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Abstract: Distributed averaging is a relevant problem in several application areas, such as
decentralized computation, sensor networks, clock synchronization and coordinated control
of mobile autonomous agents. Gossip randomized consensus algorithms provide a particular
simple and efficient solution of such a problem. These algorithms however need bidirectional
communication among agents and this can be a rather restrictive hypothesis in some contexts.
In this contribution we analyze two important examples of asymmetric randomized consensus
algorithms which do not need bidirectional communication and exhibit a speed of convergence
comparable to the symmetric gossip. However, differently from the symmetric gossip, these
algorithms do not converge to the average. We complete our analysis showing that under rather
mild hypotheses, the displacement of the their final state from the average goes to zero as the
number of agents goes to infinity.

1. INTRODUCTION

In several application areas it is important to have an effi-
cient algorithm able to compute the average of many quan-
tities in a distributed way. Indeed, the distributed averag-
ing problem appears in a number of different contexts since
the early 80’s (decentralized computation Tsitsiklis (1984),
load balancing Cybenko (1989)) and, more recently, has
attracted much attention for possible applications to sen-
sor networks (data fusion problems Kempe et al. (2003);
L. Xiao (2005), clock syncronization Li and Rus (2006))
and to coordinated control of mobile autonomous agents
Jadbabaie et al. (2003); Olfati-Saber and Murray (2004).
Precisely, the distributed averaging problem can be de-
scribed as follows. Suppose we have a (directed) graph G
with set of nodes V = {1, . . . , N} and a measure xi for
every node i ∈ V . The average consensus problem consists
in computing the average xA = N−1

∑

i xi in an iterative
and distributed way, exchanging information among nodes
exclusively along the available edges in G.

Several algorithms for the distributed averaging have been
proposed. Average consensus algorithm is one of them
which is particularly convenient in terms of the amount of
required communication and computation. Deterministic
(time-invariant and time-varying) consensus algorithms
have been studied in many papers. Starting from the
pioneering work Tsitsiklis (1984), many variations can be
found in above cited literature. Most of the papers study
the same algorithm. Every node runs a first order linear
dynamical system to update its estimation and the systems
are coupled through the available communication edges.
The problems typically considered in the literature concern
necessary and sufficient conditions for convergence, speed
of convergence, optimization issues. On the other hand,
random linear schemes have been studied for instance in
Kempe et al. (2003); Boyd et al. (2006); Dymakis et al.

(2006) under the name of gossip algorithms. In this case
the evolution low of the algorithm changes randomly at
every clock step. Convergence is now considered in a
probabilistic sense and performance is studied in mean
square sense or in terms of a sort of contraction time.
The algorithms studied in the literature assume symmetric
communication graphs and lead in general to symmetric
evolution matrices which preserve the global average over
time. However, symmetry may be an undesirable feature
in situations in which communication is asymmetric. Also,
the related property of achieving the exact average can be
relaxed in some contexts in which it may be sufficient to
converge to some value close to the average.

In this paper we will focus on random consensus algorithms
proposed in Boyd et al. (2006). However, differently from
Boyd et al. (2006) we will not restrict to symmetric con-
sensus algorithms. Indeed, we will consider two examples
of asymmetric consensus algorithms. As in Fagnani and
Zampieri (2007) we adopt a mean square analysis of the al-
gorithm behavior. In this way we will show that, although
these algorithms do not ensure convergence to the average,
the displacement of their final state from the average goes
to zero as the number of agents goes to infinity.

1.1 Mathematical preliminaries

In the sequel we will give some preliminary definitions and
results concerning the notion of stochastic matrix. Here,
for reasons which will be clear in the sequel, we will need
to adopt an abstract approach.

Given any finite set S, R
S denotes the real vector space of

functions form S to R. If x ∈ R
S and s ∈ S, xs denotes

the component of x indexed by s. We assume R
S to be

equipped with the canonical inner product: for x, y ∈ R
S

we define < x, y >:=
∑

s xsys.



