of the system from an initial set W to a final target set V ,
and finally the contraction rate C which is the ratio between the volumes of W and V . We
have compared various examples on the basis of these indices and we have proven some results
expressing fundamental bounds among the above indices.

All our analysis has been carried on in the assumption that the system had only one input
and that we had full state observation. First goal of our future research is to remove these
assumptions and to consider general input output linear discrete time systems. This will also
force us to consider quantizations in more than one dimension which was one of the basic
assumptions for the bounds we have obtained.

Another interesting open problem is related to the possibility of error transmission in the
control with communication constraints framework we proposed. As we pointed out, such
errors have catastrophic consequences for the quantized controllers with memory proposed in
the literature. Therefore different strategies need to be developed for solving this problem.
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