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Abstract— In this paper we consider the problem of estimat-
ing a random process from noisy measurements, collected by a
sensor network. We analyze a distributed two–stage algorithm.
The first stage is a Kalman–like estimate update, in which
each agent makes use only of its own measurements. During
the second phase agents communicate with their neighbors to
improve their estimate. Estimate fusion is operated by running
a consensus iteration. In literature it has been considered only
the case of a fixed communication strategies, i.e. described by
a fixed constant consensus matrix. However, in many practical
cases this is just a rough model of communications in a
sensor network, that usually happen according to a randomized
strategy. This strategy is more properly modeled by assuming
that the consensus matrices are drawn, according to a selection
probability, from an alphabet of matrices compatible with
the communication graph, at each time instant. This work
deals therefore with randomized communication strategies and
in particular with the symmetric gossip. A mean square
performance analysis is carried out and an upper–bound for
the trace of the estimation error variance is derived. The
proposed upper–bound has to be considered the main technical
contribution of the present paper, since it is based on a highly
non–trivial inequality on matrix singular values, proved in the
appendix. This upper–bound is a good performance assessment
index and it is assumed therefore as a cost function to be
minimized. We show moreover that problem of minimizing
this cost function by choosing the Kalman gain and the
selection probability is convex in each of the two variables
separately although it is not jointly convex. Finally simulations
are presented and the results discussed.

I. INTRODUCTION

In this paper we consider the problem of estimating a random

process from noisy measurements, collected by a sensor

network. More precisely, as in [1], we consider a prototyp-

ical problem of estimation in sensor networks, namely the

problem of estimating the state of a scalar random process.

We will analyze a distributed two–stage algorithm: the first

stage is a Kalman–like estimate update, in which each agent

makes use only of its own measurements, while the second

phase is devoted to the estimates exchange between neighbor

nodes and to the estimates fusion.

To find an optimal way to fuse local estimates is a very

difficult problem, that can hardly be handled if the communi-

cation graph has cycles. Nevertheless, the problem of finding

a distributed algorithm that achieves the same performance

of the centralized Kalman filter has been solved in [2], [3].

To this aim the estimate fusion problem has been formulated

as an consensus problem. In fact, as remarked in [1], since

the local estimates mean is a sufficient statistic to compute

the optimal estimate, the optimal fusion problem can be

solved with consensus techniques. Unluckily, the solution
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proposed in [2], [3] relies on the assumption that communi-

cations are much faster than measurements, so that one can

assume that consensus can be reached during two consecutive

measurements. Under this assumption, the choice of the

Kalman gain to be used at each node is not an issue: the

centralized gain has to be used. Obviously, the assumption

of fast communications does not hold in all practical cases

and the proposed scheme becomes suboptimal.

In [1] and in [4] it has been studied the case of finite

number of communications between two subsequent mea-

surements. In both works, inspired by the fact that the mean

of the local estimates is a sufficient statistic to compute the

centralized estimate, estimate fusion was implemented as m
consensus steps. In [4] and in the subsequent improvement

