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Abstract— We consider the problem of exploiting the mi-
crogenerators dispersed in the power distribution network in
order to provide distributed reactive power compensation for
power losses minimization and voltage support. The proposed
strategy requires that all the intelligent agents, located at the
microgenerator buses, measure their voltage and share these
data with the other agents on a cyber layer. The agents
then actuate the physical layer by adjusting the amount of
reactive power injected into the grid, according to a feedback
control law that descends from duality-based methods applied
to the optimal reactive power flow problem subject to power
constraints. Convergence of the algorithm to the configuration
of minimum losses and feasible voltages is proved analytically
for both a synchronous and an asynchronous version of the
algorithm, where agents update their state independently one
from the other. Simulations are provided in order to illustrate
the algorithm behavior, and the innovative feedback nature of
such strategy is discussed.

I. INTRODUCTION

Recent technological advances, together with environ-
mental and economic challenges, have been motivating the
deployment of small power generators in the low voltage
and medium voltage power distribution grid. The availability
of a large number of these generators in the distribution
grid can yield relevant benefits to the network operation:
they can be used to provide a number of ancillary services
that are of great interest for the management of the grid
[1], [2]. In particular, many inverters have the capability,
when they are running below their rated output current, to
inject (or to absorb) reactive power together with active
power [3]. With respect to the traditional devices, such
as shunt capacitor banks or on-load tap changers [4], the
inverters can act in the grid on a fast timescale. These
abilities become necessary to exploit the advanced control
capability of inverter interfaces to the grid. We focus on the
problem of optimal reactive power compensation for power
losses minimization, in presence of constraints in the reactive
power inverters generation capabilities. In order to properly
command the operation of these devices, the distribution
network operator is required to solve an optimal reactive
power flow (ORPF) problem. Powerful solvers have been
designed for the ORPF problem, and advanced optimization
techniques have been recently specialized for this task [5],
[6]. However, these solvers assume that an accurate model
of the grid is available, that all the grid buses are monitored,
that loads announce their demand profiles in advance, and
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that generators and actuators can be dispatched on a day-
ahead, hour-ahead, and real-time basis. For this reason, these
solvers are in general offline and centralized. These tools
cannot be applied directly to the ORPF problem faced in
microgrids and, more in general, in low/medium voltage
power distribution networks, mainly because not all the buses
of the grid are monitored, individual loads are unlikely to
announce they demand profile in advance, the availability of
small size generators is hard to predict. Moreover, the grid
parameters, and sometimes even the topology of the grid, are
only partially known, and generators are expected to connect
and disconnect, requiring an automatic reconfiguration of the
grid control infrastructure (the plug and play approach).

Only recently, algorithms that are truly scalable in the
number of generators and do not require the monitoring
of all the buses of the grid, have been proposed for the
problem of power loss minimization, as [7] and [8]. While
these algorithms have been designed by specializing classical
nonlinear optimization algorithms to the ORPF problem,
they can also be considered as feedback control strategies.
Indeed, the key feature of these algorithms is that they
require the alternation of measurement and actuation based
on the measured data, and therefore they are inherently
online algorithms. In particular, the reactive power injection
of the generators is adjusted by these algorithms based on
the phasorial voltage measurements that are performed at
the buses where the generators are connected. The resulting
closed loop system features a tight dynamic interconnection
of the physical layer (the grid, the generators, the loads)
with the cyber layer (where communication, computation,
and decision happen). In this paper, we design a distributed
feedback algorithm for the ORPF problem, in which the goal
is to minimize reactive power flows when the microgenera-
tors have limited generation capabilities.

In Section III, a model for the cyber-physical system
of a smart power distribution grid is provided. In Section
IV, the optimal reactive power flow problem with power
constraints is stated. An algorithm for its solution is derived
in Section V, by using the tools of dual decomposition. A
synchronous and an asynchronous version of the algorithm
are presented in Section VI. The convergence of both the
proposed algorithms is studied in Section VII. Some simu-
lations are provided in Section VIII.

II. MATHEMATICAL PRELIMINARIES AND NOTATION

Let G = (V, E , σ, τ) be a directed graph, where V is the
set of nodes, E is the set of edges, with n = |V|, r = |E|.
Moreover σ, τ : E → V are two functions such that edge



e ∈ E goes from the source node σ(e) to the terminal node
τ(e).

