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Abstract

The dominant state plays an essential role in the asyntotic analysis of dynamical systems. The
global state in a 2D system consists in a sequence, and the existence of a dominant global state
means that the free evolution of the global states tends to approximate this sequence, up to the
multiplication by a normalizing factor. In this contribution the existence of a global state is proved
under the hypothesis that the initial global state is the Fuorier Stieltjes transform of a bounded
variation function.

1 Introduction

The asymptotic analysis of dynamical systems is extremely important both in control theory and in
signal processing. When describing the asymptotic behavior, the first issue to be considered is the
stability of the system, which amounts to decide whether its trajectories converge, remain bounded,
or diverge. In some specific situations, however, this is not enough and it may be relevant to obtain
further information on the asymptotic feature of the signal. This is exactly the information provided
by the dominant eigenvector of a linear state space system. Indeed, it can be shown that, under some
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weak hypotheses, the state of a linear state space system, when normalized in a suitable way, converges
to one of its eigenvectors, which is called the dominant eigenvector.

Two-dimensional (2D) systems involve input and output signals as well as state dynamics evolving
on a two-dimensional time set and play an important role in image processing [1] and in control of
repetitive or learning systems [6]. The stability analysis of this class of systems is well-known to be
quite difficult [4]. In particular, very little is known about the possibility of performing an asymptotic
analysis, based on the concept of dominant eigenvector for this class of systems [3, 5].

In this contribution we propose a preliminary solution to this problem, based on the theory of
Fourier-Stieltijs series [8]. It turns out that, if the initial global state of a 2D system is represented by
(the coefficients of) a Fourier-Stieltjes series having a non zero component on the dominant frequency
of the 2D system, then the dominant state analysis can be performed and a clear limiting behavior can
be distinguished. More precisely, it is shown that in this the dominant state, up to the multiplication
by a normalizing factor, tends to approximate a sinusoidal sequence of frequency equal to the dominant
frequency.

The main advantage of this approach is that it seems to be easily exendable from the scalar case to
the general vector case.

2 Mathematical preliminaries

Let F (ω) be a complex valued function of bounded variation, defined on the closed interval −π ≤ ω ≤ π,
and consider the sequence (F̂k)k∈Z whose elements are given by the following Fourier-Stieltjes integrals

F̂k =
1

2π

∫ +π

−π
e−jkωdF (ω), k ∈ Z.

The sequence F̂ is called the Fourier Stieltjes transform of F and

+∞∑
k=−∞

F̂ke
jkω, (1)

is the Fourier-Stieltjes series of F .
Notice that an equivalent definition of the Fourier Stieltjes transform F̂k is based of the fact that,
given a function F of bounded variation on [−π, π], there exists a uniquely determined complex Borel
measure µF on [−π, π], called the Lebesgue-Stieltjes measure corresponding to F , allowing to express
the Fourier-Stieltjes integral as a Lebesgue integral with respect to µF . We therefore have

F̂k =
1

2π

∫ +π

−π
e−jωdµF , k ∈ Z.

Since complex Borel measures constitute a subspace of the space of distributions, the series (1) converges
to µF in the topology of distrubutions.

If Var(F ) denotes the total variation of F , its Fourier-Stieltjes coefficients satisfy

|F̂k| ≤ Var(F ), ∀k ∈ Z,
showing that the Fourier- Stieltjes transform (F̂k)k∈Z of a function of bounded variation is always in `∞.
However, not every sequence in `∞ is the Fourier-Stieltjes transform of a suitable bounded variation
function. A characterization of the space S ⊂ l∞ of Fourier-Stieltjes transforms is provided by the
following theorem.

Theorem 1 (see [8, vol. 1, page 136] and [2, vol.2, page 81]) Let (ak)k∈Z be a given sequence, and put

σN (ω) :=
∑
|k|≤N

(
1− |k|

N + 1

)
ake

jkω.
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In order that (ak) ∈ S, it is necessary and sufficient that

lim sup
N→∞

||σN ||1 <∞

where || · ||1 means the L1 norm in [−π, π].

