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Chapter 1

Introduction

1.1 Models for dynamical systems

Finite dimensional linear systems are a fundamental tool in many applications:

their mathematical properties are rather simple and nowadays very well under-

stood, while their capability to approximate a wide class of real dynamical systems

is one of their major issues.

There is no need to say that using nonlinear or infinite dimensional systems

leads to a much higher mathematical level, sometimes involving only particular

subclasses of systems, that often implies a diminished capacity to achieve concrete

results out of the theoretic framework.

Nevertheless, the choice of a finite–dimensional linear systems for modeling

and control of dynamical systems may lead to poor results or even to unjustified

complications (e.g. control of rotating rigid bodies is a typical problem much easier

handled with nonlinear methods).

This thesis is concerned with delay differential systems, a particular class of

linear infinite dimensional systems, that we want to introduce here without the

mathematical details that will be necessary in the following chapters.

Delay–differential systems are dynamical systems that can be modeled with

differential equations that depend also on past values of the variables. Typi-

cal examples ([FM95]; see also [BFL97] for an ‘unusual’ control application of

delay–differential systems) are chemical reactors where actuators, varying fluxes

of different fluids, modify concentrations with some delay due to the length of

pipes that transport liquids. A controller of such a plant must take the time delay

into account.

5



1.2 The behavioral approach 6Introduction

Recently interest has grown on imposing communication constraints on control

systems (see e.g. [TSM98]): the possibility of controlling systems remotely implies

not only a careful analysis of the information content of ‘control messages’ but also

an even greater attention on time lags involved: robustness issues are fundamental

since delays are not fixed (neither bounded a priori in the worst case).

Even partial differential equations may be reduced to delay–difference equa-

tion, as in the case of a flexible rod ([MRPF95]): if a torque or a force is applied

on one end, the system is naturally described by a wave equation but algebraic

manipulations permit to obtain a delay–differential model.

Infinite–dimensional linear systems theory (see e.g. [CZ95] or [BPDM93]) can

certainly deal with delay–differential system but, actually, this class has been

treated also with other more algebraic techniques such as those developed by the

theory of linear systems over commutative rings ([BBV86]).

Our approach to delay–differential systems, as in the latter case, has a very

algebraic nature.

1.2 The behavioral approach

In the eighties J. C. Willems proposed a new approach to dynamical systems

based on the concept of behavior, which is the set of time trajectories that could

be exhibited by a dynamical system. Unlike classical control theory or system

theory, this approach does not classify variables a priori as inputs, outputs or

state. For example a variable is an input if it is ‘free’, that is to say, if the set of

admissible time trajectories of this variable is the whole function space.

It is important to decide in which function space the trajectories live in: it

could be the set of all continuous functions, the set of smooth (infinitely derivable)

functions, one of the Lp spaces and so on. Depending on this choice, properties of

a system may change. For example a system like ẏ = u can have only u as input

when the class of permitted functions is the set of continuous functions: in fact y

must be differentiable, a constraint that does not permit to choose y freely.

If the function space choosen were the set of smooth functions, y could be

chosen arbitrarily, since the derivative of a smooth function is still a smooth

function: therefore it could be an input.

This dependence on the trajectories space is not present in the algebraic frame-

work proposed by M. Fliess: this is, for example, the reason why optimal con-
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trol problem have never been considered in this context (while very interesting

progresses on this subject were announced by J. C. Willems at MTNS98) and

nonlinear systems are best arranged by M. Fliess’ theory.

Actually researchers succeeded in finding a good function space for trajectories

only for linear systems: discrete–time [Wil86], continuous–time [Wil89], multidi-

mensional [Obe90], delay–differential [GL97a], time–varying [OF98]. No suitable

function space has been discovered for generic nonlinear systems (see [MW95]

and [ZWZ97]) and, without this object, behavioral concepts do not make sense.

On the converse M. Fliess’ algebraic definitions has been extended from finite–

dimensional, linear, time–invariant continuous–time systems [Fli90b] to a wide

range of dynamical systems: discrete–time, time–varying, delay–differential, in-

finite–dimensional, nonlinear and others (see e.g. [Fli90a], [Fli92], [Fli93], [FG93],

[FLMR97], [HF98]). Moreover this approach gave rise to a very important notion

within nonlinear systems theory: atness ([FLMR95], [FLMOR97]); this concept

is also useful in infinite–dimensional linear systems, topic on which M. Fliess’

research has been focusing lately [FM98].

Anyway, as we shall show, once a function space is chosen, the module–

theoretic objects and concepts in M. Fliess’ theory can be interpreted, inside

the behavioral setup, as duals to behavioral objects.

1.3 A closer look at behaviors

Given a behavior (the set of trajectories of a dynamical system) our aim is at

trying to obtain its representation, i.e. we search for a formal, mathematical way

(behavioral equations) to decide which trajectories the behavior contains.

The representation with latent variables is the most general: it expresses the

link, with some functional relation, between the manifest trajectories and other

variables that are not directly observable in the system dynamics or not essen-

tial to modeling purposes. For examples in economics, sales are the manifest

variables, constituting the behavior, while consumer demand could be considered

an unknown latent variable. In electrical circuits, internal voltages and currents

can be ignored if we are interested only in the external port behavior, but are

necessary to build equations from basic physical principles.

Two particular cases of a latent variable representation are useful in different

contexts: when we want to easily check whether a trajectory belongs to a behavior
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we should have a kernel representation; on the other hand if we want to generate

the whole behavior, an image representation is the best choice.

Kernel representations, corresponding, roughly speaking, to AR systems, ex-

press the behavior as the kernel of an operator; therefore, as in fault detection

problems, they permit to verify immediately if a given trajectory is an admissible

one for a dynamical system.

Image representations, analogous to MA systems, characterize the behavior as

the range of an operator: it is the most appropriate one for simulation purposes.

If we are given a behavior with some representation, a fundamental problem in

the behavioral approach is the following: is it possible to find another representa-

tion (even of a different type) and, conversely, when does another representation

define the same behavior?

If we consider linear, finite–dimensional, time–invariant, continuous–time be-

haviors and operators that are linear differential operators of any order, then the

aforementioned questions receive quite simple answers: first of all, every behavior

which has an image representation admits a kernel representation.

A behavior that has a representation with latent variables admits an equiva-

lent kernel representation disregarding smoothness issues, in the sense that this

equivalence always holds true only when the function space contains only smooth

functions (see remark 3.8 for a clarifying example or [Pol97, sect. 2.5] for further

details).

Finally, a behavior defined by a kernel representation admits an image repre-

sentation if and only if it is controllable. This property, in the behavioral approach,

is defined only in terms of trajectories: loosely speaking, a behavior is controllable

when, given two admissible trajectories, there is another admissible one consisting

of the past of the first one, of a suitable connection of finite duration and of the

future of the second one.

1.4 Summary of the thesis

The main purpose of this thesis is to give an outline of results concerning delay–

differential systems that may constitute a foundation for a behavioral theory of

this class of linear systems. The first papers on this subject, namely [RW97]

and [GL97a], appeared at the beginning of 1997; they provided some remarkable

notions and structures on which a satisfactory theory has grown up, unfortunately,
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only for a particular type of delay–differential system: the so-called systems with

commensurate delays.

This kind of systems, also called one delay systems, is characterized by the

fact that every time delay that appears in the equations is an integral multiple of

one single value.

A fundamental structure, often used in the behavioral framework, is the Smith

form for matrices: the existence of the Smith form implies that every matrix is

similar to a diagonal matrix; in this way systems of differential equation are

reduced to the scalar case. Operators with commensurate delays admit the Smith

form while operators with noncommensurate delays do not.

Another important tool, which permits to develop a satisfactory theory when

the Smith form does not exist, is duality: here duality is intended between trajec-

tories and operators acting on them. There are many situations that are simplified

by considering dual objects. A corner-stone in the behavioral approach is [Obe90],

where duality is the main ingredient to analyse a great variety of linear systems

with constant coefficients. Unfortunately there is not a well-established duality

theory for delay–differential systems.

So, since usual techniques fail with non commensurate delay–differential sys-

tems, we have to find other, often quite complicated, ways to deal with the prob-

lems the behavioral approach poses.

Chapter 2 introduces the class of trajectories we will be concerned with in this

thesis, i.e. the set of real smooth functions; the concepts are presented from a

functional analytical point of view, hence also distributions and continuous linear

operators on smooth functions are defined, in order to have the basic elements

necessary to investigate delay–differential systems. The operatorial notation we

will use is mainly explained in this chapter.

The following chapter 3 makes clear what we mean by dynamical systems

introducing two rather different approaches to systems theory: the behavioral

approach of J. C. Willems and the module theoretic approach of M. Fliess. The

fundamental concepts and problems related to these two approaches are explained,

showing examples and important theorems for linear time–invariant differential

systems. However also delay–differential systems are introduced and generalized

to the wider class of convolutional behaviors, which seems to have no preceding in

the systems theory literature.

Differential operators are renowned, but delay–differential equations introduce
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new operators whose properties were discovered quite recently. Chapter 4, besides

defining and proving some linear algebra results about Smith forms, Bézout equa-

tions and generalized inverses of matrices, treats in an unified manner various

kinds of operators showing that they are isomorphic to particular subrings of

holomorphic functions; in this way many properties and relations between these

classes of operators become more intuitive.

