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AVERAGE CONSENSUS WITH PACKET DROP COMMUNICATION∗

FABIO FAGNANI† AND SANDRO ZAMPIERI‡

Abstract. Average consensus consists in the problem of determining the average of some quan-
tities by means of a distributed algorithm. It is a simple instance of problems arising when designing
estimation algorithms operating on data produced by sensor networks. Simple solutions based on
linear estimation algorithms have already been proposed in the literature and their performance
has been analyzed in detail. If the communication links which allow the data exchange between
the sensors have some loss, then the estimation performance will degrade. In this contribution the
performance degradation due to this data loss is evaluated.
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1. Introduction. Average consensus problems have been widely studied in re-
cent years [20, 12, 18, 2, 15, 9, 16], both in the context of coordination of mobile
autonomous vehicles and in the context of distributed estimation. In fact, average
consensus can be considered a simple paradigm for designing estimation algorithms
implemented on sensor networks and working in a distributed way. More precisely,
we assume in this setup that all sensors independently measure the same quantity
with some error due to noise. A simple way to improve the estimate is to average all
the measures. To do this, the sensors need to exchange their information. Energy
limitations force transmission to take place directly along nearby sensors and also
impose bounds on the amount of data an agent can process. A global description of
the allowed exchange of information can be given by a directed graph in which the
sensors are the nodes and in which an edge from agent i to agent j represents the
possibility for i to send information to j. Algorithms which allow us to obtain this
average are called average consensus algorithms. The performance of an average con-
sensus algorithm may be measured by the speed of convergence toward the average.
In [15] a simple algorithm is proposed which is based on a linear dynamical system.
Moreover, in [15, 3] the relation between the performance of this algorithm and the
degree of connectivity of the graph is also evaluated. In [20, 11, 13, 18] variations
of this algorithm which handle time-varying communication graphs are considered.
Since in these cases the analysis proposed is essentially a worst case analysis, the
performance evaluation can be rather conservative. Different results can be obtained
if the graphs vary in time randomly [2, 3]. In fact, randomly time-varying graphs
typically yield improved performance.

In this paper we consider a more realistic model of the data exchange. In fact,
in many practical applications, the data exchange between sensors takes place over
a wireless communication network leading to the possibility that some packets get
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lost during the transmission. In this contribution this phenomenon is modeled by
assuming that at every time instant the transmission of a number from one sensor to
another can occur with a certain probability, and so there is a certain probability that
the link will fail and the data will be lost. We can expect that this will produce a
performance degradation. The main objective of this contribution is to provide some
instruments that allow us to quantify this degradation as a function of the probability
of the link failure. The problem is similar to the one considered in [9] where a more
limited class of random graphs were considered and where only the convergence of
the algorithm was considered. We have recently realized that other researchers [17]
have independently studied similar problems; their results, however, are different from
ours.

In section 2, after recalling classical average consensus algorithms, we propose two
different adaptations of such algorithms which can cope with lossy links: the biased
and the balanced compensation methods. The essential difference between the two
methods is that in the biased version, local averaging weights at each node are kept
fixed while, in the balanced case, weights are scaled depending on the available data
at every instant. Both algorithms will be shown to converge (almost surely and in
mean square sense) to a consensus value which in general may not coincide with the
average of the initial states. For both cases, performance degradation will be analyzed
through two figures showing the rate of convergence and the asymptotic displacement
from the average consensus. Analysis will always be carried out in a mean square
sense. Analysis of the degradation of the convergence rate is undertaken in section
3, where the problem is reduced to finding the largest eigenvalue of a suitable linear
operator L acting on a space of N2 dimensions (where N is the number of agents).
This reduction, besides giving an important theoretical characterization, is amenable
to efficient numerical analysis simulations. Sections 4 and 5 are devoted to the case
when the network possesses symmetries, in particular when it can be modeled by
an Abelian Cayley graph. In this case, the operator L can actually be substituted
with an N -dimensional operator. This allows us to obtain deeper analytical results
and, in particular, to obtain explicit solutions in special important cases (e.g., com-
plete graph, cycle graph, and hypercube graph). A comparison of the two methods
shows that, at least in some examples, the balanced method presents a better rate
of convergence. Finally, in section 6, we analyze the asymptotic displacement from
the average consensus due to packet drop and we prove that for the Abelian Cayley
case, this displacement is infinitesimal in the number of agents for both methods. We
will also show that with respect to the asymptotic displacement the biased method
outperforms the other.

2. Problem formulation. We assume that we have N agents. Each agent i
measures a quantity di ∈ R and at each time instant t it can transmit a real number
to some agents. The data exchange can be described by a directed graph G with
vertices {1, . . . , N}, in which there is an edge (j, i) if and only if the agent j can send
data to agent i. The objective is to find a distributed algorithm which allows the
agents to obtain a shared estimate of the average of the di’s. An efficient algorithm
solving this problem consists in the dynamic system

xi(t + 1) =
N∑

j=1

Pijxj(t), xi(0) = di,



104 FABIO FAGNANI AND SANDRO ZAMPIERI

where P is a suitable matrix such that Pij = 0 if (j, i) is not an edge in G. We assume
that G always includes all the self loop edges (i, i), meaning that each agent i has
access to its own data. More compactly we can write

(1) x+ = Px, x(0) = d,

where x, d ∈ RN and where x+ is a shorthand notation for x(t + 1). According to
this algorithm, the agent i needs to receive the value of xj(t) from the agent j to
update the value of xi(t) only if Pij �= 0. In this case, we say that the agents reach
the consensus, if for any initial condition x(0) ∈ RN , the closed loop system (1) yields

(2) lim
t→∞ x(t) = 1α,

where 1 := (1, . . . , 1)∗ and where α is a scalar depending on x(0) and P . Moreover, if
α coincides with the average N−1

∑N
i=1 di = N−11∗x(0), then we say that the agents

reach the average consensus.
To make the concepts more precise it is useful to recall some notation and results

on directed graphs (the reader can further refer to textbooks on graph theory such
as [8] or [5]). Fix a directed graph G with a set of vertices V and a set of arcs E ⊆ V ×V .
The adjacency matrix E is a {0, 1}-valued square matrix indexed by the elements in
V defined by letting Eij = 1 if and only (i, j) ∈ E . Define the out-degree of a vertex
j as outdeg(j) :=

∑
i Eij and the in-degree of a vertex i as indeg(i) :=

∑
j Eij . A

graph is called in-regular (resp., out-regular) of degree k if each vertex has in-degree
(resp., out-degree) equal to k. A path in G consists of a sequence of vertices i1i2 . . . ir
such that (i�, i�+1) ∈ E for every � = 1, . . . , r − 1; i1 (resp., ir) is said to be the initial
(resp., terminal) vertex of the path. A path is said to be closed if the initial and the
terminal vertices coincide. A vertex i is said to be connected to a vertex j if there
exists a path with initial vertex i and terminal vertex j. A directed graph is said to
be connected if, given any pair of vertices i and j, either i is connected to j or j is
connected to i. A directed graph is said to be strongly connected if, given any pair of
vertices i and j, i is connected to j.

With an N ×N matrix P we associate a directed graph GP with a set of vertices
{1, . . . , N} in which there is an arc from j to i whenever the element Pij �= 0. The
graph GP is said to be the communication graph associated with P . Conversely, given
any directed graph G with the set of vertices {1, . . . , N}, we say that a matrix P
is compatible with G if GP is a subgraph of G. After introducing this notation we
can make the consensus problem more precise. We say that the (average) consensus
problem is solvable on a graph G if there exists a matrix P compatible with G and
solving the (average) consensus problem.

As shown in [18, 15, 3], if G is strongly connected, it is always possible to choose
P so as to obtain the consensus. Indeed, if P is a stochastic matrix (namely, Pij ≥ 0
for every i, j and P1 = 1), GP is strongly connected, and Pii > 0 for some i, then
P solves the consensus problem. To obtain average consensus P needs to satisfy an
extra condition: It must be doubly stochastic (1∗P = 1∗). If G is strongly connected,
a P also satisfying this last condition can be found even if the construction becomes,
in general, more involved. There is an important case when the construction of such
a P is quite simple—when all agents have the same out- and in-degree ν (without
considering self loops). In this case, we can simply choose P = kI + (1 − k)ν−1E for
any k ∈]0, 1[. Undirected graphs are clearly an example which fits into this case and
P in this case is actually symmetric.
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In the following we will give an elementary example which casts the average
consensus problem into the topic of distributed estimation.