If S and T are finite sets and ψ : R
S → R

T is a linear
mapping, then ψ∗ : R

T → R
S denotes the adjoint with

respect to the inner product < ·, · >. Of course linear
mappings like ψ can be naturally identified with matrices
in R

T×S . This identification will be used whenever needed.
In this way ’column’ vectors x ∈ R

S can be interpreted as
linear maps x : R → R

S . The corresponding row vector as
the adjoint x∗ : R

S → R.

The symbol es ∈ R
S denotes the vector with all elements

equal to 0, except the s-th component equal to 1. We put1S =
∑

s es. Notice that, if we consider R
S×S , we have

the relations: est = ese
∗
t , 1S×S = 1S1∗

S . Whenever this
will not create confusion, we will simply write 1 for 1S .

A linear mapping ψ : R
S → R

S is said to be positive if
for any x ∈ R

S such that xs ≥ 0 for any s ∈ S, it holds
ψ(x)s ≥ 0 for any s ∈ S. It is said to be stochastic if it is
positive and ψ(1S) = 1S . A stochastic ψ is called doubly
stochastic if in addition ψ∗(1S) = 1S.

If ψ is stochastic, there always exists a probability vector
π ∈ R

S (πs ≥ 0 for any s and
∑

s πs = 1) such that ψ∗π =
π. The vector π is said to be an invariant probability for
ψ. Of course if it is doubly stochastic, a possible invariant
probability vector is π = |S|−11S , where |S| means the
cardinality of the set S.

A stochastic linear mapping ψ is said to be aperiodic if it
admits just one probability vector π and it holds:

lim
t→+∞

(ψ∗)tξ = π ,

for any probability vector ξ ∈ R
S . This is equivalent to

ask that 1 is a simple eigenvalue for ψ and that all other
eigenvalues have norm strictly smaller than 1.

Given any linear mapping ψ we will denote by sr(ψ) the
spectral radius of ψ (the max-norm of the eigenvalues). If
ψ is stochastic aperiodic, esr(ψ) will denote the essential
spectral radius, namely, the max norm of the eigenvalues
different from 1.

2. GOSSIP CONSENSUS ALGORITHMS

Suppose we have N agents labelled by the elements of
a set V with |V | = N . Each agent i ∈ V makes a
measure xi ∈ R. The goal of every agent is to evaluate
the global average xA = N−1

∑

i xi. We assume that no
supervision and no leader is available, so that xA has to
be evaluated by exchanging information among the various
agents. We assume that communication among agents is
possible according to a given communication graph. In
other words, we fix a directed graph G = (V,E), where
E ⊆ V × V denotes the set of edges. If (i, j) ∈ E it means
that agent i can send data to agent j. We will always
assume that G is strongly connected (for any two vertices
i, j ∈ V there always exists a path in G connecting i to
j). It is rather clear that, without this assumption, no
algorithm can succeed to make all agents evaluate xA.
Finally, a matrix W ∈ R

V ×V is said to be adapted to G if
Wij = 0 whenever (j, i) 6∈ E.

Various strategies have been proposed in the literature for
the solution of this problem. In this paper will deal with
the so-called randomized consensus algorithms or random-
ized gossip algorithms. They consist in random exchange

of information among agents followed by a local averaging.
The have been studied in many papers Muthukrishnan
et al. (1998); Boyd et al. (2006). Their main interest is
due to the low complexity and low computation profile.
The classical gossip algorithm presented in Boyd et al.
(2006) requires an undirected communication graph (e.g.
(i, j) ∈ E iff (j, i) ∈ E) and a symmetric communication
protocol. This is briefly recalled below.

Example 1. The symmetric gossip Fix a real number
q ∈ (0, 1), a strongly connected undirected graph G =
(V,E) and a symmetric matrix W ∈ R

V ×V positive
(Wij ≥ 0) and adapted to G such that 1∗W1 = 1. At every
time instant t the edge (j, i) is activated with probability
Wij and nodes i and j exchange their states and produce
a new states according to the equations

xi(t+ 1) = (1 − q)xi(t) + qxj(t)

xj(t+ 1) = qxi(t) + (1 − q)xj(t)

The other states remain unchanged. The evolution ob-
tained by iterating these equations starting form the initial
condition xi(0) = xi is described by a linear random
dynamical system which is known Boyd et al. (2006);
Fagnani and Zampieri (2007) to yield probabilistic average
consensus, namely, for every i ∈ V , it holds

xi(t) → xA , almost surely (1)

The second example is a randomized gossip algorithm
which does not require the communication graph to be
directed and a symmetric communication protocol.

