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Abstract—We consider the problem of exploiting the mi-
crogenerators connected to the power distribution network to
provide distributed reactive power compensation for power losses
minimization and voltage support. The proposed strategy relies
on the fact that all the intelligent agents, located at the micro-
generator buses, can measure their voltage, communicate data
with other agents on a cyber-layer, and adjust the amount of
reactive power injected into the grid according to a feedback
control law that descends from duality-based methods applied to
the optimal reactive power flow problem. We provide numerical
simulations to verify the effectiveness of the proposed algorithm
and we discuss its innovative feedback nature.

I. INTRODUCTION

Recent technological advances, together with environmen-
tal and economic challenges, have been motivating the de-
ployment of small power generators in the low voltage and
medium voltage power distribution grid. The availability of a
large number of these generators in the distribution grid can
yield relevant benefits to the network operation. Indeed, they
can be used to provide a number of ancillary services that are
of great interest for the management of the grid [1], [2]. In
particular, many inverters have the capability, when they are
running below their rated output current, to inject (or to absorb)
reactive power together with active power [3]. With respect to
the traditional devices, such as shunt capacitor banks or on-
load tap changers [4], the inverters can act in the grid on a fast
timescale. In this paper we focus on the optimal reactive power
flow (ORPF) problem. This problem has been deeply studied
for the traditional transmission grid and is tipically solved
by solvers that collect all the necessary field data, compute
the optimal configuration, and dispatch the reactive power
production to the generators, in a centralized manner. However
this approach is not practical in the distribution network,
because there is faster variability in the power demand, the
availability of small size generators is hard to predict, and
because generators can connect or disconnect, requiring an
automatic reconfiguration of the grid control infrastructure
(the so called “ plug and play ”approach). These reasons
suggest a distributed approach to this problem. One of the
most popular solution is to reformulate the ORPF problem
as a rank-constrained semidefinite program, to convexify it
by dropping the rank constraint and then to solve it in a
distributed way (see for example [5], [6], [7]). This approach
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however requires that all the buses of the grid are monitored,
which may not be practical. Instead, the algorithm proposed
in [8], [9] are truly scalable in the number of generators and
do not require monitoring of all the buses of the grid. These
algorithms consist of the iteration of the two following actions:
collecting voltage measurements at the microgenerators buses
and actuating control laws based on these measured data. We
refer to this kind of algorithms as feedback control strategies.
Both the algorithm in [8] and the algorithm in [9] are shown to
be provably convergent to the optimal solution of a convexified
version of the ORPF problem and, also numerically, they ex-
hibited promising performance. However in [8] no constraints
either on the magnitude of voltages or on the amount of power
injected by the microgenerators are considered, while in [9]
only constraints on the voltages are included. In the same spirit
of [9], in this paper we propose a feedback control strategy
which is based on a dual ascent algorithm applied to the power
distribution losses functional cost, incorporating both reactive
power generation constraints and voltage magnitude limits.

The rest of the paper is organized as follows. In Section
III, we provide a model for the cyber-physical system of a
smart power distribution grid. In Section IV, we state the
ORPF problem with power and voltage magnitude constraints.
In Section V we first convexify the ORPF problem, adopting a
suitable linearization of the power flow equation, and we derive
the feedback control algorithm. In Section VI we provide both
a synchronous and an asynchronous version of the algorithm.
Finally in Section VII we provide some numerical results.

II. MATHEMATICAL PRELIMINARIES AND NOTATION

Let G = (V, E , σ, τ) be a directed graph, where V is the
set of nodes, E is the set of edges, with n = |V|, r = |E|.
Moreover σ, τ : E → V are two functions such that edge
e ∈ E goes from the source node σ(e) to the terminal
node τ(e). Given two nodes of the graph h, k ∈ V , we
define the path Phk = (v1, . . . , v`) as the sequence of nodes,
without repetitions, such that v1 = h, v` = k and for each
i = 1, . . . , ` − 1, the nodes vi and vi+1 are connected by an
edge (regardless of its direction). In the rest of the paper we
will often introduce complex-valued functions defined on the
nodes and on the edges. These functions will also be intended
as vectors in Cn and Cr. Given a vector u, we denote by ū
its (element-wise) complex conjugate, and by uT its transpose.
We denote by <(u) and by =(u) the real and the imaginary
part of u, respectively. Let A ∈ {0,±1}r×n be the incidence
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Figure 1. Schematic representation of a microgrid. In the lower panel
the physical layer is represented via a circuit representation, where black
diamonds are microgenerators, white diamonds are loads, and the left-most
element of the circuit represents the PCC. The middle panel illustrates the
corresponding graph representation. The upper panel represents the cyber
layer, where agents (i.e. microgenerators and the PCC) are connected via a
communication infrastructure.

matrix of the graph G, defined via its elements

[A]ev =

{ −1 if v = σ(e)
1 if v = τ(e)
0 otherwise.