Example 1 (estimation from distributed measures [14, 2]). Assume we have N
sensors which measure a quantity z ∈ R. However, due to noise, each sensor obtains
different measures yi = z + vi, where vi are independent random variables with zero
mean and the same variance. It is well known that the average

α = N−1
N∑

i=1

yi

provides the best possible linear estimate of z (in the sense of the minimum mean
square error) from yi. Running an average consensus problem with initial conditions
xi(0) = yi will lead to a distributed computation of α by every agent.

2.1. Packet drop consensus algorithms. We start from a fixed graph G and
we assume that on each edge (j, i) of G, communication from the node j to the
node i can occur with some probability p. In order to describe this model more
precisely, we introduce the family of independent binary random variables Lij(t),
t ∈ N, i, j = 1, . . . , N , i �= j, such that

P[Lij(t) = 1] = p, P[Lij(t) = 0] = 1 − p.

We emphasize the fact that independence is assumed among all Lij(t) as i, j and t
vary. Let E be the adjacency matrix of G, and let H := E − I. Consider the random
matrix Ē(t) = I + H̄(t), where H̄ij(t) = HijLij(t). Clearly, Ē(t) is the adjacency
matrix of a random graph Ḡ(t) obtained from G by deleting the edge (i, j) when
Lij(t) = 0.

In this paper we will propose consensus strategies compatible with the random
varying communication graphs Ḡ(t); they will consist of a sequence of random stochas-
tic matrices P (t) such that GP (t) ⊆ Ḡ(t) for all t.

Our construction always starts from the choice of a stochastic matrix P adapted
to G yielding average consensus and we modify it in a way to compensate for the
lack of some data. There is, in principle, more than one way to obtain this. We
will propose two solutions. In the first, which will be called the biased compensation
method, each agent, in updating the estimate of the average, adds the weights of the
unavailable data to the weight it assigns to its own old estimate. In the second, which
will be called the balanced compensation method, the compensation for the lack of data
is done by modifying all the weights in a more balanced way. We want to emphasize
the fact that we are assuming all agents to be time synchronized. As a consequence,
at every time instant t, any agent i knows which data he has received; this means
that agent i knows the value of Lij(t) for every neighbor j.

The biased compensation method. We consider the following updating law:

xi(t + 1) =

⎛
⎝Pii +

∑
j �=i

(1 − Lij(t))Pij

⎞
⎠ xi(t) +

∑
j �=i

Lij(t)Pijxj(t).

According to this strategy, the agent i, in computing the new estimate, compensates
for the loss of data by accumulating the weights of the lost data with the weight
assigned to its previous estimate. Intuitively, according to this method, the agent i
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substitutes the unavailable xj(t) with xi(t) in the consensus algorithm. If we define
the random matrices D(t), Q(t) as

Dij(t) :=
{

Pii +
∑

j �=i(1 − Lij(t))Pij = 1 −∑h �=i Lih(t)Pih if i = j,

0 if i �= j,

and

Qij(t) :=
{

0 if i = j,
Lij(t)Pij if i �= j,

then we can describe this method through the stochastic system

(3) x(t + 1) = P (t)x(t),

where

P (t) := D(t) + Q(t).

The balanced compensation method. As opposed to the previous method, here we
prefer to distribute the weights equally between the available data. The updating
equation is thus

xi(t + 1) =
1

Pii +
∑

j �=i Lij(t)Pij

⎛
⎝Piixi(t) +

∑
j �=i

Lij(t)Pijxj(t)

⎞
⎠ .

In this case it is convenient to define, for i = 1, . . . , N , the binary random variable
Lii which is equal to 1 with probability 1. In this way, by defining

νi(t) =
N∑

j=1

Lij(t)Pij

and introducing the diagonal matrix D(t) having

Dii(t) :=
1

νi(t)

and the matrix Q(t) such that

Qij(t) := Lij(t)Pij ,

we can more compactly write

x(t + 1) = P (t)x(t)

with

P (t) := D(t)Q(t).

Our goal will be to evaluate the asymptotic behavior of system (3) in the two
cases. The following result shows that, for both of the above methods, communica-
tion failures will never prevent us from reaching consensus. The proof is a simple
consequence of Theorem 6 in [4] and is a particular instance of Corollary 3.2 in [6].
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Theorem 2.1. Assume that P achieves the consensus and that Pii > 0 for every
i. Then, both the biased compensation method and the balanced compensation method
yield consensus almost surely; namely, (2) almost surely holds for any initial condition
x(0) with an α which is general a random variable. Moreover, the convergence in (2)
also holds in the mean square sense; namely,

(4) lim
t→∞ E

[||x(t) − 1α||2] = 0,

where E[·] is the expected value and || · || is the 2-norm in RN .
Notice that the random variable α depends linearly on the initial condition x(0).

In other terms there exists an N -dimensional random vector v such that α = v∗x(0).
In spite of the previous theorem, we do expect a performance degradation due to

communication failures. Degradation will show up in two ways; first, as a diminished
convergence speed of the limit (4) and, second, as the deviation of the random variable
α from the average. The aim of this paper is to quantify such a degradation. The
next section will focus on the speed of convergence.

3. Mean square analysis. In this section we assume we have fixed a matrix P
adapted to the graph G yielding consensus and such that Pii > 0 for every node i. We
then undertake a mean squared analysis of our stochastic models and we characterize
their asymptotic rate of convergence. Precisely, our aim is to evaluate the exponential
rate of convergence to 0 of E[||x(t) − 1α||2]. We start with a preliminary result. Let

(5) xA(t) :=
1
N

N∑
i=1

xi(t) =
1
N

1∗x(t),

which coincides with the average of the current states.
Proposition 3.1. Assume that we have almost sure consensus, namely, that

x(t) → α1 almost surely. Then,

(6) E[||x(t) − 1xA(t)||2] ≤ E[||x(t) − 1α||2] ≤ (1 +
√

N)2E[||x(t) − 1xA(t)||2].

Proof. From

x(t) − 1xA(t) = (I − N−111∗)x(t) = (I − N−111∗)(x(t) − 1α),

we obtain

||x(t) − 1xA(t)|| ≤ ||x(t) − 1α|| .

This proves the left inequality.
The following identity holds for every t and s:

x(t) − x(t + s) = (I − P (t + s − 1) · · ·P (t)) (I − N−111∗)x(t) .

Using the fact that for any stochastic matrix P , ||P || ≤ √
N , we obtain that

(7) ||x(t) − x(t + s)|| ≤ (1 +
√

N)||x(t) − 1xA(t)|| .

Letting s → ∞ and taking the average of this yields the right inequality.
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The proposition shows that E[||x(t) − 1α||2] and E[||x(t) − 1xA(t)||2] have the
same exponential rate of convergence to zero or, in other words, that, for any initial
condition x(0), we have that

lim sup
t→+∞

E[||x(t) − 1α||2]1/t = lim sup
t→+∞

E[||x(t) − 1xA(t)||2]1/t .

For this reason, in what follows we will study the right-hand expression, which turns
out to be simpler to analyze. In order to have a single figure not dependent on the
initial condition, we will concentrate on this worst case exponential rate of conver-
gence:

R := sup
x(0)

lim sup
t→+∞

E[||x(t) − 1xA(t)||2]1/t .

Remark 1. Some of the considerations carried out above hold true even without
a priori knowledge of almost sure consensus. This is true for (7) in the proof of
Proposition 3.1 which, in any case, yields

(8) (E||x(t) − x(t + s)||2)1/2 ≤ (1 +
√

N)(E||x(t) − 1xA(t)||2)1/2 .

Hence, from the simple knowledge that E||x(t) − 1xA(t)||2 converges to 0, we can
deduce that x(t) is a Cauchy sequence and so, for completeness arguments, x(t)
converges in mean square to some random vector x(∞). Notice, moreover, that for
any vector ζ ∈ RN orthogonal to 1 we have that

|ζ∗x(t)| = |ζ∗(x(t) − 1xA(t))| ≤ ||ζ||||x(t) − 1xA(t)|| −→ 0.

Since ζ∗x(t) −→ ζ∗x(∞), for the limit uniqueness we have that ζ∗x(∞) = 0. This
implies that x(∞) = 1α for some random variable α. Hence, convergence of E||x(t)−
1xA(t)||2 yields consensus in the mean square sense.

In order to study the behavior of E[||x(t)−1xA(t)||2], the following characteriza-
tion turns out to be very useful. Indeed, notice that

E[||x(t) − 1xA(t)||2] = E[x∗(t)(I − N−111∗)x(t)] = x∗(0)Δ(t)x(0),

where

Δ(t) := E[P (0)∗P (1)∗ · · ·P (t − 1)∗(I − N−111∗)P (t − 1) · · ·P (1)P (0)],

if t ≥ 1 and where Δ(0) := I − N−111∗. Therefore we have that

R = max
ij

lim sup
t→+∞

Δ(t)1/t
ij .