Example 2. The asymmetric-gossip In this case we
start from a real number q ∈ (0, 1), a strongly connected
directed graph G = (V,E) and a matrix W ∈ R

V ×V with
nonnegative entries adapted to G such that 1∗W1 = 1.
At every time instant t the edge (j, i) is activated with
probability Wij and node j sends its state to i and i
produces a new state according to the equation

xi(t+ 1) = (1 − q)xi(t) + qxj(t)

The other states remains unchanged. As before we consider
the initial condition xi(0) = xi. This algorithm yields
probabilistic consensus Fagnani and Zampieri (2007), but
does not converge to the average. Namely, there exists a
random variable α such that for every i ∈ V ,

xi(t) → α , almost surely . (2)

We add here another example of an asymmetric algorithm.
This is motivated by the need that occur in some practical
implementations of parallelizing a number of the gossip
averaging steps in order to make use of the power of the
large scale network.

Example 3. The syncronous asymmetric gossip We
start from a real number q ∈ (0, 1), a strongly connected
directed graph G = (V,E) and a stochastic matrix W ∈
R

V ×V adapted to G. At every time instant t the N edges
(ji, i) ∈ E for i = 1, 2, . . . , N are activated each with
probability Wi,ji

. For each i, the node ji sends its state
to i which produces a new state according to the equation

xi(t+ 1) = (1 − q)xi(t) + qxji
(t)

This algorithm also yields probabilistic consensus Fagnani
and Zampieri (2007), but does not converge to the average.



The issues we want to address in this paper regard the
speed of convergence in all the examples we introduced
and the distance between the consensus point α and the
average xA in the asymmetric cases.

2.1 A unified approach

The three algorithms can be described in a unified way.
They are both iterative algorithms producing for every
agent i a sequence of values xi(t) ∈ R (which will be called
the state of the i-th agent at time t). If we assemble the
various xi(t) in a vector x(t) ∈ R

V , the evolution of the
three algorithms can be expressed in the form

x(t + 1) = P (t)x(t) , (3)

where P (t) ∈ R
V ×V is a sequence of i.i.d. matrix valued

random variables such that P (t)ij ≥ 0, P (t)1 = 1 (in
other words each realization of P (t) is a stochastic matrix).
The initial condition x(0) ∈ R

V coincides with the vector
of measures xi(0) = xi for every i ∈ V . The solution x(t)
is thus a stochastic process.

The statistical description of the matrices P (t) in the three
examples is quite simple. In the symmetric gossip case we
let, for every (j, i) ∈ E,

Sij = I − q(ei − ej)(ei − ej)
∗ ,

Moreover, P (t) is concentrated on these matrices and

P[P (t) = Rij ] = Wij .

Instead, in the asymmetric case, for every (j, i) ∈ E, we
let

Aij = I − qei(ei − ej)
∗ ,

and
P[P (t) = Aij ] = Wij .

Finally, in the synchronous asymmetric case we fix for
every j = (j1, . . . , jN ) ∈ V N the matrix

Rj = (1 − q)I + q
∑

i

eie
∗
ji

and we put

P[P (t) = Rj] =

N
∏

i=1

Wi,ji

Any algorithm like (3) described by a sequence of ran-
dom stochastic matrices P (t) is said to achieve (average)
probabilistic consensus if there exists a random variable α
(α = xA) such that

x(t) → α1 , almost surely . (4)

Since P (t)1 = 1, such algorithms have the property that
if x(0) = α1, for some α ∈ R, then x(t) = x(0) for every
t ∈ N. Once consensus is achieved, agents do not change
anymore their states. If P (t) is doubly stochastic for all
t, we also have that 1∗P (t) = 1∗ for any t. In this case
consensus automatically implies average consensus. This
is what happens in the symmetric gossip algorithm.