We define by 1 the column vector of all ones, while
by 1v we denote the vector whose value is 1 in po-
sition v, and 0 everywhere else. Given u, v, w ∈ R`,
with vh ≤ wh, h = 1, . . . , ` we define the operator
proj(u, v, w) as the component wise projection of u in the
set
{
x ∈ R` : vh ≤ xh ≤ wh, h = 1, . . . , `

}
, that is,

[proj (u, v, w)]h =

{
uh if vh ≤ uh ≤ wh
vh if uh < vh
wh if uh > wh

(1)

III. CYBER-PHYSICAL MODEL OF A SMART POWER
DISTRIBUTION GRID

In this work, we envision a smart power distribution
network as a cyber-physical system, in which the physical
layer consists of the power distribution infrastructure, includ-
ing power lines, loads, microgenerators, and the point of
connection to the transmission grid, while the cyber layer con-
sists of intelligent agents, dispersed in the grid, and provided
with actuation, sensing, communication, and computational
capabilities. We model the physical layer as a directed graph
G, in which edges in E represent the power lines, and nodes
in V represent both loads and generators that are connected to
the microgrid (see Figure 1, middle panel). These include the

residential and industrial consumers, microgenerators, and also
the point of connection of the microgrid to the transmission
grid (called point of common coupling, or PCC). We limit our
study to the steady state behavior of the system, where all volt-
ages and currents are sinusoidal signals at the same pulsation
ω0, and are therefore represented by complex quantities.

The system state is described by the following system
variables (see Figure 1, lower panel):

• u ∈ Cn, where uv is the grid voltage at node v;

• i ∈ Cn, where iv is the current injected at node v;

• ξ ∈ Cr, where ξe is the current flowing on edge e.

• s = p+iq ∈ Cr, where sv , pv and qv are the complex,
the active and the reactive power injected at node v.

For every edge e of the graph, we define by ze the impedance
of the corresponding power line. We assume the following.

Assumption 1: All power lines in the grid have the same
inductance/resistance ratio, i.e., ze = ejθ|ze|, for any e in E
and for a fixed θ.

Assumption 1 is satisfied when the grid is relatively homoge-
neous, and is reasonable in most practical cases. The following
equations (Kirchhoff’s current and voltage law) are satisfied by
u, i and ξ:

AT ξ + i = 0, (2)
Au+ ejθZξ = 0, (3)

where Z denotes the diagonal matrix of the absolute values of
the line impedances, namely, Z=diag(|ze|, e∈E).

We label the PCC as node 0 and take it as an ideal sinu-
soidal voltage generator (slack bus) at the microgrid nominal
voltage UN , with arbitrary, but fixed, angle φ

u0 = UNe
iφ . (4)

Each node v of the grid (load or microgenerator) except the
PCC is characterized via the following law relating its injected
current iv with its voltage uv

uv īv = sv, ∀v ∈ V\{0}, (5)

i.e., all nodes but the PCC are being modeled as constant
power or P-Q buses. The powers sv corresponding to grid
loads are such that pv < 0, meaning that positive active power
is supplied to the devices. The complex powers corresponding
to microgenerators, on the other hand, are such that pv ≥ 0,
as positive active power is injected into the grid [10].

We assume that every microgenerator, and also the PCC,
corresponds to an agent in the cyber layer (see the upper
panel of Figure 1). We denote this subset of the nodes of
G by C (with |C| = m). Each agent is provided with sensing
capability in the form of a phasor measurement unit (PMU,
i.e., a sensor measuring voltage amplitude and angle [11]).
Agents that correspond to microgenerators can command the
amount of reactive power injected in the grid. Moreover agents
can communicate with each other, via some communication
channels which could possibly via power line communication
(PLC). Motivated by this possibility, we define the neighbors
in the cyber layer in the following way.
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Figure 2. An example of neighbor agents in the cyber layer. Circled nodes
(both gray and black) are agents (nodes in C). Nodes circled in black belong
to the set N (h) ⊂ C. Node circled in gray are agents which do not belong to
the set of neighbors of h. For each agent k ∈ N (h), the path that connects
h to k does not include any other agent besides h and k themselves.