Given two nodes of the graph h, k ∈ V , we define the
path Phk = (v1, . . . , v`) as the sequence of nodes, without
repetitions, such that
• v1 = h
• v` = k
• for each i = 1, . . . , ` − 1, the nodes vi and vi+1 are

connected by an edge (regardless of its direction).
In the rest of the paper we will often introduce complex-

valued functions defined on the nodes and on the edges.
These functions will also be intended as vectors in Cn and
Cr. Given a vector u, we denote by ū its (element-wise)
complex conjugate, and by uT its transpose. We denote by
<(u) and by =(u) the real and the imaginary part of u,
respectively.

Let A ∈ {0,±1}r×n be the incidence matrix of the graph
G, defined via its elements

[A]ev =

 −1 if v = σ(e)
1 if v = τ(e)
0 otherwise.

If the graph G is connected (i.e. for every pair of nodes
there is a path connecting them), then 1 is the only vector in
the null space kerA, 1 being the column vector of all ones.
We define by 1v the vector whose value is 1 in position v,
and 0 everywhere else.

Given u, v ∈ R`, we define the operator proj(u, v)
as the component wise projection of u in the set{
w ∈ R` : wh ≤ vh, h = 1, . . . , `

}
, that is,

(proj (u, v))h =

{
uh if uh ≤ vh
vh if uh > vh

(1)

III. CYBER-PHYSICAL MODEL OF A SMART POWER
DISTRIBUTION GRID

In this work, we envision a smart power distribution
network as a cyber-physical system, in which
• the physical layer consists of the power distribution

infrastructure, including power lines, loads, microgen-
erators, and the point of connection to the transmission
grid, while

• the cyber layer consists of intelligent agents, dispersed
in the grid, and provided with actuation, sensing, com-
munication, and computational capabilities.

A. Physical layer

For the purpose of this paper, we model the physical
layer as a directed graph G, in which edges in E represent
the power lines, and nodes in V represent both loads and
generators that are connected to the microgrid (see Figure 1,
middle panel). These include the residential and industrial
consumers, microgenerators, and also the point of connection
of the microgrid to the transmission grid (called point of
common coupling, or PCC).

We limit our study to the steady state behavior of the
system, where all voltages and currents are sinusoidal signals
at the same pulsation ω0. Each signal can therefore be
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Fig. 1. Schematic representation of the microgrid model. In the lower panel
the physical layer is represented via a circuit representation, where black
diamonds are microgenerators, white diamonds are loads, and the left-most
element of the circuit represents the PCC. The middle panel illustrates the
adopted graph representation for the same grid. Circled nodes represent both
microgenerators and the PCC. The upper panel represents the cyber layer,
where agents (i.e. microgenerator nodes and the PCC) are also connected
via some communication infrastructure.

represented via a complex number whose amplitude cor-
responds to the signal root-mean-square value, and whose
phase corresponds to the phase of the signal with respect
to an arbitrary global reference. Therefore, y represents the
signal y(t) = |y|

√
2 sin(ω0t + ∠y). The system state is

described by the following system variables (see Figure 1,
lower panel):

• u ∈ Cn, where uv is the grid voltage at node v;
• i ∈ Cn, where iv is the current injected by node v into

the grid;
• ξ ∈ Cr, where ξe is the current flowing on edge e.
• s = p+ iq ∈ Cr, where sv , pv and qv are the complex,

the active and the reactive power injected by node v
into the grid respectively;

For every edge e of the graph, we define by ze the impedance
of the corresponding power line. We assume the following.

Assumption 1: All power lines in the grid have the same
inductance/resistance ratio, i.e.

ze = ejθ|ze|

for any e in E and for a fixed θ.
This assumption is satisfied when the grid is relatively

homogeneous, and is reasonable in most practical cases (see
for example the IEEE standard testbeds [9]). The following
equations (Kirchhoff’s current and voltage law) are satisfied



by u, i and ξ:

AT ξ + i = 0, (2)

Au+ eiθZξ = 0, (3)

with Z=diag(|ze|, e∈E). From (2) and (3) we can also obtain

i = e−jθLu (4)

where L is the weighted Laplacian of the graph L :=
ATZ−1A.