As a consequence of the above Theorem, every `1 sequence is the Fourier-Stieltjes transform of some
bounded variation function. On the other hand, `1 does not include all Fourier Stieltjes transforms.
For instance, the transform of

F (ω) =

{
−π if ω ≤ 0
π if ω > 0

is the constant sequence F̂k = 1,∀k ∈ Z, that is not summable. Using Theorem 1, it is also easy to
show that the `∞ sequence

ak =

 −1 if k < 0
0 if k = 0
1 if k > 0

does not belong to S. In fact,

σN (ω) =
1

N + 1

[
sin 1

2 (N + 1)ω

sin 1
2ω

]2

.

Therefore L1 norm of σN (ω) coincides with the square of the L2 norm of

sin 1
2 (N + 1)ω

sin 1
2ω

=

N∑
k=N

ejωk

which, using Parseval identity, is 2π(2N + 1). Therefore,

σN (ω) =
4π2(2N + 1)2

N + 1

which diverges as N goes to ∞. We therefore have that S satisfies the strict inclusions

`1 ⊂ S ⊂ `∞.

A classical representation theorem by F.Riesz states that, given any continuous linear functional ψ
on the space C(−π, π) of continuous functions, there exists a function Fψ of bounded variation such
that

ψ(f) =
1

2π

∫ π

−π
f(ω)dFψ(ω), ∀f ∈ C(−π, π) (2)

and, vice versa, all functions of bounded variation induce, via (2), a continuous linear functional on
C(−π, π).
The function Fψ is uniquely determined by ψ, up to the values it assumes on a denumerable set of
points. On the other hand, ψ is uniquely determined by the values it assumes on the exponential
functions ejkω, k ∈ Z, as the set of the trigonometric polynomials is dense in C(−π, π). Consequently,
the Fourier-Stieltjes transform F̂ of a bounded variation function F (ω) allows to recover F (except on
a denumerable set).

Since a real valued function of bounded variation is the difference of two increasing functions,
the Lebesgue theorem on the derivative of monotonic functions guarantees that any (real or complex
valued) function F (ω) of bounded variation on [−π, π] is differentiable a.e. Moreover, if {ω1, ω2, . . . }
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is the (countable) set of its discontinuities in (−π, π) and we define ∆F (ωi) = F (ω+
i ) − F (ω−i ), F (ω)

can be decomposed into the sum of three functions

F (ω) = J(ω) +A(ω) + S(ω),

where J(ω) is a jump function, defined by

J(ω) =

{
0 if ω = −π
F (−π+) − F (−π) +

∑
ωi<ω ∆F (ωi) + F (ω) − F (ω−) if ω > −π

A(ω) is an absolutely continuous function, and S(ω) is a singular function, i.e. a continuous function
whose derivative is zero a.e.. The functions J,A and S are unique to within additive constants.
The Fourier Stieltjes transform of A(ω) coincides with the Fouries transform of A′(ω), i.e.

Âk =
1

2π

∫ π

−π
e−jkωdA(ω) =

1

2π

∫ π

−π
e−jkωA′(ω)dω

and therefore, by the Riemann-Lebesgue lemma (Edwards I, pg 36; Zygmund, I, pg 45)

lim
|k|→∞

Âk = 0.

On the other hand, the Fourier Stieltjes transform of a jump function J(ω) whose jumps in ω1, ω2, . . .
have amplitudes J (1), J (2), . . . respectively, is the sum of a countable family of (complex) sequences
Ĵ (1), Ĵ (2), . . . whose values are given by

Ĵ
(ν)
k =

1

2π
J (ν)e−jkων , ν = 1, 2, . . . ; k = 0,±1,±2, . . .

In particular, if two jumps with the same real amplitude J̄ (with imaginary amplitudes jJ̄ and −jJ̄)

occur in −ω̄ and in ω̄, the sum of the corresponding sequences is
J̄

π
cos(ω̄k) (resp.