Definition 2 (Neighbors in the cyber layer): Let h ∈ C be
an agent of the cyber layer. The set of neighbors of h in the
cyber layer, denoted as N (h), is the subset of C defined as

N (h) = {k ∈ C | ∀Phk,Phk ∩ C = {h, k}} .

Figure 2 gives an example of such set. In the rest of the paper
we assume that every agent h ∈ C knows its set of neighbors
N (h), and can communicate with them.
We conclude the section by introducing the following block
decomposition for the vectors of voltages u and powers s

u = [u0 uG uL]
T
, s = [s0 sG sL]

T
, (6)

where u0 is the voltage at the PCC, uG ∈ Cm−1 and uL ∈
Cn−m are the voltages at the microgenerators and at the loads
respectively. Similarly for sG = pG+jqG and sL = pL+jqL.

IV. OPTIMAL REACTIVE POWER FLOW PROBLEM

We consider the problem of commanding the reactive
power injection at the microgenerators to minimize power dis-
tribution losses, while satisfying some operational constraints.
Specifically, we want to guarantee that the voltages magnitudes
stay in a opportune neighbourhood of the nominal voltage, and
to take into account the reactive power generation capability
of each microgenerator. The decision variables are the reactive
power commands qh, h ∈ C\{0}. Power distribution losses can
be expressed, by using (3), as

Jlosses :=
∑
e∈E
|ξe|2<(ze) = ūTLu. (7)

Given a upper bound qmax ∈ Cm−1 (resp. a lower bound
qmin), where qmax

v (resp. qmin
v ) represents the maximum (resp.

minimum) amount of reactive power that the v-th compensator
can inject into the grid, and given a upper bound Umax (resp.
a lower bound Umin) for the voltage magnitudes, we can
formulate the following optimization problem,

min
qh,h∈C\{0}

ūTLu (8a)

subject to qmin
h ≤ qh ≤ qmax

h , ∀h ∈ C\{0} (8b)
U2

min ≤ |uh|2 ≤ U2
max, ∀h ∈ C\{0} (8c)

Assumption 3: There exists a minimizer of (8a) that satis-
fies the constraints (8b) and (8b).

While (8b) represents the typical constraints in the reactive
power generation capabilities, (8c) is a bit different from the
classical ORPF voltages constraints formulation, which, in
general, imposes constraints on the voltages of all the nodes.
This difference is due to the fact that, in our setup, only the
generators are provided with sensing capabilities and, in turn,
only their voltages can be measured and controlled.
From a system-wide prospective, the control problem that we
are considering is characterized by, the input variables qG,
the measured output variables u0, uG and the unmeasured
disturbances pL, qL, pG. It is worth remarking the decision
variables of the ORPF problem (i.e., the input variables qG)
do not include the reactive power provided by the PCC (i.e.,
q0 = u0ī0). However also this quantity will change when the
reactive power injections of the generators are modified by
the algorithm, because of the inherent physical behavior of
the slack bus (the PCC).

V. A DUAL-ASCENT LIKE ALGORITHM

Problem (8) is not convex in general, due to the non-linear
relations between the voltages and the powers injected by the
node. In this section, we introduce an approximated solution
of the nonlinear equations (2), (3), (4), and (5), to covexify
the ORPF problem (8) and to derive a dual ascent algorithm
[12] to be implemented by the microgenerators. To do so, we
first need the following technical lemma (see [9]).

Lemma 4: Let L be the bus admittance matrix of the grid.
Then, there exists a unique symmetric, positive semidefinite
matrix X ∈ Rn×n such that{

XL = I − 11T0
X10 = 0.

(9)

The matrix X depends only on the topology of the grid power
lines and on their impedances. By adopting the same block
decomposition as in (6), we have

X =

0 0 0
0 M N
0 NT O

 , (10)

with M ∈ R(m−1)×(m−1), N ∈ R(m−1)×(m−n), and O ∈
R(n−m)×(n−m). The following proposition (see [9]) provides
the approximate relation between the grid voltages and the
power injections at the nodes.

Proposition 5: Consider the physical model described by
the set of nonlinear equations (2), (3), (4), and (5). Node
voltages then satisfy[

u0
uG
uL

]
= ejφ

(
UN1 +

ejθ

UN

[
0 0 0
0 M N
0 NT O

] [ 0
s̄G
s̄L

])
+o

(
1

UN

)
,

where the little-o notation means that limUN→∞
o(f(UN ))
f(UN ) = 0.

