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Abstract: We consider the problem of commanding the electronic power interfaces of the
microgenerators in a low voltage microgrid for the task of optimal reactive power compensation.
In this work, we analyze the convergence of the strategy proposed by Tenti et al. (2012). The
proof of convergence gives some additional insight on the behavior of the algorithm and allows
the characterization of its rate of convergence as a function of the microgrid parameters.
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1. INTRODUCTION

Recent technological advances, together with environmen-
tal and economic motivations, have been driving the ap-
pearance of small power generation devices in the power
distribution grid. These microgenerators are generally
powered by renewable energy sources, and they are in-
terconnected to the low voltage grid via power electronic
interfaces (inverters). The availability of a large number
of inverters in the grid can yield relevant benefits for
the network operation, which go beyond the availabil-
ity of clean, inexpensive electrical power. They can be
used for providing of a number of ancillary services that
are of great interest for the management of the grid:
voltage support, harmonic compensation, reactive power
compensation, among others (Katiraei and Iravani, 2006;
Prodanovic et al., 2007). We focus here on the problem
of reactive power compensation for the minimization of
distribution losses.

In order to exploit these available resources, the distri-
bution grid must be provided with an ICT architecture
which today is not present. One possible approach for
deploying such an architecture is the concept of smart
microgrids. A microgrid is a portion of the power dis-
tribution network which is managed autonomously from
the rest of the grid, in order to improve the quality of the
service, achieve economic savings, and increase the hosting
capacity. There are different ways in which the electronic
power interfaces inside a microgrid can be commanded for
solving the problem of optimal reactive power compen-
sation. For example via a centralized solution, where a
microgrid supervisor collects all the field measurements,
knows the grid topology and the grid parameters, and
dispatch the power inverters via a communication channel
(Zhao et al., 2005; Lavaei et al., 2011). Another option
consists in deriving some purely local control strategies,
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in which every microgenerator decide its behavior based
on its own measurements (Turitsyn et al., 2011). Because
there is no cooperation, suboptimal results are expected in
this case. Another option is the approach of networked con-
trol systems. Each microgenerator is provided with some
computing, communication, and measurement capabili-
ties. They also have some local knowledge of the microgrid
electrical topology, while there is no supervising unit that
knows the entire system parameters. Via local exchange of
information between microgenerators, a cooperative global
behavior can be achieved. Increased robustness, automatic
reconfiguration, and reduced communication requirements
are also notable benefits of this type of solutions.

This approach has been explored only recently in the field
of power systems. One example is the work by Bolognani
and Zampieri (2011a). A different distributed algorithm,
based on a voltage support strategy, has been proposed by
Tenti et al. (2012), motivated mainly by a simulative study.
In the following, we formally prove the convergence of the
algorithm by Tenti et al. to the desired optimal solution.
The analytic study is also useful because it can give some
extra insight about the global behavior of the system,
starting from a characterization of the rate of convergence
of the algorithm with respect to some system and design
parameters.

2. MICROGRID MODEL

For the purpose of this paper, we model a micro-grid as a
radial directed graph G (see Figure 1), in which the edges
(whose set is denoted by E) represent the power lines,
and whose nodes (whose set is denoted by V) represent
loads, micro-generators, and also the point of connection
of the micro-grid to the transmission grid (called point of
common coupling, or PCC).

We limit our study to the steady state behavior of the sys-
tem, when all voltages and currents are sinusoidal signals
at the same frequency. They can therefore be represented
via a complex number whose absolute value corresponds
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Fig. 1. The lower panel is a circuit representation of a
microgrid, while the upper panel is the corresponding
graph model. Black diamonds (below) and circled
nodes (above) correspond to microgenerators con-
nected to the microgrid. Node 0 corresponds to the
point where the microgrid connects to the utility
(PCC). The other nodes are the microgrid loads.

to their root-mean-square value, and whose angle corre-
sponds to their phase with respect to an absolute time
reference. In this notation, the steady state of the grid is
described by the variables:

• uv ∈ C, v ∈ V, are the grid voltages at the points
where the nodes are connected to the grid;
• iv ∈ C, v ∈ V, are the currents injected by the nodes

into the grid;
• ξe ∈ C, e ∈ E , are the currents flowing on the edges

of the grid.

We denote by ze ∈ C, e ∈ E , the impedance of the power
lines.