Other mathematical details are proved in chapter 5, where more is said about

the strict relation that links behaviors and the corresponding modules in the

M. Fliess’ approach: they are indeed the algebraic and, under suitable hypotheses,

topological dual one of each other, as is shown in theorem 5.17 which seems to be

a new result.

Delay–differential behaviors with commensurate delay are the subject of chap-

ter 6 that shows two important theorems, 6.2 and 6.5, on the representation

problem of behaviors and the fundamental theorem 6.6 on controllability. As we

pointed out, these theorems owe their simplicity to the existence of the Smith

form for delay–differential operators with one delay.

Delay–differential behaviors with non commensurate delays, treated in chap-

ter 7, as well as convolutional behaviors, present many subtle mathematical diffi-

culties (even of number theoretic nature) that make results less elegant and proofs

much harder.

This last chapter contains, with the exception of two results of L. Habets

(theorem 7.1 on equivalence of behaviors) and of H. Mounier (theorem 7.4 on

controllability in the module theoretic approach), new results on delay–differential

and convolutional systems.

Both results cited above, only valid for delay–differential systems defined by

full row rank matrices, are generalized to convolutional systems defined by matri-

ces of generic rank: theorems 7.2 and 7.3 extend the result on behavior equivalence

while theorems 7.5 and 7.7 are relative to the problem of controllability inside the

M. Fliess’ approach; also theorem 7.8 shows an important necessary and sufficient

condition for a particular type of controllability that is defined in this framework.

As regards controllability of behaviors, section 7.2.2 proves the existence of

a necessary condition (existence of an image representation) and of a sufficient

condition (a rank condition over C of the defining matrix called spectral controlla-

bility) for behavioral controllability of convolutional systems; these conditions are

both necessary and sufficient with commensurate delays, but example 7.14 shows
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that this is not the case even with two incommensurable delays.

Other results (as theorems 7.12 and 7.21) give conditions that make the above

facts equivalent. Theorem 7.21, in particular, is an algebraic criterion that may

be implemented by Gröbner bases.

There are two results on delay–differential behaviors that admit an image

representation (therefore are controllable): theorem 7.26 states that it is always

possible to find an full column rank delay–differential image representation while

theorem 7.28 proves that if the system has a single input then the defining matrix

admits a generalized inverse (if the matrix is full row rank, then it is invertible on

the left); this condition is also equivalent to controllability for delay–differential

systems with one delay, as is showed in theorem 6.6.

Last section investigates another condition that is equivalent to controllability

for linear differential systems (see e.g. [Wil91, p. 266] for discrete-time systems):

let us consider only the trajectories of a given behavior that are zero both in the

‘past’ and in the ‘future’; the closure of this set (with respect to the topology of

the function space trajectories belong to) is equal to the behavior if and only if

it is controllable. The main result (theorem 7.34) states that for every convolu-

tional behavior that admits a full row rank kernel representation, this condition

is equivalent to spectral controllability.

To help the reader to face this puzzling situation, pages 109, 110 and 111

show a graphical representation of the relations between different controllability

conditions in the behavioral and in the module theoretic approaches for delay–

differential and convolutional systems.



Chapter 2

Smooth functions and

convolutions

This chapter reviews some known results in functional analysis about smooth

functions and their topological dual: distributions with compact support.

These concepts, in particular convolutional equations, constitute a very generic

framework for the study of linear systems: the notation introduced in this chapter

will be used throughout the whole thesis.

2.1 Topological preliminaries

Some basic topological definition are given in appendix B.

Definition 2.1. A topological vector space is called F-space if it is metrizable

and complete; a locally convex F-space is called Fréchet space.

This kind of topological vector spaces is very important: continuous functions

that are derivable infinitely many times or only up to order k, holomorphic func-

tions, power series and smooth functions rapidly decreasing at infinity are Fréchet

but not Banach spaces, i.e. are not normable [Tre67, ch. 10].

In particular

Definition 2.2. The set of smooth functions C∞(R,R) equipped with the

standard topology (uniform convergence of derivatives of any order on every com-

pact) will be denoted by the symbol E ; the holomorphic functions on C, that

being smooth carry the same topology as E , will be denoted by O.

12
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Both spaces have the Heine–Borel property: every closed and bounded

subset is compact. A consequence of this important fact is that these spaces are

Montel spaces and therefore reflexive (see [Tre67, ch. 34 and 36]).

There are some very important results about topological vector spaces that

will be necessary in the following sections. Their proofs can be found in most

books on topology or functional analysis, e.g. [Rud73].

Definition 2.3. A functional on a vector space V is a map α : V→ F where F

is the field of scalars of V.

If V is equipped with a topology τ , then we will be mainly concerned with

continuous functionals.

Proposition 2.4. If Λ is a non zero linear functional on V, then ker Λ = Λ−1(0)

is a proper subspace of V.

The following conditions are equivalent:

Λ continuous ⇔ ker Λ closed ⇔ ker Λ not dense in V ⇔ Λ bounded

Proposition 2.5. If U is a closed subspace of V with topology τ , then the quo-

tient vector space V/U = {x+ U : x ∈ V} may be equipped with the quotient

topology τU = {T + U : T ∈ τ}.
Moreover, if V is a Fréchet space or an F-space, so is V/U.

Next two theorems, the ‘open mapping theorem’ and the ‘Hahn–Banach the-

orem’ may be stated in a much more general form and, especially for the second

one, in many different ways. Here we state them in a form that is suited to our

purposes (see [Rud73, cor. 2.12, thm. 3.6, 3.5]).

Theorem 2.6 (Open mapping theorem). If Λ is a continuous linear mapping

of an F-space onto an F-space and is one-to-one, then Λ−1 is continuous.

Theorem 2.7 (Hahn–Banach theorem, analytical form). If λ is a continu-

ous linear functional on a subspace U of a locally convex topological vector space

V, then there exists a continuous linear functional Λ on V such that λ = Λ on U.

Corollary 2.8. If U is a subspace of a locally convex topological vector space V,

x ∈ V but x 6∈ U, the closure of U, then there exists a continuous linear functional

λ : V→ F such that λ(x) = 1 and λ(y) = 0 for every y ∈ U.
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2.2 Distributions

We recall here some definitions and important facts about distributions.

Definition 2.9. The dual of the topological vector space V is the set of all

continuous linear functionals on V and will be denoted by V′.

Distributions constitute the dual (D′) of the test functions, i.e. smooth func-

tions with compact support (D ⊂ E). Following the standard notation, if α is a

distribution and φ(t) a test function, the value of α at φ is denoted by 〈α, φ〉 ∈ R.

Distributions extend functions in the following sense: if f is a locally integrable

function, i.e. (Lebesgue) integrable on every compact, then it is a distribution

f : D → R, φ 7→ 〈f, φ〉 M=
∫
R
f(t)φ(t)dt. (2.1)

Obviously not every distribution may be associated to a locally integrable

function: if δ, the evaluation at the origin 〈δ, φ〉 = φ(0), were a function δ(t), it

should be zero everywhere except at the origin, but in this case the integral of

δ(t)φ(t) would be zero.

Remark 2.10. In what follows, the conditions that insure convergence of inte-

grals will be always supposed satis�ed, if not otherwise stated (due to their preva-

lently heuristic avour).

Note that if f is differentiable then, upon integrating by parts and remember-

ing that φ is zero for large |t|, we get

< f ′, φ >=

∫
R
f ′(t)φ(t)dt = −

∫
R
f(t)φ′(t)dt = −〈f, φ′〉 (2.2)

that makes natural the definition of derivative of a distribution α up to any

order k ∈ N: 〈
α(k), φ

〉
= (−1)k

〈
α, φ(k)

〉
. (2.3)

The derivatives of the δ distributions map a function into its derivatives eval-

uated at the origin (regardless of the sign).
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2.3 Convolutions

In order to define convolutions between functions and distributions, we have to

introduce a fundamental operator: the shift operator στ mapping a generic

function f (defined at least on a group) into the function

(στf)(t)
M
= f(t− τ). (2.4)

Note that, given any distribution α and a test function φ(t), 〈α, στφ〉 is a function

of τ . Moreover

φ(τ) = (σ−τφ)(0) = 〈δ, σ−τφ〉 . (2.5)

Since for functions f and g

〈στf, g〉 =

∫
R
f(t− τ)g(t) dt =

∫
R
f(x)g(x+ τ) dx = 〈f, σ−τg〉 (2.6)

we may define the shift of a distribution as follows

〈στα, φ〉
M
= 〈α, σ−τφ〉 . (2.7)

Another standard notation in functional analysis is the symbol

f̌(t)
M
= f(−t), (2.8)

the symmetric of f with respect to the origin: we have that

〈f, ǧ〉 =

∫
R
f(t)g(−t) dt =

∫
R
f(−x)g(x) dx =

〈
f̌ , g
〉
. (2.9)

This property also extends to distributions by assuming:

〈α̌, φ〉 M=
〈
α, φ̌

〉
. (2.10)

Symmetry and shift operators do not commute, but:

(στf)∨(t) = (στf)(−t) = f(−t− τ) = f̌(t+ τ) = (σ−τ f̌)(t). (2.11)
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Combining last property with (2.7) and (2.10) we have for a generic distribution〈
(στα)∨, φ

〉
=
〈
στα, φ̌

〉
=
〈
α, σ−τ φ̌

〉
=
〈
α, (στφ)∨

〉
=〈α̌, στφ〉=〈σ−τ α̌, φ〉 . (2.12)

The convolution of two functions is the function

(f ? g)(τ)
M
=

∫
R
f(t)g(τ − t) dt =

∫
R
f(τ − t)g(t) dt (2.13)

when the (Lebesgue) integral exists. Using (2.9) we obtain

(f ? g)(τ) =

∫
R
f(t)ǧ(t− τ) dt =

∫
R
f(t)στ ǧ(t) dt = 〈f, στ ǧ〉 (2.14)

This formula suggest the definition

(α ? φ)(τ)
M
=
〈
α, στ φ̌

〉
= 〈α̌, σ−τφ〉 ∈ E (2.15)

when α ∈ D′ is a distribution and φ(t) ∈ D a test function [Tre67, p. 287]. In order

to have a well defined convolution between distributions we need an additional

hypothesis.