[5], Kalman gain and consensus weights are selected at each

time step in order to minimize the estimate error variance

at each node in the next step. In [1] the steady state error

variance was minimized in the scalar case. Both of the

approaches consider a fixed communication scheme, i.e. it

is assumed that all the information exchanges prescribed

by the communication graph happen between 2 subsequent

measurements. However, in many practical cases this is just

a rough model of communications in a sensor network,

valid if the time between two subsequent measurements is

sufficiently large. In fact, communication in a sensor network

often happens according to a randomized protocol such as

broadcast [6] or symmetric gossip strategies [7]. In the

first case, quite common in wireless sensor networks, one

node wakes up after a random sleep time and broadcasts

its estimate to its neighbors. In the symmetric gossip case

one node randomly wakes up, picks up randomly one of

its neighbor nodes and exchange with it its estimate. The

use of randomized protocols avoids the need of cumber-

some communication scheduling, reduces the need of time-

synchronization and may allow to reduce power consump-

tion. A further cause of randomness in the communication is

the potential unpredictably of the environment where these

protocols are implemented: packet losses and collisions are

in fact rather common in a sensor network. Moreover nodes

failures, arrivals and departures are common events in the

large networks under study. To take these randomnesses into

account, in this work the estimate fusion will be implemented

as m randomized consensus steps. This means to assume that

the consensus matrix, rather than being constant as in [1], is

drawn at each time instant form an alphabet of matrices com-

patible with the graph G. Randomized consensus algorithms

have been deeply investigated in literature: the symmetric

gossip algorithm for average consensus was deeply studied

in the seminal work [7] and an extensive analysis of conver-

gence properties for many common randomized consensus

algorithms, in particular for symmetric gossip and broadcast,

can be found in [6].

Moreover we mention [8] and [9], both dealing with dis-

 



tributed Kalman filtering, and [10] where a belief propagation

approach to distributed Kalman filtering has been proposed.

A. Contribution and Paper organization

This paper is devoted to the analysis of a distributed Kalman

filtering algorithm that makes use of randomized communi-

cation strategies, focusing in particular on symmetric gossip.

The paper is organized as follows: after having briefly

clarified the notation used in the paper (Section II), we

give a detailed formulation of the estimation problem under

consideration (Section III) and we introduce the estimation

algorithm under analysis, namely a randomized version of

the algorithm proposed in [1] (Section IV). In Section V a

mean square analysis is carried out. In particular we give

an upper bound on the steady state error variance of the

proposed filter. This upper–bound has to be considered the

main technical contribution of the present paper, since it is

based on an highly non–trivial inequality on matrix singular

values based on majorization theory, [11], [12], [13]. In the

appendix, in fact, we show that the eigenvalues of the matrix

E[Qi . . . Q0Q0 . . . Qi] are submajorized by the eigenvalues

of E[Q2
0]

i. In Section VI we discuss the optimization problem

of finding a Kalman gain and randomized communication

strategy, i.e. a selection probability, that minimizes a suitable

cost function, namely the proposed upper–bound the trace

of the steady state error variance. In particular, we show

that the optimization problem is convex in each of the two

variables separately although it is not jointly convex. Finally

in Section VII some simulation results are presented.

II. MATHEMATICAL PRELIMINARIES

Before proceeding, we introduce some mathematical prelim-

inaries that will be used through the paper. We will denote

with 1N , or simply with 1, the vector [1, . . . , 1]T ∈ R
N .

Recall that a stochastic matrix P is a matrix with non–

negative entries such that P1 = 1. A matrix P is said to

be doubly stochastic if both P and PT are stochastic. Any

symmetric stochastic matrix is therefore doubly stochastic.

We will denote with S the set of symmetric matrices. Given

a matrix M ∈ R
N×N we denote with σ(M) the vector

formed by the singular values of M decreasingly ordered

and with λ(M) vector formed by the eigenvalues of M order

so that |λ0(M)| ≥ · · · ≥ |λN−1(M)|. Recall moreover that

for any normal matrix N and therefore for any symmetric

matrix, σ(N) ≡ |λ(N)|. It is moreover well known that for

any stochastic P , λ1(P ) = 1. We will denote with ⊗ the

Kronecker product. Given a matrix M ∈ R
N×N we say that

the graph GM = (V, EM ), V = {1, 2, . . . , N}, such that

Mi,j 6= 0 ⇔ (j, i) ∈ EM is associated with M while we

say that M is compatible with a given graph G = (V, E) if

Mi,j 6= 0 ⇒ (j, i) ∈ EM .

III. PROBLEM FORMULATION

Consider a sensor network of N agents, labeled with the

elements of the set V = {1 . . . N}. Let us describe the

communication constraints of the network with a directed

graph G = (V, E), where the edge (i, j) ∈ E if and only if i
can transmit information to j.