Micro-generators form a subset of the nodes of the micro-
grid. They exhibit the following features:

• they are connected to the grid via electronic interfaces
(power inverters) which can be commanded in order
to inject into the grid the desired amount of active
and reactive power, as in Lopes et al. (2006); Green
and Prodanović (2007);
• they can measure their own voltage and current

via on-board synchronized phasor measurement units
(Phadke and Thorp, 2008);
• they have some basic computational capabilities;
• they can communicate with other micro-generators

via power line communication (PLC), i.e. by using
the electric grid to convey data messages to the units
that are sufficiently close (Galli et al., 2011).

Also the PCC, whose corresponding node is indexed as 0, is
provided with the same measurement and communication
capabilities. We denote by C ⊂ V the subset of nodes
corresponding to the microgenerators, and by C0 = C∪{0}
the subset that also includes the PCC.

We introduce the vectors u and i in which the voltages uv
and the currents iv are stacked, respectively. With no loss

of generality, we adopt the block decomposition

u =

u0u′
u′′

 , i =

i0i′
i′′

 , (1)

where u′ and i′ corresponds to the nodes in C (microgen-
erators), while u′′ and i′′ corresponds to the nodes in V\C0
(the loads).

Each node v of the micro-grid (the PCC, the loads, and
the microgenerators) is characterized by a law relating its
injected current iv with its voltage uv. We model the node
corresponding to the PCC (node 0) as a constant voltage
generator at the nominal voltage UN , with fixed angle ψ

u0 = UNe
jψ.

We assume instead that the voltage uv and the current iv
of every node v except the PCC, satisfy the following law

uv īv = sv

∣∣∣∣ uvUN
∣∣∣∣ηv , ∀v ∈ V\{0}, (2)

where sv = pv + jqv is the nominal complex power (pv
and qv being the active and reactive nominal power,
respectively), and ηv is a characteristic parameter of the
node v. The model (2) is called exponential model and is
widely adopted in the literature on power flow analysis
(Haque, 1996). Notice that sv is the complex power that
the node would inject into the grid if the voltage at its
point of connection were the nominal voltage UN . Micro-
generators fit in this model with ηv = 0, as they are
commanded via a complex power reference and they are
capable of injecting it independently from the voltage at
their point of connection.

3. REACTIVE POWER COMPENSATION PROBLEM

The problem of optimal reactive power compensation
in smart microgrid consists in deciding where to inject
the correct amount of reactive power that satisfies some
optimality criterion. The reactive power can be provided
by the microgenerators (nodes in C) and by the utility, via
the PCC. For this reason, we denote the nodes in C0 as
compensators. The commands that are available in order
to fulfill this task are the reactive power references for
the power inverters that equip the microgenerators, and
therefore the reactive power injections by the nodes in C.
Power distribution losses has been chosen in Tenti et al.
(2012) as a metric for optimality. This choice yields the
following nonlinear optimization problem.

min
qh,h∈C

∑
e∈E
<(ze)|ξe|2 (3)

where qh, h ∈ C are the amounts of reactive power injected
into the grid by the microgenerators, and <(ze) stands
for the real part of ze. The way in which the power line
currents ξe depend on the reactive power injections qh
depends on the physical laws that govern the microgrid,
and will be investigated in Section 5.1.

4. ALGORITHM BY Tenti et al. (2012)

The following distributed algorithm has been proposed in
Tenti et al. (2012) for solving (3). In order to formally
describe the algorithm, we need the following definitions.
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Fig. 2. An example of neighbor compensators. Circled
nodes (both gray and black) are compensators. Nodes
circled in black belong to the set N (h) ⊂ C0. Node
circled in gray are compensators which do not belong
to the set of neighbors of h. For each compensator k ∈
N (h), the path that connects h to k does not include
any other compensator besides h and k themselves.
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Fig. 3. The proposed communication architecture. The
thick lines are the available communication links
between the compensators (the circled nodes). Each
node h is capable of collecting data messages only
from the neighbor compensators.

Path: Let h, k ∈ V be two nodes of the graph G. The
path Phk = (v1, . . . , v`) is the sequence of nodes, without
repetitions, that satisfies

• v1 = h
• v` = k
• for each i = 1, . . . , ` − 1, the nodes vi and vi+1 are

connected by an edge.

Notice that, as the microgrid topology is radial, there is
only one path connecting a pair of nodes h, k ∈ V.