Actually, if f and g are functions acting as distributions on φ ∈ D, then it is

easy to see that 〈f ? g, φ〉 is well defined when the function f(t)g(τ)φ(t + τ) has

compact support in R2; this happens if f , or g, has compact support,ll but even

if the support of both functions is bounded either on the left or on the right.

Definition 2.11. A distribution α is said to vanish in an open set U if 〈α, φ〉 = 0

for every test function φ having its support in U. The support of the distri-

bution α is the complement of the largest open set in which α vanishes.

Proposition 2.12. The expression 〈α, 〈β, σ−τφ〉〉 makes sense if either one of the

distributions α or β has compact support or both have a bounded support on the

same side. In this case that expression defines a functional which is called the

convolution of α and β:

〈α ? β, φ〉 M= 〈α, 〈β, σ−τφ〉〉. (2.16)

If the support of α and β is bounded on one side, then the same fact holds for

α ? β.
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If we only consider the set of distributions with compact support (which, as is

shown in [Tre67, thm. 27.7], is a ring with respect to ‘+’ and ‘?’ whose identity with

respect to convolution is δ, fact trivial to verify from (2.5) and from the definition

given above), then (2.16) always holds and defines a distribution γ = α ? β with

compact support.

This hypothesis is indeed not restrictive: as [Tre67, thm. 24.2] states:

Theorem 2.13. The ring of distributions with compact support is the topological

dual of the topological vector space of infinitely differentiable functions. Therefore

it is denoted by E ′.

This theorem shows that, since we are going to employ infinitely differentiable

functions, we need only distributions with compact support;

In order to treat linear systems we need not only functionals, but also a ring of

operators mapping E into itself. For our purposes (linear time invariant systems),

we should require that these operators are linear, continuous and commute with

the shift operator. We show that this ring is isomorphic to E ′.

Lemma 2.14. Convolution ‘commutes’ with shift, i.e. for every α ∈ E ′, f ∈ E
and τ ∈ R

στ (α ? f) = α ? (στf). (2.17)

Proof. The proof follows at once from definitions:

(στ (α ? f))(t) = (α ? f)(t− τ) =
〈
α̌, σ(τ−t)f

〉
= 〈α̌, σ−tστf〉 = (α ? (στf))(t).

Then we prove that

Lemma 2.15. Every linear continuous operator Λ : E → E which commutes with

the shift operator Λστ = στΛ is a convolution: there exists a unique α ∈ E ′ such

that Λf = α ? f for every f ∈ E .

Proof. Let λ be the functional that maps E 3 f 7→ Λf(0): it is a composition

λ = δ ◦ Λ of a continuous linear operator and a continuous linear functional

therefore λ ∈ E ′ and 〈λ, f〉 = Λf(0).
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Since Λ commutes with the shift,

(Λf)(τ) = (σ−τ (Λf))(0) = (Λ(σ−τf))(0) = 〈λ, σ−τf〉 = λ̌ ? f(τ)

from definition (2.15); thus α = λ̌.

The distribution λ is uniquely determined: if 〈λ1, f〉 = 〈λ2, f〉 = Λf(0) then

〈λ1 − λ2, f〉 = 0 for every f ∈ E therefore λ1 = λ2.

So we have the following:

Theorem 2.16. Let L be the set of all continuous linear operators on E which

commute with the shift operator. Then the map

˜: E ′ → L, α 7→ α̃ such that α̃(f) = α ? f

is a ring isomorphism, i.e. the composition of α̃ and β̃ is α̃β̃ = α̃ ? β.

Proof. The map˜is well defined because for every α ∈ E ′, α̃ is linear, commutes

with shift by lemma 2.14 and is continuous [Tre67, thm. 27.3]; lemma 2.15 states

that the map is onto and one-to-one.

The map is a ring isomorphism if we have α ? (β ? f) = (α ? β) ? f . If we

suppose, for notation purposes, that in the following formula β ? f is a function

of τ , then, from definition (2.15):

(α ? (β ? f))(t) = 〈α̌, σ−t(β ? f)〉 = 〈α̌, β ? (σ−tf)〉 =
〈
α̌,
〈
β̌, σ−τσ−tf

〉〉
=
〈
α̌ ? β̌, σ−tf

〉
= 〈(α ? β)∨, σ−tf〉 = ((α ? β) ? f)(t).

Through this isomorphism we may consider the set E ′ not only as the topo-

logical dual of E , but also as a ring of operators acting on it.

2.4 The Paley-Wiener theorem

Consider the set of rapidly decreasing smooth functions

S =
{
f(t) ∈ E : ∀i, k ∈ N lim

t→∞
|tk|f (i)(t) = 0

}
, (2.18)

which is a Fréchet space (and D ⊂ S ⊂ E).
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This space is important since we can define the Fourier operator on its

elements:

F : S → S, f(t) 7→ (Ff)(ω)
M
=

∫
R
f(t)e−2πiωt dt (2.19)

which [Tre67, ch. 25] is a topological isomorphism.

It is easy to extend the Fourier operator on the dual S ′, the set of tempered

distributions:

F : S ′ → S ′, α 7→ Fα such that ∀f ∈ S 〈Fα, f〉 = 〈α,Ff〉 (2.20)

Regarding the function f(t) ∈ S as a distribution, we can rewrite its Fourier

transform (2.19) as (Ff)(ω) = 〈f(t), e−2πiωt〉; in an analogous way we could define

the Fourier transform of a distribution as a function of ω, but we need an additional

hypothesis: it must have compact support [Tre67, pr. 29.1].

Proposition 2.17. The Fourier transform of a distribution with compact support

α ∈ E ′ is the function

(Fα)(ω) =
〈
α, e2πiωt

〉
(2.21)

where α acts on e−2πiωt = fω(t) that is function of t with parameter ω.

We can extend Fα(ω) to a complex holomorphic function just substituting

ω ∈ R with s ∈ C in equation 2.21, so that Fα(s) ∈ O.

Most of the mathematical literature is based on the Fourier transform while

engineers prefer Laplace transform, probably due to its simpler form and its ca-

pability to operate on more general functions than the other transform does.

On the other side the Fourier transform can operate on tempered distribu-

tions while Laplace transform cannot. In our context (distributions with compact

support) both transforms exist:

Definition 2.18. The Laplace transform is the operator so defined

L : E ′ → O α 7→ α̂(s) = (Lα)(s)
M
=
〈
α, e−st

〉
(2.22)

where α acts on e−st = fs(t) that is a function of t with parameter s.

The relation between the two transforms is trivial: α̂(s) = (Fα)
(
s

2πi

)
.



2.4 The Paley-Wiener theorem 20Smooth functions and convolutions

Example 2.19. The holomorphic function h(s) = sk corresponds to the k-th

order derivative operator: indeed a simple computation shows that

(Lδ(k))(s) =
〈
δ(k), e−st

〉
= (−1)k

(
dk

dtk
e−st

) ∣∣∣
t=0

= sk.

Then, by equation (2.3) and definition (2.8) we have〈
δ(k), f̌

〉
=
〈
δ, (−1)k d

k

dtk
f̌
〉

=
〈
δ, ( d

k

dtk
f)∨
〉

therefore

(δ(k) ? f)(t) =
〈
δ(k), σtf̌

〉
=
〈
δ, σt(f

(k))∨
〉

= f (k)(t).

♣

Example 2.20. The shift operator satisfies the hypotheses of theorem 2.16:

therefore there are a distribution in E ′ and an holomorphic function that cor-

respond to it.

From (2.5) and (2.7) we get immediately that if δτ is the functional that

evaluates a function at τ then

〈δτ , f〉 = f(τ) = 〈δ, σ−τf〉 = 〈στδ, f〉 (2.23)

therefore δτ = στδ; now by (2.16) and (2.9)

(δ̃τf)(t) =
〈
δτ , σtf̌

〉
=
〈
δ, σtσ−τ f̌

〉
= 〈δ, σt(στf)∨〉 = (στf)(t). (2.24)

Using the Laplace transform

δ̂τ (s) =
〈
δτ , e

−st〉 = e−sτ (2.25)

hence the holomorphic function corresponding to στ = δ̃τ is e−sτ . ♣

We can say a little bit more about the holomorphic functions that are Laplace

transforms of distributions in E ′: let

p(s)
M
= log

(
1 + |s|2

)
+ |Re s| (2.26)



2.4 The Paley-Wiener theorem 21Smooth functions and convolutions

and define the algebra of holomorphic functions1

A M
=
{
f ∈ O : ∃A,B > 0, |f(s)| ≤ AeBp(s) ∀s ∈ C

}
(2.27)

which will be called ring of Paley–Wiener functions. Then

Theorem 2.21 (Paley–Wiener). The space A defined in (2.27) is topologically

isomorphic to Ê ′, the set of Laplace transforms of distributions with compact

support.