We now study the evolution of the matrices Δ(t).
Notice first that

Δ(t + 1)
= E[P (0)∗P (1)∗ · · ·P (t − 1)∗P (t)∗(I − N−111∗)P (t)P (t − 1) · · ·P (1)P (0)]
= E[E[P (0)∗P (1)∗ · · ·P (t − 1)∗P (t)∗(I − N−111∗)P (t)P (t − 1) · · ·P (1)P (0)|P (0)]]
= E[P (0)∗E[P (1)∗ · · ·P (t − 1)∗P (t)∗(I − N−111∗)P (t)P (t − 1) · · ·P (1)]P (0)]
= E[P (0)∗Δ(t)P (0)],
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where the last equality follows from the fact that, since the random matrices P (t)
are independent and identically distributed, the two sequences of random matrices
(P (0), . . . , P (t − 1)) and (P (1), . . . , P (t)) have the same probability distribution.

It is convenient to introduce the linear operator L : RN×N → RN×N defined by

L(Δ) = E[P (0)∗ΔP (0)].

In this way Δ(t) is governed by the recursive relation

Δ(t + 1) = L(Δ(t)) .

If we consider now the reachable subspace R of the pair (L, Δ(0)), namely, the smallest
L-invariant subspace of RN×N containing Δ(0), we clearly have that

R = max{|λ| : λ eigenvalue of L|R} ,

where L|R denotes the restriction of the operator L to the invariant subspace R.
The previous proposition implies that, under mild hypotheses, L∗ is an irreducible

aperiodic stochastic matrix row and therefore the eigenvalue 1 has algebraic multi-
plicity 1.

The operator L has many interesting properties which have been studied in [6] in
a more general context. It has been shown in particular that L can be interpreted as
an aperiodic row-stochastic operator. As a consequence, 1 is an eigenvalue of algebraic
multiplicity one. It is easy to find a corresponding eigenvector. Notice indeed that
x(0)∗Lt(Δ)x(0) = E[x(t)∗Δx(t)]. Since x(t) → 1v∗x(0) in mean square sense, it
follows that

E[x(t)∗Δx(t)] → x(0)∗1∗Δ1E[vv∗]x(0) .

As a consequence,

lim
t→+∞Lt(Δ) = (1∗Δ1)E[vv∗] .

In particular, L(E[vv∗]) = E[vv∗]. Clearly the reachability subspace R will be con-
tained in the subspace generated by the eigenvectors different from E[vv∗].

In what follows we will write the operator L in a more explicit form. This will
allow us to determine R numerically. To do this we now need to study the two cases
separately.

3.1. The biased compensation method. For any matrix M we will denote
diag (M) as the diagonal matrix with the same diagonal elements of M and out (M) :=
M − diag (M) which is out-diagonal, namely, has zero diagonal elements.

Proposition 3.2. The sequence of matrices Δ(t) satisfies the recursive relation

Δ+ = [(1 − p)I + pP ]∗Δ[(1 − p)I + pP ]
+p(1 − p)diag {out (P )out (P )∗diag (Δ) + out (P )∗diag (Δ)out (P )}(9)
− p(1 − p)

{
diag (Δ)out (P̃ ) + out (P̃ )∗diag (Δ)

}
,

where the matrix P̃ is defined by letting P̃ij := P 2
ij .

Proof. Let D := D(0) and Q := Q(0). Notice, preliminarily, that E[Q] = p out (P )
and that E[D] = (1 − p)I + pdiag (P ). Notice, moreover, that

(10) E[DiiDjj ] =
{

(1 − p + pPii)(1 − p + pPjj) if i �= j,
(1 − p + pPii)2 + p(1 − p)

∑
k �=i P 2

ik if i = j,
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and that

(11) E[DiiQij ] = (1 − p + pPii)pPij − p(1 − p)P 2
ij .

Notice now that

Δ+ = E[DΔD] + E[DΔQ] + E[Q∗ΔD] + E[Q∗ΔQ].

Using (10) we obtain that

E[DΔD]ij

= E [DiiDjj ] Δij =

{
(1 − p + pPii)(1 − p + pPjj)Δij if i �= j,
(1 − p + pPii)2Δii + p(1 − p)

(∑
k �=i P 2

ik

)
Δii if i = j.

More compactly, we can write

E[DΔD] = [ (1 − p)I + pdiag (P )]Δ[(1 − p)I + pdiag (P )]
+ p(1 − p)diag{out(P )out (P )∗}diag (Δ).

Notice now that

E[DΔQ]ii =
∑
k �=i

E [DiiΔikQki] = E [Dii]
∑
k �=i

ΔikE [Qki] = p(1 − p + pPii)
∑
k �=i

ΔikPki.

If instead i �= j, then, using (11), we obtain

E[DΔQ]ij =
∑
k �=j

E [DiiΔikQkj ] = E [Dii]
∑
k �=i
k �=j

ΔikE [Qkj ] + E [DiiΔiiQij ]

= p(1 − p + pPii)
∑
k �=i
k �=j

ΔikPkj + p(1 − p + pPii)PijΔii − p(1 − p)P 2
ijΔii.

More compactly, we can write

E[DΔQ] = p[(1 − p)I + pdiag (P )]Δout (P ) − p(1 − p)diag (Δ)out (P̃ ).

Finally, observe that

E[Q∗ΔQ]ii =
∑
h�=i
k �=i

E [QhiΔhkQki] = p2
∑

h�=i k �=i
h�=k

PhiΔhkPki + p
∑
h �=i

P 2
hiΔhh

= p2
∑
h�=i
k �=i

PhiΔhkPki + p(1 − p)
∑
h �=i

P 2
hiΔhh.

If instead i �= j, then

E[Q∗ΔQ]ij =
∑
h�=i
k �=j

E [QhiΔhkQkj ] = p2
∑
h�=i
k �=j

PhiΔhkPkj .

More compactly, we can write

E[Q∗ΔQ] = p2out (P )∗Δout (P ) + p(1 − p)diag {out (P )∗diag (Δ)out (P )}.
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Putting all the pieces together we obtain relation (9).
Following previous considerations, we are interested in evaluating the eigenvalues

of the linear map which furnishes Δ(t + 1) from Δ(t). These matrices are symmetric
and so the linear dynamic system described in the previous proposition has a state
space of dimension N(N−1)

2 .
Remark 2. Numerical algorithms can clearly be employed to evaluate such eigen-

values. The following is a concrete way to achieve this. Given a matrix A ∈ RN×N ,
we define vect(A) to be the N2 column vector having Ai,j in position (i − 1)N + j.
Moreover, let

(12) M :=

⎡
⎢⎢⎢⎣

e1e
∗
1 0 · · · 0

0 e2e
∗
2 · · · 0

...
...

. . .
...

0 0 · · · eNe∗N

⎤
⎥⎥⎥⎦ ,

where ei is the vector with all zeros except for a 1 in the ith position. This matrix
is such that vect(diag (A)) = Mvect(A). Finally, notice that vect(ABC) = (C∗ ⊗
A)vect(B), where ⊗ is the Kronecker product of matrices. Using these facts and the
properties of the Kronecker product we can argue that

vect(Δ+) = Zvect(Δ),

where

Z = {(1 − p)I + pP )∗ ⊗ ((1 − p)I + pP )∗}
+ p(1 − p)M{I ⊗ (out (P )out (P )∗) + out (P )∗ ⊗ out (P )∗}M
− p(1 − p){out (P̃ )∗ ⊗ I + I ⊗ out (P̃ )∗}M.

Then the rate of convergence R will coincide with the absolute value of the dominant
reachable eigenvalue of the pair (Z, vect(Δ(0))).

Example 2. We apply the previous method for evaluating the rate of convergence
for the following matrices:

P1 =

⎡
⎢⎢⎣

3/4 1/4 0 0
1/8 1/2 3/8 0
0 1/8 5/8 1/4

1/8 1/8 0 3/4

⎤
⎥⎥⎦ , P2 =

⎡
⎢⎢⎣

1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4

⎤
⎥⎥⎦ ,

P3 =

⎡
⎢⎢⎣

1/2 1/2 0 0
0 1/2 1/2 0
0 0 1/2 1/2

1/2 0 0 1/2

⎤
⎥⎥⎦ , P4 =

⎡
⎢⎢⎣

1/3 1/3 0 1/3
1/3 1/3 1/3 0
0 1/3 1/3 1/3

1/3 0 1/3 1/3

⎤
⎥⎥⎦ .

