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Abstract—When consensus algorithms are used in very large
networks, spreading information across the whole graph requires
a long time. Hence, traditional convergence analysis, studying
the essential spectral radius of the transition matrix, predicts
very poor performance. However, in estimation problems, it is
clear that a growing number of measurements improves the
quality of the estimate, and it is natural to expect such behaviour
even though the best estimate is approximated using distributed
algorithms. Then, it is important to define a suitable performance
metric, depending on the actual estimation or control problem in
which the consensus algorithm is used. This allows to study how
performance scales when both computation time and number of
agents grow to infinity, for different communication graphs and
choices of the algorithm.

I. INTRODUCTION

Average-consensus algorithms allow to compute an average
in a distributed way. These algorithms have been extensively
applied to the solution of problems of distributed estimation
[13] and of sensor calibration for sensor networks [12], to load
balancing for distributed computing systems [7], and to mobile
multi-vehicles coordination [6].

In this paper, we focus on linear average-consensus. The
analysis of such algorithms usually exploits results from
Markov chains literature, and is focused on predicting the
speed of convergence to the average, when computation time
grows. There has been an extensive literature on this topic,
with both analysis and optimization of convergence speed.
However, we believe that when convergence to the average
is not an objective per se, but is used to solve an estima-
tion or control problem, it is important to consider different
performance measures, more tightly related to the actual
objective pursued. Literature along this research line is not
very developed; some contributions have considered the effects
of robustness to delays [14], noise on the communication links
[16] and quantization [11].

In this paper, we focus on an estimation problem, for which
the natural performance measure is mean quadratic error. We
show that this cost is a function of all eigenvalues of the linear
consensus update matrix, as opposed to classical convergence
analysis which involved only the essential spectral radius. This
remark calls for new results in spectral graph theory.

The study of a performance measure different from con-
vergence speed is essential in large-scale networks, where
not only computation time is large, but also the number of
agents grows. In fact, the larger the network, the slower

the convergence, but on the other side a larger number of
measurements can give a better estimate. Our analysis of mean
quadratic error allows to study the asymptotics with respect to
both time and number of agents going to infinity.

In this paper, we consider families of consensus matrices
associated with communication graphs having a structure,
which allows to compute or at least to estimate the mean
quadratic error. A first class is the one of Cayley graphs, which
exhibit high symmetry and which have been largely studied
in recent distributed estimation and control literature, see e.g.
[1], [8] and [4]. Moreover, a result from [2] has allowed us to
extend our results from Cayley graphs to grids; we believe this
is an important preliminary work in order to tackle the more
interesting problem of geometric graphs, which are related to
grids, as suggested by results in [3], [15] and [5]. Finally, we
have considered ‘de Bruijn’ graphs, introduced in consensus
literature in [9] because of their well-known properties of fast
information transfer, classically exploited in computer science.

II. PROBLEM FORMULATION AND PERFORMANCE
MEASURE

We consider the following simple problem of distributed
estimation: N sensors measure the same real value θ plus i.i.d.
noises. Clearly, the best estimate for θ is the average of such
measurements, but sensors need to compute it in a distributed
way. A directed graph G = (V,E) describes the allowed
communications: the vertices v ∈ V are the sensors, and a pair
(u, v) belongs to E if and only if u can communicate with v.
We will assume that G is strongly connected and aperiodic1.

The sensors’ measurements form a vector x(0) ∈ RN , with
x(0)k = θ+nk, where the noises n1, . . . , nN are i.i.d. random
variables with zero mean (without loss of generality we will
also assume variance is one).

Then we consider a linear average-consensus algorithm:
x(t + 1) = Px(t) for some doubly-stochastic and primitive2

N ×N matrix P consistent with the communication graph G,
i.e., such that (u, v) /∈ E implies Puv = 0. It is well-known
that, for t → ∞, x(t) → 1

N 1Tx(0)1, where 1 denotes a

1G is strongly connected if, for all u, v ∈ V , there exists a path connecting
u to v. It is aperiodic if the greatest common divisor of the lengths of all
cycles is 1; e.g., the presence of a self-loop implies aperiodicity.