Our goal is to estimate, by means of such a sensor network,

a discrete-time scalar random process of the form:

x(t + 1) = x(t) + w(t)

where w(t), known as model noise, is a white noise with

variance q. Each node i of the network can collect noisy

measurements the state x(t):

yi(t) = x(t) + vi(t) (1)

where the measurement noise, vi(t), is a white noise with

variance ri. It is reasonable to assume that sensors are

affected by N independent measurement noises, all inde-

pendent also from the model noise w(t). Moreover, for

simplicity, we consider a network of identical devices, with

all nodes having equally reliable sensors, that is, we restrict

our analysis to the case ri = r ∀i ∈ V .

For ease of notation collect all the N measurements in

a vector y(t) = [y1(t), . . . , yN (t)]T and all measurement

noises in a vector v(t) = [v1(t), . . . , vN (t)]T . Then (1) can

then be rewritten as:

y(t) = 1x(t) + v(t).

Since we assumed that all measurement noises are indepen-

dent and identically distributed E[v(t)vT (t)] = rIN .

IV. PROPOSED ALGORITHM

The estimation algorithm we analyze in this work is a

randomized version of the one that has been analyzed in

[1]. It consists of 2 stages. The first stage is a Kalman–like

estimate update. At each time instant, each node collects its

own measurement yi(t) and updates its estimate x̂i(t):

x̂loc
i (t + 1) = lx̂i(t) + (1 − l)yi(t).

where l ∈ (0, 1) is the Kalman gain. Since x̂loc
i (t) has

been updated using only local information, it is called local

estimate. Again, for ease of notation, we collect all the local

estimate in the vector x̂loc(t) = [x̂loc
1 (t), . . . , x̂loc

N (t)].
The second phase of the algorithm prescribes that dur-

ing two consecutive measurements, nodes exchange infor-

mation with their neighbors to improve their local esti-

mates. In contrast with the previous phase, the outcome

of this second phase is called regional estimate, x̂
reg
i (t),

or simply x̂i(t). Once again, we define the vector x̂(t) =
[x̂reg

1 (t), . . . , x̂reg
N (t)].

Inspired by the fact that the mean of the local estimates

is a sufficient statistic to estimate the centralized estimate,

we implement the estimate fusion phase with m consensus

steps, as it has been done [1] and [4].

x̂(t + 1) = Qm−1(t) . . . Q0(t)x̂loc(t + 1) = P (t)x̂loc

where P (t) = Qm−1(t) . . . Q1(t), being product of stochas-

tic matrices, is stochastic.

In [1], it has been analyzed the case of a fixed commu-

nication strategy, i.e. Q1(t) = · · · = Qm−1(t) = Q ∀t and

therefore P (t) = P = Qm ∀t. On the contrary, in this work,

to take into account the randomness introduced by the use

of random protocols and by unpredictable environments, we

assume that for all t and i, Qi(t) is drawn from an alphabet

{Qα, α ∈ A} of stochastic matrices compatible with the

graph G. We will call selection probability, pA = {pα, α ∈
A}, the probability measure on the set {Qα, α ∈ A},

where pα is the probability that Qα is drawn. Therefore



Qi(t) and consequently P (t) are i.i.d. random (matrix–

valued) processes. It is reasonable to assume that ∀i Qi(t)
is independent form w(s) and v(r) ∀t, s, r.

Many examples of models for common random protocols

can be found in [6], where a detailed analysis of randomized

consensus algorithms is carried out. In particular in [6] is

presented a model for both symmetric gossip and broadcast.
In this paper we will focus on the case of symmetric

matrices alphabets: Qα = QT
α ∀α ∈ A and in particular

on the symmetric gossip case.

V. ALGORITHM MEAN SQUARE ANALYSIS

Let us define the local and the regional estimation error:

x̃loc(t) = 1x(t) − x̂loc(t) and x̃(t) = 1x(t) − x̂(t).