Each node v of the grid is also characterized by a law
relating its injected current iv with its voltage uv . We label
the PCC as node 0 and take it as an ideal sinusoidal voltage
generator (called slack bus in the power system analysis
terminology) at the microgrid nominal voltage UN with
arbitrary, but fixed, angle φ

u0 = UNe
iφ . (5)

We model loads and microgenerators (that is, every node v of
the microgrid except the PCC) via the following law relating
the voltage uv and the current iv

uv īv = sv, ∀v ∈ V\{0}. (6)

The complex powers sv corresponding to grid loads are
such that {pv < 0}, meaning that positive active power is
supplied to the devices. The complex powers corresponding
to microgenerators, on the other hand, are such that {pv ≥
0}, as positive active power is injected into the grid. In
the power system analysis terminology, all nodes but the
PCC are being modeled as constant power or P-Q buses.
Microgenerators fit in this model, as they generally are
commanded via a complex power reference and they can
inject it independently from the voltage at their point of
connection [10], [11].

B. Cyber layer

We assume that every microgenerator, and also the PCC,
correspond to an agent in the cyber layer (see the upper panel
of Figure 1). We denote by C (with |C| = m) this subset of
the nodes of G.

Each agent is provided with some computational capabil-
ity, and with some sensing capability, in the form of a phasor
measurement unit (i.e. a sensor that can measure voltage
amplitude and angle [12]). Agents that corresponds to a
microgenerator can also actuate the system, by commanding
the amount of reactive power injected by that microgenerator.

Finally, agents can communicate, via some communication
channel that could possibly be the same power lines (via
power line communication – PLC – technology). Motivated
by this possibility, we define the neighbors in the cyber layer
in the following way.

Definition 2 (Neighbors in the cyber layer): Let h ∈ C
be an agent of the cyber layer. The set of agents that are
neighbors of h in the cyber layer, denoted as N (h), is the
subset of C defined as

N (h) = {k ∈ C | ∀Phk,Phk ∩ C = {h, k}} .

h

k ∈ N (h)

k′ /∈ N (h)

Fig. 2. An example of neighbor agents in the cyber layer. Circled nodes
(both gray and black) are agents (nodes in C). Nodes circled in black belong
to the setN (h) ⊂ C. Node circled in gray are agents which do not belong to
the set of neighbors of h. For each agent k ∈ N (h), the path that connects
h to k does not include any other agent besides h and k themselves.

Figure 2 gives an example of such set.
We assume that every agent h ∈ C knows its set of

neighbors N (h), and can communicate with them. Notice
that this architecture can be constructed by each agent in a
distributed way, for example by exploiting the PLC channel
(as suggested for example in [13]). This allows also a
plug-and-play reconfiguration of such architecture when new
agents are connected to the grid.

IV. OPTIMAL REACTIVE POWER FLOW PROBLEM

We consider the problem of commanding the reactive
power injection of the microgenerators in order to minimize
power distribution losses on the power lines, taking into
account the limited generation capability of each microgener-
ator. The decision variables are the reactive power commands
qh, h ∈ C\{0}.

Power distribution losses can be expressed, by using (3),
as

Jlosses :=
∑
e∈E
|ξe|2<(ze) = ūTLu. (7)

Given a upper bound qmax ∈ Cm−1 (where qmaxv represents
the maximum amount of reactive power that the v-th com-
pensator can inject into the grid), we can therefore formulate
the following optimization problem,

min
qh,h∈C\{0}

ūTLu (8a)

subject to qh ≤ qmaxh , ∀h ∈ C\{0} (8b)

While we are not considering lower bounds on the bus volt-
age magnitudes, in the form qh ≥ qmin, they could be easily
incorporated with minor modifications of the algorithm, at
the cost of a slightly more complex notation.

In order to adopt a compact notation for the system inputs,
measured outputs, and state, we introduce the following
block decomposition of the vector of voltages u

u =

u0uG
uL

 ,
where u0 is the voltage at the PCC, uG ∈ Cm−1 are the
voltages at the microgenerators, and uL ∈ Cn−m are the
voltages at the loads. Similarly, we also define sG = pG +
jqG and sL = pL + jqL.



