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Abstract— In this work we present a new algorithm to
solve the average–consensus problem. The main goal of this
algorithm is to obtain exact convergence despite the existence of
quantized communication channels between the agents. Starting
from the Zoom–in Zoom–out strategy already presented in [5],
we introduce the equations describing the behaviour of the
algorithm and we formally prove the asymptotic agreement.
We will also show that, under a reasonable hypothesis, the
algorithm parameters ensuring convergence, can be chosen
regardless the number of agents.

I. INTRODUCTION

In recent years, motivated by the possible great diffusion
of wireless networks, researchers have addressed their efforts
in finding algorithms able to solve specific problems in a dis-
tributed way. Decentralized control of autonomous vehicles
and distributed kalman filtering are two examples of what is
potentially achievable exploiting, with a suitable algorithm,
all the capabilities of a wireless network.

A common feature of these algorithms is that they have to
take into account many constraints on the information flow,
since the agents can exchange information through some
communication network. Such a network will be hereafter
modelled as a directed graph G = (V, E), where V is the
set of agents V = {1, . . . , n} while E , the set of edges, is a
subset of V ×V such that (i, j) ∈ E iff the agent j can send
information to the agent i.

One of the simplest problem for which a distributed al-
gorithm have been found is the so called average–consensus
problem, where a network of interconnected agents is re-
quired to compute the mean of some numbers. The first
approach appeared in the literature (see, i.e. [1]) modelled
every agent’s state as a real value xi(t), and set the evolution
in time accordingly to these difference equations

xi(t + 1) =
n∑

i=1

pijxj(t), (1)

where pij are coefficients complying with the communication
constraints between agents, thus pij �= 0 only if the edge
(i, j) belongs to E . Equation (1) imply that every agent,
during algorithm evolution, keeps update his state with a
proper average among his state and those of his neighbours.

�The research leading to these results has received funding from the
European Community’s Seventh Framework Programme under agreement
n. FP7-ICT-223866-FeedNetBack.

More compactly we can write

x(t + 1) = Px(t) = (I + K)x(t), (2)

where P = (pij) ∈ R
n×n, K = (kij) = P−I and x(t) ∈ R

n

groups all agents states in a single state vector.
In [1] it is shown that, if the graph G is strongly connected,

every irreducible doubly stochastic1 matrix P drives the
system dynamic to the consensus, namely

lim
t→∞x(t) =

1T x(0)
n

1, (3)

where 1 ∈ R
n is the vector of all ones.

This simply algorithm implicitly assumes also that the
communication network is ideal, so that real numbers are
exchanged between agents without any loss or degradation of
information. Of course this assumption, in real applications,
is not realistic due to energy and bandwidth limitations
and, for this reason, a lot of literature has been devoted
to investigate the effects of noise or packet drop on the
algorithm performances (see i.e. [2] and [4]).

Another limitation of the algorithm (2) is that it requires
the agents to communicate each others their actual states.
As already pointed out, these measures belong to R or,
more generally, to a non countable set and, thus, cannot
be sent through a digital channel in a finite time. A naive
solution to this problem is to send information with a loss of
precision by coding data with a fixed number of bit. Usually
this solution is implemented using the same coding used by
agents CPU’s to encode real numbers which is generally the
standard floating-point double precision (64 bits) encoding
provided by IEEE.

This solution has two great disadvantages. The first one
is related to exploitation of the communication channel
which is generally unoptimized. One need only reflect on
the fact that, when the consensus is almost reached, the
agents keep sending whole words of 64 bits length while
the information is, at that point, contained only in a few
less significant bits. The second disadvantage is that the
precision loss during communication, together with round–
off errors affecting agents computations, cause the algorithm
to converge to a value that could be slightly different from
the initial mean of the states.

1Under the assumption made on the graph, it is always possible to find
such a matrix complying with communication constraints.
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In [3] and [5] some analysis on quantization effects in
standard consensus algorithm are presented as well as an
improved algorithm able to achieve exact average–consensus
using a finite number of bits every algorithm step. Un-
fortunately the estimation on the required number of bits
provided in [5] increases as the number of agents grows
despite simulations show a different trend. Motivated by
such numerical results, in this paper we present a novel
algorithm, to which we will refer as the Zoom–in Zoom–out
(ZIZO) algorithm, that can achieve exact convergence as well
and whose parameters can be chosen, with some reasonable
assumptions, regardless to the number of agents. Even if
the theoretical finiteness of the number of bits required by
this algorithm it is not yet proven, numerical results suggest
that this number is finite, it depends only on the algorithm
parameters and that it is independent of the number of agents.