J̄

π
sin(ω̄k)).

An interesting insight into some connections between the jump function of F (ω) and the partial sums
of the associated Fourier Stieltjes series is provided by the following theorem.

Theorem 2 Let (F̂k)k∈Z be the Fouries Stieltjes transform of F (ω). Then, for all p ∈ Z,

lim
N→∞

1

2N + 1

p+N∑
k=p−N

F̂ke
jkω =

F (ω+)− F (ω−)

2π

Proof Note that the sum

p+N∑
k=p−N

F̂ke
jkω (3)

can be seen as the pointwise product of the sequence F̂k and the sequence Rk defined as

Rk =

{
1 if p−N ≤ k ≤ p+N
0 otherwise.

Then, we can argue that the Fuorier transform of (3) coincides with the convolution (in the distributional
sense) of the Fourier transforms of the sequences F̂k and Rk. Notice that the Fourier transforms of Rk
is

+∞∑
k=−∞

Rke
jkω =

p+N∑
k=p−N

ejkω = ejωp
sin 1

2 (N + 1)ω

sin 1
2ω

.
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Therefore we can write

1

2N + 1

p+N∑
k=p−N

F̂ke
jkω =

∫ π

−π

1

2N + 1
ej(ω−σ)p sin 1

2 (N + 1)(ω − σ)

sin 1
2 (ω − σ)

dµF (σ).

Since ∣∣∣∣ 1

2N + 1

sin 1
2 (N + 1)(ω − σ)

sin 1
2 (ω − σ)

∣∣∣∣ ≤ 1

na d since the constant function equal to 1 is absolutely integrable with respect to µF we are in position
to apply the and that the Lesbegue dominated convergence theorem. Observing that

1

2N + 1

sin 1
2 (N + 1)(ω − σ)

sin 1
2 (ω − σ)

−−−→
l→∞

χω(σ) =

{
1 if σ = ω
0 otherwise

we can argue that

1

2N + 1

p+N∑
k=p−N

F̂ke
jkω −−−→

l→∞

∫ +π

−π
ej(ω−σ)kχω(σ)dµF (σ) = µ({ω0}) =

1

2π
∆F (ω0).

3 Asymptotic behavior of the 2D global state

The unforced evolution of many physical and biological processes can be modelled by means of linear,
discrete, quarter-plane causal 2D state models described by the equation

x(h+ 1, k + 1) = A0x(h, k + 1) +A1x(h+ 1, k) (4)

h, k ∈ Z, h+k ≥ 0. The local states x(h, k) are elements of Rn
+ and A0, A1 are suitable square matrices.

Initial conditions are usually given by assigning a sequence

X (0) := {x(`,−`) : ` ∈ Z} (5)

of local states on the separation set C(0) := {(`,−`) : ` ∈ Z}. The sequence X (0), as well as the
sequences

X (t) := {x(`+ t,−`), ` ∈ Z}, t > 0 (6)

the system reaches according to the updating equation (4) are called the global states.
The asymptotic analysis for 2D state models refers to the motion determined by an assignement

of initial conditions on the separation set C(0). More precisely, we assume that the initial global state
constitutes an `∞ sequence, and consider the behavior of the global states X (t) as t→ +∞. We expect
that, under mild assumptions on the initial conditions and the structure of the system matrices, the
long term dynamics exhibits interesting features on each separation set, such as a periodic character,
the alignment of all local state vectors, etc.

In this communication we shall restrict our attention to scalar local states, and assume that the initial
global state is the Fourier Stieltjes transform of a function of bounded variation. The advantage in using
the space S of the Fourier-Stieltjes transforms is that for this class of signals the concept of frequency
component can be defined in a coherent way. Actually, a Fourier-Stieltjes series (F̂k)k∈Z defined from
a bounded variation function F has a component at a frequency ω ∈ [−π, π] of amplitude ∆ if F is
discontinuous in ω and ∆ = F (ω+)− F (ω−).
On the other hand, the whole space of bounded sequences `∞ is too wild a space for applying Fourier
analysis, and the subspace of absolutely summable sequences `1 is too poor, as periodic sequences,
which are expected to represent the most interesting asymptotic global states, do not belong to `1.
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We modify, for sake of uniformity, the double index notation in (6) for the global states into