From a system-wide prospective, the control problem that
we are considering is therefore characterized by
• the input variables qG,

• the measured output variables
[
u0
uG

]
,

• the unmeasured disturbances pL, qL, pG.
Remark 3: While the decision variables of the ORPF

problem (i.e. the input variables qG) do not include the
reactive power provided to the distribution grid by the PCC
(i.e. q0 = u0ī0), this quantity will also change every time
the reactive power injections of the generators are updated
by the algorithm, because the inherent physical behavior of
the slack bus (the PCC) ensures that equations (4), (5) and
(6) are automatically satisfied at every time.

V. A MODIFIED DUAL ALGORITHM

In this section, in order to derive a control strategy to solve
the ORPF problem, we apply the tool of dual decomposition
to (8). While problem (8) might not be convex in general,
we rely on the results presented in [14] which show that
zero duality gap holds for the ORPF problems, under some
conditions that are commonly verified in practice. Based on
this result, we use an approximate explicit solution of the
nonlinear equations (4), (5), and (6), to derive the a dual
ascent algorithm [15] that can be implemented by the agents.

In order to present the approximate solution, we need the
following technical lemma.

Lemma 4 (Lemma 1 in [8]): Let L be the weighted
Laplacian of G. There exists a unique symmetric, positive
semidefinite matrix X ∈ Rn×n such that{

XL = I − 11T0
X10 = 0.

(9)

The matrix X depends only on the topology of the grid
power lines and on their impedance (compare it with the
definition of Green matrix in [16]). Notice that, if the grid
is radial (i.e. G is a tree) then Zeff

hk is simply the impedance
of the only path from node h to node k.

By adopting the same block decomposition as before, we
have

X =

0 0 0
0 M N
0 NT O

 , (10)

with M ∈ R(m−1)×(m−1), N ∈ R(m−1)×(m−n), and
O ∈ R(n−m)×(n−m). The following proposition provides the
approximate relation between the grid voltages and the power
injections at the nodes.

Proposition 5: Consider the physical model described by
the set of nonlinear equations (2), (3), (5), and (6). Node
voltages then satisfyu0uG

uL

 = ejφ

UN1 +
ejθ

UN

0 0 0
0 M N
0 NT O

 0
s̄G
s̄L


+ o

(
1

UN

)
, (11)

where the little-o notation means that limUN→∞
o(f(UN ))
f(UN ) =

0.
Proof: The proposition descends directly from Propo-

sition 1 in [8].
The quality of this approximation relies on having large

nominal voltage UN and relatively small currents injected by
the inverters (or supplied to the loads). This assumption is
verified in practice, and corresponds to correct design and
operation of power distribution networks, where indeed the
nominal voltage is chosen sufficiently large (subject to other
functional constraints) in order to deliver electric power to
the loads with relatively small power losses on the power
lines. In [8], a brief discussion about how this approximation
extends the DC power flow model [17, Chapter 3] to the lossy
case, has been provided.

Given the approximate explicit expression for voltages u
presented in Proposition 5, we can reformulate (8) as the
approximate problem

min
qh,h∈C\{0}

qTG
M

2
qG + qTGNqL (12a)

subject to qh ≤ qmaxh , ∀h ∈ C\{0} (12b)

We proceed by proposing a dual-ascent like algorithm which
guarantees that the constraints qh ≤ qmaxh , ∀h ∈ C\{0} are
guaranteed at each iteration. To do so let us introduce the
Lagragian associated to (12)

L(qG, λ) = qTG
M

2
qG + qTGNqL + λT (q − qmax) (13)

Our dual ascent algorithm consists in the iterative execution
of the following alternated steps:

1) computation of the minimum w.r.t. the primal variable
qG

q̄G = arg min
qG
L(qG, λ(t)), (14)

2) update of the Lagrange multipliers update

λ(t+ 1) =

[
λ(t) + γ

∂L(q̄, λ(t))

∂λ

]
+

, (15)

3) actuation of q̄G projected in the feasible set

qG(t+ 1) = proj (q̄G, q
max) (16)

where the [·]+ operator corresponds to the projection on
the positive orthant and γ is a suitable positive constant.

Notice that the above algorithm differs from the standard
dual ascent algorithm that would be

qG(t+ 1) = arg min
qG
L(qG, λ(t)), (17)

λ(t+ 1) =

[
λ(t) + γ

∂L(qG(t+ 1), λ(t))

∂λ

]
+

, (18)

It is well known that algorithm defined in (17) and (18)
converges to the optimal solution of problem in (12a) and
(12b) (see [15]), even though the constraints (12b) are
guaranteed to be satisfied only asymptotically, namely, there
might be some iterations where qh(t) > qmaxh . Instead, due
to the limited generation capabilities of the micro-generators,



we need (12b) to be satisfied at each iteration and this fact
is guaranteed by (16).