This is a fundamental theorem because it permits to characterize those holo-

morphic functions that have an ‘operatorial’ meaning. Distributions that have

a punctual support have rather simple Laplace transforms (see examples 2.19

and 2.20); the following example shows, employing definition (2.27), a non trivial

holomorphic function h(s) ∈ A that is the Laplace transform of some distribution

in E ′.
Example 2.22. Let h(s) be as follows:

h(s) =
es − e−s

s
.

The function is holomorphic; to verify that h(s) ∈ A let us consider what happens

if s is in a neighborhood of 0 ∈ C and then in its complement.

Being h(s) continuous (even at s = 0), it is bounded on every compact set:

|s| ≤ 1 ⇒ ∃A′ such that |h(s)| ≤ A′ ≤ A′eBp(s).

Then, we know that es and e−s are Paley–Wiener functions, being Laplace

transforms (see equation (2.25)) of the distributions δ−1 and δ1. Therefore

|s| ≥ 1 ⇒ |h(s)| = |e
s − e−s|
|s|

≤ |es − e−s| ≤ |es|+ |e−s| ≤ 2 max
{
|es|, |e−s|

}
so there are A′′, B > 0 such that |h(s)| ≤ A′′eBp(s) for |s| ≥ 1.

In conclusion, taking A = max {A′, A′′}, h(s) satisfies definition (2.27). ♣
The ‘operatorial’ meaning of a similar function is explained in example 6.1.

1See for more general definitions [Str83, ch. 3], where the function p(s) differs from that given
here since we are going to use Laplace instead of Fourier transforms; we omit to indicate the
dependence of A on p, thus we will not use a notation like Ap, because we will deal only with
this particular class of holomorphic functions.
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2.5 Systems of convolutional equations

The concepts developed so far are still valid if we no longer confine ourselves to

scalar operators. Moreover

Remark 2.23. The expression written in this chapter do not change at all if we

follow this convention: the elements with functional or operatorial meaning, e.g.

elements in Ak, are row vectors while vectors of functions, e.g. elements in Eq,
are column vectors.

Let us say something more precise about the non scalar case: first of all the

evaluation of a distribution α ∈ E ′p at a function v(t) ∈ Ep is

〈α, v〉 M=
p∑
j=1

〈αj, vj〉 (2.28)

and analogously a system of convolutional equation will be treated as follows: if

we consider the distribution β ∈ Ep×q, β̃ maps w(t) ∈ Eq to v = β̃w ∈ Ep in the

usual way:

vi =

q∑
j=1

β̃ijwj, ∀i = 1, . . . , p. (2.29)

Note that from (2.16) and theorem 2.16 we get

〈α ? β̌, w〉 =
〈
α,
〈
β̌, σ−τw

〉〉
= 〈α, β ? w〉 =

〈
α, β̃w

〉
(2.30)

i.e. the adjoint of the operator β̃, denoted by β̃′, maps α to β̃′α = α?β̌. The above-

mentioned convention ensures the correctness of these symbolic manipulations

once the dimensions of matrices and vectors are well chosen.

Thus, as operators,

α̃v = α̃(β̃w) = (α̃β̃)w = α̃ ? βw (2.31)

where the matrix β̃ is “multiplied” by the column vector w on the right and by

the row vector α̃ on the left.

The Paley–Wiener theorem and the isomorphic relation between α ∈ E ′, α̂(s)

and the operator α̃ permits us to identify E ′, Ê ′, A and the ring of linear continuous

operators on E commuting with the shift; last equation may be also written, with
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a(s) = α̂(s) ∈ Ap and B(s) = β̂(s) ∈ Ap×q, as

a(s)v = a(s)(B(s)w) = (a(s)B(s))w.

We note that a(s)B(s) is effectively a multiplication in O of particular holomor-

phic functions while B(s)w has the operatorial meaning of equation (2.29). Due

to these different “multiplications” of elements in A (or in other operator rings),

when we are concerned with kernels and images of matrices, we have to be par-

ticularly careful.

Remark 2.24. If we are considering the kernel of a matrix B(s) ∈ Ap×q then we

can view it as a matrix of operators acting on the right on E:

kerE B(s) or kerE B(s)◦ is the set {w(t) ∈ Eq : B(s)w = 0} ;

or think of B(s) as a matrix taking elements in A, which may be multiplied on

the left by (row) vectors in Ap:

kerA ◦B(s) is the set {a(s) ∈ Ap : a(s)B(s) = 0} .

Analogously, the image of B(s) may be twofold: as an operator

imE B(s) or imE B(s)◦ is the set {v = B(s)w : w(t) ∈ Eq} ⊆ Ep;

while as a matrix on the ring A we have, using in this case also another intuitive

notation,

imA ◦B(s) or ApB(s) is the set {b(s) = a(s)B(s) : a(s) ∈ Ap} ⊆ Aq.



Chapter 3

Algebraic approaches

Dynamical systems may be defined and treated in many different ways; in this

chapter we present two important approaches that recently gave rise to interesting

results on delay–differential systems. A more specific approach to system over

rings, that still needs further development, will be shortly presented in chapter 7.

3.1 The behavioral approach

This section is devoted to a basic, but necessary, explanation of the behavioral

approach as it was developed by J. C. Willems. Definitions and theorems will be

introduced for the well-known case of linear continuous time differential systems.

3.1.1 Dynamical systems and behaviors

The first step is the definition of the objects the behavioral approach deals with.

Definition 3.1. A dynamical system is a triple Σ = (T,W,B): B, the be-

havior of the dynamical system, is a subset of W T = {w : T → W}, the set of

functions from T , the time set, into W , the signal alphabet.

The above definition assumes no particular structure on the sets T and W .

We will require two more properties.

Definition 3.2. A dynamical system Σ = (T,W,B) is linear if W is a vector

space (the same structure is induced on W T ) and B is a subspace of W T .

24
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A dynamical system Σ = (T,W,B) is time-invariant if (T,+) is a semigroup

and

∀τ ∈ T, w(·) ∈ B ⇒ w(·+ τ) ∈ B. (3.1)

Remark 3.3. When the time set is not only a semigroup (like N or R+), but a

group (assuring, roughly speaking, that the ’−’ operation is well de�ned, like in

Z and R), we can use the shift operator στ de�ned in (2.4) that maps a function

w 7→ (στw)(t) = w(t− τ). In this case property (3.1) is equivalent to

∀τ ∈ T, w ∈ B ⇒ στw ∈ B. (3.2)

We will only deal with time-invariant linear continuous-time systems, i.e.

systems for which T = R and W = R
q or W = C

q: a more general set-

up [Wil89, Wil91] is not so useful in our context. Other classes of dynamical

systems will be occasionally touched upon: for a deeper analysis of their proper-

ties we refer the interested reader to the bibliography.

When the dynamical system is Σ = (R,Rq,B), its behavior B is a subset of the

set of all time trajectories (Rq)R = {w : R → R
q}. In order to obtain a clear

physical meaning, we will always implicitly assume that the behavior B is a subset

of C∞(R,Rq), the set of all smooth (i.e. infinitely differentiable) functions that

will be denoted by Eq following definition 2.2; we will call these systems linear

smooth systems.

3.1.2 Behavior specification

The simplest way to specify a behavior is to introduce the characteristic function

of B, i.e. χ : W T → {0, 1} so that χ(w) = 0 if and only if w ∈ B. Therefore

B = χ−1(0), which is called behavioral equation.

That is too abstract for our purposes: so we will suppose that the behavior

is specified by some set of differential equations. In other words the trajectories

belonging to B satisfy a system of differential equations. The notation will be more

compact and clear if we introduce the following class of differential operators.
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Definition 3.4. A polynomial differential operator

r
(
d
dt

)
=

n∑
0

ai
di

dti
= an

dn

dtn
+ an−1

dn−1

dtn−1 + · · ·+ a1
d
dt

+ a0 ∈ R
[
d
dt

]
(3.3)

maps w(t) ∈ E into

r
(
d
dt

)
w =

n∑
0

aiw
(i)(t) = anw

(n)(t) + an−1w
(n−1)(t) + · · ·+ a1w

(1)(t) + a0w(t).

where w(k)(t)
M
= dk

dtk
w(t).

A matrix operator R
(
d
dt

)
∈ R

[
d
dt

]p×q
maps in the usual way w(t) ∈ Eq into

v(t) ∈ Ep, such that vi =
∑

j Rij

(
d
dt

)
wj.

Remark 3.5. We note that the operators just introduced in this chapter are con-

sistent with the previously de�ned ones. If the distribution α is a linear combina-

tion of δ(k) then example 2.19 shows that α̂(s) is a linear combination of sk:

α =
n∑
0

akδ
(k) ⇒ α̂(s) =

n∑
0

aks
k (3.4)

in other words α̂(s) ∈ R[s] and since sk (or, better, s̃k) is the k-th order derivative

operator,

(α̃w)(t) =
n∑
0

akw
(k)(t)

i.e. α̃ and r
(
d
dt

)
, as de�ned in (3.3), are the same operator.