2P is primitive if ∃m such that (P m)uv 6= 0 ∀u, v ∈ V . Equivalently,
the graph G = (V, E) with E defined by (u, v) ∈ E ⇐⇒ Puv 6= 0 is
strongly connected and aperiodic. Primitive stochastic matrices have dominant
eigenvalue 1 with multiplicity 1.



column vector with all-1 entries, and that the speed of such
convergence is given by the essential spectral radius of P ,
ρess(P ), i.e., the eigenvalue of P which has second largest
modulus. For non-expander families of graphs, such as for
example Cayley graphs on Abelian groups, when N → ∞,
ρess(P ) → 1. Clearly, this means that convergence to the
average needs longer time as N grows, but this does not
necessarily imply that larger N deteriorates performance.

As our problem is estimating θ, a very natural performance
measure is mean quadratic error:

JN (t) = 1
NE

[
eT (t)e(t)

]
where T denotes transpose and where the error e(t) is defined
as e(t) = x(t)− θ1. For our problem, it is easy to show that
the cost JN (t) can be re-written as

JN (t) = 1
N trace

(
(P t)TP t

)
(1)

If P is normal, i.e. PTP = PPT (e.g. symmetric matrices
are normal), then this is equivalent to

JN (t) = 1
N

∑N−1
i=0 |λi|2t (2)

where λ0, . . . , λN−1 are the eigenvalues of P . In the next
sections, we will study the asymptotic behaviour of JN (t)
when both N and t grow to infinity, for some families of
graphs.

III. SIMPLE EXAMPLES: CIRCLE AND LINE

We start by considering two simple examples, which clarify
how the mean quadratic error can be decreasing for N →
∞ even though ρess(P ) → 1. We discuss in this section the
examples in full detail, as they allow to describe with lighter
notation the same issues of the more general families of graph
which are the topic of next section.

A. Circle and infinite line

As a communication graph, consider an undirected
circle of N sensors, where each sensor is connected to its
first δ neighbours to the right and to the left (for some
positive integer δ < N ). Let PN be a circulant matrix
whose first row is (p0, . . . , pδ, 0, . . . , 0, p−δ, . . . , p−1). For
future ease of notation, we define the Laurent polynomial
p(z) =

∑δ
h=−δ phz

h. We assume that ph ≥ 0 for all h and
that

∑δ
h=−δ ph = 1. Moreover, we assume that p0 6= 0 and

p−1 or p1 (or both) are non-zero; this ensures primitivity of
PN for any N . We consider a family of such graphs and
matrices, with growing N but fixed δ and same weights
(p−δ, . . . , p0, . . . , pδ).

In this example, it makes sense to consider the infinite limit
of the graph: an infinite line, so that x(t) ∈ RZ (i.e., the
set of bi-infinite sequences) and P is infinite banded-Toeplitz
with diagonal band (p−δ, . . . , p0, . . . , pδ). Here, the average
quadratic error E[(eu(t))2] (where eu(t) = xu(t) − θ) is the
same for all u ∈ Z, so that we can look, for example, at node
0 and define

J∞(t) = E[(e0(t))2] .
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Fig. 1. Mean quadratic error (for different N ’s) for circle with weights
p−1 = p0 = p1 = 1

3
.

Using the fact that x(0)k = θ+nk (i.i.d. noise with zero mean
and variance one), we can simplify the cost:

J∞(t) = E
[(

(P tn)0
)2]

and so

J∞(t) =
∑
h∈Z

( ∑
h1,...,ht∈{−δ,...,δ}
h1+···+ht=h

ph1 · . . . · pht
)2

If we define the Laurent polynomial q(t)(z) =
(p(z))t

(
p(z−1)

)t =
∑2δt
h=−2δt q

(t)
h zh, this expression

can be re-written as simply

J∞(t) = q
(t)
0 (3)

The example of the circle graph is interesting because we
can show that ρess(PN ) → 1 for N → ∞, but nevertheless
JN (t) = J∞(t) for large N , and J∞(t) decreases to zero
as 1√

t
when t → ∞. More precisely, for both N, t → ∞,

JN (t) behaves like the maximum between 1
N and 1√

t
. As an

example, Fig. 1 depicts the cost for various N ’s in the case
where p−1 = p0 = p1 = 1

3 .
Let’s see these facts in more detail, starting with the infinite

line.
Proposition 1: There exist positive constants c1, c2 such

that, for all t ≥ 1:
c1√
t
≤ J∞(t) ≤ c2√

t

Proof: From Eq. (3), by Parseval’s identity applied to the
function f(x) =

(
p(ejx)

)t
(where j =

√
−1) we get:

J∞(t) =
1
2π

∫ π

−π
|p(ejx)|2t dx .

