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Controllability Metrics and Algorithms for Complex Networks

Fabio Pasqualetti, Sandro Zampieri, and Francesco Bullo

Abstract—This paper studies the problem of controlling com-
plex networks, that is, the joint problem of selecting a set of
control nodes and of designing a control input to steer the
network to a target state. For this problem (i) we propose a metric
to quantify the difficulty of the control problem as a function of
the required control energy, (ii) we derive bounds based on the
system dynamics (network topology and weights) to characterize
the tradeoff between the control energy and the number of
control nodes, and (iii) we propose a distributed strategy with
performance guarantees for the control of complex networks.
In our strategy we select control nodes by relying on network
partitioning, and we design the control input by leveraging
optimal and distributed control techniques. Our findings show
for instance that (i) if the number of control nodes is constant,
then the control energy increases exponentially with the number
of the network nodes, (ii) if the number of control nodes is a
fixed fraction of the network nodes, then certain networks can
be controlled with constant energy independently of the network
dimension, and (iii) clustered networks may be easier to control
because, for sufficiently many control nodes, the control energy
depends only on the controllability properties of the clusters and
on their coupling strength. We validate our results with examples
from power networks, social networks, and epidemics spreading.

I. INTRODUCTION

Networks accomplish complex behaviors via local inter-
actions of simpler units. The electrical power grid, mass
transportation systems, and cellular networks are instances of
modern technological networks, while metabolic and brain
networks are biological examples. The ability to control
and reconfigure complex networks via external controls is
fundamental to guarantee a reliable and efficient network
functionality. Despite important advances in the theory of
control of dynamical systems, several questions regarding the
control of complex networks are largely unexplored, as, for
instance, the relation between network topology and its degree
of controllability.

The problem of controlling complex networks consists of
the selection of a set of control nodes, and the design of a
(possibly distributed) control law to steer the network to a
target state. In this work we study the problem of controlling
complex networks from an energy perspective. Inspired by
classic controllability notions for dynamical systems [1]], [2],
[3], [4], we define the energy to control a network as the
worst-case energy of the control input to reach a target state.
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By combining this controllability notion with graph theory, we
characterize tradeoffs between the energy to control a given
network and the number of control nodes, and we develop a
distributed control strategy with performance guarantees for
complex networks.
Related work The notion of controllability of a dynamical
system was first introduced in [2], and it refers to the possi-
bility of driving the state of a dynamical system to a specific
target state by means of a control input. Several structural
conditions ensuring controllability have been proposed; see
for instance [, [3], [4]. The concept of controllability has
found recent interest in the context of complex networks,
where classic methods are often inapplicable due to the system
dimension, and where a graph-inspired understanding of con-
trollability rather than a matrix-theoretical one is preferable.
Controllability of complex networks is addressed in [3] by
leveraging graph-theoretic tools from structured control theory
[4]. In [S] the application of standard control results to real
networks reveals that the number of control nodes is mainly
related to the network degree distribution, and that sparse
inhomogeneous networks are most difficult to control, while
dense and homogeneous networks require only a few control
nodes. Analogous results are derived in [6] for observability
of complex networks. The approach to controllability and
observability undertaken in [3]], [6]] has several shortcomings.
First, the presented results are generic, in the sense that they
hold for almost every choice of the network parameters [7],
but they may fail to hold if certain symmetries or constraints
are present [4, Section 15], [8]. Second, most results in
[5], [6] rely on particular interconnection properties of the
considered networks, perhaps the absence of self-loops around
the network nodes. In fact it follows from [4, Theorem
14.2], equivalently from [9, Theorem 1], that every strongly
connected network with self-loops is generically controllable
by any single node, which contradicts the conclusions drawn
in [5]. This discrepancy is underlined in [10] for the case of
biological networks, and more generally in [L1]. Third, the
binary notion of controllability proposed in [2]] and adopted
in [5]] does not characterize the difficulty of the control task. In
practice, although a network may be generically controllable
by any single node, the actual control input may not be
implementable due to actuator constraints and limitations.
Finally, the design of the actual control input to drive a
network to a particular state is not specified in [S], and it
remains to date an outstanding problem for complex networks
due to their dimension and absence of a central controller.
We depart from [3]], [6], [8], [11], and analogously from
[12]], [[13], [14], by adopting a quantitative measure of network
controllability, namely the worst-case control energy, by char-
acterizing tradeoffs between the difficulty of the control task
and the number of control nodes, and, finally, by proposing a
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distributed control strategy suitable for complex networks.

A quantitative approach to network controllability has re-
cently been adopted in [15]], [L6], [L7]. With respect to [L15],
although our measures of network controllability coincide, we
focus on the tradeoffs between control energy and number
of control nodes and on the design of a distributed control
strategy, as opposed to scaling laws for the control energy
as a function of the control horizon. With respect to [[16]] we
provide a rigorous framework for network controllability, and,
in fact, our findings are aligned and mathematically support
the discussions in [16]]. Finally, with respect to [17] we adopt
a different network controllability measure, which we show to
be more appropriate for the control of most complex networks.
Paper contributions The main contributions of this paper
are threefold. First, we study network controllability from
an energy perspective, which we quantify with the smallest
eigenvalue of the controllability Gramian (Section [I). We
show that, if the number of control nodes is constant, then
certain controllable networks are practically uncontrollable, as
the control energy depends exponentially on the ratio between
the network cardinality and the number of control nodes.

Second, we characterize a tradeoff between the control
energy and the number of control nodes (Section [[II). In
particular, we derive an upper bound for the smallest eigen-
value of the controllability Gramian as a function of the
number of control nodes, and a lower bound on the number
of control nodes when the control energy is fixed. Our bounds
show, for instance, that in order to control a network with
constant energy, the number of control nodes must grow
linearly with the network dimension. These results provide
a quantitative measure of the numerical findings in [16], and
are in accordance with existing results in control theory [18]].