Neighbor compensators: Let h be a node belonging to
C (i.e. a microgenerator). The set of compensators that
are neighbors of h, denoted as N (h), is the subset of C0
defined as

N (h) = {k ∈ C0 | Phk ∩ C0 = {h, k}} .
Figure 2 gives an example of such set. It is assumed
in Tenti et al. (2012) that every microgenerator h ∈ C
knows its set of neighbors N (h) and can communicate
with them (see Figure 3). Notice that this communication
architecture can be constructed by each compensator in
an initialization phase, by exploiting the PLC channel
(as suggested for example in Costabeber et al. 2011).
This allows also a plug-and-play implementation of such
architecture, where new microgenerators can be connected
to the grid with automatic reconfiguration.

hk ∈ N (h)

uh=1

u`=0
∀` ∈ C\{h}

i`=0
∀` /∈ C

h

k ∈ N (h) uh=1

u`=0
∀` ∈ C\{h}

i`=0
∀` /∈ C

Fig. 4. A representation of how the elements Gkh are
defined. Notice that in the configuration of the left
panel, as the paths from h to its neighbors k ∈ N (h)
do not share any edge, the gains Gkh corresponds to
the path admittances 1/Zkh.

It is also assumed that each microgenerator h ∈ C knows
the electric topology that connects it to its neighbor
compensators. As suggested in Costabeber et al. (2011),
also these data can be estimated in an initialization phase
via some ranging technologies over the PLC channel.
Alternatively, this limited amount of knowledge of the
microgrid topology can be stored in the microgenerator
computational units at the deployment time.

G-parameters: Consider the hybrid network matrix
(Desoer and Kuh, 1984) G that satisfies i0i′

u′′

 = G

u0u′
i′′

 . (4)

In particular, the elements of G corresponding to the pair
k ∈ C0, h ∈ C correspond to

Gkh = ik∣∣∣∣∣ uh = 1
u` = 0, ` ∈ C\{h}
i` = 0, ` /∈ C

. (5)

i.e. the current injected by the compensators k when

• microgenerator h is replaced with a unitary voltage
generator;
• all other compensators are replaced by short circuits;
• all loads are replaced by open circuits.

Notice that the matrix G depends only on the microgrid
electric topology, and that

Gkh 6= 0 if and only if k ∈ N (h). (6)

Notice moreover that

Ghh +
∑
k 6=h

Gkh = 0. (7)

Figure 4 gives a representation of this definition. Notice
that, in the special case in which the paths from compen-
sator h to its neighbor compensators are all disjoint paths,
then Gkh = 1/Zkh, where Zkh is the corresponds to the
impedance of the electric path connecting h to k. This
special case is the configuration considered in Tenti et al.
(2012), and in this sense this definition allows to extend
those results to more general situations.

The algorithm proposed in Tenti et al. (2012) corresponds
to the repeated execution of the following steps.



Algorithm

At each algorithm iteration t

1. a microgenerator h is activated;
2. all other microgenerators keep their reactive power

injection constant;
3. microgenerator h collects phasorial voltage measure-

ments from its neighbor compensators

uk, k ∈ N (h)\{h};
4. microgenerator h computes the target voltage

u∗h =

∑
k∈N (h)\{h}Gkh uk∑
k∈N (h)\{h}Gkh

; (8)

5. microgenerator h updates the amount of injected reac-
tive power qh to q+h so that the distance between u∗h and

the resulting voltage u+h is minimized. This is achieved
via the update

q+h = qh + δ

with

δ = −=
(
ūh
u∗h − uh
Zeq
h

)
, (9)

where ūh is the complex conjugate of uh, = stands
for the imaginary part, and Zeq

h is the equivalent
impedance of the grid seen by the microgenerator h.

5. CONVERGENCE ANALYSIS

In order to study the convergence of the algorithm, we first
need to introduce a model for the microgrid power flows.

5.1 Approximated power flow equations

Assumption 1. We assume that all the micro-grid power
line impedances have the same inductance/resistance ra-
tio, i.e. for each edge e ∈ E we have

ze = |ze|ejθ.

We introduce the symmetric matrix X as done in Bolog-
nani and Zampieri (2011b), which depends on the electrical
topology of the micro-grid and satisfies

(1h − 1k)TX(1h − 1k) = |Zhk| , h, k ∈ C (10)

X10 = 0, (11)

where 1h is the vector with 1 in position h and 0 elsewhere.
The matrix X allows to write the exact relation between
node voltages and node currents

u = ejθXi+ 1UNe
jψ, (12)

where 1 is the vector of all ones.