However it is worth stressing that algorithm in (14), (15),
(16) and algorithm in (17), (18), generate the same trajectory
for the Lagrange multipliers λ, when starting from the same
initial conditions. This fact is formally stated in the next
Proposition.

Proposition 6: Let qG, λ be the primal variable and the
dual variable, respectively, of algorithm in (14), (15), (16).
Let q̃G, λ̃ be the primal variable and the dual variable,
respectively, of algorithm in (17), (18). Assume qG(0) =
q̃G(0) and λ(0) = λ̃(0). Then λ(t) = λ̃(t) for all t ≥ 0.

Proof: It is straightforward to see that the minimization
of (14) and (17) is achieved by

q̄G = qG(t+ 1) = −M−1(NqL + λ(t)) (19)

Notice that q̄ = qG(t + 1) depends only on the multiplier
λ(t) and qL, while it is independent from qG(t). It follows
that the dual variable updates (15) and (18) have the same
form

λ(t+ 1) =
[(
I − γM−1

)
λ(t)− γM−1NqL − qmax

]
+
(20)

which is indipendent from the primal variable value, and so
the evolution of λ in (15) and (18) is identical.

The previous proposition justifies, in some sense, the use
of our modified algorithm. Indeed the main consequence
of Proposition 6 is that both algorithm in (14), (15), (16)
and algorithm in (17) and (18) converge asymptotically to
the same dual optimal solution. It turns out that the primal
variable of algorithm in (14), (15), (16), whose feasibility is
guaranteed by the projection (16), converges asymptotically
to the optimal primal solution of (17).

Corollary 7: Let qG, λ be the primal variable and the dual
variable, respectively, of algorithm in (14), (15), (16). Let q̃G,
λ̃ be the primal variable and the dual variable, respectively,
of algorithm in (17), (18). We have then that qG and q̃G
converge asymptotically to the same optimal value.

VI. SYNCHRONOUS AND ASYNCHRONOUS ALGORITHM

In this section, we show how the agents can implement
the algorithm proposed in in (14), (15), (16). In order to
derive the update law for the agents, we need to introduce
the following matrix G.

Lemma 8: There exists a unique symmetric matrix G ∈
Rm×m such that

[
0 0

0 M

]
G = I − 11T0

G1 = 0.

Proof: The following symmetric matrix G satisfies the
conditions.

G =

[
1TM−11 −1TM−1
−M−11 M−1

]
. (21)

The proof of uniqueness, that we omit here, follows exactly
the same steps as in the proof of Lemma 4.

The matrix G has also a remarkable sparsity pattern, as
the following lemma states.

Lemma 9: The matrix G has the sparsity pattern induced
by the Definition 2 of neighbor agents in the cyber layer, i.e.

Ghk 6= 0 ⇔ k ∈ N (h).

The proof is provided in [18], where it is also discussed how
the elements of G can be estimated by the agents, given a
local knowledge of the power grid topology and parameters.

We therefore propose the following synchronous algo-
rithm, assuming that the agents are coordinated, i.e. they
can update their state variables qh and λh, h ∈ C\{0},
synchronously.

Let all agents store an auxiliary scalar variable λh (for
the PCC, λ0 = 0). Let γ be a positive scalar parameter, and
let θ be the impedance angle defined in Assumption 1. Let
Ghk be the elements of the matrix G defined in Lemma 8.
At every synchronous iteration of the algorithm, each agent
h ∈ C\{0} executes the following operations in order:

1) gathers the voltage measurements

{uk = |uk| exp(j∠uk), k ∈ N (h)}

and the Lagrange multipliers λk from its neighbors;
2) computes the optimal reactive power qh regardless the

generation capability as

qh ← qh+

+
∑

k∈N (h)

Ghk(|uh||uk| sin(∠uk − ∠uh − θ)− λk).

(22)

3) updates the auxiliary variable λh as

λh ← [λh + γ(qh − qmaxh )]+ ; (23)

4) projects qh into the feasible region, i.e.,

qh ← proj (qh, q
max
h ) (24)

and actuates this projected value of qh.