Third, we propose the decoupled control strategy for the
control of complex networks (Section [[V). The decoupled
control strategy consists of network partitioning, selection of
the control nodes, and the design of a distributed control
law to steer the network to a target state. We characterize
the performance of the decoupled control strategy, and we
show that, if sufficiently many control nodes are available,
the energy to control a network depends only on the control-
lability properties of its parts, and on their coupling strength.
Conversely, we prove that certain networks admit a distributed
control strategy where the control energy is independent of the
network dimension. To the best of our knowledge, our decou-
pled control strategy is novel, it constitutes a first solution for
the distributed scalable control of complex networks, and it
leads to a novel notion of network controllability centrality.

Finally, we compare the effectiveness of our decoupled con-
trol law with other network control methods through some ex-
amples from power networks, social networks, and epidemics
(Section [V). Our numerical studies show that our decoupled
control strategy outperforms existing control techniques, while
being scalable in the network cardinality, and amenable to
distributed implementation.

This paper contains three additional minor contributions.
First, we show that the problem of selecting control nodes
to maximize the trace of the controllability Gramian admits
a closed-form solution (Appendix). Second, we generalize

our results to the observability problem of complex networks
(Remark [2). Third, we describe a heuristic strategy based on
modal controllability [19] to select control nodes (Remark E])
Notation The following notation is adopted throughout the
paper. For a vector v € R”, we let ||v]|2 denote its Euclidean

norm, that is,
[v]l2 == VvTw,

where T denotes transposition. For a matrix M € R"*", let
spec(M) denote the set of eigenvalues of M, and let

Amin(M) := min{|A| : X € spec(M)},
Amax (M) := max{|A| : A € spec(M)}.

Let o(M) be the set of the singular values of M, that is,
o(M):={\/? . X\ espec(MTM)}.

Let 0max (M) := max{A : X € 0(M)}. The spectral norm of
M is denoted by ||M||2, where

||M||2 = UmaX(M)-

For the vector valued signal s : N> — R™, we use ||s||2,7 to
denote its norm, that is,

I s]

2,7 ‘=

T-1
> sl
t=0

Vector norms, matrix norms, and signal norms will be distin-
guished from the context.

II. NETWORK MODEL AND PRELIMINARY RESULTS

Consider a network represented by the undirected graph
G := V,&), where ¥V := {1,...,n} and € C V x V are
the vertices and the edges sets, respectively. Let a;; € R be
the weight associated with the edge (i,7) € &, and define
the weighted adjacency matrix of G as A = AT = [a;],
where a;; = 0 whenever (7,j) ¢ £. We associate a real value
(state) with each node, collect the nodes states into a vector
(network state), and define the map = : N>g — R" to describe
the evolution (network dynamics) of the network state over
time. We consider the discrete time linear and time-invariant
network dynamics described by the equation

z(t+1) = Az(t). (1)

Controllability of the network G refers to the possibility
of steering the network state to an arbitrary configuration by
means of external controls. We assume that a set

K:i={ky,....,km} CV
of nodes can be independently controlled, and we let
Chy] 2

be the input matrix, where e; denotes the ¢-th canonical vector
of dimension n. The network with control nodes K reads as

z(t+1) = Az(t) + Brux(t), 3)

B;c = [ekl

where ux : N>g — R is the control signal injected into the
network via the nodes K. A network is controllable in 7" € N



steps by the set of control nodes K if and only if for every
state x¢ € R™ there exists an input ux such that z(T) = z¢
with 2(0) = 0 [1]. Controllability of dynamical systems is a
well-understood property, and it can be checked by different
structural conditions [2], 3], [4]. For instance, let Cx 7, with
T € N1, be the controllability matrix defined as

C;QT = [B)C ABx AT_lBlc] .

The network (3) is controllable in 7" steps by the nodes K if
and only if the controllability matrix Cx 7 is of full row rank.

The above notion of controllability is qualitative, and it does
not quantify the difficulty of the control task as measured, for
instance, by the control energy needed to reach a desired state.
As a matter of fact, many controllable networks require very
large control energy to reach certain states [16]. To formalize
this discussion, define the T-steps controllability Gramian by

T-1

Wir := Y A"BeBLA™ = CaCl
7=0

where we have used the fact that A = AT. It can be easily
verified that the controllability Gramian Wi r is positive
definite if and only if the network is controllable in 1" steps
by the nodes /C [1].

Let the network be controllable in T" steps, and let x¢, with
lz¢]] = 1, be the desired final state at time 7. Define the
energy of the control input ux as

E(uic, T) = uxcl3 r = Z lure (7113,

where T’ is the control horizon. The unique control input that
steers the network state from z(0) = 0 to (7)) = z¢ with
minimum energy is [1]]

i (t) == BR AT W, 4)

with ¢ € {0,...,T — 1}. Then, it can be seen that

Z [Jux (7

u)Ca ”2 = Ty WIC 7L > < )\mm(WK T)

®)

where equality is achieved whenever z; is an eigenvector
of Wi r associated with Amin(Wic, 7). Because the control
energy is limited in practical applications, controllable net-
works featuring small Gramian eigenvalues cannot be steered
to certain states. An example follows.

Example 1: (Controllable networks may exhibit practically
uncontrollable states) Consider the network G with n nodes,
weighted adjacency matrix A := [a;;] defined as

1
N BT
aij = 0
)

and control node X = {1}. Notice that the controllability
matrix Cx ,, is diagonal and nonsingular, and its i-th diagonal
entry equals 27+, Since A*Bx = 0 for all ¢ > n, we have
Wi,r = Cx nC,C , for all 7 > n, and the smallest eigenvalue
of the controllability Gramian Wi equals 27272 for all
7 > n. We conclude that the network G with control nodes

ifj=i—1landi€{2,...,n},
otherwise,

is controllable in 7' > n steps, yet the control energy grows
exponentially with the network cardinality. O

In this work we measure controllability of a network based
on the smallest eigenvalue of the controllability Gramian.
With this choice we study controllability from a worst-case
perspective, looking at the target states requiring the largest
control energy to be reached. We conclude this section by
discussing alternative controllability metrics.