Then we focus our attention on the function g(x) = |p(ejx)|2,
for which we find a lower bound gL and an upper bound
gU . Notice that g : R → [0,+∞) is a trigonometric
polynomial, with g(0) = 1 and with g(x) < 1 for all
x ∈ [−π, π] \ {0}. The derivatives are g′(0) = 0 and
g′′(0) = −

∑2δ
h=−2δ

(∑
h1,h2:h1−h2=h

ph1ph2

)
h2 < 0. Now

let 0 < α < −g′′(0) < β, so that there exists a neighborhood
of 0, say (−a, a), such that e−βx

2 ≤ g(x) ≤ e−αx2
for all x ∈



(−a, a) and also g(x) ≤ e−αa
2

for all x ∈ [−π,−a] ∪ [a, π].
Now define functions

gL(x) =

{
e−βx

2
for x ∈ (−a, a)

0 otherwise

and

gU (x) =

{
e−αx

2
for x ∈ (−a, a)

e−αa
2

otherwise

so that gL(x) ≤ g(x) ≤ gU (x) in the interval [−π, π]. For the
upper bound:

J∞(t) ≤ 1
2π

∫ π

−π
(gU (x))t dx ≤ 1

2π

∫ ∞
−∞

e−αtx
2
dx+(e−αa

2
)t

Then notice that 1
2π

∫∞
−∞ e−αtx

2
dx = 1

2
√
πα

1√
t
, which ends

the proof of the upper bound. For the lower bound:

J∞(t) ≥ 1
2π

∫ π

−π
(gL(x))t dx =

1
2π

∫ a

−a
e−βtx

2
dx

and then use the well-known bound erfcx ≤ e−x
2

for all
x ≥ 0, where erfcx = 2√

π

∫∞
x
e−y

2
dy, obtaining:

1
2π

∫ a

−a
e−βtx

2
dx =

1
2
√
πβ

1√
t
(1− erfc(

√
βa
√
t))

≥ 1
2
√
πβ

1√
t
(1− e−βa

2t)

�
Now let’s see the results for circular graphs. Let’s recall

that PN is normal (so Eq. (2) applies), and its eigenvalues
are, for k = 0, . . . , N − 1, λk = p(ej

2π
N k). It is clear that

limN→∞ ρess(PN ) = 1. However the following facts are true
for the mean quadratic error.

Proposition 2: JN (t) is non-increasing with respect to N
and, for all N > δt, JN (t) = J∞(t) holds.

Proof: The cost is

JN (t) = 1
N

N−1∑
h=0

q(t)(ej
2π
N h)

= 1
N

2tδ∑
k=−2tδ

q
(t)
k

N−1∑
h=0

ej
2π
N hk

=
∑

−2tδ≤k≤2tδ
k=0 mod N

q
(t)
k

This equality can also be interpreted as Parseval’s identity
for the Fourier transform over the group ZN of the function
f(x) =

(
p(ejx)

)t
.

Notice that, if N > 2tδ, then JN (t) = q
(t)
0 = J∞(t). When

N decreases, either the cost remains the same, or new positive
terms are added in the summation, thus increasing the cost. �
The proposition above states formally the very natural fact
that at time t each node has received information only from
tδ neighbours on his right and the same on his left, and for all
N > 2tδ the node can’t see any difference from an analogous
node laying in the infinite line.
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Fig. 2. Circle with 2N vertices and reflection axis corresponding to the map
l 7→ 2N − 1− l, used in the construction of a line with N vertices.