X (t) = {x(t+ `,−`)} = (x
(t)
` )`∈Z

and introduce in CZ
the polynomial operator

A(σ) = A0 +A1σ : (x`)`∈Z 7→ (x`)`∈Z = (A0x` +A1x`+1)`∈Z

Clearly the global states of (4) update according to the equation X (t+1) = (A0 +A1σ)X (t).
To obtain a more general theory, however, we enlarge our scope to higher order polynomial operators
A(σ) =

∑R
i=r Aiσ

i ∈ C[σ, σ−1]

A(σ) : CZ → CZ
: X 7→ A(σ)X (7)

operating as follows

A(σ)(x`)`∈Z =
( R∑
i=r

Aix`+i
)
`∈Z.

It is not difficult to verify that the eigenfunctions for this class of operators coincide with the so
called exponential polynomial sequences, that are sequences like

X (k) = kNeλk,

where N ∈ N and λ ∈ C. It is quite clear that the eigenfunctions of A(σ) will play a central role in
understanding what happens if we apply infinitely many times the operator A(σ) to a initial sequence
X . However, in order to apply Fourier analysis we need to restrict the space of sequences. The

largest subspace of CZ
in which Fourier series make sense consists in sequences which grow at most

polynomially [7]. The sum in this case is a distribution over [−π, π]. However this set up proved to
be not treatable. The situation does not simplify if we take sequences in `∞. Indeed in this case the
series are distributions which are called pseudomeasures. A treatable class of sequences are those whose
series converge to a (complex valued) measure. These sequences constitutes the space S introduced in
the previous section. Notice that this space is reach enough to contain a large class of eigenfunctions.
Actually, all imaginary exponential sequences

X (k) = ejωk

belong to S for all frequencies ω ∈ R.
Consider now a polynomial operator A(σ). By substituting σ with ejω, we obtain A(ejω), which is

a function mapping each ω ∈ [−π, π] to the complex number A(ejω).

Definition Given a polynomial operator A(σ), we say that ω0 ∈ [−π, π] is a dominant frequency for
A(σ) if

|A(ejω0)| ≥ |A(ejω)| for all ω ∈ [−π, π].

In this set up we can present the main result of this contribution.

Theorem 3 Let A(σ) be a polynomial operator and assume that there exists a unique dominant fre-
quency ω0 ∈ [−π, π] for A(σ). Assume moreover that the initial global state X ∈ S and that ω0 belongs
to the jump set of X . If we denote

X (l) := (A(σ))lX ,
then for each k ∈ Z we have that

X (l)(k)

A(ejω0)l
−−−→
l→∞

1

2π
∆F (ω0)ejω0k
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Proof Let µ be the complex valued measure over [−π, π] such that

X (k) =

∫ +π

−π
ejωkdµ.

Observe that

(A(σ)X )(k) =

R∑
i=r

∫ +π

−π
ejω(k+i)dµ =

∫ +π

−π

R∑
i=r

ejω(k+i)dµ =

=

∫ +π

−π
ejωk

R∑
i=r

ejωidµ =

∫ +π

−π
ejωkA(ejω)dµ.

By iterating this we obtain that

X (l)(k) =

∫ +π

−π
ejωkA(ejω)ldµ

and hence
X (l)(k)

A(ejω0)l
=

∫ +π

−π
ejωk

[
A(ejω)

A(ejω0)

]l
dµ.