Remark 1: (Controllability metrics) Different quantitative
measures of controllability of dynamical systems have been
considered in the last years [20]. In addition to the small-
est eigenvalue of the controllability Gramian /\mm(ch,T),
the trace of the inverse of the controllability Gramian
Trace(W,EﬁlT) and the determinant of the controllability
Gramian Det(Wy ) have been proposed. It can be shown
that, while Trace(W,E)lT) measures the average control energy
over random target states, Det(W 1) is proportional to the
volume of the ellipsoid containing the states that can be
reached with a unit-energy control input. The selection of the
control nodes for the optimization of these metrics is usually
a computationally hard combinatorial problem [13]], for which
heuristics without performance guarantees and non-scalable
optimization procedures have been proposed [19], [21], [22].

Motivated by the relation

Trace(W,E’lT) - n
n ~ TraceWx,r)’

the trace of the controllability Gramian Trace(Wy r) has
also been used as an overall measure of controllability in
[23], [24], and recently in [17)]. Unlike the controllability
metrics Amin(Wic,1)s Trace(W,E’lT), and Det(Wx 1), the se-
lection of the control nodes to maximize Trace(Wy r) admits
a closed-form solution (see Appendix). Unfortunately, the
maximization of Trace(Wjyc 1) does not automatically ensure
controllability and, as we show in Sections[[V-C|and[V] it often
leads to a poor selection of the control nodes with respect to
the worst-case control energy to reach a target state. (|

III. CONTROL NODES AND CONTROL ENERGY

In this section we characterize a tradeoff between the
number of control nodes and the energy required to drive
a network to a target state. A matrix M is Schur stable if
Amax (M) < 1. We start with the following preliminary result.

Lemma 3.1: (Bounds on the smallest eigenvalue of the
controllability Gramian) Consider a network G = (V, £) with
|V| = n, weighted adjacency matrix A = AT, and control set
K. Assume that A is Schur stable. For all 7' € Ny it holds
>\2T ( A)

max

1 _)‘r2nax( )

Proof: The statement follows from the definition of
controllability Gramian. In fact,

Amin(Wie,7) < AminWik,00) < Amin(Wrke, 1) +

Wi, + Z ATB;CB,EAT.

=T

Wioo = »_ A" BxBRA™ =
7=0



Since > 77 AT BB A" is positive semi-definite, we have
AminWie, ) < Amin(Wic,00). Notice moreover that

T(Wioo = 00 7 ATB BRAT
Amin(Wk,7) = min z W, ZT;T KBy AT)x
zER™ xtx
T T(__ 0 T T AT
> min z' Wi oo + min ' (= > ATBk B AT)x
cwekr Tz zER™ zTx
o1 (2 4 AT BeBLA
= Amin(WWicoo) = s
= /\min(WIC,oo) - Z ATBKB,—EAT
=T 2
AT (A)
> )\min(W}C,oo) - L,
1 - )‘xznax(A)
which yields the thesis. ]

We now derive a bound on the smallest eigenvalue of the
controllability Gramian for a given set of control nodes.

Theorem 3.2: (Control energy and number of control
nodes) Consider a network G = (V, £) with [V| = n, weighted
adjacency matrix A, and control set IC. Assume that A is Schur
stable. For all 7' € Ny it holds

2([7]-1)
1= 22004) AT (4)
Amin(Wier) < min ¢ 37755 20, =5

min

. (6)

Proof: We start by showing the first part of the inequal-
ity. Notice that for all 7 € Nyg it holds Amin(Wi,7) <
Amin(Wy,r). In fact, K C V, and the control energy cannot
increase by adding control nodes to a given control set. Then,

T-—1
/\min(WIC,T) < )\min(WV,T) = /\min <Z A2T>

7=0
1= Amin(A)?T
1 — Amin(A4)2

We now show the second part of the inequality. Let T}« =
L%—‘ — 1. Notice that rank(Cx 7,,,) < n. In fact, Cx 1, €
R™*™ with

m = Toa|K| < (“’é + 1) K| - K| = n.

Consequently, Wi r = C’CaTmaxC;g,qux is singular, and
AminOWk 1) = 0. The claimed statement follows from
Lemma [3.1] by using T = Tipax. [ ]

In Theorem we provide an upper bound on the smallest
eigenvalue of the controllability Gramian or, equivalently, a
lower bound on the worst-case energy needed to control a
network to an arbitrary target state, as a function of the
number of control nodes. The bounds in Theorem 3.2 are to
be regarded as performance limitations: independently of the
control strategy adopted by the control nodes, the least amount
of energy needed to steer the network to any unit-norm state
is bounded by the expressions in Theorem [3.2]

T T T T T T
A - -
.
-0.5 s
/
o AO- - @- =B =--p--g- =8

-

p=0.75 K|

1 1 1 1 1
0.3 0.4 0.5 0.6 0.7 0.8 0.9

1T n

Fig. 1. For the network in Example P} this figure compares (in a log-
arithmic scale) the upper bound (B) (solid red) with the largest Amin OF
the controllability Gramian (dashed-dot blue) over all possible sets K. For
each value |K| from 1 to n, a combinatorial search determines the value
Aiin = Maxk Amin(Wi,00)- The two quantities in the right hand side of
equation () are also reported in dashed green and dotted black, respectively.
The horizontal axis represents the ratio |KC|/n. It can be shown that the bound

(6) tends to be conservative as the parameter p increases.