Let

Q(t) = P (t− 1) · · ·P (0) , (5)

so that we can write x(t) = Q(t)x(0). The random variable
α in (4) is a linear function of the initial condition x(0) so

that we can write α = ρ∗x(0) for some random variable
ρ taking values in R

V and such that 1∗ρ = 1. Therefore
probabilistic consensus can be equivalently expressed by
saying that there exists a random variable ρ taking values
in R

V such that

lim
t→∞

Q(t) = 1ρ∗ , almost surely . (6)

Notice that 1ρ∗ is a matrix whose rows are all equal to
ρ∗ and that x(∞) = ρ∗x(0). Hence, we have probabilistic
average consensus exactly when ρ = N−11 almost surely.

2.2 Performance indices

In this paper, we will evaluate the performance of the
algorithm P (t) by considering two indices. The first index
we consider is a normalized version of the distance from
the consensus

d(t) =
1

N
||x(t) − 1ρ∗x(0)||2

The second one is the average asymptotic displacement
from its initial value

β = |ρ∗x(0) − xA|
2

Of course in those situations in which P (t) is doubly
stochastic, we have that β = 0. Notice moreover that

1

N
||x(t) − 1xA||

2 = d(t) + β

which shows that the evolution of d(t) and β determines
the evolution of 1

N ||x(t) − 1xA||
2. This coincides with the

average distance between xi(t) and xA and so it is the
most important error parameter to minimize.

In the sequel we will work out a mean analysis for the two
quantities defined above.

3. MEAN ANALYSIS

In this section we assume that we have a fixed random
algorithm P (t) achieving probabilistic consensus so that
(6) is satisfied with a suitable ρ. Here we will focus on a
mean analysis. In other terms we will study the mean of
the random variable d(t) and β. More refined probabilistic
considerations can be carried on (see for instance Fagnani
and Zampieri (2007)). In the sequel we first assume that
x(0) is a fixed initial condition. However, in the final part of
this section, we will make the analysis assuming that also
x(0) has a probabilistic distribution: the mean analysis will
consequently also be with respect to x(0).

We are interested in studying E[d(t)] and, in particular,
its exponential rate of convergence. In this section 1 we
always denote 1V ∈ R

V . We also let Ω := I −N−111∗.

We introduce an operator which will play a fundamental
role in the sequel. Let L : R

V ×V → R
V ×V be given by

L(M) = E[P (0)∗MP (0)]

In Fagnani and Zampieri (2007) a detailed analysis of this
operator has been carried on. It is easy to verify that L∗ :
R

V ×V → R
V ×V is given by L∗(M) = E[P (0)MP (0)∗].

Notice that

L∗(11∗) = E[P (0)11∗P (0)∗] = 11∗ .

It can be shown that both L and L∗ are positive operators.
Therefore L∗ is a stochastic operator. Other properties are
recalled below.



Proposition 4. (i) If P achieves probabilistic consensus,
then L is aperiodic and E[ρρ∗] is its eigenvector
relative to the eigenvalue 1, namely L(E[ρρ∗]) =
E[ρρ∗].

(ii) If A ≤ B (namely B − A is a positive semidefinite
matrix), then L(A) ≤ L(B).

(iii) Lt(Ω) ≤ ||L(Ω)||tΩ, where || · || is the matrix induced
2-norm.

We can rewrite E[d(t)] in terms of L, as follows.

Proposition 5.

E[d(t)] = x∗(0)∆(t)x(0)

where

∆(t) = Lt
(

N−1I −N−11E[ρ∗] −N−1E[ρ]1∗ + E[ρρ∗]
)

.