Therefore, in the end, α̃ = α̂
(
d
dt

)
. This allows us to treat the polynomial α̂(s)

as a di�erential polynomial operator identifying the symbols s and d
dt

.

Anyway, for all a(s) ∈ A, since there is a unique α ∈ E ′ such that a(s) = α̂(s),

the expression a(s)w will have the following intuitive meaning:

(a(s)w)(t) = (α̃w)(t) = (α ? w)(t) = 〈α, σtw̌〉 . (3.5)

In this section, however, we will deal only with polynomial operators: therefore we

will prefer a more classical and simple notation.

There are many ways to write down a system of differential equations; the
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most important ones that will be used in this thesis, are called kernel represen-

tation, image representation and latent variables representation, which

is the generalization of the previous ones. We are already in a position to define

the first two representations:

Definition 3.6. A linear smooth system has a differential kernel represen-

tation if the elements of its behavior satisfy a system of homogeneous differential

equations: there is a matrix of polynomial differential operators R
(
d
dt

)
∈ R

[
d
dt

]p×q
such that w(t) ∈ B ⊆ Eq if and only if R

(
d
dt

)
w = 0. Following remark 2.24 we

may write

B = kerE R
(
d
dt

)
.

A linear smooth system has a differential image representation if its

behavior is the image of a matrix of polynomial differential operators M
(
d
dt

)
∈

R

[
d
dt

]q×d
; i.e. w(t) ∈ B ⊆ Eq if and only if there exists v(t) ∈ Ed such that

w = M
(
d
dt

)
v. Again, more compactly, this definition is equivalent to

B = imEM
(
d
dt

)
.

Equations get often a simpler structure if we introduce some auxiliary variables

called latent variables; indeed they are sometimes necessary, but not explicit in

a certain sense (e.g. state variables in input/output system or internal energy and

entropy in thermodynamics).

Following [Wil89], a dynamical system with latent variables is a quadru-

ple Σi = (T,W, V,Bi) where V is the signal space of the latent variables and

Bi ⊆ (W × V )T . If we introduce the projection Pw : W × V → W , (w, v) 7→
Pw(w, v) = w, then we get the induced dynamical system Σe = (T,W, PwBi).
The behavior of this system is often called external behavior; Bi is called in-

ternal behavior.

If the external behavior B admits a kernel representation the procedure that

constructs this representation starting from the given internal behavior is called

latent variables elimination .

If we restrict ourselves to linear smooth systems, we have the following:

Definition 3.7. A linear smooth system has a differential latent variables

representation if there exist two matrices of polynomial differential operators:
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R
(
d
dt

)
∈ R

[
d
dt

]p×q
and M

(
d
dt

)
∈ R

[
d
dt

]p×d
such that

w(t) ∈ B ⊆ Eq ⇔ ∃v(t) ∈ Ed such that R
(
d
dt

)
w = M

(
d
dt

)
v.

In other words there exists a linear smooth system with latent variables whose

external behavior coincides with B.

A standard linear input/state/output system like

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

fits naturally into the behavioral framework. Actually, considering the state as

latent variables, it can be rewritten as[
B 0

−D I

][
u

y

]
=

[
d
dt
I − A
C

]
x.

Its external behavior corresponds to the input/output system.

Remark 3.8. If we consider a linear dynamical system whose trajectories are

continuous functions (therefore every di�erential equation must be intended in

a distributional sense (see (2.1)), even a very elementary behavior with latent

variable v(t) does not admit latent variables elimination:

B =

{[
w1(t)

w2(t)

]
∈ C(R,R2) : ∃v(t) ∈ C(R,R),

[
1 −1

0 d
dt

][
w1

w2

]
=

[
0

1

]
v

}
(3.6)

contains trajectories that are continuous and di�erentiable; there is no kernel rep-

resentation of B since this kind of representation cannot give rise to a ‘di�eren-

tiability’ constraint.

On the contrary, linear smooth systems with latent variables always admit a

di�erential kernel representation (see [Rap98, ch. 2.5] and references therein). If

the same equations (3.6) were the equations de�ning a linear smooth system, i.e.

if w1(t), w2(t) and v(t) were smooth functions, then we would have

B =

{[
w1(t)

w2(t)

]
∈ E2 :

[
1 −1

] [w1

w2

]
= 0

}
.
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Linear smooth systems that admit kernel, image or latent variable differential

representations will be called differential systems and differential behaviors

their behaviors.

Latent variables elimination is just one of the problems related to the repre-

sentation of the behavior that this approach poses: more generally we could ask:

if we are given two behaviors with different representations then the inclusion

B1 ⊆ B2 has an algebraic counterpart?

Theory developed on differential systems gives sufficiently exhaustive answers;

sections 6.2 and 7.1 contains theorems that generalize the following ones:

Theorem 3.9. If B1 and B2 are behaviors with differential kernel representations

given by matrices R1

(
d
dt

)
∈ R

[
d
dt

]p1×q and R2

(
d
dt

)
∈ R

[
d
dt

]p2×q, then B1 ⊆ B2

if and only if there is a matrix X
(
d
dt

)
∈ R

[
d
dt

]p2×p1 such that X
(
d
dt

)
R1

(
d
dt

)
=

R2

(
d
dt

)
(see for similar statements [PW97, thm. 2.5.4, 3.6.2]).

Theorem 3.10. If B has a differential image representation, then it also admits

a differential kernel representation.

The converse of this theorem does not always hold: we need an additional

property, controllability.

3.1.3 Controllability of behaviors

In this section we aim at introducing a structural property of dynamical systems,

i.e. a property that does not depend on the particular representation of the be-

havior.

Definition 3.11. A linear time invariant system Σ = (R,Rq,B) is controllable

if

∀w1(t), w2(t) ∈ B ∃w̄(t) ∈ B, τ ≥ 0 such that w̄(t) =

w1(t) t ≤ 0

w2(t− τ) t ≥ τ
(3.7)

Loosely speaking, given two trajectories of a controllable behavior, there exist a

trajectory that shares the ‘past’ with the first one and the ‘future’ with the second

one.
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The notion of classical controllability of linear system theory and behavioral

controllability are formally different, but they coincide: indeed a fundamental

theorem [PW97, thm. 5.2.10] states that

Theorem 3.12. A differential behavior with kernel representation given by a

matrix R
(
d
dt

)
is controllable if and only if the rank of R(λ) does not change for

every λ ∈ C.

This reduces to the well-known Popov-Belevith-Hautus test for controllability

when R
(
d
dt

)
= [ d

dt
I−A −B], which is the matrix operator used in the kernel

representation of the system ẋ = Ax+Bu.

Another useful and elegant property of controllable differential behaviors is

that they admit an image representation and vice versa [PW97, thm. 6.6]:

Theorem 3.13. A differential behavior is controllable if and only if it has a

differential image representation:

∃M
(
d
dt

)
∈ R

[
d
dt

]q×d
such thatB = imEM

(
d
dt

)
.

A simple consequence of this theorem is that:

Proposition 3.14. A differential system is controllable if and only if

∀τ > 0, ∀w(t) ∈ B ∃w̄(t) ∈ B such that w̄(t) =

w(t) t < 0

0 t ≥ τ

Before we prove this proposition we state a useful lemma:

Lemma 3.15. There is a smooth function ψ(t) ∈ E such that ψ(t) = 0 for t ≤ 0

and that ψ(t) = 1 for t ≥ 1.

Proof. Let us construct directly ψ(t) from the well-known smooth function [PW97,

rem. 2.4.5] ψ̃(t) with compact support [−1, 1]:

ψ̃(t) =

e
1

t2−1 |t| < 1

0 |t| ≥ 1
⇒ ψ(t) =

∫ 2t−1

−∞ ψ̃(x) dx∫ +∞
−∞ ψ̃(x) dx

.
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Proof of proposition 3.14. If the system is controllable, then this proposition is

trivially verified because for every τ > 0, using ψ(t) of lemma 3.15, we can define

the smooth function

ṽ(t) = ψ

(
τ − t
τ

)
such that ṽ(t) = 1 for t ≤ 0 and ṽ(t) = 0 for t ≥ τ.

Since w(t) ∈ B implies w = Mv for some smooth function v(t) by theorem 3.13,

w̄ = M(vṽ) is the desired trajectory.

Conversely if for any τ > 0 and w(t) ∈ B we have a w̄(t) steering it to zero,

then given w1(t), w2(t) ∈ B and a fixed τ̄ > 0 we can take 0 < τ < τ̄ and

w(t) = w1(t) − w2(t − τ̄): in this way the function w̄(t) + w2(t − τ̄) is equal to

w1(t) for t ≤ 0 and to w2(t− τ̄) for t ≥ τ , a fortiori for t ≥ τ̄ .

Strictly related to controllability is the concept of autonomous system:

Definition 3.16. A linear time invariant system Σ = (R,Rq,B) is autonomous

if given any w1(t), w2(t) ∈ B, w1(t) = w2(t) ∀t ≤ 0 implies that w1(t) = w2(t)

∀t ∈ R.

It is really trivial to verify that a controllable system is not autonomous and

vice versa. It is more difficult to prove [PW97, thm. 5.2.14] that

Theorem 3.17. Given a differential behavior B, it is always possible to find two

differential behaviors Ba autonomous and Bc controllable, such that B = Ba⊕Bc;
the controllable subsystem is uniquely determined.