Example 2: (Tightness of the bound in Theorem
Consider a network with n = 20 nodes and adjacency matrix

1 1 0 1
1 1 1 0
A:B °. s
3 .
0 1 1 1
1 0 1 1

where p € (0,1). Observe that A is Schur stable for all p €
(0,1). In Fig. [1| we compare the upper bound in Theorem
with the value max{Amin(Wic,r) : K C {1,...,12},|K| =
k}, as a function of the cardinality k of the control set. O

In what follows we consider two asymptotic control sce-
narios in which the network cardinality grows, and either
the number of control nodes or the desired control energy
are constant. The case of constant number of control nodes
follows from Theorem In fact, if |[K| is constant, then the
controllability energy A_.. (Wi 1) grows at least exponentially
as the cardinality n grows, provided that A\, (A) is bounded
away from 1. This result provides a quantitative measure of
the findings in [16]], and it is in accordance with [18]. We next
consider the case of bounded control energy.

Corollary 3.3: (Lower bound on the cardinality of the
control set) Consider a network G = (V,€&) with |V| = n,
weighted adjacency matrix A, and control set K. Assume that
A is Schur stable. Let T € Ry and ¢ € Ry such that

1
°= 1- >\r2nm(A)

Then, Amin(Wic,r) > € only if
|| > min {1, R.} n,

where

.: 2log(Amax (4))
- log(e(1 = A% (4))) + 2log(Amax(4))”

(>}



Proof: From Theorem [3.2]it follows that Apin(Wic,1) > €
only if

e (1= A (4)) < AT (),

or, equivalently, only if || > R.n. |

Corollary implies that, in order to guarantee a certain
bound on the control energy, the number of control nodes must
be a linear function of the total number of nodes, provided that
Amax (A4) is bounded away from 1 as the cardinality n grows
(see Remark |4 for a discussion of the case Apux(A) = 1).
Instead, classic controllability [2], [S]] is (generically) ensured
by the presence of a single control node, independently of the
network dimension [4, Theorem 14.2], [9, Theorem 1].

Remark 2: (Observability of Complex Networks) The ob-
servability problem of complex networks consists of selecting
a set of sensor nodes and designing an estimation strategy
to reconstruct the network state from measurements collected
by the sensor nodes [6]. Our quantitative analysis of the
controllability of complex networks in Section and our
decoupled control strategy in Section can be directly
applied to the problem of observability of complex networks.
To see this, define the T-steps observability Gramian by

T-1
Ok =Y ATCRCrAT,
7=0

where /C denotes the set of sensor nodes, and C := B,E. The
energy associated with the network state « with sensor nodes
K and observation horizon T is

T-1
E(@,T):= ) llyc()3 = 27 Ox,r2 = Ain(Ok,7),
=0

where yx : N>g — R contains the measurements taken by
the observing nodes /C [25]. Thus, the smallest eigenvalue
of the observability Gramian is a suitable metric to measure
observability of a network. Since we focus on undirected
networks where A = AT, it holds Ox,r = Wk, r, and the
results in Section are readily applicable to the network
observability problem. For instance, from Theorem [3.2] we
conclude that the observability of a network, that is the
smallest eigenvalue of the observability Gramian, decreases
exponentially fast as the ratio between the network cardinality
and the number of sensor nodes grows. (]

IV. DECOUPLED CONTROL OF COMPLEX NETWORKS

In this section we provide a solution to the problem of
controlling a complex network, that is, the problems of both
selecting the control nodes, and designing a distributed control
law to drive the network to a target state. Our approach
is different from classic solutions, as it exploit the network
structure to jointly select the control nodes and to design a
control law amenable to distributed implementation.

The problem of selecting control nodes in a dynamical
system to optimize a controllability metric is a classic control
problem [21]]. Most existing solutions either rely on combina-
torial or non-scalable optimization techniques, being therefore
not suited for large networks [22]], or are heuristic, in that they
exploit the specific structure of the system at hand, and do not

offer guarantees on the control energy [19], [21]], [26], [27].
See Remark [3] for a heuristic method to select control nodes.

A. Setup and definition of the decoupled control strategy

Our decoupled control strategy can be divided into three
parts: (i) network partitioning, (ii) selection of the control
nodes, and (iii) definition of the decoupled control law.
Network partitioning Consider an undirected network G :=
(V,€) with weighted (symmetric) adjacency matrix A :=
[a;;]. Partition V into N disjoint sets P := {Vi,...,Vn},
and let G; := (V;, &;) be the i-th subgraph of G with vertices
V; and edges &; := EN(V; X Vi)ﬂ According to this partition,
and possibly after relabeling states and inputs, the network
matrices read as
A - AN Bk, - 0

A= : : : » (D
An1 AN 0 By

where K; CV; for all ¢ € {1,..., N}, and the networks dy-
namics can be written as the interconnection of N subsystems
of the form

.’Ei(t + 1) = Aixi(t) + Z Aija?j (t) + BICiUICi (t), (8)

JEN;
where i € {1,..., N} and NV; := {j : A;; #0}.
Selection of the control nodes For a network G := (V, &)

with partition P := {V4,...,Vn}, we say that a node i € V
is a boundary node if a;; # 0 for some node j € Vy, with
k.l € {1,...,N} and k # {. Let B; C V; be the set of
boundary nodes in the i-th cluster, and let B = Uf\]:l B; be
the set of all the boundary nodes of the partition. We select
the set of control nodes I = I3 U --- U Ky to satisfy B; C
K; CV; forallie€{1,...,N}, and so that each pair (4, B;)
is controllable. See Fig. [2| for an example.