Proof. Notice that
E[d(t)] = N−1

E[(x∗(t) − x(0)∗ρ1∗)(x(t) − 1ρ∗x(0))]
= x(0)∗[N−1

E[Q(t)∗Q(t)] −N−1
E[ρ1∗Q(t)]

−N−1
E[Q(t)∗1ρ∗] + E[ρ∗ρ]]x(0)

A simple recursive argument shows that E[Q(t)∗Q(t)] =
Lt(I). On the other hand, using Lebesgue dominated
convergence and similar recursive arguments, we can write

E[ρ1∗Q(t)] = lim
s→+∞

E[Q(s)∗Q(t)]

= lim
s→+∞

E[Q(t)∗
s−1
∏

r=t

P (r)∗Q(t)]

= lim
s→+∞

Lt(E[

s−1
∏

r=t

P (r)∗]) = Lt(1E[ρ∗]) .

This yields the result.

¿From this result it is possible to determine the exponen-
tial rate of convergence of E[d(t)]. Let

S = {∆ ∈ R
V ×V : ∆ symmetric and ∆1 = 0}

We have to following result.

Corollary 6.

sup
x(0)

lim
t→+∞

E[d(t)]1/t = sr(L|S) ,

where, we recall sr(·) means the spectral radius of a linear
operator and where L|S means the restriction of L to S.

Proof. ≤ immediately follows from Proposition 5.

For proving ≥ notice that, from the identity Ωx(t) =
Ω(x(t) − 1ρ∗x(0)), it follows that

E[d(t)] = N−1
E[(x∗(t) − x(0)∗ρ1∗)(x(t) − 1ρ∗x(0))]

≥ N−1
E[(x∗(t) − x(0)∗ρ1∗)Ω(x(t) − 1ρ∗x(0))]

= N−1
E[(x(t)∗Ωx(t)] = N−1x(0)∗Lt(Ω)x(0)

Assume now that ∆ ∈ S is such that L(∆) = λ∆. Then
there exists c ∈ R

+ such that ∆ ≤ cΩ and x(0) ∈ R
N such

that ∆x(0) 6= 0. This implies (using (ii) of Proposition 4)
that Lt(∆) ≤ cLt(Ω) and so

cE[d(t)] ≥ cN−1x(0)∗Lt(Ω)x(0)
≥ N−1x(0)∗Lt(∆)x(0) = N−1x(0)∗∆x(0)|λ|t

Hence lim
t→+∞

E[d(t)]1/t ≥ |λ|. This concludes the proof.

The spectral radius sr(L|S) is thus an important perfor-
mance parameter. In Fagnani and Zampieri (2007) it is
shown that

esr(P )2 ≤ sr(L|S) ≤ sr(L(Ω)) , (7)

where P := E[P (0)] and where esr(·) means the essential
spectral radius of a stochastic linear operator, namely the
second maximum absolute value of its eigenvalues.

For what concerns β, it is easy to see that

E[β] = x(0)∗Bx(0)

where

B = E[ρρ∗] −N−1
E[ρ]1∗ −N−11E[ρ]∗ +N−211∗ (8)

Notice that B1 = 0 and that for all x orthogonal to 1 we
have that x∗Bx = x∗E[ρρ∗]x. Let c = ||E[ρ]||∞ the infinity
norm of E[ρ]. It is immediate to check that c−1

E[ρρ∗] is
symmetric and sub-stochastic (it is positive and each row
sum does not exceed 1). Hence x∗E[ρρ∗]x ≤ c||x||2. This
implies that B ≤ cΩ and thus also

E[β] ≤ c||Ωx||2 (9)

From this estimation of B we can actually also obtain
a stronger upper bound on E[d(t)]. Notice indeed that
∆(0) = N−1Ω + B ≤ (N−1 + c)Ω. Using (ii) and (iii)
of Proposition 4, we obtain that

∆(t) ≤ (N−1 + c)||L(Ω)||tΩ (10)

and so

E[d(t)] ≤ (N−1 + c)||L(Ω)||t||x(0)||2 (11)

Both bounds (9) and (11) are in terms of c and ||L(Ω)||. For
what concerns c, there is an important class of algorithms
for which it can be explicitly computed. Notice indeed that
P = E[P (0)] is stochastic and using Lebesgue dominated
convergence theorem, we have

P
t
= E[Q(t)] → 1E[ρ∗] .