It can be shown, by using Lemma 9 and via some algebraic
manipulations, that the update (22) can be also rewritten as

qG ← qG(t)−M−1λ(t)+=
(
e−jθ

[
0 diag(ūG)

]
G

[
u0
uG

])
,

which, by using the expression for u provided by Proposition
5, is equal to

qG ← −M−1(λ+NqL) + o

(
1

UN

)
.

It turns out that
∂L(qG, λ)

∂qG
= o

(
1

U2
N

)
,

namely, qG minimizes the Lagrangian with respect to the
primal variables, up to a term that vanishes for large UN . It



follows that the the update in (22) is equivalent to the update
in (14).

In order to avoid the burden of coordination among the
agents, we also propose an asynchronous version of the
algorithm, in which the agents corresponding to the micro-
generators update their state (qh, λh) independently one from
the other, based on the information that they can measure and
that they can gather from their neighbors.

We assume that each agent (except for the agent lo-
cated at the PCC) is provided with an individual timer,
by which it is triggered. Timers tick randomly, with ex-
ponentially, identically distributed waiting times. When an
agent is triggerd, it gathers the voltage measurements {uk =
|uk| exp(j∠uk), k ∈ N (h)} from its neighbors, and then
executes the operations explained in (22), (23) and (24),
while the dual and the primal variable of all the other
agents are kept fixed. Observe that the update equations
for the asynchronous algorithm are exactly the same of the
synchronous case. However, each agent updates its primal
and dual variables asynchronously and independently from
all the other agents.

VII. CONVERGENCE ANALYSIS

In this section, we study the convergence of both the
synchronous and of the asynchronous algorithm. For the
analysis of the stability of both of them, we adopt again the
approximated model proposed in Proposition 5, and we ne-
glect the infinitesimal terms. Thanks to 7, for the syncronous
case we can study the convergence of the algorithm (17) and
(18) instead of the one of (14) and (15). We then consider
the update equations

qG(t+ 1) = −M−1(NqL + λ(t)). (25)

for the primal variables, and

λ(t+ 1) = [λ(t) + γ (qG(t+ 1)− qmax)]+ , (26)

for the dual variables.
Notice that the equilibrium (q∗G, λ

∗) of (26)-(25) is char-
acterized by

q∗G − qmax ≤ 0 and q∗G +M−1(NqL + λ∗) = 0,

and therefore we have that

∂L(q∗G, λ
∗)

∂q∗G
= 0,

which correspond to the necessary conditions for the optimal-
ity of (q∗G, λ

∗) according to Uzawa’s saddle point theorem
[19]. The following convergence result holds.

Theorem 10 (Synchronous case): Consider the dynamic
system described by the update equations (25) and (26). The
equilibrium (q∗, λ∗) is asymptotically stable if

γ ≤ 2

ρ(M−1)
,

where ρ(M−1) is the M−1 spectral radius.

Proof: While we are considering the algorithm (17)
and (18), it is straightforward to compute the dual function
g(λ) = minqg L(qG, λ) and state the dual problem

max
λ≥0
L(qG, λ). (27)

If γ ≤ 2
ρ(M−1) , (27) is guaranteed to converge to the optimal

solution of (12) (see [20], Proposition 3.4).
For the asynchronous case, on the other hand, we introduce
the following assumption.

Assumption 11: Let {T (h)
i }, i ∈ N, be the time instants in

which the agent h is triggered by its own timer. We assume
that the timer ticks with exponentially distributed waiting
times, identically distributed for all the agents in C\{0}.
Let us define the random sequence h(t) ∈ C\{0} which tells
which agent has been triggered at iteration t of the algorithm.
Because of Assumption 11, the random process h(t) is an
i.i.d. uniform process on the alphabet C\{0}. We therefore
consider the following update equations, in which only the
component h(t) of the vectors qG and λ is updated at time
t:

{
q̄h(t)(t+ 1) = −1Th(t)M

−1(NqL + λ(t))

qk(t+ 1) = qk(t) for all k 6= h(t).
(28)

λh(t)(t+ 1) =
[
λh(t)(t) + γ

(
q̄h(t)(t+ 1)− qmaxh(t)

)]
+

λk(t+ 1) = λk(t+ 1) for all k 6= h(t),
(29)

and finally{
qh(t)(t+ 1) = proj(q̄h(t)(t+ 1), qmaxh(t) )

qk(t+ 1) = qk(t) for all k 6= h(t).
(30)

Notice that, also in the asynchronous case, Uzawa’s neces-
sary conditions for optimality are satisfied at the equilibrium
of (29)-(28).