After simple computations one gets the following description

of the error time evolution:

x̃loc(t + 1) = (1 − l)x̃(t) + lw(t) + 1v(t)

x̃(t + 1) = P (t)x̃loc(t + 1) = (1 − l)P (t)x̃(t)+

+ lP (t)w(t) + 1v(t).

First of all we will show that the mean error tends to zero

when t goes to infinity. To this aim define the local and

regional error mean as:

µloc(t) = E [x̃loc(t)] µ(t) = E [x̃(t)] .

Recalling that w and v are white zero–mean noises, one gets

that

µloc(t + 1) = E [(1 − l)x̃(t) + lw(t) + 1v(t)] = (1 − l)µ(t)

µ(t + 1) = E [P (t)]µloc(t) = (1 − l)E [P (t)]µ(t). (2)

Recall than that we are considering stochastic matrices

alphabets, Qα1 = 1 ∀α ∈ A, therefore also E [P (t)] is

stochastic and hence the linear system described by (2) is

stable for l ∈ (0, 1). This implies that µ(t) → 0 as t → +∞
and since µloc(t + 1) = (1 − l)µ(t) also µloc(t) → 0.

Let us study then the variance of the (local and regional)

estimation error:

Σloc(t) = E
[

x̃loc(t)x̃
T
loc(t)

]

Σ(t) = E
[

x̃(t)x̃T (t)
]

.

To compute a recursive formula for the evolution of these

two matrices, recall that P (t), w(s), v(u) are independent

∀t, s, u. Note moreover that x̃(t) is independent from P (t),
w(t) and v(t), since it depends only on P (s), w(s) and v(s)
for s = 1, . . . , t − 1. One can easily see then that:

Σloc(t + 1) = E
[

x̃loc(t + 1)x̃T
loc(t + 1)

]

= (1 − l)2E
[

P (t)x̃loc(t)x̃
T
loc(t)P

T (t)
]

+ l2rI + q11T .

Since

E
[

P (t)x̃loc(t)x̃
T
loc(t)P

T (t)
]

=

= E
[

E
[

P (t)x̃loc(t)x̃
T
loc(t)P

T (t)|P (t)
]]

= E

[

P (t)E
[

x̃loc(t)x̃
T
loc(t)|P (t)

]

PT (t)
]

= E
[

P (t)Σloc(t)P
T (t)

]

we have that

Σloc(t + 1) = (1 − l)2E
[

P (t)Σloc(t)P
T (t)

]

+

+ l2rI + q11T . (3)

Similarly one gets:

Σ(t + 1) = (1 − l)2E
[

P (t)Σ(t)PT (t)
]

+

+ l2rE
[

P (t)PT (t)
]

+ q11T . (4)

Equations (3) and (4) represent a linear time–invariant

system, as it can be more clearly recognized defining

vect(Σ(t)) = s(t) and recalling that vect(ABC) = (CT ⊗
A)vect(B). Equation (4) can in fact be rewritten as:

vect(Σ(t+1)) = s(t+1) = (1− l)2E[P (t)⊗P (t)]s(t)+

l2rE[P (t) ⊗ P (t)]vect(I) + q1N2

that is precisely a linear time–invariant system forced by a

constant input. Note that

E[P (t) ⊗ P (t)]1N2 = E[(P (t)1N ) ⊗ (P (t)1N )] = 1N2 .

Since E[P (t) ⊗ P (t)] is stochastic we have that (1 −
l)2E[P (t) ⊗ P (t)] is stable.

For ease of notation let us define the linear operator

L(M) = E[Qi(t)MQT
i (t)]. Note that vect

(

L(M)
)

=
E[Q(t) ⊗ Q(t)]vect(M) and that

E[P (t)MPT (t)] =

E[Qm−1(t) . . . Q0(t)MQT
0 (t) . . . QT

m−1(t)] = Lm(M)

Equation (4) can then be rewritten as

Σ(t + 1) = (1 − l)2Lm(Σ(t)) + l2rLm(I) + q11T

Note moreover that L(11T ) = E(Q11T QT ) = 11
T .