Hence, P is also an aperiodic stochastic matrix with the
unique invariant probability vector given by E[ρ]. The case
when P is doubly stochastic is particularly important,
since in this case E[ρ] = N−11. This happens of course
in the symmetric gossip case but also in many cases of the
asymmetric gossip settings.

¿From now on we will always assume that P is doubly
stochastic and so E[ρ] = N−11. In this case we have that

B = E[ρρ∗] −N−211∗ (12)

Moreover, since c = N−1, previous estimations become

E[β] ≤ N−1||Ωx||2 (13)

E[d(t)] ≤ 2N−1||L(Ω)||t||x(0)||2 (14)

We assume now that also the initial conditions xi(0)
are random variables. In the assumption that are all
identically distributed with mean m and variance σ2 (and,
of course, independent, of the randomness of the gossip
algorithm), we easily obtain

E[d(t)] = 1∗∆(t)1m2 + trace(∆(t))σ2 = trace(∆(t))σ2

where last equality follows from the fact that ∆(t)1 = 0.
This leads to the bound

E[d(t)] ≤ 2||L(Ω)||tσ2 . (15)

Similarly, it is not difficult to show that in this case

E[β] = trace(B)σ2 = E||ρ−N−11||2
Notice that the inequality B ≤ N−1Ω yields trace(B) ≤
N−1(N − 1) ≤ 1. Hence, E[β] ≤ σ2. This bound says that



the average displacement never exceeds the variance noise
σ2 independently on the number of agents. We will see
that in many specific situations we will be able to improve
a lot this bound showing that actually in these cases E[β]
converges to 0 when N goes to ∞.

4. ANALYSIS OF THE ASYNCHRONOUS
ASYMMETRIC GOSSIP ALGORITHM

Notice first that since, for all i 6= j we have P ij = qWij , it
follows that 1∗P = 1∗ ⇔ W1 = W ∗1 .
In particular this is true if W is symmetric (actually in
this case P is symmetric as well).

More generally, if we start from a directed graph G =
(V,E) possessing the property that, for every node i,

|{j ∈ V | (i, j) ∈ E}| = |{j ∈ V | (j, i) ∈ E}|

a possible simple choice of a W adapted to G such that
W1 = W ∗1 is as follows. Let A be the adjacency matrix
of the graph, then A1 = A∗1. Then we put

W := (1∗A1)−1A∗

In this way we make all the allowed matrices equally likely.

We now study in detail the operator L in the case of
asymmetric gossip algorithms. The only assumption on W
is that W1 = W ∗1. First, we find explicit expressions for
the operator L. The proof is very long and so we omit it
due to space limitations.

Proposition 7.

L(∆) = ∆ − q(diag (W11∗)∆ − ∆diag (W11∗)) +

+q(W ∗∆ + ∆W )q2diag (W11∗)diag (∆) +

+q2[diag (11∗diag (∆)W ) −W ∗diag (∆) − diag (∆)W ]

The following corollary is rather easy to prove.

Corollary 8.

L(I) = I + q(1 − q)(W +W ∗ − 2diag (W11∗))
L(11∗) = 11∗ − q2(W +W ∗ − 2diag (W11∗))

This yields the following interesting result:

Corollary 9. It holds:

E[ρρ∗] =
1

qN + (1 − q)N2
[qI + (1 − q)11∗]

This allows first of all to compute exactly B

B = E[ρρ∗] −N−211∗ =
q

qN + (1 − q)N2
Ω .

¿From (10) and the considerations above we obtain that

E[d(t)] ≤ σ2 2q + (1 − q)N

q + (1 − q)N
||L(Ω)||t

Moreover notice that

trace(B) =
q(N − 1)

(qN + (1 − q)N2)N

and so

E[β] =
q(N − 1)

(qN + (1 − q)N2)N
σ2

which is infinitesimal in N . Notice that the formula above
only depends on N and q and not at all on the particular
structure of W .

We now evaluate L(Ω) and in particular its norm. ¿From
Corollary 8 we obtain

L(Ω) = Ω−2q[1−q−qN−1](diag (W11∗)−(W +W ∗)/2) .