II. ALGORITHM IMPLEMENTATION
The idea behind ZIZO–algorithm is to slightly modify

equation (2) in order to obtain a state evolution of the form

x(t + 1) = x(t) + Kx̂(t), (4)

where x̂(t) is a suitable estimation of the real state at time t.
From (4) it turns out that each agent should keep trace

of his neighbours’ state estimations and has to perform
additional operations in order to keep them updated.

In detail, generic ith agent has to manage the following
variables:

• xi(t), the state of the agent.
• x̂ij(t)∀j : (i, j) ∈ E , the estimations, made by the agent

i, of his neighbour j state as well as the estimation of
his own measure even if this could seems paradoxical.

• zij(t), the zoom factors associated to the estimation
x̂ij(t), whose aim will be clearer later.

The algorithm has three positive parameters k1, k2 and q
as well as the matrix of coefficients K which is supposed
to be given and designed to obtain, in the linear case, a
suitable convergence rate over a given graph. At every time
t the generic ith agent performs these steps:

1) It computes the quantization level li related to his state
xi, namely

li(t) =
⌊

xi(t)− x̂ii(t)
q|zii(t)|

⌋
+

1
2

(5)

if |zii(t)| �= 0. Of course li(t) takes values only in a
countable set.

2) It sends the level li(t) to all his neighbours. This is the
step which involves communication between agents.

3) It computes the quantities

fij(t) = lj(t)q|zij(t)| (6)

using the levels lj received from his neighbours.
4) It sets the variables for the next time step⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x̂ij(t + 1) = x̂ij(t) + fij(t)

xi(t + 1) = xi(t) +
∑

j:(i,j)∈E
kij x̂ij(t + 1)

zij(t + 1) = k1|zij(t)|sgn(fij(t)) + k2fij(t)

(7)

where sgn(x) =
{

1 if x ≥ 0
−1 if x < 0 .

It is clear from (5) and (6) that the magnitude of zoom
factors afflict the state estimations accuracy. The bigger the
zoom factors are, the roughly the estimations will be; this
zoom–reliant estimation behaviour justify the name given to
the algorithm. Since zoom factors play such a fundamental
role, particular care was given to the design of their dy-
namics. More precisely in the third of (7), the term k2fij(t)
should guarantee the zoom factors to follow the difference
between real states and estimations, thus improving the
estimation quality as well as the estimations come close
to the real states. The term k1|zij(t)|sgn(fij(t)), on the
other hand, prevent zoom factors from becoming too small
in a single algorithm step as a consequence of a fortuitous
coincidence between states and estimations

Remark 1: Note that, from the algorithm equations, the
following holds

|zij(t)| = k1|zij(t− 1)|+ k2|fij(t)| ≥ k1|zij(t− 1)|,
thus, if zij(0) �= 0, we have zij(t) �= 0 ∀t and equation (5)
is always well–posed.

In the following part of this section we will look for
a suitable nonlinear state–space system able to describe
how agents’ states and estimation variables evolve. For this
purpose a useful simplification is given in the following
proposition.

Proposition 2: If the ZIZO–Algorithm is initially syn-
chronized, that is x̂ii(0)= x̂ji(0) zii(k)=zji(0)∀(i, j) ∈ E ,
then it stays synchronized.

Proof: The proof is done by induction. Since for t = 0
the thesis coincide with the hypothesis we suppose that the
ZIZO–Algorithm is synchronized for t = 1, 2, . . . , k, then
we have

x̂ii(k) = x̂ji(k) zii(k) = zji(k)

. Using these relations, the updating equations yield
x̂ij(k + 1)= x̂ij(k) + fij(k) = x̂jj(k) + lj(k)q|zij(k)| =

== x̂jj(k) + fjj(k) = x̂jj(k + 1).