We have therefore that, for every initial condition, the

system reaches an asymptotically stable equilibrium:

Σ(∞) =
+∞
∑

i=0

(1 − l)2iLmi
(

l2rLm(I) + q11T
)

= l2r

+∞
∑

i=0

(1 − l)2iLm(i+1)(I) + q

+∞
∑

i=0

(1 − l)2i
11

T

= l2r

+∞
∑

i=0

(1 − l)2iLm(i+1)(I) +
q

1 − (1 − l)2
11

T . (5)

We are in particular interested in computing trΣ(∞).

trΣ(∞) = l2r

+∞
∑

i=0

(1 − l)2itrLm(i+1)(I) +
qN

1 − (1 − l)2

(6)

Unluckily, we did not manage to find a closed form for:

+∞
∑

i=0

(1 − l)2iLm(i+1)(I)

but we propose an upper–bound for trLm(i+1)(I) that allows

to compute an upper–bound on trΣ(∞):
Proposition 1: Given any symmetric matrix alphabet

{Qα α ∈ A}, then, for all i ∈ N,

trLi(I) ≤ tr
(

E
[

Q2(t)
]i
)

. (7)

Proof: The proposition is a trivial corollary of theo-

rem 4, in the appendix, for k = n. �

This upper bound allows us to analyze the N × N matrix

E[Q2(t)] rather then the linear operator L, described by

the N2 × N2 matrix E[Q(t) ⊗ Q(t)]. Note, moreover, that

E[Q2(t)] can be computed quite easily given a communi-

cation strategy and a graph while this is not the case for

E[Q(t) ⊗ Q(t)], as it has been remarked in [7].

 



Using the above mentioned upper–bound we get:

trΣ(∞) = l2r

+∞
∑

i=0

(1 − l)2itrLm(i+1)(I) +
qN

1 − (1 − l)2

≤ l2r

+∞
∑

i=0

(1 − l)2itrE
[

Q2(t)
]m(i+1)

+
qN

1 − (1 − l)2

= l2r

+∞
∑

i=0

(1 − l)2i

N−1
∑

j=0

λj

(

E
[

Q2(t)
]m(i+1)

)

+
qN

1 − (1 − l)2

=

N−1
∑

j=0

l2r

+∞
∑

i=1

(1 − l)2i−2λmi
j

(

E
[

Q2(t)
])

+
qN

1 − (1 − l)2

=

N−1
∑

j=0

l2r
λm

j

(

E
[

Q2(t)
])

1 − (1 − l)2λm
j (E [Q2(t)])

+
qN

1 − (1 − l)2
.

VI. OPTIMIZATION

One would like to study the natural optimization problem

of finding l ∈ (0, 1) and the probability distribution pα =
P [Q(t) = Qα] such that 1

N
trΣ(∞) is minimized.

Since a closed form expression for trΣ(∞) in not available

we rather consider the problem of minimizing the proposed

upper–bound on trΣ(∞):
1

N
trΣ(∞) ≤ J({pα}α∈A, l)

where

J({pα}α∈A, l) =
1

N

N−1
∑

j=0

l2r
λm

j

(

E
[

Q2(t)
])

1 − (1 − l)2λm
j (E [Q2(t)])

+

+
q

1 − (1 − l)2
. (8)

The above defined function J is therefore the cost functional

we will study while l and {pα}α∈A, that are the parameters

we can choose, are going to be our optimization variables.
In [1] it has been shown that the problem of minimizing

the cost function:

J̃(M, l) =
1

N

N−1
∑

j=0

l2r
λm

j (M)

1 − (1 − l)2λm
j (M)

+
q

1 − (1 − l)2

(9)

over the set of symmetric stochastic matrices compatible with

the graph G is convex in M for l fixed. Moreover, as it can

be easily verified, the optimization of the above functional

for l ∈ (0, 1) and M fixed is a convex as well. Unluckily

the joint optimization problem is not convex.
Our cost functional J in (8) is the result of the composition

of the cost functional J̃ in (9) with the map M(pA) : R
|A| →

S
N :

pA 7−→ M(pA) = EpA
[Q(t)2] =

∑

α∈A

pαQ2
α.