The decoupled control law For a network G := (V, &) with
partition P := {Vy,..., Un}, let 2 = [z] zfy] be
the target state, where ||z¢|]|s = 1, and zg; € RYil for i €
{1,...,N}. Let ||z;|l2 = o, and notice that Zf\il a? = 1.
Define the control input ux, by

urc, (t) == B)TciAfitilwiTTlei - Z By, Aija;(t), (9
jENi\W_/

fij(t)

where, with a slight abuse of notation, W; r is the i-th
controllability Gramian defined by

’L),;(t)

T-1
Wir:=> A" 'Be By AT
7=0
and the control horizon 7" is chosen large enough so that W;
is positive definite for all ¢ € {1,...,N}. We refer to the
above control law as to the decoupled control law.
Before analyzing the performance of our decoupled control
law, we discuss its implementation properties. First, notice that
the control input ux; is the sum of an open-loop control signal

I'Several methods are available to partition a network [28]], such as spectral
methods and modularity based heuristics. In Section@]we employ a spectral
method based on the Fiedler eigenvector to partition a network.



v;, and a feedback control signal > JEN: fij. Second, if each
cluster is equipped with a control center, then our decoupled
control law can be implemented via distributed computation
by the control centers. In fact, the control signal v; depends
on the dynamics of only the ¢-th cluster, and the feedback
control signals f;; can be determined upon communication
of the i-th control center with its neighboring control centers
belonging to A;. Third and finally, our decoupled control law
is scalable, in the sense that the complexity of the control law
does not depend upon the network cardinality, but only on
its partition, provided that the degree of each cluster remains
bounded. We further discuss this property in Sections [IV-C
and |V| via numerical examples.

B. Analysis of the decoupled control law

We start our analysis by noticing that the decoupled control
law () steers the network to the target state x¢. In fact, from
equation and the definition of f;; in equation (9), the
network dynamics with decoupled control law can be written
as the collection of IV decoupled subsystems

Since v; in equation (9) equals the minimum energy input to
drive the i-th subsystem (I0) from z;(0) = 0 to z;(T) = g,
we conclude that z(T') = .

We next study the energy properties of our decoupled
control law. Observe that the state evolution of the i-th cluster
can be written as

t—1
vi(t) =Y AT B, BY, AW .
7=0

For the ease of notation we assume that the matrix A; is
Schur stable for all 7 € {1,..., N}. Observe that, if A is Schur
stable and nonnegative, then each matrix A; is Schur stable
and Amax(A;) < Amax(A). We define the local energy matrix
A € RVXN and the £y gains matrix T € RV*N by

A = diag( Ay VL), - A (W ), (11
T 72 YIN
Y21 1 YoN
L:=1 - . , (12)
N1 yne -1

where ~;;, for i,5 € {1,...,N} and i # j, is the £, gain of
the input-output system (A;, Bi,, Bt A;j) or, equivalently,
the Hy, gain of the transfer matrix By A;;(zI — A;)~" By,
[29]. '

Theorem 4.1: (Energy of the decoupled control law) Con-
sider a network G = (V,£) with weighted adjacency matrix
A = AT, control set K, and partition P. Assume that A is
Schur stable, and that /C contains all boundary nodes of P.

The decoupled control law u§- with control horizon T satisfies
E(u, T) < |TAY?|I3, (13)

where A and I are the local energy matrix and the Lo gains
matrix defined in (TI) and (12), respectively.

Proof: Let xg; be the target state of the ¢-th cluster, and
let ||zg|l2 = a;. From equations (3) and (@), and from the
definition of £y gain [29] it follows that

@ Yij O
villar < 75—, fijllar £ 57—
Ain Wir) Amin Wi, 1)

Moreover, due to the triangle inequality, we have

luiller < lviller + Y [1fis

JEN;
Tij &

- + Z 1/2

S 973
Amin Wir)  Jen Ain WiT)

min
where I'; is the i-th row of I" defined in (I2), and « is the
vector of o; with i € {1,..., N}. By using (I2) and the fact
that [[uic|3 = 324 lwill37. we obtain

min (

2,T

= FiAl/QOé7

|3 < g aTAY2TTOAY 200 = s (Al/QFTF Am) ’

from which the statement follows. [ ]

In Theorem [.1] we derive a bound on the energy needed
to control a network via our decoupled control law. Theorem
[.1) has several general consequences which we now describe.
First, due to equation (E]), if the set K of control nodes includes
the boundary nodes of a network partition P, then

1

Amin(W > s,
melWet) 2 gz

(14)
where A and I' are the local energy matrix and the Lo
gains matrix for the partition P. This bound on the smallest
eigenvalue of the controllability Gramian is novel (see [30]),
and it highlights that the controllability of a clustered network
depends on the controllability of the isolated clusters via the
matrix A, and on their interconnections strength via the Lo
gains matrix I'. Second, the control energy for our decoupled
control law does not depend on the cardinality of the whole
network. In fact, notice that

IAY213 < T3 IAll2 < T[T oo |Allo, (15

and that, independently of the network dimension, ||T'||; and
IT'||so remain bounded if, for instance, the network weights
and the nodes degrees are bounded. A related example is in
Section Third and finally, since the energy to control
a network via the decoupled control law depends on local
properties of the network partitions, an appropriate partitioning
method may be developed to optimize the performance of the
decoupled control law. To this aim, we state the following
corollary of Theorem [{.I] where we derive a bound on
the control energy for our decoupled control law, which is
proportional to the interconnection strength among clusters.
Let A be the symmetric interconnection matrix defined by

1 [A12(|2 A1n]l2
[ A21l2 1 [ A2n]l2
A= . . . (16)
[Anill2 [[An2llz -+ 1



Corollary 4.2: (Bound for network partitioning) Let ~;; be
the Lo gain of the system (A;, B, B,Ei A;j), and let Apax =
max{Amax(A4i) : 1 €{1,...,N}} < 1. Then,

[[Aij 2

%jél , forj e {1,...,N}\ {i},

- )\max
and, being 7" the control horizon,
Allool|A1Z
E d T < H 00_ oo,
(UK7 ) - (1 - >\max)2

where A is the local energy matrix defined in equation (TT)),
and A is the interconnection matrix defined in equation (T6).