The following convergence result holds.
Theorem 12 (Asynchronous case): Consider the dynamic

system described by the update equations (29), (28) and (30).
Let Assumption 11 hold. Then the evolution t→ (q(t), λ(t))
converges almost surely to the equilibrium (q∗, λ∗) if

γ ≤ 2

ρ(M−1)
,

where ρ(M−1) is the M−1 spectral radius.
The proof is presented in Appendix .

VIII. SIMULATIONS

The algorithm has been tested on the testbed IEEE 37
[9], which is an actual portion of 4.8kV power distribution
network located in California. The load buses are a blend
of constant-power, constant-current, and constant-impedance
loads, with a total power demand of almost 2 MW of active
power and 1 MVAR of reactive power (see [9] for the testbed
data). The length of the power lines range from a minimum
of 25 meters to a maximum of almost 600 meters. The
impedance of the power lines differs from edge to edge,
however, the inductance/resistance ratio exhibits a smaller
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Fig. 3. In the upper panel we have the power distribution losses for the
following cases: with no reactive power compensation (dashed line), when
an ideal entralized numerical controller commands the microgenerators
(thick black line), and for the proposed algorithm, where microgenerators
are commanded via a feedback law from the voltage measurements (thin red
line).In the lower panel we have the reactive power injected by a generator
both in the syncronous (black line) and in the asyncronous case (red line),
together with the maximum amount of injectable reactive power (dashed
line).
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Fig. 4. Schematic representation of the IEEE 37 test feeder [9], where 5
microgenerators have been deployed.

variation, ranging from ∠ze = 0.47 to ∠ze = 0.59. This
justifies Assumption 1. We considered the scenario in which
5 microgenerators have been deployed in this portion of the
power distribution grid (see Figure 4).

The maximum reactive power capabilities of each gen-
erator has been set to values that go from 14 kVAR to
200 kVAR. Both the synchronous and the asynchronous
algorithm presented in Section VI have been simulated on
a nonlinear exact solver of the grid [21]. The approximate
model presented in Proposition 5 has not been used in
these simulations, being only a tool for the design of the
algorithm and for the study of the algorithm’s convergence.
The parameter γ has been chosen as one half of the bound
indicated by Theorem 10 and Theorem 12 for convergence.
Timers in the asynchronous case have been tuned so that
each agent is triggered, in expectation, at the same rate of
the synchronous case.

A time-varying profile for the loads has been generated,

in order to simulate the effect of slowly varying loads
(e.g. the aggregate demand of a residential neighborhood),
fast changing demands (e.g. some industrial loads), and
intermittent large loads (e.g. heating).

The results of the simulation have been plotted in Figure
3. In the upper panel represents, the power distribution
losses are reported. The dashed line represents the case in
which no reactive power compensation is performed, the
thick black line represents the best possible strategy that
solves the ORPF problem (8) (computed via a numerical
centralized solver that have access to all the grid parameters
and load data) and the thin red line represents the behavior
of the proposed asyncronous algorithm. The behavior of the
syncronous algorithm is here omissed for the sake of clear-
ness, being almost identical to the one of the asyncronous
algorithm. In the lower panel are reported the trajectories
of the reactive power injected by a compensator both in the
syncronuous or in the asyncronous case. Notice that they are
always within the feasible region.

It can be seen that the proposed algorithm achieves practi-
cally the same performance of the centralized solver, in terms
of power distribution losses. Notice however that it does not
have access to the demands of the loads, which are unmon-
itored. The agents, located only at the microgenerators, can
only access their voltage measurements and share them with
their neighbors.

APPENDIX

Proof of Theorem 12
Proof: [Proof of Theorem 12] Let (q∗G, λ

∗) be the equi-
librium of the system (26)-(25), which satisfies the following
equations

sin θλ∗ − (q∗G +M−1NqL) = 0 (31a)
q − qmax ≤ 0 ∀h ∈ C (31b)
q − qmax < 0 ⇔ λ∗h = 0.. (31c)

We introduce the following quantities

x(t) = qG(t)−q∗G, x̄(t) = q̄G(t)−q∗G and y(t) = λ(t)−λ∗.