The quality of this approximation relies on having large
nominal voltage UN and relatively small currents injected
by the inverters (or supplied to the loads). This assumption



is verified in practice, and corresponds to correct design
and operation of power distribution networks. In some sense
this approximation extends the DC power flow model to the
lossy case. Given the the voltages u expression presented in
Proposition 5, we can write after some algebraic computations

ūTLu =
pTXp

U2
N

+
qTXq

U2
N

+ o

(
1

U2
N

)
(11a)

|uG|2 = 2 [M N ] [cos(θ)p+ sin(θ)q] + 1U2
N + o(1),

(11b)

where, with a slight abuse of notation, by |uG|2 we denote
the vector collecting all the squared voltage magnitudes at the
microgenerators. By neglecting in (11b) the o(1) terms (that
goes to zero as UN tends to infinity), the non-linear constraint
(8c) (w.r.t. the control variable qG) reduces to the following
two linear inequalities

1U2
min ≤ 2 [M N ]

[
cos(θ)pG + sin(θ)qG
cos(θ)pL + sin(θ)qL

]
+ 1U2

N ≤ 1U2
max.

Furthermore, expression in (11a) without the o(1/U2
N ) term,

can be used to convexify (8), leading to the following convex
OPRF problem

min
qh,h∈C\{0}

qTG
M

2
qG + qTGNqL (12a)

subject to qmin
h ≤ qh ≤ qmax

h , ∀h ∈ C\{0} (12b)
U2

min ≤ |uh|2 ≤ U2
max, ∀h ∈ C\{0} (12c)

The Lagragian associated to (12) is

L(qG, µ, λ,µ, µ) = qTG
M

2
qG + qTGNqL+

+ λT
(
1U2

min − |uG|2
)

+ λ
T (|uG|2 − 1U2

max

)
+

+ µT
(
qmin − qG

)
+ µT (qG − qmax) (13)

The idea, to solve the above problem, is to resort to a dual
ascent algorithm which iteratively cycles the dual ascent steps
on the multipliers λ, λ, µ, µ and the minimization step of L
w.t.r. to the primal variable qG. It is well know, however,
that this procedure guarantees the primal feasibility of the
asymptotic solution, but not the primal feasibility of each
intermediate step. This might be acceptable for the voltage
constraints (12c), in the meaning that voltage constraints can
be intended as soft constraints, since they do not derive from
physical constraints on the system, and their violation can be
tolerated if it affects the system for a small time lapse. On
the contrary, constraints (12b) have to be guaranteed at each
iteration, since they stems from physical limitations of the
generators, and they have to be intended as hard constraints.
Based on the above observation, we next propose a dual-
ascent like algorithm which guarantees the hard constraints
to be satisfied at each iteration. This algorithm consists in the
iterative execution of the following alternated steps:

1) update of the multipliers

λ(t+ 1) =

[
λ(t) + γλ

∂L(qG(t), λ(t), λ(t), µ(t), µ(t))

∂λ

]
+

,

λ(t+ 1) =

[
λ(t) + γλ

∂L(qG(t), λ(t), λ(t), µ(t), µ(t))

∂λ

]
+

,

2) computation of the minimum w.r.t. the primal variable qG

q̄G = arg min
qG
L(qG, λ(t+ 1), λ(t+ 1), µ(t), µ(t)),

3) update of the multipliers

µ(t+ 1) =
[
µ(t)+

+ γµ
∂L(q̄G, λ(t+ 1), λ(t+ 1), µ(t), µ(t))

∂µ

]
+

, (15a)

µ(t+ 1) =
[
µ(t)+

+ γµ
∂L(q̄G, λ(t+ 1), λ(t+ 1), µ(t), µ(t))

∂µ

]
+

, (15b)

4) actuation of q̄G projected in the feasible set

qG(t+ 1) = proj (q̄G, q
max)

In the above expressions the [·]+ operator corresponds to
the projection on the positive orthant; moreover γλ, γλ, γµ
and γµ are suitable positive constants a-priori assigned. By
simple computations, it turns out from (13) that the update of
the multipliers can be rewritten as

λ(t+ 1) =
[
λ(t) + γλ

(
1U2

min − |uG|2
)]

+
(16a)

λ(t+ 1) =
[
λ(t) + γλ

(
|uG|2 − 1U2

max

)]
+

(16b)

µ(t+ 1) =
[
µ(t) + γµ

(
qmin − q̄G

)]
+
, (16c)

µ(t+ 1) = [µ(t) + γµ (q̄G − qmax)]+ , (16d)

and that the minimization, w.r.t. the primal variable qG, is
achieved by letting

q̄G =−M−1NqL + 2 sin(θ)(λ(t+ 1)− λ(t+ 1))

+M−1(µ(t)− µ(t)) (17)

VI. SYNCHRONOUS AND ASYNCHRONOUS ALGORITHM

In this section, we show how the algorithm proposed in the
previous section can be implemented by the agents in C\{0}.
To do so, we first introduce the following matrix G.