ẑij(k + 1)=k1|zij(k)|sgn(fij(k)) + k2fij(k) =
=k1|zjj(k)|sgn(fjj(k)) + k2fjj(k)=zjj(k + 1).

which prove that the algorithm is synchronized ∀t ≥ 0
Under the hypothesis of proposition 2, the whole network

state is described by 3n variables, namely xi, x̂i = x̂ii = x̂ji

and zi = zii = zji and equations (7) can be easily rearranged
as follow⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x̂i(t + 1) = x̂i(t) + fq(xi(t)− x̂i(t), zi(t))
zi(t + 1) = gk1,k2,q(xi(t)− x̂i(t), zi(t))

xi(t + 1) = xi(t) +
∑

j:(i,j)∈E
kij x̂j(t + 1)

,

where fq and gk1,k2,q are two nonlinear functions defined by

fq(x− x̂, z) =q|z|
(

1
2

+
⌊

x− x̂

q|z|
⌋)

,

gk1,k2,q(x− x̂, z) =k1|z|sgn (fq(x− x̂, z)) +
+ k2fq(x− x̂, z).
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Fig. 1. A 3D visualization of the function f0.4(xi − x̂i, zi)

From the visualization of function fq(xi−x̂i, zi) presented
in Fig. 1, it is once again clear that the smaller the zoom
factor zi is, the more precise the difference between xi and
x̂i sent from transmitter to receiver would be, thus improving
the estimation accuracy.

More compactly the equations of the system can be written
as⎧⎨
⎩

x(t + 1) = x(t) + K [x̂(t) + Φq (x(t)− x̂(t), z(t))]
x̂(t + 1) = x̂(t) + Φq (x(t)− x̂(t), z(t))
z(t + 1) = Γk1,k2,q (x(t)− x̂(t), z(t))

,

where we have grouped again the state variables into state
vectors and we have collected the scalar nonlinear functions
into two multidimensional functions

Φq(x− x̂, z) =

⎡
⎢⎣

fq(x1 − x̂1, z1)
...

fq(xn − x̂n, zn)

⎤
⎥⎦ ,

Γk1,k2,q(x− x̂, z) =

⎡
⎢⎣

gk1,k2,q(x1 − x̂1, z1)
...

gk1,k2,q(xn − x̂n, zn)

⎤
⎥⎦ .

Finally, if we introduce the functions{
Φq(x− x̂, z) = Φq(x− x̂, z)− (x− x̂)
Γk1,k2,q(x− x̂, z) = Γk1,k2,q(δ, z)− k2(x− x̂).

, (8)

the system becomes⎧⎨
⎩

x(t + 1) = Px(t) + KΦq (x(t)− x̂(t), z(t))
x̂(t + 1) = x(t) + Φq (x(t)− x̂(t), z(t))
z(t + 1) = k2(x(t)−x̂(t))+Γk1,k2,q (x(t)−x̂(t), z(t))

.

(9)

III. CONVERGENCE ANALYSIS
In this section we will prove that, if the agents are syn-

chronized and the matrix P is such that the linear algorithm
(2) can achieve consensus, the system (9) is able to drive the
agents’ states to the consensus as well, more precisely

lim
t→∞

⎡
⎣ x(t)

x̂(t)
z(t)

⎤
⎦ =

1T x0

n

⎡
⎣ 1

1

0

⎤
⎦ ∀

⎡
⎣ x0

x̂0

z0

⎤
⎦ ∈ R

3n. (10)

Since no analytical tools have been developed to study
consensus–like convergence, this section is divided into two
different part. In the first one we will transform the consensus
problem into a stability one, to which a lot of literature has
been devoted. In the second part we will then apply the well–
known small–gain theorem to prove the convergence of the
algorithm.

A. System reduction

We start pointing out that, since P is doubly stochastic, the
system (9) is invariant in respect to any change of variables
given by

y = x− γ1 ŷ = x̂− γ1,

and, therefore, it suffices to prove (10) only for inital state
with zero mean, that is

lim
t→∞

⎡
⎣ x(t)

x̂(t)
z(t)

⎤
⎦ =

⎡
⎣ 0

0
0

⎤
⎦ , ∀

⎡
⎣ x0

x̂0

z0

⎤
⎦ ∈ R

3n : 1T x0 = 0.