3.1.4 Delay–differential equations

The main goal of this thesis is to show how delay–differential systems may be

treated with behavioral techniques. First of all we must give an exact definition

of this particular class of linear systems.

Delay–differential equations are functional equations involving both derivative

and shift operators. Since derivative and shift operators commute, the compo-

sition of these operators is independent of the order; the operator derivating n

times and shifting m times with time shift τ is therefore denoted by
(
d
dt

)n
σmτ or

else
(
d
dt

)n
σmτ .

If every time shift is a multiple of one single delay then the system is said

to have commensurate delays or one delay; in this case, without loosing
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generality, we will consider delays as belonging to Z and denote the shift operator

as σ (assuming implicitly that the delay is unitary.)

If the time shifts do not have a common multiple, i.e. there are (necessarily

more than one) incommensurate delays, it is customary (see proposition 4.27)

to consider the set of delays as a subset of a (finite and direct) sum of modules

like

τiZ = {kτi : k ∈ Z} = {t ∈ R : t/τi ∈ Z} .

Since the sum of these modules is a free module, it has a well defined rank, i.e.

the number of elements {τi} of its basis: that is why such systems are also said

to have m delays if m is the rank mentioned above.

For the same reason a single time-delay is a (uniquely determined) Z–linear

combination of the basis τ1, . . . , τm ∈ R:

τ =
∑
i

kiτi (ki ∈ Z) ⇒ στ = σk1τ1 · · ·σkmτm = σk1
τ1
· · ·σkmτm . (3.8)

In this case an abbreviated notation like σ = (στ1 · · ·στm) will be often used;

we shall write the operator of equation (3.8) as σk and even something like kτ =∑
i kiτi. The k ∈ Zm are also known as multi-indices.

A suitable set of operators for dealing with delay–differential equations having

m delays τ1, . . . , τm could be the ring of delay–differential polynomials in

m+ 1 variables R
[
d
dt
,σ
]

such that

(
r
(
d
dt
,σ
)
w
)

(t) =

(∑
i,k

aik
di

dti
σkw

)
(t) =

∑
i,k

aikw
(i)(t− kτ ) (3.9)

with indices i and k belonging to finite sets.

Remark 3.18. As regards the equivalence problem, we note immediately that the

operators just de�ned are not adequate: in fact the equations

x(t− 1) = u(t− 1) ⇔ σx(t) = σu(t) and x(t) = u(t)

represent the same behavior but the kernel representation of the second one, [1−1],

cannot be deduced algebraically from the the representation [σ − σ].

A simple way to obviate this difficulty consists in introducing a larger ring
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of operators, namely analogous to the ring commonly used with discrete–time,

especially multi–dimensional, behaviors: the ring of delay–differential Lau-

rent polynomials R
[
d
dt
,σ,σ−1

]
, containing polynomial with both positive and

negative powers of the delay operators.1

Remark 3.19. Another simple example shows that neither Laurent polynomials

su�ces: if we consider the behaviors represented by the equations

d
dt
x = 0 and (1− σ)x(t) = x(t)− x(t− 1) = 0

the �rst one (constant functions) is obviously strictly included into the second

one (periodic functions) but there is no polynomial x( d
dt
, σ) such that, as in theo-

rem 3.9, x( d
dt
, σ) d

dt
= 1− σ.

To overcome this much harder problem we have to extend our operator ring to

include more general operators, as we will show in section 4.2.3 and in chapters 6

and 7.

3.1.5 Convolutional behaviors

The most general class of behaviors that will be discussed in this thesis are con-

volutional behaviors:

Definition 3.20. A convolutional behavior in kernel representation is a

linear smooth system that satisfies the following convolutional equation

B = kerE R(s) ⊆ Eq (3.10)

where R(s) ∈ Ap×q (see remark 2.24).

Analogously the image representation of a convolutional behavior is

B = imEM(s) ⊆ Eq (3.11)

where M(s) belongs to Aq×d.
In general a convolutional behavior with latent variables is a linear

smooth system so defined:

B =
{
w(t) ∈ Eq : ∃x(t) ∈ Ed, R(s)w = M(s)v

}
(3.12)

1We note that σ−1 is a well defined operator, being the shift bijective.



3.2 The module theoretic approach 34Algebraic approaches

and R(s) ∈ Ap×q, M(s) ∈ Ap×d.

Nevertheless we are mainly interested in delay–differential systems, so we

will call delay–differential systems those linear smooth systems that admit a

delay–differential kernel representation a delay–differential image rep-

resentation or a delay–differential latent variables representation i.e. they

admit a representation of the form (3.10), (3.11) or (3.12) where R(s) and M(s),

with suitable dimensions, take their values in subrings of A that correspond to

delay–differential (Laurent) polynomials or to their extensions as will be explained

in chapter 4.

Such systems, usually in state space form, have been investigated as systems

over rings (see e.g. [Hab94]) or as infinite dimensional systems (see e.g. [Hal77]).

In both cases there has been proposed many different definitions that generalize

the notion of controllability (see for instance [RW97]). Behavioral controllability,

definition 3.11, depends only on trajectories, thus applies also to delay–differential

systems.

The problem is the following: given a behavior with some representation, is

there some algebraic criterion to check behavioral controllability (as e.g. theo-

rem 3.12)? We will try to give an answer.

3.2 The module theoretic approach

Michel Fliess proposed in the eighties a new algebraic point of view in the analysis

of dynamical systems. Starting from linear differential systems his set of defini-

tions and theorems has grown to embrace a wide class of systems: continuous and

discrete time, linear, delay differential and non linear systems; recently he and his

coworkers are trying to give new insight in the world of multidimensional systems

involving partial differential equations.

We will only deal with some results on delay differential systems. However, in

order to understand the relation between these definitions and theorems and the

ones that belong to the behavioral approach, it is necessary to follow these ideas

from the beginning, i.e. from the simpler and well-known ordinary linear systems,

clarifying their (sometimes too algebraic) meaning.

In this section we will follow an abstract notation: R is a generic domain that,

as we show more precisely in chapter 5, is a ring of operators like A or R
[
d
dt

]
.

Even if we do not deal with trajectories in this section, we consider vectors in Rp as



3.2 The module theoretic approach 35Algebraic approaches

rows and we denote a matrix R ∈ Rp×q (even more explicitly than in remark 2.24)

as ◦R when it is considered as a (multiplicative) operator on the left.

3.2.1 Systems are modules

Algebraic definitions and theorems that are used but not introduced in this section

may be found in appendix A or in books like [Lan93], [AM69], [AF92].

Definition 3.21. A linear system is a finitely generated R–module M.

This definition is the starting point of Fliess’ theory. Using standard algebraic

language, we can say that a linear system is the cokernel of some matrix R ∈
Rp×q, called the presentation matrix, i.e.

M = cokerR ◦R
M
= Rq/RpR. (3.13)

Actually, a linear system is a module with finite free presentation; using an

exact sequence of modules:

Rp
◦R // Rq

φ //M // 0 (3.14)

where φ is the canonical (surjective) projection

φ : Rq → Rq/ kerφ = Rq/RpR = cokerR ◦R =M

When R = R

[
d
dt

]
, which is a Noetherian ring, then we can deduce R from the

generators ofM; it is sufficient to define φ mapping a base of the free module Rq

ontoM: then the rows of R are the generators of kerφ (which is finitely generated

by Noetherianity). When we cannot assure that kerφ is finitely generated, e.g.

when R = A which is not Noetherian, we have to start directly from R.

The definition of input and output variables is rather simple: a set of elements

u1, . . . , um ∈M, (independent) generators of the set U , is an input if the quotient

module M/U is torsion (see A.2); every set {yi} ⊂ M is an output.

Similarly to a behavior, the module M, contains input, output and latent

variables without any a priori classification. This resemblance is not fortuitous,

as we shall see in chapter 5.
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Example 3.22. The well–known input/state system

ẋ(t) = Ax(t) +Bu(t) (3.15)

where x(t) ∈ En and u(t) ∈ Em admits a (behavioral) kernel representation as

B = kerE R
(
d
dt

)
◦ with R

(
d
dt

)
M
= [ d

dt
I−A −B]

The same matrix, this time operating on the left, is the presentation matrix

of a module M that is formally equivalent to (3.15). Indeed, let R = R

[
d
dt

]
and

consider Rn+m generated by the basis X1, . . . , Xn, U1, . . . , Um, (these are only

symbols, elements of a basis: they have no other meaning. We may think e.g.

that {Xi} ∪ {Uj} is simply the canonical basis of Rn+m).

Every element a
(
d
dt

)
∈ Rm+n is a linear combination of {Xi} and {Ui}: ifX> =

[X1, . . . , Xn] and U> = [U1, . . . , Um] then every a
(
d
dt

)
is equal to b

(
d
dt

) [X
U

]
for

some b
(
d
dt

)
∈ Rn+m (trivially a

(
d
dt

)
= b

(
d
dt

)
in the case of the canonical basis).

If we suppose that R
(
d
dt

)
is expressed with respect to this basis we may write

the operator as ◦R
(
d
dt

) [X
U

]
. If φ, as in (3.14), is the canonical projection onto

the quotient and xi
M
= φ(Xi) and ui

M
= φ(Ui) then we know that imR ◦R

(
d
dt

) [X
U

]
=

kerR φ, thus

0 = φ

(
R
(
d
dt

) [X
U

])
= R

(
d
dt

)
φ

([
X

U

])
= R

(
d
dt

) [x

u

]

that is to say, by definition of R
(
d
dt

)
, that

d
dt

x = Ax +Bu.