Clearly, L(Ω)1 = 0. On the other hand, on the invariant
subspace orthogonal to 1, L(Ω) is equal to

L(Ω) = I−2q[(1−q)−qN−1](diag (W11∗)−(W+W ∗)/2) .

The matrix diag (W11∗)−(W+W ∗)/2 is positive definite.
If we denote by µ its smallest nonzero eigenvalue, we
obtain, for N sufficiently large,

sr(L(Ω)) = 1 − 2q[(1 − q) − qN−1]µ .

In the special case when W is symmetric µ is the smallest
nonzero eigenvalue of diag (W11∗) − W . On the other
hand, since P = qW +(1− qdiag (W11∗)), it follows that

esr(P ) = 1 − qµ .

Using (7) we have that, in this case, when µ tends to zero,
that both the lower bound upper bound of sr(L|S) are
linear in µ but with different constants.

Example 10. Consider that case in which W is an N ×N
symmetric circulant matrix Davis (1979) with first row
equal to

[0 1/2N 0 · · · 0 1/2N ]

In this case diag (W11∗) −W = N−1I −W . Its smallest
nonzero eigenvalue can be explicitly computed in this case
and we obtain

µ =
1

N

(

1 − cos
2π

N

)

≃
2π2

N3

which leads to the approximation

sr(L(Ω)) ≃ 1 −
4π2q(1 − q)

N3

5. ANALYSIS OF THE SYNCHRONOUS
ASYMMETRIC GOSSIP ALGORITHM

First notice that in this case

P =
∑

j

N
∏

i=1

Wi,ji
Rj = (1 − q)I + qW

Hence, P is doubly stochastic if and only if W is doubly
stochastic. We will make this assumption from now on.

There is an explicit expression for L.

Proposition 11.

L(∆) = [(1 − q)I +W ]∗∆[(1 − q)I +W ] +

+ q2[diag (11∗diag (∆)W ) −W ∗diag (∆)W ]

Unfortunately, in this case it is not possible to compute
explicitly the matrices E[ρρ∗] and B. However a useful
estimate can be obtained in the following way.

For what concerns L(Ω), we obtain

L(Ω) = Ω − q(1 − q)[2I −W −W ∗] − q2N−1[I −WW ∗] .

In the special case when W is symmetric, we obtain that
the eigenvalues of L(Ω) are

f(λ) = 1 + 2q(1 − q)(λ − 1) + q2N−1(λ2 − 1)

where λ are the eigenvalues of W . Hence, we have that, if
N is sufficiently large,

sr(L(Ω)) = f(µ+(W ))



where µ+(W ) denotes the maximum of the eigenvalues of
W . On the other hand, since P = (1− q)I+ qW , it follows
that (when µ+(W ) is sufficiently close to 1),

esr(P ) = 1 − q + qµ+(W ) .

Similarly to previous section, this allows to conclude that,
using (7), when µ+(W ) tends to zero, both the lower
bound upper bound of sr(L|S) are linear in 1 − µ+(W )
but with different constants.

Let Z := L(11∗)−11∗. Notice that Z ≥ 0 in the sense that
Z is a positive semidefinite matrix. Notice moreover that
the operator L preserve the order between matrices given
by the positive semidefinite condition. More precisely we
have that A ≤ B implies that L(A) ≤ L(B). This implies
that Lt(Z) ≥ 0 for all t. Observe moreover that

B = E[ρρ∗] −N−211∗ =

= E[ρρ∗] −N−2Lt+1(11∗) +N−2
t

∑

i=0

Li(Z)

≤N−2
∞
∑

i=0

Li(Z)

Finally notice that from the fact that Z ≤ q2Ω, it follows
that Lt(Z) ≤ q2||L(Ω)||tΩ and hence we have that

B ≤N−2
∞
∑

i=0

Li(Z) ≤ q2N−2
∞
∑

i=0

||L(Ω)||tΩ ≤
q2

gN

1

N
Ω

where g := 1 − sr(L(Ω)). Notice that in many situations
g goes to zero as N tends to infinity (as 1 − esr(W ) if W
is symmetric). Only in case in which g tends to zero less
quickly then 1/N we have that the previous bound is more
tight than the general bound B ≤ N−1Ω we found above.
In fact when g tends to zero less quickly then 1/N , since

E[β] = σ2trace(B) ≤ σ2 q
2

gN

then E[β] goes to zero as N tends to infinity. These
situations will be illustrated by the following examples.