(11)
Moreover, from the first of (9), we obtain2

1T x(t + 1) = 1T x(t),

which easily proofs that the mean of agents’ states is
preserved during algorithm execution or, in other words,
that the system’s trajectory will always lie in the subspace

U =
([

1T 0T 0T
]T)⊥

whenever the initial state has zero
mean.

In order to obtain the equation of the system restricted to
the subspace U , we introduce the following linear transfor-
mation

x̃ = Tx =
[

In−1 0
1T 1

]
x =

⎡
⎢⎢⎢⎣

x1

...
xn−1

1T x

⎤
⎥⎥⎥⎦ =

[
η
σ

]
,

(12)
which is invertible since we have3

T−1 =
[

In−1 0
−1T 1

]
=
[

H v
]
.

Using the relation x = T−1x̃, the equations of the system
in the new state space become⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x̃(t + 1) = TPT−1x̃(t)+TKΦq

(
T−1x̃(t)−x̂(t), z(t)

)
x̂(t + 1) = T−1x̃(t) + Φq

(
T−1x̃(t)− x̂(t), z(t)

)
z(t + 1) = k2T

−1x̃(t)− k2x̂(t)+
+Γq,k1,k2

(
T−1x̃(t)− x̂(t), z(t)

) ,

where the matrices TPT−1 and TK have many notable
symmetries that can be appreciated introducing the following
congruent partition on the matrices P and K

P =
[

P11 P12

P21 P22

]
, P11 ∈ R

n−1×n−1,

2We remark that 1T P = 1T and 1T K = 0T .
3It is easy to see that TT−1 = T−1T = In.
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Fig. 2. Positive feedback connection between ΣT and φk1,k2,q

K =
[

K11 K12

K21 K22

]
, K11 ∈ R

n−1×n−1.

With this partition we obtain

TPT−1 =
[

In−1 0
1T 1

] [
P11 P12

P21 P22

] [
In−1 0
−1T 1

]

=
[

P11 − P121
T P12

0T 1

]
=
[

F P12

0T 1

] ,

(13)
TK =

[
In−1 0
1T 1

] [
K11 K12

K21 K22

]

=
[

K11 K12

0T 0

]
=
[

G
0T

] ,

and rewriting system’s equations with the partitioned state
inducted by (12), reminding that if the initial state has zero
mean then σ(t) = 1T x(t) = 0 ∀t ≥ 0, the evolution of
remaining variables is given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η(t + 1) = Fη(t) + GΦq (Hη(t)− x̂(t), z(t))

x̂(t + 1) = Hη(t) + Φq (Hη(t)− x̂(t), z(t))
z(t + 1) = k2Hηx(t)− k2x̂(t)+

+Γq,k1,k2 (Hη(t)− x̂(t), z(t))

,

(14)
where the state space has a smaller dimension of 3n− 1.

It suffices to observe that the state variable in (14) are
now unconstrained and that the property (11) requires x, and
thus x̃ and η, to converge toward zero, to conclude that the
convergence of the algorithm is ensured whenever the system
(14) is proven to be globally asymptotically stable.

Remark 3: Note that, since P has an eigenvalue in 1 while
the others lie inside the unit circle, from (13) the matrix F
turns out to be asymptotically stable.

B. Main result on convergence

To prove global asymptotic stability of system (14), we
will use the small–gain theorem whose discrete–time version
is well–presented in [9] (see also [11] for a dissertation on
the bounded real lemma).

We start pointing out that the system (14) can easily be
seen as a positive feedback interconnection between a linear
system ΣT = (Ak2 , B,C) and a static nonlinear function
φk1,k2,q as shown in Fig. 2.

The linear system’s matrices are given by

Ak2 =

⎡
⎣ F 0 0

H 0 0
k2H −k2In 0

⎤
⎦ ∈ R

3n−1×3n−1

B =

⎡
⎣ G 0

In 0
0 In

⎤
⎦ ∈ R

3n−1×2n

C =
[

H −In 0
0 0 In

]
∈ R

2n×3n−1,

while the nonlinear function is defined as
φk1,k2,q : R

2n → R
2n

y =
[

y1

y2

]
�→

[
Φq (y1, y2)

Γk1,k2,q (y1, y2)

]
.