Note, once again, that last two expressions, albeit similar to a kernel represen-

tation and to (3.15), do not have the same concrete sense: x = φ(X) and u = φ(U)

are not trajectories, but purely algebraic symbols!

They simply generateM while R
(
d
dt

)
defines the (algebraic) relations between

them.

♣
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3.2.2 Abstract controllabilities

Controllability does not have in this context a well defined definition, it is rather

a family of definitions.

Definition 3.23. For any R-algebra G, a system M is G–torsion free (or G–

projective or G–free) controllable if the G–module G ⊗RM is torsion free (or

projective or free).

It is necessary to explain many things: first of all the meaning of G ⊗RM.

The very definition of the tensor product of two modules over the same ring

is in appendix A.2; however it is not so helpful: in this case tensor product is a

standard way to do a change of base ring, i.e. it is a sort of algebraic immersion

of the scalars of the module M into a greater ring, namely G.

The particular structure of M = cokerR ◦R is essential in finding a simpler

form for G ⊗RM: the functor G⊗R : R-modules → G-modules preserves cok-

ernels [Coh95, p. 146]: G ⊗R cokerR ◦R = cokerG⊗RR ◦R. In other words, since

G ⊗R Rn ∼= Gn [Coh95, p. 159], G ⊗R cokerR ◦R = cokerG ◦R.

Indeed, using exact sequences, since G⊗R is a right exact (covariant) func-

tor [Bro92, p. 144], we can apply it to sequence (3.14) and get

Rp
◦R // Rq

φ //M // 0

G ⊗R ·
��Gp

◦R // Gq φ // G ⊗RM // 0

hence we obtain the very simple result:

G ⊗RM∼= Gq/GpR.

Afterwards, the three controllability properties are not independent: a free

module is projective and a projective one is torsion free. Moreover torsion free

modules over principal ideal domains are free: polynomials in one variable, for

instance, are principal ideal domains. Therefore ordinary linear time-invariant

systems, both continuous and discrete time, which may be represented by modules

over R ∼= R[s], are simply said controllable if they satisfy one of the definitions of

controllability (with G = R).

Freeness, the strongest property, implies that the module Gq/GpR has a basis

and is isomorphic to Gq−r where r is the rank of R: the module G ⊗RM behaves
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like a vector space.

Example 3.24. As we saw in example 3.22, in the input/state case we have

p = n (the dimension of the state) and q = n + m. If the system is controllable,

since R
(
d
dt

)
is clearly a full row rank matrix p = r, we obtain that the dimension

of M is q − p = m, that is exactly the dimension of the inputs.

Being the inputs independent, they are a basis of the module; in other words

every other element of the system (state variables and outputs) is an R

[
d
dt

]
–

linear combination of the inputs, i.e. a linear function of the inputs and their

derivatives. ♣

A more down to eath meaning of projective controllability will be shown in sec-

tion 7.2.1; we only recall here a useful basic property of projective modules [AF92,

ex. 11, p. 203].

Lemma 3.25 (Dual basis). An R–module P finitely generated is projective if

and only if there exist {xi} ⊂ P and fi ∈ HomR(P,R), i = 1, . . . , n such that

for every x ∈ P, x =
n∑
i=1

fi(x)xi.

The weakest of the three properties, torsion free-controllability, will be further

investigated in section 7.2.1. Here we simply show what torsion freeness of a

module implies in this specific context: G ⊗RM is torsion free if any non zero

element cannot be annihilated by non zero elements in G. In other words, if

M = cokerR ◦R with R ∈ Rp×q,

if g ∈ G and gx ∈ GpR then x ∈ GpR.

The module GpR is the zero of G⊗RM and x+GpR is zero in G⊗RM if and only

if x ∈ GpR; thus previous equation states that gx + GpR is zero only if x + GpR
itself is zero.

We omitted a great amount of definitions and interesting results of this alge-

braic theory of dynamical systems: we refer the reader to the papers written by

Fliess and his coworkers (for example [Mou98a], [FM95], [FMRR95], [Mou98b]).
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3.2.3 Controllability for delay–differential systems

We have seen that the operator ring corresponding to delay–differential equations

with m non commensurate delays is R = R

[
d
dt
,σ
]

which is isomorphic (propo-

sition 4.27) to a polynomial ring R [s, z] in m + 1 variables. In this case every

projective module is free thanks to the well-known Quillen–Suslin theorem [Lan93,

p. 850] and we have only R-free or torsion free controllable systems.

The literature about delay–differential systems is a subset of the wider one

about system over rings which, beyond having embraced various branches of math-

ematics, gave rise to many notions of controllability.

For example, R
[
d
dt
,σ
]
-free controllability is equivalent to reachability whereas

R (σ)
[
d
dt

]
-free controllability is also known as weak controllability (see [Mou98a]).

Because of theorems 3.12 and 3.13 we are mainly interested in a stronger form

of controllability that was defined for the first time for a particular class of systems:

Definition 3.26. The system

ẋ = A(σ)x+Bu

where A(s) ∈ R [s]n×n, is called spectrally controllable if

rank[λI−A(e−λ) −B] = n, ∀λ ∈ C.

This definition has been extended to other similar cases (see [RW97]). We

will use spectral controllability to indicate a ‘constant rank condition on C’:

in [Mou98a] the exact definition is the following: if R ∈ R
[
d
dt
,σ
]p×q

is the full

row rank presentation matrix of the linear delay systemM, it is spectrally con-

trollable if

rankCR
(
λ, eτλ

)
= p, ∀λ ∈ C.

We may generalize further the above definition to generic operator rings:

Definition 3.27. If we are given a matrix R(s) ∈ Ap×q with rank r, the linear

system M = cokerA ◦R(s) is spectrally controllable if

rankCR (λ) = r, ∀λ ∈ C. (3.16)

In this case, by duality reasons that will be explained in chapter 5, we shall
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say that also the behavior in kernel representation B = kerE R(s) is spectrally

controllable.



Chapter 4

Operator rings

We have already introduced many classes of operators, simple differential opera-

tors, delay–differential operators, distributions with compact support. A key point

is that there is a link between these operators and particular sets of holomorphic

functions in C.

The aim of this chapter is at giving a more unitary treatment of these and

other new operator rings along with their most important properties.

4.1 Algebraic preliminaries

Throughout this section we will use the symbol R to denote a domain (of opera-

tors). Following the notation of remark 2.24, the symbol ◦R states that the matrix

R ∈ Rp×q operates on the left and R◦ on the right.

4.1.1 Smith form

The Smith form is a very advantageous way to factorize matrices over rings. Un-

fortunately not every matrix admits such a factorization but there are important

rings (e.g. polynomials in one variable) such that every matrix taking values in

them has a Smith form.

Definition 4.1. The matrix R ∈ Rp×q admits a Smith form if R = PR̄Q

where the matrices P ∈ Rp×p and Q ∈ Rq×q are invertible in R and R̄ ∈ Rp×q has

r ≤ min {p, q} non zero entries only on the main diagonal; we will denote with R̆

the maximal square full rank submatrix of R̄ that contains on its diagonal every

non zero element of R̄.

41
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Moreover, the (non-zero) elements on the diagonal of R̆ are unique up to a

multiplication by a non-zero constant and are ordered in such a way that each

element divides the following one.

Remark 4.2. It must be noted that over any �eld (e.g. the �eld of fractions of

every domain) the Smith form always exists with R̆ = Ir.

Definition 4.3. A domain in which every matrix admits a Smith form is called

an elementary divisor domain.

Once the existence of the Smith form of a matrix has been established, there

are several ways to write it and many simple consequences. They will be used

quite often throughout the thesis and are collected here for future references.

The following equation provides a more detailed description of the Smith form.

We remind that R and R̄ are p × q matrices, while P , Q and R̆ are square with

dimension p, q and r, rank of R.

R = PR̄Q =

[
P11 P12

P21 P22

][
R̆ 0

0 0

][
Q11 Q12

Q21 Q22

]
=

[
P11

P21

]
R̆
[
Q11 Q12

]
. (4.1)

We can express R̄ and R̆ using the inverses of P and Q, respectively U and V :

R̄=

[
R̆ 0

0 0

]
=URV =

[
U11 U12

U21 U22

]
R

[
V11 V12

V21 V22

]
⇒R̆=

[
U11 U12

]
R

[
V11

V21

]
. (4.2)

Using a shorthand notation (appending a star denotes a whole ‘block-row’ or

‘block-column’), since UP = PU = Ip and QV = V Q = Iq:

R = P∗1R̆Q1∗, R̆ = U1∗RV∗1, U1∗P∗1 = Ir = Q1∗V∗1, (4.3)

P∗1U1∗ + P∗2U2∗ = Ip, V∗1Q1∗ + V∗2Q2∗ = Iq. (4.4)

Lemma 4.4. If the elements on the diagonal of R̆ are left-injective1or right-

1As we already pointed out, R◦ and ◦R may have different operatorial meaning; therefore the
side must be explicitly indicated here. For example we have seen that we can deal with linear
differential systems employing the operator ring R = R[ ddt ]: if we take non zero elements, the
left operation (multiplication of polynomials) is clearly injective, since the ring is a domain, and
not surjective; the right operation (polynomial differential operator on E) is not injective but,
as we shall see in section 4.2.2, surjective.
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injective elements of R (if and only if ◦R̆ or R̆◦ is injective), then

ker ◦R = ker ◦P∗1 = im ◦U2∗ or, respectively, kerR◦ = kerQ1∗◦ = imV∗2◦. (4.5)

If the elements on the diagonal of R̆ are left-surjective or right-surjective ele-

ments of R (if and only if ◦R̆ or R̆◦ is surjective):

im ◦R = im ◦Q1∗ = ker ◦V∗2 or, respectively, imR◦ = imP∗1◦ = kerU2∗◦. (4.6)

If one relation in (4.5) [or in (4.6)] is satisfied, the kernel [or image] of R is

also kernel of a surjective matrix and image of an injective matrix.