Consider the update equations (28), (29) and (30). We can
write, assuming, without loss of generality, that node h is
the node performing the update at the t-th iteration

x̄h(t+ 1) =

= −1ThM−1(NqL + λ(t))− q∗h
= −1ThM−1y(t)− 1Th (q∗h +M−1(NqL + λ∗))

= −1ThM−1y(t)

exploiting (31a).
As far as the variable y is concerned we have that

yh(t+ 1) =

= [λh(t) + γ (q̄h(t+ 1)− qmaxh )]+ − [λ∗h]+
= [yh(t) + γx̄h(t+ 1) + λ∗h + γ (q∗h − qmaxh )]+ − [λ∗h]+ .

Finally we have

x(t+ 1) = proj(x̄, qmax − q∗) (32)



Let αh = λ∗h + γ (q∗h − qmaxh ) and observe that [λ∗h]+ =
[αh]+. Hence we can write

yh(t+ 1) = [yh(t) + γx̄h(t+ 1) + αh]+ − [αh]+

Observe that Assumption 11 implies there exists almost
surely a positive integer T such that any node has performed
an update within the window [0, T ]. It follows that, for t ≥ T

x̄(t+ 1) = −M−1y(t). (33)

Accordingly for t ≥ T the update for y can be rewritten as

yh(t+ 1) =
[(
I − γM−1

)
yh(t) + αh

]
+
− [αh]+

and, clearly, yk(t+ 1) = yk(t), for k 6= h.
Now let Ph = I − γ1h1

T
hM

−1. By using the fact that
‖a+ − b+‖ ≤ ‖a− b‖, it follows

‖y(t+ 1)‖ ≤ ‖Phy(t)‖.

Consider the evolution of the quantity E
[
‖y(t)‖2

]
. From

the above inequality we get that

E
[
‖y(t+ 1)‖2

]
≤ E

[
y(t)TPTh Phy(t)

]
= traceE

[
y(t)TPTh Phy(t)

]
= trace

{
E
[
PTh Phy(t)y(t)T

]}
≤
∥∥E [PTh Ph]∥∥ trace

{
E
[
y(t)y(t)T

]}
≤
∥∥E [PTh Ph]∥∥ E

[
‖y(t)‖2

]
(34)

where, given two semidefinite matrices A,B, we used the
fact that trace {AB} ≤ ‖A‖trace {B}. Let us compute
E
[
PTh Ph

]
. Observe that

PTh Ph = I−γ(M−11h1
T
h+1h1

T
hM

−1)+γ2M−11h1
T
hM

−1

from which we get, by using Assumption 11,

E
[
PTh Ph

]
=

1

m− 1

∑
PTh Ph

= I − γ M
−1

m− 1
+ γ2

(M−1)2

m− 1
.

One can see that if the spectral radius of the above matrix
is smaller than one, i.e. it holds

γ <
2

ρ(M−1)
, (35)

y converges to zero, and therefore, from (32) and (33), also
x̄ and x converge to zero. The proof can be concluded by
invoking the Supermartingale Convergence Theorem [22].
For the sake of the clarity, we recall that this theorem states
that, if Xt, t ≥ 0, is a nonnegative random variable such
that E[X1] < +∞ and if E[Xt+1|Ft] ≤ Xt with probability
one, where Ft denotes the history of the process Xt up to
time t, then Xt tends to a limit X with probability one, and
limt→∞ E[Xt] = E[X].

Let Xt = ‖y(t)‖2. Observe that

E
[
‖y(t+ 1)‖2 | y(t)

]
≤ E

[
y(t)TPTh Phy(t) | y(t)

]
≤
∥∥E [PTh Ph]∥∥ ‖y(t)‖2

≤ ‖y(t)‖2

where the last inequality follows from the fact that∥∥E [PTh Ph]∥∥ < 1 under condition (35). Moreover in-
equality (34) together with

∥∥E [PTh Ph]∥∥ < 1 implies that
limt→∞ E

[
‖y(t)‖2

]
= 0. Hence E

[
‖y(t)‖2

]
converges with

probability one to a nonnegative random variable X such
that E [X] = 0, i.e., X is the null random variable. This
concludes the proof.
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