Notice that, for all l ∈ N, we have ∣∣∣∣∣ejωk
[
A(ejω)

A(ejω0)

]l∣∣∣∣∣ ≤ 1

and that [
A(ejω)

A(ejω0)

]l
−−−→
l→∞

χω0
(ω) =

{
1 if ω = ω0

0 otherwise

Since the constant function equal to 1 is absolutely integrable with respect to µ, we can apply the
Lesbegue dominated convergence theorem from which we can argue that

X (l)(k)

A(ejω0)l
−−−→
l→∞

∫ +π

−π
ejωkχω0

(ω)dµ = µ({ω0})ejω0k =
1

2π
∆F (ω0)ejω0k

The previous result allows to deduce the asymptotic behavior of X (l) := (A(σ))lX for large l.
Consider the following polar representation of the complex numbers A(ejω0) and ∆F (ω0)

A(ejω0) = |A(ejω0)|ej arg(A(ejω0 )), ∆F (ω0) = |∆F (ω0)|ej arg(∆F (ω0)).

We can argue that, as l tends to ∞, the global state

X (l)(k) ∼ 1

2π
|∆F (ω0)||A(ejω0)|lej(ω0k+arg(A(ejω0 ))l+arg(∆F (ω0)).

We consider now the real case in which A(σ) ∈ R[σ, σ−1] and X ∈ RZ
. In this situation the

hypothesis requiring uniqueness of the dominant frequency is too restrictive. Actually, in this case

A(e−jω) = A(ejω)∗,

where ∗ means complex conjugate, and so, if ω0 is a dominant frequency, then also −ω0 is a dominant
frequency.

Assume now that ±ω0 are the only dominant frequencies of the polynomial operator A(σ). Con-
sidering the fact that X (l)(k) is a real number and using the fact that any complex valued measure µ
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admits the decomposition µ = µR + jµI , where µR, µI are signed real valued measures, we can argue
that

X (l)(k) = <
{
X (l)(k)

}
= <

{∫ +π

−π
ejωkA(ejω)ldµ

}
=

= <
{∫ +π

−π
ejωkA(ejω)ldµR + j

∫ +π

−π
ejωkA(ejω)ldµI

}
=

= <
{∫ +π

−π
ejωkA(ejω)ldµR

}
−=

{∫ +π

−π
ejωkA(ejω)ldµI

}
=

=

∫ +π

−π
cos(ωk)<

{
A(ejω)l

}
dµR −

∫ +π

−π
sin(ωk)=

{
A(ejω)l

}
dµR +

−
∫ +π

−π
cos(ωk)=

{
A(ejω)l

}
dµI −

∫ +π

−π
sin(ωk)<

{
A(ejω)l

}
dµI =

= <
{
A(ejω0)l

}[∫ +π

−π
cos(ωk)

<
{
A(ejω)l

}
<{A(ejω0)l}dµR −

∫ +π

−π
sin(ωk)

<
{
A(ejω)l

}
<{A(ejω0)l}dµI

]
+

+ =
{
A(ejω0)l

}[
−
∫ +π

−π
cos(ωk)

=
{
A(ejω)l

}
={A(ejω0)l}dµI −

∫ +π

−π
sin(ωk)

=
{
A(ejω)l

}
={A(ejω0)l}dµR

]
.

Observe now that the absolute value of the arguments of the four integrals are bounded by the constant
function equal to 1 and that this function is absolutely integrable with respect to both µR and µI . Notice
moreover that

<
{
A(ejω)l

}
<{A(ejω0)l} −−−→l→∞

χω0
(ω) + χ−ω0

(ω) =

 1 if ω = ω0

1 if ω = −ω0

0 otherwise

and that

=
{
A(ejω)l

}
={A(ejω0)l} −−−→l→∞

χω0
(ω)− χ−ω0

(ω) =

 1 if ω = ω0

−1 if ω = −ω0

0 otherwise

Consequently, we can apply the Lesbegue dominated convergence theorem. Observe that, since the
sequence X is real, then µR is an even measure and µR is an odd measure. From this we can argue
that, as l tends to ∞, the global state converges

X (l)(k) ∼ <
{
A(ejω0)l

}
[2µR({ω0}) cos(ω0k)− 2µI({ω0}) sin(ω0k)] +

+ =
{
A(ejω0)l

}
[−2µI({ω0}) cos(ω0k)− 2µR({ω0}) sin(ω0k)] =

= <
{
A(ejω0)lejω0kµ({ω0})

}
=

= |µ({ω0})||A(ejω0)|l cos(ω0k + arg(A(ejω0))l + arg(µ({ω0})))

4 Example

In this last section we illustrate the power and the limitations of the results we presented by a simple
example. Consider the polynomial operator

A(σ) = 1 + σ.