Proposition 3: There exist positive constants c1, c2 such
that, for all t ≥ 1:

max
{

1
N
,
c1√
t

}
≤ JN (t) ≤ 1

N
+
c2√
t

Proof: Consider the same functions g, gL and gU defined
for the proof of Prop. 1; note that both gL and gU are even
functions, and they are decreasing on [0, π]. With this notation,
JN (t) = 1

N

∑N−1
h=0 (g( 2π

N h))
t. So, for the upper bound:

JN (t) ≤ 1
N + 2 1

N

d(N−1)/2e∑
h=1

(g( 2π
N h))

t

≤ 1
N + 1

π
2π
N

d(N−1)/2e∑
h=1

(gU ( 2π
N h))

t

≤ 1
N + 1

π2
∫ π

0

(gU (x))t dx

and then conclude, estimating
∫ π
−π(gU (x))t dx as in the proof

of Prop. 1. On the other side, we have two different lower
bounds: the trivial JN (t) ≥ 1

N , and also, by Propositions 2
and 1, JN (t) ≥ J∞(t) ≥ c1√

t
. �

The proposition above implies that if N �
√
t, then JN (t) ≈

1
N , while for N �

√
t, we have JN (t) ≈ 1√

t
.

B. Line

Thanks to a technique from [2], we can study also the mean
quadratic error for a line of N nodes, each communicating
with δ neighbours on the left and on the right, at least under
some assumptions on the coefficients: we ask some symmetry
and suitable modified weights at the borders of the line.

This allows to see the line as a projection of a circle
with twice as many vertices, and so to obtain the eigen-
values of the consensus matrix by using [2, Prop. 3.2].
In fact, if you consider a circle with 2N vertices labeled
consecutively as 0, . . . , 2N − 1, and you take a symmetric
consensus matrix P ∈ R2N×2N , circulant, with first row
(p0, . . . , pδ, 0, . . . , 0, p−δ, . . . , p−1) and with p−l = pl for
all l, then you have that the map l 7→ 2N − 1 − l, (i.e.
the reflection with respect to the line shown in Fig. 2) is a
symmetry of the labeled graph. Thus, if we define P ∈ RN×N
as P l,m = Pl,m + Pl,2N−1−m for all l,m = 0, . . . , N − 1,
then we can compute the eigenvalues of P using [2, Prop.



3.2]. Notice that P obtained in such a way is symmetric, and
apart from the first and last δ rows and columns, is banded,
with diagonal band (p−δ, . . . , p0, . . . , pδ).

We obtain that the eigenvalues are, for k = 0, . . . , N − 1,
λk = p(ej

π
N k).

Now for the cost we can prove propositions very similar
(both in the statement and in the proof) to those of the circle
graph. With J∞(t) we refer to the same infinite-line graph
considered in Sect. III-A.

Proposition 4: JN (t) is non-increasing with respect to N ,
JN (t) > J∞(t) for all N and lim

N→∞
JN (t) = J∞(t).

Proof: The cost is

JN (t) = 1
N

N−1∑
h=0

q(t)(ej
π
N h) = 1

N

2tδ∑
k=−2tδ

q
(t)
k

N−1∑
h=0

ej
π
N hk

Now
∑N−1
h=0 e

j πN hk = N if k is multiple of 2N ; it is 1−ejπk

1−ej
π
N
k

otherwise (so it’s 0 for all even k). Notice that the assumption
pk = p−k for all k also implies q(t)k = q

(t)
−k for all k and for

all t, so that, for any odd k,

q
(t)
k

N−1∑
h=0

ej
π
N hk + q

(t)
−k

N−1∑
h=0

ej
π
N h(−k)

= q
(t)
k

(
1−ejπk

1−ej
π
N
k + 1−e−jπk

1−e−j
π
N
k

)
= 2q(t)k = q

(t)
k + q

(t)
−k

This allows to re-write the cost as

JN (t) =
∑

−2tδ≤k≤2tδ
k=0 mod 2N

q
(t)
k + 1

N

∑
−2tδ≤k≤2tδ

k odd

q
(t)
k

from which the statement of our proposition is proved. �

Proposition 5: There exist positive constants c1, c2 such
that, for all t ≥ 1:

max
{

1
N
,
c1√
t

}
≤ JN (t) ≤ 1

N
+
c2√
t

Proof: Consider the same functions g, gL and gU defined
for the proof of Propositions 1 and 3. With this notation,
JN (t) = 1