The corresponding rate of convergence is illustrated in Figure 1. We will see in what
follows that the same results can be found more easily for the matrices P2, P3, P4.

3.2. The balanced compensation method. In the analysis of this case the
following parameters will play a fundamental role:

βih := E

[
PihLih

νi

]
= E[Pih(0)],

ρihk := E

[
PihLihPikLik

ν2
i

]
= E[Pih(0)Pik(0)].
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Fig. 1. The graph of the rate of convergence for the matrices P1, P2, P3, P4 in Example 2.

Notice that

βih =
∑

v∈{0,1}N

vi=1

Pihvh∑
s vsPis

pwH(v)−1(1 − p)N−wH(v)

and

ρihk =
∑

v∈{0,1}N

vi=1

PihvhPikvk

(
∑

s vsPis)2
pwH(v)−1(1 − p)N−wH(v),

where wH(v) is the Hamming weight. Therefore these parameters are polynomial
functions of p of degree at most N − 1. It is clear that ρihk = ρikh. The following
lemma presents some other properties.

Lemma 3.3. The following relations hold true:∑
h

βih = 1,

∑
hk

ρihk = 1,(13)

∑
k

ρihk = βih.

Proof. We prove only the first one. The remaining relations can be proved in a
similar way.

∑
h

βih =
∑

h

E

[
PihLih

νi

]

= E

[∑
h PihLih

νi

]
= 1.
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Now define the matrix

β̄ := {βij}.

Notice that β̄ = E[P (0)]. By (13) this is a stochastic matrix and its graph coincides
with the graph associated with the matrix P . Introduce, moreover, the linear operator
ρ̄ from the space of diagonal N×N matrices to the space of symmetric N×N matrices
defined as follows:

ρ̄(diag {a1, . . . , aN})ij :=
∑

k

ρkijak.

Using these definitions, the relations proposed in the previous lemma can be translated
to the following ones:

β̄1 = 1, 1∗ρ̄(eie
∗
i )1 = 1, ρ̄(eie

∗
i )1 = β̄∗ei

for all i = 1, . . . , N , where ei is the vector with all zeros except for a 1 in the ith
position. The second condition is implied by the third and so can be eliminated.
Moreover, the third condition is equivalent to the fact that for all diagonal matrices
A, we have that

ρ̄(A)1 = β̄∗A1.

The following result is less immediate to prove.
Lemma 3.4. If A is a nonnegative diagonal matrix, then ρ̄(A)−β̄∗Aβ̄ is a positive

semidefinite matrix.
Proof. Notice that

x∗ρ̄(A)x =
∑

i

∑
hk

aiρihkxhxk =
∑

i

∑
hk

aiE

[
PihLihPikLik

ν2
i

]
xhxk

=
∑

i

aiE

[∑
hk

PihLihPikLikxhxk

ν2
i

]

=
∑

i

aiE

⎡
⎣(∑

h

PihLihxh

ν2
i

)2
⎤
⎦

≥
∑

i

aiE

[∑
h

PihLihxh

ν2
i

]2

= x∗β̄∗Aβ̄x.

We are now in a position to present the following result.
Proposition 3.5. The sequence of matrices Δ(t) satisfies the recursive relation

(14) Δ+ = β̄∗ out (Δ)β̄ + ρ̄(diag (Δ)).
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Proof. Notice that

E[P (0)∗ΔP (0)]ij = E[Q∗DΔDQ]ij =
∑

h

∑
k

E

[
PhiLhi

νh

PkjLkj

νk

]
Δhk

=
∑
h �=k

E

[
PhiLhi

νh

] [
PkjLkj

νk

]
Δhk +

∑
k

E

[
PkiLkiPkjLkj

ν2
k

]
Δkk

=
∑
k �=h

βhiΔhkβkj +
∑

k

ρkijΔkk

= {β̄∗ out (Δ)β̄ + ρ̄(diag (Δ))}ij .

This easily yields (14).
Remark 3. Also in this case numerical algorithms can be employed to evaluate

the rate of convergence. Introduce, moreover, the N2 × N2 matrix T which is zero
except in the following entries:

T(j−1)N+i,(s−1)N+s = ρsij .

The matrix T is constructed in such a way that, for any diagonal matrix D, we have
that

vect(ρ̄(D)) = Tvect(D).

Using the same arguments implemented in the previous remark we can argue that

vect(Δ+) = Zvect(Δ),

where

Z = [β̄∗ ⊗ β̄∗](I − M) + TM,

and where the matrix M was defined in (12). Then the rate of convergence R will
coincide with the absolute value of the dominant reachable eigenvalue of the pair
(Z, vect(Δ(0))).

Example 3. We applied the previous method for evaluating the rate of convergence
for the same matrices P1, P2, P3, P4 considered in Example 2. The corresponding rate
of convergence is illustrated in Figure 2 and compared with the rates obtained by
the biased compensation method. The balanced compensation method outperforms
the biased compensation method for all the matrices except for P3 in which the two
methods coincide. We will see in what follows that the same results can be found
more easily for the matrices P2, P3, P4.

In what follows we will make further analytical developments assuming the graph
G possesses some more symmetry; more precisely, we will work with Cayley graphs.

4. Cayley matrices over Abelian groups. For graphs possessing symmetries,
the theoretical results obtained in the previous section can be refined quite a bit. In
this paper we will deal with a special class of symmetric graphs: Abelian Cayley
graphs [1].

Let G (with an addition +) be any finite Abelian group of order |G| = N , and let
S be a subset of G containing zero. The Cayley graph G(G, S) is the directed graph
with vertex set G and arc set

E = {(g, h) : h − g ∈ S} .
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Fig. 2. The graph of the rate of convergence for the matrices P1, P2, P3, P4. Biased compensa-
tion method rate of convergence is described by the continuous line; balanced compensation method
rate of convergence is described by the dashed line.

Notice that a Cayley graph is always in-regular and out-regular: Both the in-degree
and the out-degree of each vertex are equal to |S|. Notice also that strong connectivity
can be checked algebraically. Indeed, it can be seen that a Cayley graph G(G, S) is
strongly connected if and only if the set S generates the group G, which means that
any element in G can be expressed as a finite sum of (not necessarily distinct) elements
in S. If S is such that −S = S, then the graph obtained is symmetric.

Symmetries can also be introduced on matrices. Let G be any finite Abelian
group of order |G| = N . A matrix P ∈ RG×G is said to be a Cayley matrix over the
group G if

Pi,j = Pi+h,j+h ∀ i, j, h ∈ G .

It is clear that for a Cayley matrix P there exists a π : G → R such that Pi,j = π(i−j).
The function π is called the generator of the Cayley matrix P . Notice that, if π
and π′ are generators of the Cayley matrices P and P ′, respectively, then π + π′

is the generator of P + P ′ and π ∗ π′ is the generator of PP ′, where (π ∗ π′)(i) :=∑
j∈G π(j)π′(i − j) for all i ∈ G. This in particular shows that P and P ′ commute.

It is easy to see that for any Cayley matrix P we have that P1 = 1 if and only
if 1∗P = 1∗. This implies that a Cayley stochastic matrix is automatically doubly
stochastic.

4.1. Spectral properties and Fourier analysis of Cayley matrices over
Abelian groups. In this subsection we will show that the spectral properties of
Cayley matrices over Abelian groups are particularly simple to analyze. We briefly
review the theory of Fourier transform over finite Abelian groups (see [19] for a com-
prehensive treatment of the topic). Let G be a finite Abelian group of order N as
above, and let C∗ be the multiplicative group of the nonzero complex numbers. A
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character on G is a group homomorphism χ : G → C∗, namely, a function χ from G
to C∗ such that χ(g + h) = χ(g)χ(h) for all g, h ∈ G. Since we have that

χ(g)N = χ(Ng) = χ(0) = 1 ∀g ∈ G,

it follows that χ takes values on the Nth roots of unity. The character χ0(g) = 1 for
every g ∈ G is called the trivial character.

The set of all characters of the group G forms an Abelian group with respect
to the pointwise multiplication. It is called the character group and denoted by Ĝ.
The trivial character χ0 is the zero of Ĝ. If we consider the vector space CG of all
functions from G to C with the canonical Hermitian form

〈f1, f2〉 =
∑
g∈G

f1(g)f2(g)∗ ,

then it can be shown that the set {N−1/2χ | χ ∈ Ĝ} is an orthonormal basis of CG.
The Fourier transform of a function f : G → C is defined as

f̂ : Ĝ → C , f̂(χ) =
∑
g∈G

χ(−g)f(g) .