Proof: Recall that v;; equals the H, gain of the transfer
matrix of the system (A;, B;CJ,B,E A;;), that is,

Yij = || B, Aij (21 = Aj) " Bre, || »

where ||-|| ;;_ denotes the Ho, norm [29]. Since the Ho, norm
satisfies the submultiplicative property, we have

i Wil [T =407 g 1B [, -

Notice that the H,, norm of a constant transfer matrix
coincides with its induced 2-norm. Finally we have HB,E |
HB’Ca‘Hg =1, and

75 < || B

|2:

T = A7 = mpx s (77 = 4,)7")

= méax P\max ((eie‘[ - Aj)_l(e_iel - Aj)_l)} 2

= mGaX [Amax (I - 2COS(0)Aj + A?)il)] V2

1 1
= < N )
1- Amax(Aj) 1- /\max

from which the first part of the statement follows. The second
statement follows from (I3) and (I3) and from the fact that
ITlse < 1Al and [l < Al = 1A . -

Analogously to equation (T4}, from Corollary i.2] we con-
clude that, if the set IC of control nodes includes the boundary
nodes of a network partition P, then

(]- - S\max)2

A Vet) 2 TR ATE
where A and A are the local energy matrix and the intercon-
nection matrix for the partition P, respectively, and Amax 1S @
bound on the spectral radius of the clusters of P.

We conclude this part by noting that our results lead to
a novel notion of network controllability centralityE] where
network nodes are ranked according to the product of their
local controllability degree and their interconnection strength
with neighboring nodes. Our notion of network controllability
centrality is motivated by Corollary {.2] where the control
energy is bounded by the scaled product of the worst-case
control energy of the isolated clusters || A||» (least controllable
cluster), and the worst-case clusters interconnection strength
||A]loo (strongest interconnection strength). A comparison
between controllability centrality and other centrality notions
is left as the subject of future research.

Fig. 2. A circulant network with n = 24 nodes. The network is partitioned
into N = 6 clusters with n, = 4 nodes each. Controlled nodes are in black.

Fig. 3. In this figures we study circulant networks partitioned as in Section
IV-Cl and we compare (in a logarithmic scale) the performance of our
decoupled control law against the minimum energy control law. In the left
figure we maintain constant the number of nodes in each cluster, and we
report as a function of the number clusters (see Section (i) the smallest
eigenvalue of the controllability Gramian with 7" = oo and boundary nodes
as control nodes (solid red), (ii) the bound (I4) for the energy performance
(see Theorem @) achieved by our decoupled control law (dashed blue), and
(iii) the smallest eigenvalue of the controllability Gramian with 7" = co and
control nodes selected randomly (dashed-dotted green). Notice that the energy
needed by our decoupled control law remains constant when the network
cardinality grows (the number of control nodes grows as 2/N and that the
number of nodes in each cluster remains constant). This property is not
maintained if the control nodes are chosen randomly. In the right figure we
report the same quantities as in the left figure, while maintaining constant
the number of clusters and letting the number of nodes in each cluster grow.
Notice that the smallest eigenvalue of the controllability Gramian and our
bound (T4) degrade with the same rate, while randomly selected control nodes
require more energy.

C. An example of network control via decoupled control law

In this section we demonstrate our technique to control large
networks with an example. Consider a circulant network G
with n = np N nodes, n,, N € N, and adjacency matrix as in
Example with p = 0.5. We partition G into N clusters, so
that each cluster contains ny nodes. In particular, we label the
nodes in increasing order, and for ¢ € {1,..., N} we define
the i-th cluster to have vertices V; := {(i—1)np+1, (i—1)np,+
2,...,iny} and control nodes K; := {(i — 1)ny, + 1,inp}.

See Fig. |2 for an example with n, = 4 and N = 6. It
can be numerically Veriﬁe that the set XC of control nodes is
optimal, in the sense that it solves the maximization problem

max )\min W ,00 /)5
echax Wk, 00) an
subject to  |K| = 2N.

In Fig. [3| we validate Theorem [4.1] and equation (14). Notice
that, although conservative, our bound (I4) captures the fact
that circulant networks can be driven with constant energy
to any (unit norm) target state independently of the network
dimension; this result is compatible with our analysis in Theo-
rem [3.2] and in Section Moreover, our decoupled control
law is a distributed control law achieving this performance.
Finally, it can be shown that for circulant networks, and in

2Network centrality is a fundamental concept in network analysis [31]].

3Due to computational complexity, we have solved the maximization
problem for the cases n, =4 and N € {2,...,6}.



Algorithm 1: Selection of the control nodes

Input
Output

: Network G := (V, E), Number of control nodes m;

: Control nodes KC;

1 Define an empty set of control nodes K := 0;

2 Initialize trivial partition 7 := V with no boundary nodes By := (;
while || < m do

3 Select least controllable cluster
¢ =argmin{AninWi,r) : 1 €{1,...,|P[}};
4 Compute Fiedler two-partition Py of ¢-th cluster;
5 Compute boundary nodes By of Pr;
6 Update partition P with Pr;
7 Update control nodes with boundary nodes /C = KC U By;

8 if |KC| > m then Remove boundary nodes of last partition K = I\ By;
9 if |KC| < m then Add m — |K] control nodes to K as in Remark
10 return /C;

fact for all d-dimensional torus networks, the diagonal entries
of (I—AAT)~! are all equal to each other. Thus, the selection
of the control nodes for the maximization of the trace of the
Gramian is in this case equivalent to a random positioning of
the control nodes (see the Appendix).