In order to apply the small–gain theorem, we need to
compute both the maximum L2 gain of φk1,k2,q , γφ, and
the L2 gain of the linear system ΣT , γT .

The estimation of γφ is quite easy since from (8) we obtain
the inequalities ∣∣∣Φ(i)

q

∣∣∣ ≤ q

2

∣∣∣y(i)
2

∣∣∣ ,∣∣∣Γ(i)

k1,k2,q

∣∣∣ ≤ k1

∣∣∣y(i)
2

∣∣∣+ k2
q

2

∣∣∣y(i)
2

∣∣∣ = (k1 + k2
q

2

) ∣∣∣y(i)
2

∣∣∣ ,
which lead us to

‖φk1,k2,q(y)‖2 =

√√√√ n∑
i=1

(
Φ

(i)

q

)2

+
n∑

i=1

(
Γ

(i)

k1,k2,q

)2

≤
√(q

2

)2

+
(
k1 + k2

q

2

)2

√√√√ n∑
i=1

(
y
(i)
2

)2

≤
√(q

2

)2

+
(
k1 + k2

q

2

)2

‖y‖2
Therefore for γφ we obtain the following bound

γφ = sup
y∈R2n

‖φk1,k2,q(y)‖2
‖y‖2 ≤

√(q

2

)2

+
(
k1 + k2

q

2

)2

.

(15)
The computation of γT is a more challenging task. We

start recalling that the L2 gain of a linear system Σ coincide
with the L∞ norm of his transfer matrix W (z) defined as

γT = ‖W‖∞ = max
ϑ∈[0 ,2π]

σmax

[
W (ejϑ)

]
=
√

max
ϑ∈[0 ,2π]

λmax [WT (e−jϑ)W (ejϑ)],

if W is BIBO-stable while in the case that W (z) has some
pole in |z| >= 1, the norm is ∞.

The system ΣT is certainly BIBO-stable because, as we
have already pointed out, the matrix F is asymptotically
stable and, thus, Ak2 is stable as well. After some simple
calculations, the transfer matrix of ΣT turns out to be given
by

WT (z) =
[

Wd(z) 0
k2z

−1Wd(z) z−1In

]
,

where

Wd(z) = (1− z−1)H(zIn−1 − F )−1G− z−1In.

Then the matrix WT
T (e−jϑ)WT (ejϑ) turns out to be:[

(1 + k2
2)Vϑ k2e

jϑWT
d

(
e−jϑ
)

k2e
−jϑWd

(
ejϑ
)

In

]
,
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where Vϑ = WT
d

(
e−jϑ
)
Wd

(
ejϑ
)
.

The eigenvalues of WT
T (e−jϑ)WT (ejϑ) can then be com-

puted by solving the following equation in z

det
[

zIn − (1 + k2
2)Vϑ −k2e

jϑWT
d

(
e−jϑ
)

−k2e
−jϑWd

(
ejϑ
)

(z − 1)In

]
= 0.

(16)
Since the matrix in the last equation is a block–like matrix

with commuting blocks, applying the result in [10], equation
(16) is equivalent to

0 = det
[
(z − 1)

(
zIn − (1 + k2

2)Vϑ

)− k2
2Vϑ

]
= det

[
z2In − z

[
In + (1 + k2

2)Vϑ

]
+ Vϑ

]
,

from which we deduce, after a suitable diagonaliza-
tion of the hermitian matrix Vϑ, that the eigenvalues of
WT

T (e−jϑ)WT (ejϑ) are given by

μ
(i)
ϑ =

1+(1+k2
2)λ

(i)
ϑ ±
√

(k2
2+1)2

(
λ

(i)
ϑ

)2

+2(k2
2−1)λ(i)

ϑ +1

2
,

where λ
(i)
ϑ are the eigenvalues of Vϑ.

Since the scalar function

h(x) =
1+(1+k2

2)x+
√

(k2
2+1)2x2+2(k2

2−1)x+1
2

is monotone non decreasing in [0, ∞), the gain γT turns out
to be

γT =
√

max
ϑ∈[0 ,2π]
i=1,...,n

μ
(i)
ϑ

=

√
1+(1+k2

2)ρ+
√

(k2
2+1)2ρ2+2(k2

2−1)ρ+1
2

,

(17)

where4

ρ = max
ϑ∈[0 ,2π]
i=1,...,n

λ
(i)
ϑ = max

ϑ∈[0 ,π]
i=1,...,n

λ
(i)
ϑ = ‖Wd(z)‖2∞.