The approximated model proposed in Bolognani and
Zampieri (2011b) is based on the fact that the micro-grid
operating point, in its regular regime, is characterized by
a relatively high nominal voltage compared to the voltage
drops across the power lines, and by relatively small power
distribution losses, compared to the power delivered to
the loads. According to this analysis, node voltages are
approximated (up to an error term which is smaller than
1/UN for large nominal voltage UN ) by an affine expression
of the injected complex powers

uv ≈ ejψ
(
UN +

1

UN
ejθ1TvXs̄

)
, (13)

where s is the vector whose elements are the nominal
complex node powers sv, v ∈ V\{0}, augmented with
s0 = 0. We consider the vector q = =(s) with the same
block structure as in (1)

q =

 0
q′

q′′

 ,
where q′ corresponds to the reactive power injections by
the microgenerators, while q′′ corresponds to the reactive
power injections by the loads.

Following Bolognani and Zampieri (2011b), the problem
of optimal reactive power injection at the compensators
can therefore be expressed as a convex, quadratic, linearly
constrained problem, in the form

min
q′

J(q), where J(q) =
cos θ

2
qTXq. (14)

5.2 Algorithm analysis

Given the model presented in the previous section, it is
possible to rewrite the steps of the algorithm proposed in
Tenti et al. (2012) as follows.

We rewrite the target voltage u∗h in (8) as

u∗h = bThu, (15)

where the elements of the vector bh are, for kinC0,

[bh]k =


0 for k = h

Gkh∑
k∈N (h)\{h}Gkh

= −Gkh
Ghh

for k 6= h,
(16)

where we used the properties (6) and (7) of the weights
Ghk. We also rewrite step 5 of the algorithm as

q+ = q + 1hδ.

The resulting voltage u+h can be rewritten, via the approx-
imate equation (13), as

u+ = ejψ
(
UN1 +

1

UN
ejθX(p− jq − 1hδ)

)
= u− jejψ 1

UN
ejθX1hδ,

and in particular

u+h = uh − jejψ
1

UN
ejθXhhδ. (17)

According to step 5 of the algorithm, via (9), the value of
δ can be expressed as

δ = −=
[
ūh
bTh − 1Th
Xhhejθ

u

]
,

where we also used the fact that, according to the proposed
model, the equivalent impedance of the grid seen by
microgenerator h is equal to

Zeq
h = Zh0 = Xhhe

jθ.

By using the expression (13) for the microgrid voltages,
we have that

δ = −=
[(
UN +

1

UN
e−jθ1ThXs

)
bTh − 1Th
Xhhejθ

(
1

UN
ejθXs̄

)]
=
bTh − 1Th
Xhh

Xq + δ̃,

where δ̃ is infinitesimal for large nominal voltage UN .



It is possible to show that, according to the approximated
model, this choice of δ is indeed the one that minimizes
the distance between u∗h and u+h as defined in (15) and
(17), respectively. We omit the proof here, which is based
on standard complex algebra steps.

The resulting discrete time systems that describes the
algorithm behavior is therefore

q(t+ 1) = q(t) + 1hδ

=

(
I − 1h(1h − bh)TX

Xhh

)
q(t),

or equivalently

q(t+ 1) = F (t)q(t), (18)

where F (t) depends on which microgenerator h has been
activated at time t

F (t) = Fh = I − 1h1
T
h (I −B)X

Xhh
,

B being the matrix whose rows are the vectors bh. Via
the same block decomposition as before, B results to be
divided as

B =

0 0 0
∗ B′ 0
0 0 0

 , (19)

where ∗ is a generic nonzero block.

5.3 Convergence result

In order to study the convergence of the algorithm, we
introduce the variable

x(t) = q′(t)− q′opt,
where q′opt is the solution of the optimization problem (14).
By standard optimization arguments, we can characterize
q′opt via the condition

Xqopt = X

 0
q′opt
q′′

 =

[
0
0
∗

]
,

meaning that the optimal solution is a stationary point
with respect to the decision variables. It is easy to see
that qopt is an equilibrium for (18). Indeed, for any h ∈ C,
using the block structure (19) of B, we have

Fhqopt = qopt −
1h1

T
h (I −B)X

Xhh
qopt

= qopt −
1h1

T
h (I −B)

Xhh

[
0
0
∗

]
= qopt.

By also introducing the block structure of the matrix X

X =

0 0 0
0 X ′ ∗
0 ∗ ∗

 ,
we can thus refer for the stability analysis to the reduced
discrete-time system

x(t+ 1) = F ′(t)x(t), (20)

where

F ′(t) = F ′h = I − 1h1
T
h (I −B′)X ′

X ′hh
. (21)

The following lemma provides a convenient expression for
B′, for studying the convergence of the system (20).

Lemma 2. Let B′ be the block of B as in (19). We have

B′ = I − (diag {|Ghh|, h ∈ C})−1 (X ′)−1

where diag {|Ghh|, h ∈ C} is the diagonal matrix whose
elements are the elements |Ghh|, h ∈ C.