Now fix a Cayley matrix P on the Abelian group G generated by the function
πP : G → R. The spectral structure of P is very simple. Namely, it can be shown
that the characters χ ∈ Ĝ are eigenvectors of P and so P is diagonalizable. Moreover,
the spectrum of P is given by the Fourier transform of the generator πP of P :

σ(P ) = {π̂P (χ) | χ ∈ Ĝ} .

Notice that, if A, B are Cayley matrices with Fourier transforms π̂A(χ), π̂B(χ),
then

π̂A+B(χ) = π̂A(χ) + π̂B(χ), π̂AB(χ) = π̂A(χ)π̂B(χ).

Moreover, observe that, if A is a Cayley matrix, then diag (A) and out (A) are also
Cayley and we have

diag (A) = N−1trace (A) I = N−1
∑

χ̄

π̂A(χ̄) I .

This implies that, for every χ ∈ Ĝ,

π̂diag (A)(χ) = N−1
∑
χ̄∈Ĝ

π̂A(χ̄),

π̂out (A)(χ) = π̂A(χ) − N−1
∑

χ̄

π̂A(χ̄).

5. Mean square analysis for Cayley matrices. In this section we will show
that when P is a Cayley matrix, the analysis proposed above simplifies considerably.
Let G be a finite Abelian of order N , and let P be a Cayley matrix with respect
to G. It easily follows from Propositions 3.2 and 3.5 that Δ(t) are Cayley matrices.
This in particular implies that the matrices Δ(t) admit a common orthonormal basis
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of eigenvectors. In other words, there exists an N × N unitary matrix U such that
U∗Δ(t)U = Δ̃(t) is diagonal for every t. We can then write

(15) Δ̃(t + 1) = E[U∗P (0)∗UΔ̃(t)U∗P (0)U ].

This shows that there exists a linear operator L̃ such that Δ̃(t + 1) = L̃(Δ̃(t)) for
every t. It is clear that

R = max{|λ| : λ eigenvalue of L̃|R̃},

where R̃ is the reachable subspace of the pair (L̃, Δ̃(0)), where

Δ̃(0) = U(I − N−111∗)U∗ =

⎡
⎢⎢⎢⎣

0 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎤
⎥⎥⎥⎦ .

Notice that (15) is an evolution equation on the eigenvalues of the matrices Δ(t)
which we know to be given by the Fourier transforms π̂Δ(t)(χ) of the generating
function πΔ(t)(g). We will use these representations to express, in a more explicit
form, the operator L̃. As before we will handle the two cases separately.

5.1. The biased compensation method. In the event that P is a Cayley
matrix, for the biased compensation method the evolution of the eigenvalues of Δ(t)
is described by the following proposition. First notice that, since P is a Cayley matrix,
P̃ and P ∗P are also Cayley matrices.

Proposition 5.1. For all χ ∈ Ĝ we have that

(16) π̂Δ(t+1)(χ) = A(χ)π̂Δ(t)(χ) + B(χ)N−1
∑
χ̄∈Ĝ

π̂Δ(t)(χ̄),

where

(17) A(χ) = |1 − p + pπ̂P (χ)|2

and

(18) B(χ) = 2p(1 − p) {π̂P̃ (χ0) −� [π̂P̃ (χ)]} .

Proof. We start with formula (9). First notice that, since the matrix diag (Δ) is
Cayley and diagonal, it is a scalar multiple of the identity, namely, diag (Δ) = xI.
This implies that

Δ+ = [(1 − p)I + pP ]∗Δ[(1 − p)I + pP ]

+ p(1 − p)
{

diag [out (P )out (P )∗ + out (P )∗out (P )] − out (P̃ )

−out (P̃ )∗
}

diag (Δ)

= [(1 − p)I + pP ]∗Δ[(1 − p)I + pP ] + p(1 − p)
{
diag [PP ∗ + P ∗P ] − P̃ − P̃ ∗

}
xI.

Notice now that

diag [PP ∗ + P ∗P ] = 2π̂P̃ (χ0) I
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and that

x = N−1
∑
χ̄∈Ĝ

π̂Δ(χ̄).

These facts yield (16).
Remark 4. Notice that P̃ is an irreducible nonnegative Cayley matrix and so

π̂P̃ (χ0) is its spectral radius. This implies that B(χ) ≥ 0 and that B(χ) = 0 if and
only if χ = χ0.

The linear dynamic system described in (16) can finally be rewritten in a more
compact way as follows. Enumerate in some way the characters of G, Ĝ = {χ0, χ1, . . . ,
χN−1}, and define the column vector in RN as

(19) Π(t) :=

⎡
⎢⎣

π̂Δ(t)(χ0)
...

π̂Δ(t)(χN−1)

⎤
⎥⎦ .

Define, moreover, the column vector B in RN such that for all i = 0, 1, . . . , N − 1, we
have that Bi := B(χi) and the diagonal matrix A such that for all i = 0, 1, . . . , N −1,
we let Aii := A(χi). Then we can write the linear dynamic system (16) as follows:

Π(t + 1) =
(
A + N−1B1∗)Π(t).

Notice that both A and B depend on the probability p and so in some cases we will
write A(p) and B(p) to make this dependence evident. Notice that Aii(p) < 1 if
p > 0, while Aii(0) = 1 for all i. Moreover, we have that B0(p) = 0 for all i and
0 < Bi(p) < 1 if i �= 0 and 0 < p < 1, while Bi(0) = Bi(1) = 0.

We have the following result.
Proposition 5.2. We have the following properties:
(a) The matrix A + N−1B1∗ has nonnegative entries.
(b) It has the structure

(20) A + N−1B1∗ =
(

1 0 · · · 0
X21 X22

)
,

where X21 ∈ R1×(N−1) and X22 ∈ R(N−1)×(N−1) have nonnegative entries.
(c) R = max{|λ| : λ eigenvalue of X22} ≥ max{Aii : 1 = 1, . . . , N − 1}.
(d) The eigenvector of A + N−1B1∗ relative to the eigenvalue 1 has a nonzero

first component.
Proof. (a) follows from the previous remark.
(b) can be proven by inspection.
(c) Notice that Π(0) = (0, 1, . . . , 1)∗. Because of (a), this shows that the reacha-

bility subspace R̃ of the pair (X, Π(0)) has the structure R̃ = {0} × R̃2, where R̃2 is
the reachability subspace of (X22,1). Since X22 has nonnegative entries, its spectral
radius is achieved by a nonnegative eigenvalue λ with a corresponding nonnegative
eigenvector w̄ [7, p. 66]. Clearly, we can write 1 = aw̄+w′ for some a > 0 and another
nonnegative vector w′. Hence,

Xt
221 = aλtw̄ + Xt

22w
′ ≥ aλtw̄ .

From this it immediately follows that R ≥ λ. This clearly proves the equality in (c).
Finally, the fact that R ≥ max{Aii : 1 = 1, . . . , N − 1} follows from the fact that B
has nonnegative entries [10, Corollary 8.1.19].
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(d) Finally, consider any eigenvector w ∈ RN of A+N−1B1∗ relative to the eigen-
value 1. If the first component w0 of w were zero, then the vector (w1, . . . , wN−1)∗

would be an eigenvector of X22 relative to the eigenvalue 1. This could not be pos-
sible, however, since we know that 1 is an eigenvalue of A + N−1B1∗ with algebraic
multiplicity equal to 1.

Proposition 5.2 reduces the computation of R to the computation of the sec-
ond dominant eigenvalue of the N × N matrix (20). An explicit expression for the
characteristic polynomial of (20) can be obtained through the following lemma.

Lemma 5.3.

det
(
A + N−1B1∗) =

N−1∏
j=0

Ajj + N−1
N−1∑
i=0

Bi

N−1∏
j=0
j �=i

Ajj

Proof. Notice that

det
(
A + N−1B1∗)

= det(A) det
(
I + N−1B1∗A−1

)
= det(A)

(
1 + N−11∗A−1B

)
.

From this lemma we can argue that

F (z, p) := det
(
zI − A(p) − N−1B(p)1∗)

=
N−1∏
j=0

(z − Ajj(p)) − N−1
N−1∑
i=0

Bi(p)
N−1∏
j=0
j �=i

(z − Ajj(p)).

The polynomial F (z, p) has degree N in z and degree 2n in p. The stability analysis of
this polynomial can be in general quite complicated. We will investigate this problem
through some examples.

We start with a couple of examples in which the eigenvalues can be determined
exactly and also some natural optimization design can be carried out.