N

∑N−1
h=0 (g( πN h))

t. So, for the upper bound:

JN (t) ≤ 1
N + 1

N

N−1∑
h=1

(g( πN h))
t

≤ 1
N + 1

π
π
N

N−1∑
h=1

(gU ( πN h))
t

≤ 1
N + 1

π

∫ π

0

(gU (x))t dx

and then conclude, estimating
∫ π
0

(gU (x))t dx as in previous
proofs. On the other side, JN (t) ≥ 1

N , and, by Propositions
4 and 1, JN (t) ≥ J∞(t) ≥ c1√

t
. �

IV. CAYLEY GRAPHS AND GRIDS

The simple example of the circle can be generalized to more
dimensions: for dimension 2 the graph is a grid on a torus,
while for general dimension you get a Cayley graph on an
Abelian group.

Now we’ll give a formal definition of a linear consensus
map P associated with a grid on a d-dimensional torus with Ni
vertices in dimension i and connections to at most δi nearest
neighbours in dimension i. The circle described and analyzed
in Sect. III-A is the particular case when d = 1.

Consider the vertices of the grid to be the set V =
{0, . . . , N1−1}×· · ·×{0, . . . , Nd−1} and fix positive integers
δ1, . . . , δd such that δi < Ni for all i. Consider now the group
G = ZN1×· · ·×ZNd and define a linear map P : RG → RG,
as follows:

(Px)h =
δ1∑

k1=−δ1

· · ·
δd∑

kd=−δd

pkxh−k

for some coefficients pk ∈ [0, 1] such that
∑

k pk = 1. Notice
that here indexes belong to G, so h−k means (h1− k1 mod
N1, . . . , hd − kd mod Nd). If now you identify indexes in G
with indexes in V in the natural way, you get a map P :
RV → RV . For example, if d = 1, P is the circulant matrix
corresponding to a circular graph, as we saw in Sect. III-A.

Throughout this section, we will assume that p0 6= 0
(i.e., the associated graph has self-loops), and that the set
of vectors {k : pk 6= 0} generates Zd; these assumptions
ensure primitivity of P . For later ease of notation, it’s con-
venient to define the Laurent polynomial p(z1, . . . , zd) =∑δ1
k1=−δ1 · · ·

∑δd
kd=−δd pkz

k1
1 . . . zkdd .

It is well-known that P is normal and has eigenvalues

λh = p(ej
2π
N1
h1 , . . . , e

j 2π
Nd

hd), h ∈ V

so that

JN (t) =
∑
h∈V

∣∣∣p(ej 2π
N1
h1 , . . . , e

j 2π
Nd

hd)
∣∣∣2t

We can also define the infinite-limit of such graph and such
map, considering an infinite grid in d-dimensions and defining
P : RZd → RZd to be, for each h ∈ Zd,

(Px)h =
δ1∑

k1=−δ1

· · ·
δd∑

kd=−δd

pkxh−k .

The mean quadratic error is the same for any vertex, so we
consider for example vertex 0:

J∞(t) = E[(e0(t))2] = E
[(

(P tn)0
)2]

The same as in Sect. III, we can re-write this
cost as J∞(t) = q

(t)
0 , where q(t)(z1, . . . , zd) =

pt(z1, . . . , zd)pt(z−1
1 , . . . , z−1

d ).

Also the example of the line with N vertices can be
generalized to any dimension d, obtaining a d-dimensional
grid with N1 · . . . ·Nd vertices from a grid on a d-dimensional



torus with 2N1 · . . . · 2Nd vertices, via the same projection
technique from [2], as follows.