Proof. It follows from (16), as B′ is the block of B
corresponding to the nodes in C, that

B′ = I − (diag {Ghh, h ∈ C})−1 (G′)T ,

where we also have partitioned G as

G =

∗ ∗ ∗∗ G′ ∗
∗ ∗ ∗

 .
By recalling (4), together with (12), we have i0i′

u′′

 =

∗ ∗ ∗∗ G′ ∗
∗ ∗ ∗

u0u′
i′′

 ,
u0u′
u′′

 = ejθ

0 0 0
0 X ′ ∗
0 ∗ ∗

i0i′
i′′

+ 1u0.

It is easy to see that, in the configurations in which
u′ = 1h, for some h ∈ C, u0 = 0, i′′ = 0,

i′ = Gu′ and u′ = ejθX ′i′,

and therefore G′ is symmetric and equals

G′ = (ejθX ′)−1.

We conclude observing that Ghh = ejθ|Ghh|. 2

The following technical lemma is also needed before stating
the main convergence result.

Lemma 3. For any h ∈ C we have |Ghh|Xhh ≥ 1.

Proof. The statement descends from circuit-theory con-
siderations. Remember that ejθXhh corresponds to the
equivalent impedance of the grid seen from node h when
the PCC is replaced by a short circuit, and all the other
microgenerators and loads are replaced with open circuits.
The value of Ghh, on the other hand, is the equivalent
admittance of the grid seen by node h when the PCC and
all the microgenerators are replaced by short circuits, while
the loads are replaced again with open circuits. It then
follows that Xhh ≥ |Ghh|−1, and then |Ghh|Xhh ≥ 1. 2

Theorem 4. Assume that the microgenerators C are acti-
vated according to a random i.i.d. sequence, each of them
with nonzero probability of being activated. Then

lim
t→∞

q(t) = qopt.

Proof. By using Lemma 2, we have that the matrices Fh
in (21) can be rewritten as

Fh = I − 1h1
T
h (diag {|Ghh|, h ∈ C})−1

X ′hh
.

They are therefore diagonal matrices whose elements are

[Fh]vv =

{
1 for v 6= h

1− (|Ghh|Xhh)
−1

for v = h.

Via Lemma 3, we have that, for all h ∈ C,
0 ≤ 1− (|Ghh|Xhh)

−1
< 1

Therefore, assuming that each matrix Fh, h ∈ C, has a
constant nonzero probability of being chosen, the discrete
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Fig. 5. The algorithm behavior (averaged over 1000 re-
alizations), compared to the algorithm proposed in
Bolognani and Zampieri (2011a). The dotted rays
represent the corresponding analytic bounds on the
rate of convergence.

time system (20) converges to zero. By the definition of
x(t), this means that q(t) converges to qopt. 2

The same convergence result can be extended, with minor
modifications, to more general ways for activating the
microgenerators, as long as some very weak conditions are
satisfied (namely, the probability of choosing a microgen-
erator h need not vanish in time).

6. SIMULATIONS

We refer the interested reader to Tenti et al. (2012) for a
simulative study of the algorithm. We present in Figure 5
a comparison of the algorithm performance with the al-
ternative algorithm presented in Bolognani and Zampieri
(2011a) (from which we adopt the simulation testbed). The
following can be observed.

• The two algorithms present different performances,
and the strategy by Bolognani and Zampieri (2011a)
prevails. However, they have different requirements in
terms of coordination of the microgenerators. While
in the algorithm by Tenti et al. (2012) only one mi-
crogenerator actuates the system at every iteration, in
Bolognani and Zampieri (2011a) the microgenerators
update their reactive power injection in pairs.
• Both algorithms drive the microgrid to the minimum

losses (Jopt, which has been calculated by a numerical
solver), up to a negligible error.
• The analytic study presented in this paper for the

algorithm by Tenti et al. (2012) yields also the tools
for studying its convergence speed. Following the
same methods proposed in Bolognani and Zampieri
(2011a), it is possible to show how the algorithm
slowest dynamic is a function of

max
h∈C
|Ghh|Xhh

and therefore can be evaluated analytically and can
provide some useful design tips. The expected rate of
convergence has been plotted in Figure 5.

7. CONCLUSIONS

The main contribution of this work is the analytic proof
of convergence of the algorithm proposed in Tenti et al.

(2012) for the problem of optimal distributed reactive
power compensation. The proposed analysis allows also
to study the dynamic behavior of the algorithm and to
characterize its rate of convergence, and, by providing a
common mathematical framework, to compare different
strategies.
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