Example 4. Consider the matrix P = (1−k)I + k
N 11∗. It is clear that the matrix

P is in this case a Cayley matrix over the group ZN and with S = ZN . After some
computation we can find that

(21) Aii(k, p) =
{

1 if i = 0,
(1 − kp)2 if i �= 0

and

(22) Bi(k, p) =

{
0 if i = 0,
2p(1−p)k2

N if i �= 0,

and so the eigenvalues are

z̄0(k, p) = 1,

z̄1(k, p) = (1 − kp)2 + 2p(1 − p)k2 N − 1
N2

,

z̄i(k, p) = (1 − kp)2 i = 2, . . . , N − 1.
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Fig. 3. The graph of the rate of convergence in Example 4 for N = 4, 16, 64.

The rate of convergence to the consensus is determined by the eigenvalue z̄1(k, p). In
this case the optimal k yielding the fastest convergence can be computed analytically.
Indeed, it can be seen that

k =
N2

N2p + 2(1 − p)(N − 1)
.

For large N we have that k � 1/p. In Figure 3 we show the graph of the rate of
convergence as a function of the probability p for N = 4, 16, 64 when k = 1. It can
be shown that the graph relative to the case N = 4 coincides up to numerical errors
with the one obtained in Example 2 for the matrix P2.

Example 5. Consider the case in which the group is ZN and S = {0, 1}. Consider
a matrix P with generator πP (0) = 1 − k, πP (1) = k, and πP (g) = 0 for all g �= 0, 1.
In this case we have that

π̂P (χi) = 1 − k + kej 2π
N i,

π̂P̃ (χi) = (1 − k)2 + k2ej 2π
N i.

From this we can argue that

(23) Aii(p) = 1 − 2pk(1 − pk)
(

1 − cos
(

2π

N
i

))
,

(24) Bi(p) = 2p(1 − p)k2

(
1 − cos

(
2π

N
i

))
.

With fixed probability p one can find the optimal k yielding the fastest convergence.
We did this numerically for N = 5, 10, 20. The graph showing the optimal k as a
function of p is illustrated in Figure 4. In Figure 5 we show the graph of the rate of
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Fig. 4. The graph of the optimal k as a function of the probability p in Example 5 for N =
5, 10, 20.

convergence as a function of the probability p for N = 2, 4, 8 when k = 1/2. It can
be shown that the graph relative to the case N = 4 coincides up to numerical errors
with the one obtained in Examples 2 and 3 for the matrix P3.

The next example relates instead to the hypercube graph. We present only the
analytical computation of the eigenvalues.

Example 6. Consider the case in which the group is Z
n
2 and

S = {0, e1, . . . , en},
where ei is the vector with all zeros except for a 1 in the ith position. Let E be the
adjacency matrix of the graph defined in this way and consider the matrix P := 1

n+1E.
This means that given u, v ∈ Zn

2 we have that

Pu,v =
{

1
n+1 if u + v ∈ S,

0 otherwise.

Notice that, in this case, we have that P̃ = 1
n+1P . It can be shown that for all v ∈ Zn

2

we have that

π̂P (v) = 1 − 2
n + 1

wH(v),

where wH(v) is the Hamming weight of v, namely, the number of 1’s. From this we
can argue that

Av =
(

1 − 2p

n + 1
wH(v)

)2

,

Bv =
4p(1 − p)
(n + 1)2

wH(v).
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Fig. 5. The graph of the rate of convergence in Example 5 for N = 2, 4, 8.

From this it follows that

F (z, p) =
n∏

h=0

(z − Ah)(
n
h )−1

⎧⎪⎨
⎪⎩

n∏
h=0

(z − Ah) − N−1
n∑

k=0

(n

k

)
Bk

n∏
h=0
h�=k

(z − Ah)

⎫⎪⎬
⎪⎭ ,

where, for h = 0, 1, . . . , n, we let

Ah =
(

1 − 2p

n + 1
h

)2

,

Bh =
4p(1 − p)
(n + 1)2

h.

This implies that N − n eigenvalues coincide with Ah(p), h = 0, 1, . . . , n, while the
remaining n are the roots of

n∏
h=0

(z − Ah) − N−1
n∑

k=0

(n

k

)
Bk

n∏
h=0
h�=k

(z − Ah).

Figure 7 shows the graph of the rate of convergence as a function of the probability
p for n = 2, 4. It can be shown that the graph relative to the case n = 2 coincides up
to numerical errors with the one obtained in Example 2 for the matrix P4.

Now we present an example where instead only numerical results can be obtained.

5.2. The balanced compensation method. First notice that, if P is a Cayley
matrix, we have the following result.

Lemma 5.4. If P is a Cayley matrix, then β̄, ρ̄(I) are also Cayley matrices.
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Proof. Notice that

βi+l,h+l =
∑

v∈{0,1}N

vi+l=1

Pi+l,h+lvh+l∑
s vsPi+l,s

pwH(v)−1(1 − p)N−wH(v)

=
∑

v∈{0,1}N

vi+l=1

Pi,hvh+l∑
s vsPi,s−l

pwH(v)−1(1 − p)N−wH(v).

We now define for any v ∈ {0, 1}N a u ∈ {0, 1}N such that vs = us−l. Then

βi+l,h+l =
∑

u∈{0,1}N

ui=1

Pi,huh∑
s us−lPi,s−l

pwH(u)−1(1 − p)N−wH (u)

=
∑

u∈{0,1}N

ui=1

Pi,huh∑
s usPi,s

pwH(u)−1(1 − p)N−wH(u) = βi,h.

In a similar way we can prove that ρk,i,j = ρk+l,i+l,j+l. From this it follows that ρ̄(I)
is a Cayley matrix.

In this case we have the following proposition.
Proposition 5.5. For all χ ∈ Ĝ we have that

(25) π̂Δ(t+1)(χ) = A(χ)π̂Δ(t)(χ) + B(χ)N−1
∑
χ̄∈Ĝ

π̂Δ(t)(χ̄),

where

(26) A(χ) =
∣∣π̂β̄(χ)

∣∣2
and

(27) B(χ) = π̂ρ̄(I)(χ) − ∣∣π̂β̄(χ)
∣∣2 .

Proof. We start from the equation

Δ+ = β̄∗out (Δ)β̄ + ρ̄(diag (Δ)).

Notice now that diag (Δ) is a multiple of the identity, namely diag (Δ) = xI. This
implies that

Δ+ = β̄∗Δβ̄ + {ρ̄(I) − β̄∗β̄}x.

Considering the fact that

x := N−1
∑

χ̄

π̂Δ(χ̄),

we obtain the thesis.
As in the previous case, using the notation (19), we can rewrite (25) as

Π(t + 1) = (A + N−1B1∗)Π(t),
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where B is the column vector in RN such that for all i = 0, 1, . . . , N − 1, we have
that Bi := B(χi) and A is the diagonal matrix such that Aii(χ) := A(χi). As in the
previous case we will use the notation A(p) and B(p) whenever we want to underline
the dependence on p.

Notice that, as observed above, when p > 0, the matrix β̄ is an irreducible stochas-
tic matrix. This implies that Aii(p) < 1 if p > 0. On the other hand, since when
p = 0 we have β̄ = ρ̄(I) = I, then Aii(0) = 1 and Bi(0) = 0 for all i. Finally, when
p = 1 we have that β̄ = P and ρ̄(I) = P ∗P , and so Bi(1) = 0.

From Lemma 3.3 we can argue that π̂ρ̄(I)(χ0) = π̂β̄(χ0) = 1 and so B0(p) = 0 for
all p. Using Lemma 3.4 it can be shown that Proposition 5.2 still holds and as above
we can argue that the eigenvalues of A(p)+N−1B(p)1∗ coincide with the roots of the
polynomial

F (z, p) =
N−1∏
j=0

(z − Ajj(p)) − N−1
N−1∑
i=0

Bi(p)
N−1∏
j=0
j �=i

(z − Ajj(p)).

In some cases some further simplifications can be introduced. Consider a Cayley
graph G. Since each node of G has exactly the same number n (excluding self loops) of
incoming edges and outgoing edges, we can introduce a Cayley matrix P̄ compatible
with G by letting

P̄ij =
{

1/n if (j, i) is an edge of the graph,
0 otherwise.

Moreover, let

(28) P := (1 − k)I + kP̄ .

In this way we obtained a family of Cayley matrices P compatible with the graph G.
In this case the parameters βih, ρihk become simpler to evaluate. Indeed, let E be
the adjacency matrix of the graph and H := E − I. Moreover, let bk be a binomial
random variable, namely, a random variable taking value on the nonnegative integers
with law

P[bk = i] =
(

k

i

)
pi(1 − p)k−i, i = 0, 1, . . . , k.