The curve on the complex plane representing A(ejω) = 1 + ejω as ω varies in [−π, π] is shown in figure
1.
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Figure 1: The curve on the complex plane representing A(ejω) = 1 + ejω as ω varies in [−π, π].

Notice that the dominant frequency is in this case ω0 = 0 and that A(ejω0) = 2. Therefore, if the
initial global state X is a Fourier-Stieltjes sequence such that

lim
N→∞

1

2N + 1

N∑
i=−N

X (k) = ∆,

where ∆ is a nonzero real number, then by the previous results we can argue that

X (l)(k) ∼ 2l∆

which is a constant function in k which grows with l as 2l. Assume now that the hypothesis required
by Theorems 3 according which ω0 = 0 belongs to the jump set of X does not hold. Take for instance
a sequence

X (k) = δ(k) + ejθk,

where θ 6= 0 and where δ(k) is the discrete Dirac delta function. In this case

X (l)(k) =

(
l

k

)
+A(ejθ)lejθk, (8)

where
(
l
k

)
is the binomial coefficient which is assumed to be 0 when k < 0 or k > l. Observe now that

the second term of the sum grows as |A(ejθ)|l. The first term of the sum has its maximum when l = 2k
and this, by Stirling formula, can be estimated as(

2k

k

)
=

(2k)!

2(k!)
∼
√

2π2k(2k)2ke−2k

[
√

2πkkke−k]2
=

1

πk
22k =

√
2

πl
2l.

This grows less then 2l, as we expected, but more than |A(ejθ)|l, since for θ 6= 0 we have |A(ejθ)| < 2.
We can argue that in this case the second term of the sum (8) does not dominate the first term, showing
in this way that the hypothesis requiring that dominant frequency belongs to the jump set of the initial
global state is essential.

Consider now another example in which

A(σ) = −σ−1 + 2 + 2σ + 3σ2.

The curve on the complex plane representing A(ejω) = −e−jω + 2 + 2ejω + 3ej2ω as ω varies in [−π, π]
is shown in figure 2.

It can be shown that the dominant frequencies are ±ω0 where ω0 = 0.3346 and that for these
frequencies we have that |A(ejω)| = 6.0137. We did a simulation using Matlab. We assigned a initial
condition

X (0)(k) = 0.2 cos(ω0k) + n(k)
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Figure 2: The curve on the complex plane representing A(ejω) = −e−jω + 2 + 2ejω + 3ej2ω as ω varies
in [−π, π].

where n(k) is a i.i.d. sequence of random variable uniformly distributed on the interval [0, 1]. Therefore
the initial state has frequency components both in ω = 0 and in ±ω0. In Figures 3, 4 and 5 the
normalized global state |A(ejω)|−lX (l)(k) is compared with the computed limit global state for l =
0, 100, 600. Notice that, justified by Figure 2, we have little attenuation for low frequencies and so the
convergence is slower for low frequencies.

5 Conclusions

In this paper an asymptotic analysis of 2D systems is proposed. The main limitation concerns the
requirement that the initial global state has to be a Fourier-Stieltjes sequence. Under this hypothesis
a rather complete analysis has been done in the scalar case. It is our strong opinion that the main
advantage of this approach is that it seems to be very suitable for dealing with the general vector case.
This possible extension is the subject of our present investigation.
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Figure 4: The normalized global state |A(ejω)|−lX (l)(k) for l = 100.

-0.2

0

0.2

0.4

0 20 40 60 80 100 120 140 160 180 200

Figure 5: The normalized global state |A(ejω)|−lX (l)(k) for l = 600.
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