In order to relate ρ to the given matrix P , we first need
to do some manipulation on the expression for Wd. Let us
start observing that

T
(
ejϑIn − P

)
T−1 =

[
ejϑIn−1 − F −P12

0T ejϑ − 1

]
,

which implies:

ejϑIn − P = T−1

[
ejϑIn−1 − F −P12

0T ejϑ − 1

]
T. (18)

Since both member of (18) are non singular in (0 , π], we
can obtain
(ejϑIn − P )−1K =

= T−1

[ (
ejϑIn−1 − F

)−1



0T
(
ejϑ − 1

)−1

]
TK

=
[

H v
] [ (ejϑIn−1 − F

)−1
G

0T

]
= H(ejϑIn−1 − F )−1G.

4We remark that, since Vϑ is Hermitian, his eigenvalues are symmetric
with respect to π.

Thanks to this last relation, we can rewrite the expression
for Wd as follows

W d(ejϑ) =

= (1− e−jϑ)H
(
ejϑIn−1 − F

)−1
G− e−jϑIn

= (1− e−jϑ)
(
ejϑIn − P

)−1
(P−In)− e−jϑIn

= (1−e−jϑ)
(
ejϑIn−P

)−1
(P−In)+(1−e−jϑ)In−In

= (1−e−jϑ)
(
ejϑIn−P

)−1 [
(P−In)+(ejϑIn−P )

]−In

= − ∣∣1− e−jϑ
∣∣2 (ejϑIn − P

)−1 − In

= −2(1− cos ϑ)
(
ejϑIn − P

)−1 − In ∀ϑ ∈ (0 , π] .

If we finally suppose the matrix P to be symmetric, the
expression for Vϑ yields

Vϑ =
[
2(1−cos ϑ)

(
e−jϑIn−P

)−1
+In

]
×

×
[
2(1−cos ϑ)

(
ejϑIn−P

)−1
+In

]
.

Let now v be an eigenvector of P related to the eigenvalue
λ. Reminding that, since the matrix e±jϑIn−P is invertible
then v is also an eigenvector of the matrix

(
e±jϑIn−P

)−1

related to the eigenvalue 1
e±jϑ−λ

, we get:

Vϑv =
[
−2(1− cos ϑ)

ejϑ − λ
− 1
]

Wd(e−jϑ)v

=
[
2(1− cos ϑ)
e−jϑ − λ

+ 1
] [

2(1− cos ϑ)
ejϑ − λ

+ 1
]

v

=
2(λ− 2) cos ϑ + λ2 − 4λ + 5

1− 2λ cos ϑ + λ2
v.

(19)

The (19) proves that every eigenvalue of Vϑ can be
obtained as

μλ(ϑ) =
2(λ− 2) cos ϑ + λ2 − 4λ + 5

1− 2λ cos ϑ + λ2
,

where λ is an eigenvalue of P .
An easy calculus shows that the derivative of μλ(ϑ) with

respect to ϑ is given by

dμλ(ϑ)
dϑ

=
4(1− λ)3 sin ϑ

(1− 2λ cos ϑ + λ2)2
,

which, in turn, proves5 that the eigenvalues of Vϑ are all
monotone nondecreasing in (0, π].

By virtue of this result, the expression for ρ become

ρ = max
ϑ∈[0 ,π]
λ∈Λ(P )

μλ(ϑ) = max
λ∈Λ(P )

μλ(π)

= max
λ∈Λ(P )

(
3− λ

1 + λ

)2

=
(

3− λmin

1 + λmin

)2

,

(20)

where λmin is the minimum eigenvalue of P and the last

equality holds since
(

3−λ
1+λ

)2

is monotone decreasing in
(−1, 1].

All the results obtained in this section are summarized in
the following theorem.