Let V2N = {0, . . . , 2N1 − 1} × · · · × {0, . . . , 2Nd − 1}
and VN = {0, . . . , N1 − 1} × · · · × {0, . . . , Nd − 1}. Take
P : RV2N → RV2N a consensus map for a grid on a
d-dimensional torus with 2Ni vertices in dimension i and
connections to at most δi nearest neighbours in dimension i,
associated with a Laurent polynomial p(z1, . . . , zd). Assume
that coefficients ph satisfy the following quadrantal symmetry:
ph1,...,hd = pk1,...,kd if ∀i, hi = ±ki. This assumption implies
that reflections σi, defined by σi(h) = k with kl = hl if l 6= i
and ki = 2Ni−1−i, are symmetries of the labeled grid on the
torus. Now denote by H the group generated by σ1, . . . , σd
and define, for all g ∈ VN , Og = {η(g) : η ∈ H} ⊆ V2N .
Finally, define P : RVN → RVN by Ph,k =

∑
l∈Ok

Ph,l, for
all h,k ∈ VN . Notice that P is symmetric and that, apart
from the borders, P associates to edges of the grid the same
coefficients that P associates to edges of the grid on the torus.

Using [2, Prop. 3.2], we can find the eigenvalues of P :

λh = p(ej
π
N1
h1 , . . . , e

j π
Nd

hd), h ∈ G
and thus obtain a cost

JN (t) =
∑
h∈G

∣∣p(ej π
N1
h1 , . . . , e

j π
Nd

hd)
∣∣2t .

Propositions 1, 2, 3, 4, and 5 generalize to this setting.
We give here statements only; proofs use the same basic
ingredients as the ones given in Section III, but are more
technical, and are not given here for lack of space.

Proposition 6: For the infinite grid on Zd, there exist pos-
itive constants c1, c2 such that:

c1

(
√
t)d
≤ J∞(t) ≤ c2

(
√
t)d �

Proposition 7: For the grid on a d-dimensional torus, with
N1 · . . . ·Nd vertices, JN (t) is non-increasing in N1, . . . , Nd
and if Ni > 2δit for all i = 1, . . . , d, then JN (t) = J∞(t).

For the grid on a d-dimensional cube, with N1 · . . . · Nd
vertices, JN (t) is non-increasing in N1, . . . , Nd, and, if
N1, . . . , Nd →∞, then JN (t)→ J∞(t). �

Proposition 8: Both for the grid on a d-dimensional torus
and for the grid on a d-dimensional cube, with N1 · . . . · Nd
vertices, there exist positive constants c1, c2 such that for all
t ≥ 1:

JN (t) ≥ max
I⊆{1,...,d}

{
1∏

i/∈I Ni

c1

(
√
t)|I|

}
and

JN (t) ≤
∑

I⊆{1,...,d}

[
1∏

i/∈I Ni

c2

(
√
t)|I|

]
�

This last proposition means that, for N1, . . . , Nd, t→∞,

JN ≈ max
I⊆{1,...,d}

{
1∏

i/∈I Ni

1
(
√
t)|I|

}
The result is cleaner in the case when N1 = · · · = Nd = n,
where:

JN ≈ max
{

1
nd
,

1
(
√
t)d

}
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Fig. 3. ‘De Bruijn’ graph, k = 2, n = 3

V. ‘DE BRUIJN’ GRAPHS

We consider now a different example, a family of graphs
known for good expansion properties, introduced in the con-
sensus literature in [9]. They are regular directed graphs, with
in-degree and out-degree independent from the number of ver-
tices N and nevertheless they have diameter only logarithmic
in N .

A ‘de Bruijn’ graph is a directed graph (V,E), where V
is the set of all n-tuples of elements of a fixed alphabet
A of cardinality k, say A = {0, . . . , k − 1}. Clearly the
cardinality of V is N = kn. An edge is drawn from a word
u = (u1, . . . , un) to a word v = (v1, . . . , vn) if and only
if v = (a, u1, . . . , un−1) for some a ∈ A. Fig. 3 shows as
an example the binary ‘de Bruijn’ graph with k = 2 and
n = 3. Notice the presence of k self-loops (on words with
u1 = u2 = · · · = un), which ensures that the graph is
aperiodic. Also notice that both the in-degree and the out-
degree of each node is k, and that the diameter of the graph is
n = logkN . We will consider k as a fixed parameter and we
will let n grow, in such a way that N → ∞, but the degree
is kept constant and the diameter is logarithmic in N .