Note that M(pA) is linear. Therefore if J̃ in (9) is convex, so

it is the composed map J = J̃(l,M(pA)). We have therefore

that the problem of minimizing (8) is convex for l ∈ (0, 1)
fixed and it is convex for pA fixed and l ∈ (0, 1). It can

been shown that it does not hold true that it J is jointly

convex in pA and l for any arbitrary choice of matrix alphabet

{Qα}α∈A.
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Fig. 1. Cost function for various selection probabilities

VII. SIMULATION RESULTS

As an example to illustrate the results proposed in the

previous sections, we consider a network of N = 15 agents.

To simulate the behavior of a wireless sensor network,

we choose as communication graph a geometric random

graph. More precisely, nodes are randomly deployed in a

square with side length 1m and we assume that two nodes

can exchange information if their distance d is less than a

visibility radius rv = 0.4m.

The model noise variance of the process to be estimated

is chosen q = 10 while the measurement noise variance is

chosen r = 100.

We consider the symmetric gossip strategy: if the link

(i, j) is selected, the corresponding consensus matrix Qij

is:

Qij = I −
1

2
(ei − ej)(ei − ej)

T

where ei is the vector having all entries equal to 0 except a

1 in position i.

In figure 1 it is reported the comparison of three different

selection strategies. More precisely it is depicted the value of

the cost function (8) for l = 0.5 and for different values of

m, the number of communications between two subsequent

measurements. The three different selection strategies we

compare are:

• UPoE, Uniform Probability over the Edges: All links

are selected with the same probability, pu
ij = 1

|E| .

• UNUNN Uniform Node Uniform Neighbor Node: At

each time instant one node randomly wakes up, with

uniform probably among all nodes. This node picks up

randomly one node with uniform probability among all

its neighbor nodes. Therefore the selection probability

of the link (i, j) is: pij = 1
N

1
degree(i) .

• Optimal: popt is the probability that minimize the cost

function (8).

Figure 1 shows that, at least in this example, optimization

does not seem to give a significant improvement in the

estimation performance and the easily implementable strat-

egy UNUNN gives performance which is quite close to the

optimal selection strategy. Moreover, it can be noted that,

over a certain value of m, m̄ ∼= 300, there is no more



performance difference between the three strategies. This

is due to the fact that when m is large there are enough

communications to reach consensus between two subsequent

measurements independently of the selection strategy. No

further estimation improvement can therefore be obtained.

Analogously, if only very few communications are allowed

between 2 measurements, the impact of the optimization is

very little.

It has however to be noted that, for m in the range

N < m < 10N , optimization may play an important

role. In fact, the same estimation performance is reach by

the optimized strategy with a significantly smaller amount

of communications with respect to UNUNN. For instance,

figure 1 shows that the performance achieved by the optimal

strategy for m = 150 is reached by UNUNN only for

m = 300.

VIII. CONCLUSIONS

In this work we analyzed a randomized version of the

distributed Kalman filter proposed in [1]. We carried out a

mean square-analysis, proving that the error variance remains

bounded and providing an upper–bound for this quantity. To

prove the upper–bound a stronger result has been derived. It

relates the eigenvalues of the matrix E[Qi . . . Q0Q0 . . . Qi]
and the eigenvalues of E[Q2]i: the first are, in fact, subma-

jorized by the latter.

Moreover, we studied the problem of minimizing the

proposed upper–bound and we showed that this problem is

convex in the selection probability and in the Kalman gain

separately, but not jointly convex.