V. EXAMPLES OF CONTROL OF COMPLEX NETWORKS

The main purpose of this section is to illustrate the ef-
fectiveness of our decoupled control law to control complex
networks. To this aim, we first develop a method to select the
control nodes based on network partitioning, and then compare
the performance of the decoupled control law with alternative
control schemes. The design of optimal partitioning algorithms
to minimize the energy of the decoupled control law, and a
thorough comparison with existing partitioning methods [28]]
are beyond the scope of this work.

A. Selection of the control nodes

For a connected network G := (V, ) with weighted adja-
cency matrix A = AT, let Py := {V1,V,} be the two-partition
of G determined by its Fiedler eigenvector [28]], [32]E] and
let B¢ be the boundary nodes of the partition P;. Our method
to select control nodes in a connected network is described
in Algorithm [I] Loosely speaking, our method consists of
recursively computing Fielder partitions of subnetworks of
G, and selecting the boundary nodes of each partition as
control nodes. Notice that (i) the algorithm repetitively selects
control nodes in the least controllable cluster to improve local
controllability (line 3), (ii) the set of control nodes contains the
boundary nodes of a network partition (lines 4,5, 7), so that
our decoupled control law can be implemented, and (iii) the
set of control nodes K is increasing throughout the execution
of the algorithm. Consequently, the smallest eigenvalue of
the controllability Gramian is nondecreasing throughout the
execution of the algorithm. In the last part of the algorithm
(line 9) remaining control nodes are assigned according to a

4Let v be the Fiedler eigenvector of the network Laplacian matrix. The
two-partition determined by vy is uniquely determined by the sign of the
entries of vy [28]].

heuristic procedure. Notice that Algorithm [I| may return a set
of control nodes from which the network is not controllable.
However, if each cluster is connected and every diagonal entry
of the network matrix is nonzero, then, due to the genericity
of the controllability property [4, Theorem 14.2], [9, Theorem
1], each cluster as well as the whole network are generically
controllable by .

Remark 3: (Heuristic selection of control nodes) Different
methods can be used to select control nodes in a network.
Combinatorial methods, heuristic procedures, or random selec-
tion methods should be employed depending on the network
dimension and the available computational power. We propose
the following heuristic method inspired by the notion of modal
controllability [19] to select control nodes within each cluster.

For a network with symmetric weighted adjacency matrix
A, let V = [v;;] be the orthonormal matrix of eigenvectors
of A. The entry v;; is a measure of the controllability of the
mode A, (A) from the control node 4. In fact, an application of
the classic PBH test to symmetric matrices shows that v;; = 0
implies that the mode A;(A) is not controllable from node ¢
[1]. By extension, if v;; is small, then the j-th mode is poorly
controllable from node 7. Let ¢; = >-7_ (1 — A}(A))vy;, and
notice that ¢; is a scaled measure of the controllability of
all n modes A\ (A),..., A, (A) from the control node i. We
heuristically select the set K of control nodes to maximize
the smallest controllability parameter ¢;, that is, the set IC of
control nodes is the solution to the maximization problem

7¢k}7

max
KC{1,....n

subject to  |K| =k,

min {¢q, ...
} (18)

for a given cardinality k¥ € N. We remark that our heuristic is
computationally as hard as computing the matrix V' for each
cluster, as the maximization problem (I8) can be solved by
simply ordering the controllability parameters ¢;. ]

B. Illustrative examples

In this section we validate our method to control complex
networks with three examples from power networks, social
networks, and epidemics spreading.

Power network We consider a network of m generators,
and we describe the dynamics of the i-th generator by the
linearized swing equation [33]

JEN;
where, for the i-th generator, m; > 0 and d; > 0 are the inertia
and damping coefficients, ; : R — Ryg 2, is the phase angle,
and k;; is the susceptance of the power line (i, 7). As in [34]
we assume that m; /d; < 1, and we approximate the generator
dynamics with a first-order equation. Finally, we discretize
the network by using the Euler method with discretization
accuracy h, so that the dynamics of the i-th generator read as

h
ot +1) =0i(t) - - > kig(8i(t) — 6;(1)).
! JEN;
For our numerical study we consider the standard IEEE 118
bus system with numerical parameters taken from [35]. We



assume that every bus is connected to a generator, and we let
the discretization accuracy be h = 10~7. The results of this
numerical study are in Fig. [5(a)}

Social network Inspired by the seminal work [37]], the opinion
dynamics of a group of individuals forming a network G =
(V, &) can be modeled by the consensus system

x(t+1) = Ax(t),

where x : N — R is the vector of the individual opinions, and
the matrix A = [a;;] is row stochastic and satisfies a;; = 0
whenever the edge (4,j) is not in the edge set £. Besides
the description of opinion dynamics, consensus models have
found broad applicability in several domains [38].

For our numerical study we consider the social network
describing the Klavzar bibliography (see Fig. (b)), and we
construct a consensus system by assigning a random nonzero
weight to each edge in the network. The results of this
numerical study are in Fig. [5(b)]

Remark 4: (Controllability of consensus networks) Con-
nected consensus networks feature a simple unit eigenvalue
[38], so that the controllability Gramian is not defined for the
infinite control horizon, as the series Eio ATB;CB,TC_AT is
not convergent. On the other hand, it can be shown that the
unit eigenvalue is controllable at 7" = oo by any nonempty
set of control nodes with zero energy. Then, without loss
of generality, the infinite horizon controllability Gramian of
consensus networks can be defined by restricting the dynamics
to the subspace orthogonal to the consensus space, where the
matrix A is Schur stable. O
Epidemics spreading The N-intertwined SIS model for the
dynamics of a viral infection over a network with n nodes
and adjacency matrix A = [a;;] reads as [39]

pi=—aipi+ (1 —p)Bi Y ayp;, i € {1,...,n},
JEN;

where p; : R>9 — Ryg, 1] is the map describing the infection
probability of node i, and o; € R>g, 3; € R are the
curing and infection rates of the i-th node. It is known that,
for certain values of the ratios «;/(;, an initial infection p(0)
may spread to all the nodes in the network or converge to
zero. We consider the simplified model