5We remark that, since P is stochastic, then |λ| ≤ 1.
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Fig. 3. State variance evolution with different parameters’ choices

Theorem 4 (Convergence Theorem): Let G = (V, E) be
a graph and let P be an irreducible doubly stochastic
symmetric matrix complying with the communication con-
straints given by G. Let ρ defined in (20). Then the ZIZO–
Algorithm converge to the average–consensus regardless6 of
the initial choice of vectors x0, x̂0 and z0 if the three positive
parameters of the algorithm q, k1 and k2 satisfy the following
inequality:[(q

2

)2

+
(
k1 + k2

q

2

)2
]
×

× 1+(1+k2
2)ρ +

√
(k2

2+1)2ρ2+2(k2
2−1)ρ+1

2
< 1.

Proof: The convergence is ensured by the small–gain
theorem, provided that the product of γT and γφ is less than
1. The thesis then easily follows from the expression for γφ

and γT , respectively found in (15) and (17).
As a consequence of theorem 4, ZIZO–algorithm’s param-

eters depend only on the minimum eigenvalue of the matrix
P and the convergence is assured whenever the matrix P
guarantee convergence using the linear algorithm7. Since the
minimum eigenvalue is usually independed of the number
of agents8 or can be forced to be greater to any constant
β without any further constraint on G providing that the
distributed constraints pii ≥ β+1

2 hold, it turns out that
the algorithm’s parameters can be chosen regardless to the
dimension of G.

In Fig. 3 we show some simulation results obtained with a
random geometric graph with 20 agents. The weights’ matrix
P was generated using Metropolis–algorithm, thus obtaining
ρ � 12.7, and the algorithm’s parameters are chosen in
order to obtain different values for the closed loop gain
γT γφ. From these numerical results it seems that the result
stated in theorem 4 is still improvable since the algorithm

6As already pointed out, we need to force zi
0 �= 0 to ensure the

implementability of the algorithm. What really matter is the arbitrariness
on the choice of x0.

7This implies that G must be connected
8So it is in the wide family of random geometric graphs.

seems to converge even for closed loop gain greater than
1; moreover the ZIZO–algorithm’s performances seems very
close to those of the linear algorithm (2) whenever the
parameters fulfill the requirements of theorem 4 despite any
bound on the convergence rate derivable from the small
gain theorem seems very poor. This discrepancy between
theoretical and sperimental results is not surprising and is
due to the conservativeness of the small-gain theorem.

IV. CONCLUSIONS AND FUTURE WORK

In this work we presented a novel algorithm able to
achieve average consensus in a network of agents with
quantized transmissions. We showed that the algorithm’s
parameters can be chosen in a distributed fashion without
knowing the number of agents composing the network, thus
making it suitable in distributed applications such as wire-
less sensor networks. We also provided simulations results
showing that the performances of the algorithm can be very
close to those of the ideal algorithm. An investigation on the
number of bits required by the algorithm is part of our plan
for the future. From simulations the algorithm seems to use
a number of bits which depends on the parameters choice
but never exceeding 14 bits in over a million simulations.
Moreover the algorithm does not seems to be very robust
to noise effects, due to unsynchronization between agents as
a consequence of transmission errors. Different algorithms
able to keep the synchronization are also being studied.

REFERENCES

[1] R. Olfati–Saber, R. M. Murray. Consensus problems in networks of
agents with switching topology and time–delays. IEEE Transactions
on automatic control, 49(9):1520–1533, 2004

[2] S. Boyd, A. Ghosh , B. Prabhakar, D. Shah. Randomized gossip
algorithms. IEEE Transactions on information theory, 52(6):2508–
2530, 2006

[3] R. Carli, F. Fagnani, P. Frasca, T. Taylor, S. Zampieri. Average
consensus on networks with transmission noise or quantization. Proc.
of European Control Conference, 2007

[4] F. Fagnani, S. Zampieri. Average consensus with packet drop commu-
nication. 45th IEEE Conference on Decision and Control, 2006

[5] R. Carli, F. Fagnani, P. Frasca, S. Zampieri. Efficient quantized
techniques for consensus algorithms. Proc. of the 3rd international
workshop on Networked Control Systems: Tollerant to faults, Nancy,
2007

[6] R. W. Brockett, D. Liberzon. Quantized feedback stabilization of linear
systems. IEEE Transactions on automatic control, 45(7): 1279–1289,
2000
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