We associate to the graph a consensus matrix with uniform
weight 1/k on each edge. Such matrix P is not normal, so
Eq. (2) does not hold, but we can explicitly compute the power
P t and the cost JN (t) by using Eq. (1). In fact, if we order
vertices by reading their labels as integers written in base-k,
then we can write P as

P = 1
k1k ⊗ Ikn−1 ⊗ 1Tk

where ⊗ denotes Kronecker product of matrices, 1l is a
length-l all-ones vector, and Il is a l× l identity matrix. This
expression, together with properties of the Kronecker product,
gives the following result.

Proposition 9: There is convergence in finite time n to
average consensus:

Pnx(0) =
1
N

N∑
k=1

xk(0)

and moreover:

JN (t) =

{
1
kt if t ≤ n
1
N if t ≥ n.



Proof: You can re-write P as P = 1
k1k ⊗ I

⊗(n−1)
k ⊗ 1Tk ,

where A⊗a = A ⊗ · · · ⊗ A (a times). From this, a proof
by induction, using the the property that (A⊗B)(C ⊗D) =
(AC)⊗(BD) whenever the sizes of matrices A,B,C,D allow
to write the right-hand side expression, allows to obtain:

P t =
1
kt

1⊗tk ⊗ I
⊗(n−t)
k ⊗ (1Tk )⊗t .

Then, it immediately follows that

P t =

{
1
kt1kt ⊗ Ikn−t ⊗ 1Tkt if t ≤ n
1
N 1N1TN if t ≥ n.

Hence, Pnx(0) = 1
N

∑N
k=1 x(0)k.

Finally, you compute

(PT )tP t =

{
1
kt

(
1kt1Tkt

)
⊗ Ikn−t if t ≤ n

1
N 1N1TN if t ≥ n.

and conclude by taking the trace. �

If we compare communication on a ‘de Bruijn’ graph to
the one using a Cayley graph with bounded size of the
neighborhood, we see that for any fixed N the convergence to
the average is obtained in finite time logkN for the former,
and is asymptotical for t→∞ in the latter (with exponential
speed, but slower as N grows). The limit for N → ∞ of
the mean quadratic error is 1

kt for the ‘de Bruijn’ graph, as
opposed to a cost that asymptotically decreases only as 1√

t
for

the circle. The different result is justified by the long-range
connections allowed in the ‘de Bruijn’ graph, which improve
performance, but are expensive or unrealistic in some commu-
nication scenarios. Comparing these two examples suggests a
further investigation of the influence of graph properties on
the mean quadratic error.

VI. CONCLUSION AND OPEN PROBLEMS

We have considered linear average-consensus algorithms
applied to solving a simple distributed estimation problem.
We have underlined how, in this context, a very natural perfor-
mance metric—mean quadratic error—depends on the whole
spectrum of the consensus matrix, and not just on the essential
spectral radius. A rigorous asymptotic analysis of such cost for
some families of communication graphs confirms intuition: a
growing number of sensors can improve performance, despite
the slower convergence to average consensus.

We leave as an open problem to extend our analysis to
more general families of graphs. In particular, we believe it
is interesting to study (random) geometric graphs, which are
known to be realistic models for many wireless communication
and sensor networks (see e.g. the recent book [10]). Our results
on the grid graphs can be considered as a preliminary work
towards this aim, as we believe that behaviour of random
geometric graphs is very related to the one of grids. In fact,
the analysis in [3] of the mixing time of a random walk on a
random geometric graph is done using bounds involving the
essential spectral radius of a matrix associated with the grid.

Moreover, in [15] there is a proof of concentration of the
asymptotic distribution of the spectrum of a simple random
walk on a random geometric graph towards the one on a
grid. These results encourage the search for bounds on the
mean quadratic error when communication follows a random
geometric graph involving the cost of a corresponding grid, for
which we have already established the asymptotic behaviour.
The conjecture of a strong similarity of random geometric
graphs to grids is also supported by simulations, as it is shown
in [5].
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