Pi = —aipi+Bi Y aijpj,
JEN;

19)

which is a good approximation of the N-intertwined SIS model
at the initial phase of the epidemics spreading when p;(t) are
small. We discretize the system (19) as

pi(t + 1) = (1 — h&i)pi(t) + hﬂz Z aijpj(t),
JEN;

(20)

where h € R is a sufficiently small discretization parameter,
and we study the problem of controlling the spreading of the
infection throughout the network[

For our numerical study we consider the Pajek social
network GD99c (see Fig. , we let h = 1072, and we
select the parameters «; and (3; randomly so that the network

5 An infection can be controlled by, for instance, distributing vaccines.

(20) is unstable. Due to the instability of the network, we select
a finite control horizon of n/2 control steps. The results of this
numerical study are in Fig.

From our numerical analysis we draw the following con-
clusions. First, the smallest eigenvalue of the controllability
Gramian increases abruptly when the number of control nodes
overcomes a certain threshold, or, equivalently, the control
energy decreases abruptly when the number of control nodes
overcomes a certain threshold. This phenomena is aligned
with the numerical controllability transition identified in [16]]
via numerical simulation. Second, our decoupled control law
outperforms the control strategies dictated by the optimization
of the trace of the controllability Gramian and by random
positioning of the control nodes, while allowing for a dis-
tributed and local implementation of the control law. The
difference between the three compared strategies becomes
more evident when the number of control nodes is large.
Third and finally, since our decoupled control law relies on
network partitioning, and computations are performed only
on the obtained subnetworks, it is scalable with the network
cardinality and thus suitable for application to large networks.

We conclude this section with the following consideration.
In Algorithm [T] we partition each subnetwork by computing
its Fiedler eigenvector. For large networks, this partitioning
scheme may be inefficient, and it may be replaced by a
partitioning scheme with linear complexity, such as the Lou-
vain method [40], [41]. In this case, our method to control
complex networks has linear complexity, since the decoupled
control law requires only the inversion of local controllability
Gramians whose dimension is independent of the network car-
dinality. On the other hand, the computational complexity of
the minimum energy control law (@) grows at least cubicallyﬁ]
in the network cardinality, as the inverse of the controllability
Gramian of the whole network needs to be computed.

VI. CONCLUSION

In this work we study the problem of controlling complex
networks to a target state. We adopt the smallest eigenvalue
of the controllability Gramian as measure of network control-
lability, which quantifies the worst-case control energy. We
characterize tradeoffs between the number of control nodes
and the control energy as a function of the network dynamics.
We develop a control strategy with performance guarantees,
consisting of a method to select control nodes based on
network partitioning, and a distributed control law to reach
the target state. Finally, we validate our findings with power
systems, social networks, and epidemics spreading examples.

Important aspects requiring further investigation include (i)
the derivation of tighter bounds for the tradeoff between the
number of control nodes and the control energy, as a function
of network properties, (ii) the study of different controllability
measures, possibly capturing the distributed nature of the
problem, and (ii) the design of an efficient partitioning method
to optimize the performance of our decoupled control law.

6 Assuming Gauss-Jordan elimination algorithm is used [42]].



(a) IEEE 118 bus system

(b) Klavzar bibliography

(c) Pajek network GD99c

Fig. 4. In this figure we report a representation of the example networks in Section In particular, Fig. represents the standard IEEE 118 bus system
(118 nodes), Fig. @ represents the Klavzar bibliography network (86 nodes), and Fig. represents the GD99c Pajek network (105 nodes). Networks
parameters are available at http://www.cise.ufl.edu/research/sparse/matrices/, and their layout is obtained via the graph drawing algorithm described in [36].

Amin (Wi 00) Amin(Wk o)

Amin(Wr, 2)

1Kl

(a) IEEE 118 bus system

Fig. 5.

(b) Klavzar bibliography

08 09

(c) Pajek network GD99c

In this figure we compare (in a logarithmic scale) the smallest eigenvalue of the controllability Gramian for different choices of the set of control

nodes. The set of control nodes K is selected according to Algorithmm(solid red), trace optimization as in Appendix (dashed green), and randomly (dashed-dot
blue). The cardinality of the control set varies from 1 to n. Notice that our decoupled control law algorithm outperforms the two counterparts, while being

amenable to distributed implementation as discussed in Section [[V-A]

APPENDIX

In this section we derive a closed-form solution to the
problem of selecting control nodes to maximize the trace of
the controllability Gramian, as considered for instance in [17].
Speciﬁcallyﬂ we consider the maximization problem

max Trace Wi, 1),
KC{1,...,n} (A-1)
subject to  |K| =m,
where m < n and T' € N>;. Notice that
T-1 T-1
Tr(Wir) =Tr | Y A"BeBLA™ | =Y Tr(BeBLA™)
=0 =0
T-1 T-1
=Tr(BeBr Y A7 | => (Y 47| |
=0 el \7=0 i

where we have used that trace is a linear map and is invariant
under cyclic permutations [43], and where (ZZ;OI A2T)

i
denotes the i-th diagonal entry of the matrix ZZ;OI AT We
conclude that a solution to the maximization problem (A-TJ)
is the set C* containing the indices of the m largest diagonal

entries of Zf;ol A27 ). Notice that, if A is Schur stable, then

S AP = (1 — A2
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