Simulations are finally presented. They seem to show that

optimization does not give a significant improvement in the

estimation performance. Whether or not this is a general

fact for the proposed algorithm is an issue that deserves

to be explored in detail and that will be object of further

investigations.

APPENDIX

Derivation of an upper bound for tr(Σ(t))

In this section we will present a result that relates the

eigenvalues of the matrix E[Qi . . . Q0Q0 . . . Qi] and the

eigenvalues of E[Q2]i. We will show, in fact, that the first

are submajorized by the latter:

λ
(

E [Qi−1 . . . Q0Q0 . . . Qi−1]
)

≺w λ
(

E
[

Q2
0

]i
)

∀i ∈ N.

That, for decreasingly ordered vector, is equivalent to:
k
∑

j=1

λj

(

E [Qi−1 . . . Q0Q0 . . . Qi−1]
)

≤

k
∑

j=1

λj

(

E
[

Q2
0

]i
)

.

(10)For k = 1, . . . , N and ∀i ∈ N.

The relations of majorization and submajorization are

treated in detail in [11], [12], [13], to which we refer the

interested reader.

Note that (10) is much stronger than the result proposed

in proposition 1.

To prove (10) let us recall the following lemma:

Lemma 2: Let x, y, and z be real, non–negative decreas-

ingly ordered vectors, i.e. x1 ≥ x2 ≥ · · · ≥ xN ≥ 0

y ≺w x ⇒ y ⊙ z ≺w x ⊙ z,

where ⊙ represents the entry–wise (Hadamard) product.

Proof: [14, pag. 92, H.2.c] �

It is worth moreover to recall an important result on the

singular values of the product of two matrices:

Lemma 3: Given any two matrices A and B

σ(AB) ≺w σ(A) ⊙ σ(B). (11)

Proof: See [12], [13]. �

We are now ready to prove the main technical contribution

of this work:

Theorem 4: Given any symmetric matrix alphabet

{Qα α ∈ A}, it holds the following:

σ
(

E [Qi−1 . . . Q0Q0 . . . Qi−1]
)

≺w σ
(

E
[

Q2
0

]i
)

∀i ∈ N.

that is
k
∑

j=1

σj

(

E [Qi−1 . . . Q0Q0 . . . Qi−1]
)

≤
k
∑

j=1

σj

(

E
[

Q2
0

]i
)

(12)

∀k = 1, . . . , N and ∀i ∈ N.

Proof

We will prove the theorem by induction.

It is trivially true for i = 1. Suppose that (12) holds true for

i and let us prove that this implies it holds true for i + 1.

Call Pi = E[Qi−1 . . . Q0Q0 . . . Qi−1]. We want to prove

k
∑

j=1

σj (E [QiPiQi]) ≤

k
∑

j=1

σi+1
j

(

E
[

Q2
0

]

)
)

∀k = 1, . . . , N,

that is, ∀k = 1, . . . , N

k
∑

j=1

σj

(

∑

α∈A

pαQαPiQα

)

≤

k
∑

j=1

σi+1
j

(

∑

α∈A

pαQ2
α

)

.

Let us start by proving that, ∀k = 1, . . . , N :

k
∑

j=1

σj

(

∑

α∈A

pαQαPiQα

)

≤

k
∑

j=1

σj (Pi)σj

(

∑

α∈A

pαQ2
α

)

.

(13)

To this aim recall ([11], [13]) that for any matrix M

k
∑

j=1

σj (M) = max
UT U=Ik

tr
(

UT MU
)

, (14)

therefore
k
∑

j=1

σj

(

∑

α∈A

pαQαPiQα

)

=

= max
UT U=Ik

tr

(

UT

(

∑

α∈A

pαQαPiQα

)

U

)

.