After some simple but lengthy calculations it can be shown that

βii = α ∀ i,
βih = βHih ∀ i, h such that i �= h,
ρiii = γ,
ρiih = ρihi = δHih ∀ i, h such that i �= h,
ρihh = ξHih ∀ i, h such that i �= h,
ρihk = ρHihHik ∀ i, h, k that are different from each other,
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where
(29)

α := E

[
n − nk + k

n − nk + k + kbn−1

]
, β := pE

[
k

n − nk + 2k + kbn−2

]
,

γ := E

[
(n − nk + k)2

(n − nk + k + kbn−1)2

]
, δ := pE

[
(n − nk + k)k

(n − nk + 2k + kbn−2)2

]
,

ξ := pE

[
k2

(n − nk + 2k + kbn−2)2

]
, ρ := p2

E

[
k2

(n − nk + 3k + kbn−3)2

]
.

These parameters depend on k, n, and p. The relations (13) become

α + β(n − 1) = 1,

γ + δ(n − 1) = α,

(n − 2)ρ = β − ξ − δ.

It is clear that β̄ = αI + βH . Moreover, after some computations, it can be shown
that, if D is any diagonal matrix, then in this case

(30) ρ̄(D) = ρH∗DH + (ξ − ρ)diag (H∗DH) + γD + δ(H∗D + DH).

Under these assumptions we can write

A(χ) = |α + βπ̂H(χ)|2

and

B(χ) = ρ |π̂H(χ)|2 + (ξ − ρ)(n − 1) + γ + 2δ � [π̂H(χ)] − |α + βπ̂H(χ)|2 .

We now want to compare the two compensation methods proposed here through
the examples presented previously. Notice that in Example 5 the two compensation
methods coincide.

Example 7. Now consider the matrix P = (1 − k)I + N−111∗ considered in
Example 4. After some computation we can find that, for i = 1, . . . , N − 1,

(31) Aii(k, p) = (1 − Nβ)2, Bi(k, p) = (1 − Nβ)Nβ + N(ξ − δ)

and so the eigenvalues are

z̄0(k, p) = 1,

z̄1(k, p) = (1 − Nβ)(1 − β) + (N − 1)(ξ − δ),
z̄i(k, p) = (1 − βN)2, i = 2, . . . , N − 1.

The rate of convergence to the consensus is determined by z̄1(k, p). Figure 6 shows
the graph of the dominant eigenvalue z̄1(1, p) as a function of the probability p for
N = 4, 16, 64 when k = 1. (We are not making any optimization in this case.) It can
be shown that the graph relative to the case N = 4 coincides up to numerical errors
with the one obtained in Example 2 for the matrix P2.

Example 8. Consider the same matrix P introduced in Example 6. It can be
shown that for all v ∈ Zn

2 we have that

Av = (1 − 2βwH(v))2,
bv = 4wH(v)(δ − ρ + wH(v)(ρ − β2)),
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Fig. 6. The graph of the rate of convergence in Example 7 for N = 4, 16, 64.

where wH(v) is the Hamming weight of v, namely, the number of 1’s. From this it
follows that

F (z, p) =
n∏

h=0

(z − Ah)(
n
h )−1

⎧⎪⎨
⎪⎩

n∏
h=0

(z − Ah) − N−1
n∑

k=0

(n

k

)
bk

n∏
h=0
h�=k

(z − Ah)

⎫⎪⎬
⎪⎭ ,

where, for h = 0, 1, . . . , n, we let

Ah = (1 − 2βh)2,
bh = 4h(δ − ρ + h(ρ − β2)).

This implies that N − n eigenvalues coincide with Ah(p), h = 0, 1, . . . , n while the
remaining n are the roots of

n∏
h=0

(z − Ah) − N−1
n∑

k=0

(n

k

)
bk

n∏
h=0
h�=k

(z − Ah)

and can be estimated when p � 1 by the method proposed above. Figure 7 shows the
graph of the rate of convergence as a function of the probability p for N = 2, 4 in the
case of the biased compensation and the balanced compensation methods. It can be
shown that the graph relative to the case n = 2 coincides up to numerical errors with
the one obtained in Example 2 for the matrix P4.

6. Average consensus. Even if the original algorithm was chosen to solve the
average consensus problem, in general the perturbed solutions due to packet drops
will no longer satisfy this property. In this section we will show how to estimate
the distance of the consensus point from the average of the initial conditions. From
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Fig. 7. The graph of the rate of convergence in Examples 6 and 8 for n = 2, 4 in the case of
the biased compensation method and the balanced compensation method.

now on we will assume that the matrix P is doubly stochastic so that P1 = 1 and
1∗P = 1∗. Consider xA(t) as defined in (5) and let

D := sup
||x(0)||≤1

E[|xA(∞) − xA(0)|2] = sup
||x(0)||≤1

E[|(v∗ − N−11∗)x(0)|2]

= sup
||x(0)||≤1

x(0)∗E[(v − N−11)(v − N−11)∗]x(0)

= max{|λ| : λ eigenvalue of E[(v − N−11)(v − N−11)∗]} .

Notice that D is expressed in terms of the random vector v which in general may
not be explicitly available. A further step, however, allows us to write

(32) E[(v − N−11)(v − N−11)∗] = E[vv∗] − N−1
E[v]1∗ − 1N−1

E[v]∗ + N−211∗.

We now recall that E[vv∗] is the dominant eigenvector of the positive operator L and
can thus be computed using standard techniques. As far as E[v] is concerned, notice
that, since x(t) → v∗x(0)1 almost surely, it follows that

E[x(t)] = E[P (0)]tx(0) → E[v]∗x(0)1.

Since E[P (0)] is an aperiodic stochastic matrix, it follows that E[v] coincides with the
the dominant left eigenvector of E[P (0)] and thus it is computable using standard
techniques.

We now start to analyze the Cayley setting for which more precise results can
be obtained. First, it can be checked that, for both the biased and the balanced
compensation methods, the matrix P is Cayley. As a consequence, in this case we
have E[v] = N−11 and hence

E[(v − N−11)(v − N−11)∗] = E[vv∗] − N−211∗.
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What remains to be computed is the normalized dominant eigenvector of L or, equiv-
alently, the normalized dominant eigenvector of the matrix A + N−1B1∗ introduced
above, where the matrix A is diagonal such that Aii = A(χi) and B is a column vector
such that Bi = B(χi). The quantities A(χ) and B(χ) have been defined in (17) and
(18) for the biased case, and in (26) and (27) for the balanced case. Notice that, in
both cases, we have that

A(χ0) = 1 , 0 ≤ A(χi) < 1 ∀i = 1, . . . , N − 1,

B(χ0) = 0 , B(χi) ≥ 0 ∀i = 1, . . . , N − 1 .

We have the following result.
Lemma 6.1. The vector w ∈ RN with components

w0 = 1 , wh =
N−1

1 − N−1
N−1∑
i=1

Bi

1−Aii

Bh

1 − Ahh
∀h = 1, . . . , N − 1

is an eigenvector of (A + N−1B1∗) relative to the eigenvalue 1.
Proof. Notice first that, since A + N−1B1∗ is a nonnegative matrix, there exists

an eigenvector w ∈ R
N of A + N−1B1∗ relative to the eigenvalue 1 with nonnegative

entries. By Proposition 5.2 we can argue that the first component w0 of w must be
positive. Notice now that the relation (A+N−1B1∗)w = w is equivalent to the N −1
linear conditions

(33) (1 − Ahh)wh = N−1Bh1∗w , h = 1, . . . , N − 1 .

Since, as noticed above, Ahh < 1, we have that

(34) w =
(

w0, λ
B1

1 − A11
, . . . , λ

BN−1

1 − AN−1 N−1

)∗
,

where λ = N−11∗w. This implies that

w0 + λ
N−1∑
i=1

Bi

1 − Aii
= Nλ,

which is equivalent to (
1 − N−1

N−1∑
i=1

Bi

1 − Aii

)
λ = N−1w0.

Finally, notice that, since w0 > 0,

1 >
N−1

∑N−1
i=1 wi

λ
= N−1

N−1∑
i=1

Bi

1 − Aii
,

which implies that 1−N−1
∑N−1

i=1
Bi

1−Aii
< 1 and so, by taking w0 = 1, we obtain the

thesis.
Notice that, if we go back to the matrix form, the corresponding eigenmatrix of

L is given by

W = N−1
N−1∑
i=0

wiχiχ
∗
i .
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To find the right normalization constant, notice that 1∗W1 = N . This implies that

(35) E[vv∗] = N−2
N−1∑
i=0

wiχiχ
∗
i .