Example 12. Consider that case in which W is a N × N
symmetric circulant matrix Davis (1979) with first row
equal to

[0 1/2 0 · · · 0 1/2]

The corresponding graph has a circular structure. We
obtain that the max eigenvalue of W is given by

µ+(W ) = cos
2π

N
For N → +∞, this leads to the approximation (valid for
N sufficiently large)

sr(L(Ω)) ≃ 1 −
4π2q(1 − q)

N2
, g ≃

4π2q(1 − q)

N2

We can argue that in this case the bound proposed above
does not ensure that E[β] goes to zero as N tends to
infinity.

Example 13. Consider now is a N×N matrix W ∈ R
H×H

where H = {0, 1}n such that

Wij =







n−1 if i and j differs in one digit

0 otherwise

In this case we have that N = |H | = 2n. Also in this case
the eigenvalues of W can be computed explicitly. It is easy
to see that we obtain µ+(W ) = n−1(n− 2). Hence

sr(L(Ω)) ≃ 1 −
4q(1 − q)

n
, g ≃

4q(1 − q)

n
Therefore, since gN ≃ 4q(q − 1)n−12n tends to infinity
as N tends to infinity, we can ague that in this case the
bound proposed above ensures that E[β] goes to zero as N
tends to infinity.

Notice that, by using the structure of the matrices in the
example it is possible to show that in both cases E[β] goes
to zero as N tends to infinity. The fact that this does not
appear in Example 12 shows that the bound we proposed
is not tight in general.

REFERENCES

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Random-
ized gossip algorithms. IEEE Transactions on Informa-
tion Theory, 52(6):2508–2530, 2006.

G. Cybenko. Dynamic load balancing for distributed mem-
ory multiprocessors. Journal of parallel and distributed
computing, 7:279–301, 1989.

P. J. Davis. Circulant matrices. A Wiley-Interscience Pub-
lication, Pure and Applied Mathematics. John Wiley &
Sons, New York-Chichester-Brisbane, 1979.

A. Dymakis, A.D. Sarwate, and M.J. Wainright. Geo-
graphic gossip: efficient aggregation on sensor networks.
Technical report, EECS Berkeley, 2006.

F. Fagnani and S. Zampieri. Randomized consensus
algorithms over large scale networks. 2007. submitted.

A. Jadbabaie, J. Lin, and A. S. Morse. Coordination
of groups of mobile autonomous agents using nearest
neighbor rules. IEEE Transactions on Automatic Con-
trol, 48(6):988–1001, 2003.

D. Kempe, A. Dobra, and J. Gehrke. Gossip-based
computation of aggregate information. In Proceedings of
the 44th IEEE Symposium on Foundations of Computer
Science, pages 1–10, 2003.

S. Lall L. Xiao, S. Boyd. A scheme for robust distributed
sensor fusion based on average consensus. In Proc. Int.
Conf. Information Processing in Sensor Networks, 2005.

Q. Li and D. Rus. Global clock syncronization in sensor
networks. IEEE Transaction on Computers, 55(2):214–
226, 2006.

S. Muthukrishnan, B. Ghosh, and M. Schultz. First and
second order diffusive methods for rapid, coarse, dis-
tributed load balancing. Theory of computing systems,
31:331–354, 1998.

R. Olfati-Saber and R. M. Murray. Consensus problems
in networks of agents with switching topology and time-
delays. IEEE Transactions on Automatic Control, 49(9):
1520–1533, 2004.

J. Tsitsiklis. Problems in decentralized decision making
and computation. PhD thesis, Department of EECs,
MIT, 1984.