Lemma 6: There exists a unique symmetric matrix G ∈
Rm×m, such that

[
0 0

0 M

]
G = I − 11T0

G1 = 0.

It could be easily proved that G is the Kron reduction of
X with respect to the compensators components.

Lemma 7: The matrix G has the sparsity pattern induced
by the Definition 2 of neighbor agents in the cyber layer, i.e.

Ghk 6= 0 ⇔ k ∈ N (h).

Next we propose the following algorithm, assuming that the
agents are coordinated, i.e., they can update their state variables
qh and λh, h ∈ C\{0}, synchronously.



Let all agents store the auxiliary scalar variables λh, λh, µ
h

and µh. Let γλ, γλ, γµ and γµ be positive scalar parameters,
and let θ be the impedance angle defined in Assumption 1.
Let Ghk be the elements of the matrix G defined in Lemma 6.
At every synchronous iteration of the algorithm, each agent
h ∈ C\{0} executes the following operations in order:

1) gathers the voltage measurements

{uk = |uk|ej∠uk , k ∈ N (h)}

and the multipliers µ
k

and µk from its neighbors;
2) updates the auxiliary variables λh and λh as

λh ←
[
λh + γλh

(
1U2

min − |uG|2
)]

+
(18a)

λh ←
[
λh + γλ

(
|uG|2 − 1U2

max

)]
+

(18b)

3) computes the optimal reactive power qh regardless of the
generation capability as

qh ←
∑

k∈N (h)∪h

Ghk(|uh||uk| sin(∠uk − ∠uh − θ)+

+ (µ
k
− µk)) + qh + 2 sin(θ)(λh − λh)

(19)

4) updates the auxiliary variables µ
h

and µh as

µ
h
←
[
µ
h

+ γµ
h

(
qmin
h − qh

)]
+

(20a)

µh ← [µh + γµ (qh − qmax
h )]+ (20b)

5) projects qh into the feasible region, i.e.,

qh ← proj
(
qh, q

min
h , qmax

h

)
(21)

and actuates this projected value of qh.

It can be shown, by using Lemma 7 and via some algebraic
manipulations, that the update (19) can be rewritten as

qG ←M−1(µ(t)− µ(t)) + 2 sin(θ)(λ(t+ 1)− λ(t+ 1))+

+ qG(t) + =
(
e−jθ [0 diag(ūG)]G

[
u0
uG

])
,

which, by using the expression for u provided by Proposition
5, is equal to

qG ←−M−1NqL + 2 sin(θ)(λ− λ)

+M−1(µ− µ) + o

(
1

UN

)
.

Comparing this expression for qG with the expression in (17),
it turns out that qG minimizes the Lagrangian with respect to
the primal variables, up to a term that vanishes for large UN .

In order to avoid the burden of coordination among
the agents, we also propose an asynchronous version of
the algorithm, in which the agents update their state
(qh, λh, λh, µh, µh) independently one from the other. We
assume that each agent is provided with an individual timer, by
which it is triggered. Timers tick randomly, with exponentially,

identically distributed waiting times. When an agent is trig-
gered, it gathers the voltage measurements and the multipliers
from its neighbors, and then executes the operations explained
in (18), (19), (20) and (21), while variables of all the other
agents are kept fixed.

Remark 8: Notice that the proposed algorithm requires
the interleaving of actuation and sensing, and therefore the
control action is a function of the real time measurements. The
compensators active power injections and the power injection
of the loads can be considered as disturbances for the control
system. As it happens in all feedback control systems, these
quantities do not need to be known to the controller: in some
sense, the agents are implicitly inferring this information from
the voltage measurements. the proposed strategy exhibits this
kind of robustness. This feature differentiates the proposed
algorithm from most of the OPF algorithms available in the
literature.