Notice that, since E[vv∗] is positive semidefinite, surely all wi ≥ 0. We can now state
the following proposition.

Proposition 6.2. Assume P to be a Cayley matrix. Then, for both the biased
and the balanced compensation methods, we have that

D =
N−2

1 − N−1
N−1∑
i=1

Bi

1−Aii

max
h=1,...,N−1

{
Bh

1 − Ahh

}
.

Proof. Notice that, from (32), we obtain

E[(v − N−11)(v − N−11)∗]

= N−211∗ + N−2
N−1∑
i=1

wiχiχ
∗
i − 2N−211∗ + N−211∗ = N−2

N−1∑
i=1

wiχiχ
∗
i .

Notice now that

D = max{N−1wi | i = 1, . . . , N − 1} .

This proves the result.
Let us make explicit computations in the examples considered above.
Example 9. Consider the matrix P = (1 − k)I + k

N 11∗ introduced in Examples
4 and 7. In the biased compensation method, using computation (21) and (22), we
obtain that for any h �= 0,

Bh

1 − Ahh
=

2p(1 − p)k2

N

1
1 − (1 − p + p(1 − k))2

= N−1 2(1 − p)k
2 − pk

.

Hence,

D =
N−2

1 − N−2(N − 1)2(1−p)k
2−pk

N−1 2(1 − p)k
2 − pk

= N−3 2(1 − p)k
2 − pk − 2N−2(N − 1)(1 − p)k

.

As expected for p → 1 we have that D → 0. More interestingly, note also that for
N → +∞, we have that D → 0 as N−3.

Consider now the balanced case. We limit the analysis to the optimal case in
which we let k = 1. Using computation (31), we obtain that for any h �= 0,

Bh

1 − Ahh
=

(1 − Nβ)Nβ

1 − (1 − Nβ)2
=

1 − Nβ

2 − Nβ
.

Hence,

D =
N−2

1 − N−1(N − 1)1−Nβ
2−Nβ

1 − Nβ

2 − Nβ
= N−2 1 − Nβ

1 + N−1(1 − Nβ)
.
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Fig. 8. The graphs of N3D as a function of N in the biased and balanced cases, both assuming
that k = 1 and p = 1/2 as in Example 9.

Even in this case, for p → 1 we have that D → 0 since it is easy to see that Nβ → 1.
Also the convergence to 0 for N → ∞ is maintained. In Figure 8 we plot the graphs
showing N3D as a function of N in the biased and balanced cases, both assuming that
k = 1 and p = 1/2. In both cases we notice that D converges to zero as fast as N−3,
and that the biased compensation method outperforms the balanced compensation
method.

Example 10. Now consider Example 5, where the group is ZN and S = {0, 1}. As
we already noticed, for this example the biased and the balanced methods coincide.
From the computations of the matrix A and of the vector B we obtain

Bh

1 − Ahh
=

2p(1 − p)k2
(
1 − cos

(
2π
N i
))

2pk(1 − pk)
(
1 − cos

(
2π
N i
)) =

(1 − p)k
1 − pk

.

Hence,

D =
N−1

1 − (1−p)k
1−pk

(1 − p)k
1 − pk

= N−2 k(1 − p)
1 − k + N−1(1 − p)k

.

Also in this case, for p → 1, or for N → +∞, we have that D → 0. Notice that the
speed of convergence to 0 with respect to N is lower than in the complete case.

In order to have a clearer insight into the behavior of D we make some further
estimations by analyzing the two cases separately.

Let us start with the biased case. Notice that we have
Bh

1 − Ahh
=

B(χh)
1 − A(χh)

=
2p(1 − p)[π̂P̃ (χ0) −�[π̂P̃ (χh)]]

1 − |1 − p + pπ̂P (χh)|2 .

Assume that πP (j) = kj , and notice that we have

π̂P (χh) =
∑

j

kjχh(−j) , π̂P̃ (χh) =
∑

j

k2
j χh(−j) .
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Hence,

π̂P̃ (χ0) −�[π̂P̃ (χh)] =
∑

j

kj(1 −�[χh(−j)]) ,

while

1 − |1 − p + pπ̂P (χh)|2 = −p2 + 2p− p2|π̂P (χh)|2 − 2p(1 − p)
∑

j

kj�χh(j)

= 2p(1 − p)
∑

j

kj(1 −�[χh(j)]) + p2(1 − |π̂P (χh)|2) .

We have thus obtained that

(36)
Bh

1 − Ahh
=

2(1 − p)
∑

j k2
j (1 −�[χh(−j)])

2(1 − p)
∑

j kj(1 −�[χh(−j)]) + p(1 − |π̂P (χh)|2) .

This explicit expression allows us to estimate D. We have the following result.
Proposition 6.3. Consider a Cayley matrix P and let πP (j) be its generator.

Let M = max{πP (j) | j = 1, . . . , N − 1}. Then

D ≤ N−2 M

1 − M
.

Proof. From (36) we can argue that

Bh

1 − Ahh
≤ π̂P̃ (χ0) −�[π̂P̃ (χh)]

1 −�[π̂P (χh)]
.

Assume that πP (j) = kj , and notice that we have

π̂P (χh) =
∑

j

kjχh(−j) , π̂P̃ (χh) =
∑

j

k2
j χh(−j) .

Hence,

Bh

1 − Ahh
≤
∑

j k2
j (1 −�[χh(j)])∑

j kj(1 −�[χh(j)])
≤ M .

The thesis now simply follows from Proposition 6.2.
The key point of Proposition 6.3 is that if we have a sequence of consensus strate-

gies indexed by N , for which M is bounded away from 1, then D will converge to
0 at least as fast as N−2. Notice that this is in agreement with the two examples
considered above.

We now proceed to analyze the balanced case. We can prove the following result.
Proposition 6.4. Denote

M = πρ̄(I)(0);

then

(37) D ≤ N−2 1
1 − M

.
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Proof. In the balanced case Ahh and Bh are defined in (26) and (27). We obtain

(38)
Bh

1 − Ahh
=

π̂ρ̄(I)(χh) − ∣∣π̂β̄(χh)
∣∣2

1 − ∣∣π̂β̄(χh)
∣∣2 .

It follows from (38), using the inequality 0 ≤ π̂ρ̄(I)(χh) ≤ 1, that

(39)
Bh

1 − Ahh
≤ π̂ρ̄(I)(χh) ≤ 1 .

Notice now that

(40) N−1
N−1∑
j=1

Bj

1 − Ajj
≤ N−1

N−1∑
j=1

π̂ρ̄(I)(χj) ≤ N−1
N−1∑
j=0

π̂ρ̄(I)(χj) = πρ̄(I)(0) .

The thesis now follows from Proposition 6.2 and estimations (39) and (40).
Notice that M is strictly smaller than 1. It clearly depends on the matrix P but

also, as opposed to the biased case, on the probability p. Let us analyze a simple case
in more detail. Assume that the matrix P is defined as in (28). In this case, using
(30), we have that

M = πρ̄(I)(0) = N−1trace ρ̄(I)

= N−1trace (ρH∗H + (ξ − ρ)diag (H∗H) + γI + δ(H + H∗))
= (n − 1)ξ + γ.

Therefore M depends on n and p and k, but it does not depend on N . It thus follows
that δ converges to 0 as fast as N−2 in the biased case.

7. Conclusions. In this paper we proposed some tools which allow us to evaluate
the performance degradation due to failing transmission links in the average consensus
algorithm. Though the tools proposed here seem to be very effective for the evaluation
of the effect of packet drop in the data transmission between the agents in a consensus
seeking problem, many problems are still to be investigated, such as the following:

1. The analysis of convergence has been carried out in a mean square sense.
Concentration results can be obtained in certain cases (see [6]) and it would
be important to study them in the context of packet drop models.

2. Many problems are still open in the general (non-Cayley) case, such as the
evaluation of the mean distance of the limit from the average as a function
of the number N of agents.

3. The analysis is still quite intricate and it is difficult to use in design. We
expect that some interesting simplifications could occur when N tends to
infinity. It is important to determine whether this is really the case and to
exploit these simplifications in the design process.

4. The average consensus algorithm we considered is somehow memoryless. We
expect that algorithms with memory in principle could yield better perfor-
mance (consider for instance an algorithm which, when data is lost, can sub-
stitute it with its past version). It is important to understand whether adding
memory will improve the performance or not.
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