Note, moreover, that:

Pi = V T diag{[σ1(Pi) . . . σk−1(Pi), σk(Pi) . . . σN (Pi)]}V

≤ V T diag{[σ1 − σk, . . . , σk−1 − σk, 0, . . . , 0]}V +

+ σk(Pi)I = P̄ + σk(Pi)I,

where

P̄ = V T diag{[σ1 − σk, . . . , σk−1 − σk, 0, . . . , 0]}V.



Therefore

max
UT U=Ik

trUT

(

∑

α∈A

pαQαPiQα

)

U

≤ max
UT U=Ik

trUT

(

∑

α∈A

pαQαP̄Qα

)

U)+

+ σk(Pi)trU
T

(

∑

α∈A

pαQ2
α

)

U. (15)

One has, again for (14):

σk(Pi)tr

(

UT

(

∑

α∈A

pαQ2
α

)

U

)

≤ σk(Pi)
k
∑

j=1

σj

(

∑

α∈A

pαQ2
α

)

. (16)

The other term of the sum in (15) can be upper–bounded by

noting that:

tr
(

UT
(

∑

α∈A

pαQαP̄Qα

)

U
)

=
∑

α∈A

pαtr
(

UT QαP̄
1

2 P̄
1

2 QαU
)

=
∑

α∈A

pαtr
(

P̄
1

2 QαUUT QαP̄
1

2

)

. (17)

Noting that UUT ≤ I in the sense of the positive semidefi-

nite matrices and recalling that, given two positive semidef-

inite matrices A and B, such that A ≤ B, it holds that

trXT AX ≤ trXT BX. Form (17), one gets:
∑

α∈A

pαtr
(

P̄
1

2 QαUUT QαP̄
1

2

)

≤
∑

α∈A

pαtr
(

P̄
1

2 Q2
αP̄

1

2

)

= tr

(

P̄
1

2

(

∑

α∈A

pαQ2
α

)

P̄
1

2

)

=

N
∑

j=1

λj

(

P̄
1

2

(

∑

α∈A

pαQ2
α

)

P̄
1

2

)

≤

N
∑

j=1

λj

(

P̄
)

λj

(

∑

α∈A

pαQ2
α

)

=

k−1
∑

j=1

(σj(Pi) − σk(Pi))σj

(

∑

α∈A

pαQ2
α

)

. (18)

Combining (15), (16) and (18) one gets:
k
∑

j=1

σj

(

∑

α∈A

pαQαPiQα

)

= max
UT U=Ik

tr

(

UT

(

∑

α∈A

pαQαPiQα

)

U

)

≤

k−1
∑

j=1

(σj(Pi) − σk(Pi))σj

(

∑

α∈A

pαQ2
α

)

+

σk(Pi)

k
∑

j=1

σj

(

∑

α∈A

pαQ2
α

)

=

k−1
∑

j=1

σj(Pi)σj

(

∑

α∈A

pαQ2
α

)

−

k−1
∑

j=1

σk(Pi)σj

(

∑

α∈A

pαQ2
α

)

+ σk(Pi)

k
∑

j=1

σj

(

∑

α∈A

pαQ2
α

)

=
k−1
∑

j=1

σj(Pi)σj

(

∑

α∈A

pαQ2
α

)

+ σk(Pi)σk

(

∑

α∈A

pαQ2
α

)

=
k
∑

j=1

σj(Pi)σj

(

∑

α∈A

pαQ2
α

)

.

By inductive hypothesis we have that
k
∑

j=1

σj (Pi) ≤

k
∑

j=1

σi
j

(

∑

α∈A

pαQ2
α

)

.

Therefore, according to lemma 2, we get
k
∑

j=1

σj

(

∑

α∈A

pαQαPiQα

)

≤

k
∑

j=1

σi
j

(

∑

α∈A

pαQ2
α

)

σj

(

∑

α∈A

pαQ2
α

)

=

=
k
∑

j=1

σi+1
j

(

∑

α∈A

pαQ2
α

)

.

�
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