VII. SIMULATIONS

The algorithm has been tested on the testbed IEEE 37
[16]. The load buses are a blend of constant-power, constant-
current, and constant-impedance loads, with a total power
demand of almost 2 MW of active power and 1 MVAR of
reactive power (see [16] for the testbed data). The impedance
of the power lines differs from edge to edge, however, the
inductance/resistance ratio exhibits a smaller variation, ranging
from ∠ze = 0.47 to ∠ze = 0.59 (justifying in some sense
Assumption 1). We considered the scenario in which 6 mi-
crogenerators have been deployed in this portion of the power
distribution grid (see Figure 3).

The deviation tolerated from nominal voltage magnitude
for the micro-generators has been set to 3%. Both the syn-
chronous and the asynchronous algorithms have been simu-
lated on a nonlinear exact solver of the grid [17]. We have
numerically set γλ = γλ = 5.75 and γµ = γµ = 0.02 (a
suggestion on how to choose them is given in [9]). Timers in
the asynchronous case have been tuned so that each agent is
triggered, in expectation, at the same rate of the synchronous
case. A time-varying profile for the loads has been generated,
in order to simulate the effect of slowly varying loads (e.g.
the aggregate demand of a residential neighborhood), fast
changing demands (e.g. some industrial loads), and intermittent
large loads (e.g. heating). The results of the simulation have
been plotted in Figure 4. For both the synchronous and the
asynchronous case, the power distribution losses, the lowest
voltage magnitude measured by the microgenerators (but not
the highest, because in a reducing losses scenario the upper
bound had been never excited) and a significant reactive
power injection trajectory are reported.It can be seen that the
proposed algorithm achieves practically the same performance
of the centralized solver, in terms of power distribution losses,
without however having access to the unmonitored demands
of the loads. Notice moreover that, since for duality based
methods the voltage constraint is satisfied only at the steady
state, in the time varying case simulated the voltage sometimes
falls lightly below the prescribed threshold, when the power
demand of the loads present abrupt changes. This could leave
to the possibility that, only temporarily until the operative con-
straints are satisfied, the losses due to the algorithm are smaller
than the optimal one. This effect is even more noticeable in



Figure 3. Schematic representation of the
IEEE 37 test feeder [16], where 5 microgen-
erators have been deployed.

Figure 4. Upper panel: power losses achieved by a centralized controller (black dashed line) and
by the proposed algorithm (synchronous/red and asynchronous/green). Middle panel: lowest bus voltage
achieved by a centralized controller (black dashed line) and by the proposed algorithm (synchronous/red
and asynchronous/green). The black solid line represents the case of no reactive power compensation. Lower
panel: reactive power injection by one of the generators in the synchronous/red and in the asynchronous/green
case, together with the corresponding constraint (black line).

the asynchronous case, where iteration times are not evenly
spaced, but vanishes at steady state. It should be remarked,
however, that the extent of this constraint violation depends
on the rate at which the algorithms are executed, compared
with the rate of variation of loads, and is ultimately a function
of the communication resources available at the cyber level.
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[3] K. Turitsyn, P. Šulc, S. Backhaus, and M. Chertkov, “Options for control
of reactive power by distributed photovoltaic generators,” Proc. IEEE,
vol. 99, no. 6, pp. 1063–1073, Jun. 2011.

[4] M. E. Baran and F. F. Wu, “Optimal sizing of capacitors placed on a
radial distribution system,” IEEE Trans. Power Del., vol. 4, no. 1, pp.
735–743, Jan. 1989.

[5] E. Dell’Anese, H. Zhu, and G. Giannakis, “Distributed optimal power
flow for smart microgrids,” submitted to IEEE Transactions of Smart
Grid, 2013, arXiv preprint available [math.OC] 1211.5856.

[6] J. Lavaei and S. H. Low, “Zero duality gap in optimal power flow
problem,” IEEE Trans. Power Syst., 2011.

[7] A. Lam, B. Zhang, A. Dominguez-Garcia, and D. Tse, “Optimal
distributed voltage regulation in power distribution networks,” submitted
to IEEE Transactions on Power System, 2013, arXiv preprint available
[math.OC] 1204.5226.

[8] A. Costabeber, T. Erseghe, P. Tenti, S. Tomasin, and P. Mattavelli,
“Optimization of micro-grid operation by dynamic grid mapping and
token ring control,” in Proc. 14th European Conf. on Power Electronics
and Applications (EPE), Birmingham, UK, 2011.

[9] S. Bolognani, R. Carli, and S. Cavraro, G. Zampieri, “A distributed
feedback control strategy for optimal reactive power flow with voltage
constraints,” 2012, arXiv preprint available 1303.7173.
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