Proof. Let us prove the first equality of (4.5): from (4.2) we see that

U2∗R = 0 therefore im ◦U2∗ ⊆ ker ◦R.

From (4.3) we have

vR = 0 ⇒ vRV∗1 = 0 ⇒ vP∗1R̆ = 0

but, since R̆ is a diagonal matrix with elements di, then the i-th component of

vP∗1R̆ is the product of the i-th component of vP∗1 and of the i-th element of the

diagonal of R̆, di 6= 0. Hence, if every di is left-injective, the product is zero if and

only if vP∗1 = 0, therefore ker ◦R ⊆ ker ◦P∗1. Then, using (4.4) we obtain

v ∈ ker ◦P∗1 ⇒ v = vIp = vP∗1U1∗ + vP∗2U2∗ = vP∗2U2∗ ⇒ v ∈ im ◦U2∗.

The second equation in (4.5) is proven in a similar way.

Relations (4.6) are ‘dual’: from RV∗2 = 0 we obtain im ◦R ⊆ ker ◦V∗2; from (4.4)

x ∈ ker ◦V∗2 ⇒ x = xV∗1Q1∗ + xV∗2Q2∗ = xV∗1Q1∗ ⇒ ker ◦V∗2 ⊆ im ◦Q1∗.

Finally the operator ◦P∗1 is surjective since from (4.3) we have

U1∗P∗1 = Ir ⇒ ∀a ∃b = aU1∗ such that bP∗1 = a. (4.7)

Then as soon as every single element on the diagonal of R̆ is left-surjective, so

does ◦P∗1R̆ and im ◦Q1∗ ⊆ im ◦P∗1R̆Q1∗ = im ◦R.

Surjectivity of ◦V∗2, Q1∗◦ and U2∗◦ may be shown as we did for ◦P∗1 using
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relations similar to (4.7). The same equations prove that those operators are

injective ‘on the other side’: for instance P∗1◦ is injective since if P∗1a = 0 then

0 = U1∗P∗1a = Ira = a.

Remark 4.5. Invertible elements are both injective and surjective, hence if the

elements of R̆ are such, e.g. when R is a �eld or R̆ is constant, equations (4.5)

and (4.6) are true.

4.1.2 Bézout equation

The so called Bézout equation is a fundamental tool in algebraic system theory:

n elements in a ring xi ∈ R satisfy a Bézout equation if there are n element ai ∈ R

such that
∑

i aixi = 1. In this case the set {xi} generates the whole ring.

Definition 4.6. A domain in which every finitely generated ideal is principal is

called Bézout domain.

If R is a Bézout domain, any n elements xi ∈ R generate a principal ideal

(x1, . . . , xn)R = (f)R: f is the greatest common factor of xi. In fact f =
∑
aixi

and also xi = yif with ai, yi ∈ R. The factors yi of xi are coprime, that is to say

they have only 1 as common factor, thus satisfy a Bézout equation:

f =
∑

aixi =
∑

aiyif ⇒ 1 =
∑

aiyi.

The relation between elementary divisor domains and Bézout domains is still

an open question. We know that

Proposition 4.7. If R is an elementary divisor domain, then it is also a Bézout

domain.

Proof. Let X be a row vector with n components xi ∈ R. The Smith form of X

is given by P ∈ R, invertible, 0 6= X̆ ∈ R and a square n× n invertible matrix Q.

Without loss of generality we can say that P = 1 and the determinant of

Q is also 1. In this case, if f = X̆, yi are the elements of the first row of Q

and ai are the n minors of order n − 1 of the last rows of Q, we have exactly

the relations we found for generic elements in a Bézout domain: xi = yif (from

X = PX̄Q) and
∑
aiyi = 1 (the determinant of Q) thus f =

∑
aixi and so

(f)R = (x1, . . . , xn)R.
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On the other hand every known Bézout domain is an elementary divisor domain

but there is no proof of this equivalence.

Scalar Bézout equations are also useful to analyse properties of matrices.

Definition 4.8. Given any matrix R ∈ Rp×q and r ≤ min {p, q}, the compound

matrix of order r of R, Cr(R), is a matrix with
(
p
r

)
rows and

(
q
r

)
columns whose

elements are the minors of order r of R.

Once a way to order the minors of R into rows and columns of Cr(R) has

been fixed, a fundamental property of the compound matrix is the following (see

e.g. [RM71])

XY = Z ⇒ Cr(X)Cr(Y ) = Cr(Z).

Proposition 4.9. A full row (column) rank matrix is right (left) invertible if and

only if its maximal minors satisfy a Bézout equation.

Proof. If a matrix R ∈ Rp×q is right invertible, i.e. there is a matrix X ∈ Rq×p

such that RX = Ip then Cp(R)Cp(X) = Cp(Ip) = 1; since Cp(R) and Cp(X) are a

row and a column vector containing the p× p minors of R and X the sufficiency

has been proved.

Conversely, if mi are the minors of R satisfying a Bézout equation, the we can

write mi = detRSi where Si is a matrix built only with 0 and 1 that ‘chooses’

the desired columns of R. So, using the well-known formula A adj(A) = I det(A),

I =
∑

xiImi =
∑

xiI det(RSi) =
∑

xiRSi adj(RSi)

= R
∑

xiSi adj(RSi) = RX.

If R is full column rank, the proof symmetric to this one.

4.1.3 Generalized inverses

If R does not have full rank, then it is still possible to find a nice result using

generalized inverses [BIG74].

Definition 4.10. A matrix G ∈ Rq×p is the {1}-inverse2 of the matrix R ∈ Rp×q

if RGR = R; it is a {1, 2}-inverse if it is a {1}-inverse and GRG = G.
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Lemma 4.11. A matrix has a {1}-inverse if and only if it has a {1, 2}-inverse.

Proof. Let RGR = R. If we let Ḡ = GRG then

RḠR = RGRGR = RGR = R

hence Ḡ is a {1}-inverse. Moreover

ḠRḠ = GRGRGRG = GRGRG = GRG = Ḡ

showing that Ḡ is a {1, 2}-inverse.

This proposition permits us to use always {1, 2}-inverses which will be simply

called generalized inverses.

Theorem 4.12. A matrix has a generalized inverse if and only if its minors satisfy

a Bézout equation.

Theorem 4.12 is in [BR83]; [Son80] showed a very similar, more abstract,

theorem. Other related results are in [BBRMP90] and in [MPBR96].

The following results generalize further theorem 4.12:

Theorem 4.13. Suppose that R has rank r. If a linear combination of its r × r
minors is equal to a, then there is a matrix G such that RGR = aR; if RGR = aR,

there is a linear combination of the r × r minors of R equal to ar.

Proof. The first part follows from the proof, quite complicated, of [BR83, thm. 8],

simply replacing the ‘1’ of the Bézout equation with a. The second part is simpler:

if we use compound matrices we have that

RGR = aR ⇒ Cr(R)Cr(G)Cr(R) = Cr(aR) = arCr(R);

Cr(R) has rank one by [BR83, lem. 9]: if mij are the elements of Cr(R), i.e. the

minors of R, then mijmhk = mikmhj for every i, j, h, k. So

armij =
∑
hk

mikgkhmhj =
∑
hk

mijgkhmhk ⇒ ar =
∑
hk

gkhmhk

2This rather strange name is due to the existence of a list of four properties a true inverse
satisfies; generalized inverses only satisfy some of these items: the ones here defined satisfy the
first one or the first two.
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that is exactly what we were searching for.

Theorem 4.14. For every matrix R ∈ Rp×q there are a ∈ R and G ∈ Rq×p such

that RGR = aR.

Proof. We have to use the field of fractions of R: in this field R, of rank r, has

the Smith form (4.3) R = P∗1Q1∗, P∗1 full column rank, equal to r and Q1∗ full

row rank, still equal to r. Since we are on the field of fractions, then there is an

element ad ∈ R, the common denominator, such that adR = P̃ Q̃, where matrices

P̃ and Q̃ are now in R.

P̃ and Q̃ have still full column and row rank r, thus there are two elements

au and av and matrices U ∈ Rr×p and V ∈ Rq×r such that auI = UP̃ and

avI = Q̃V . From the first relation we have adauR = auP̃ Q̃ = P̃UP̃ Q̃ = adP̃UR

hence auR = P̃UR; now if we define G = adV U and a = auav then

RGR = adRV UR = P̃ Q̃V UR = avP̃UR = auavR = aR.

4.2 Holomorphic functions

The ring O of complex holomorphic functions is itself an operator ring acting on

the ring of complex holomorphic functions of exponential type,3 that is to say, the

complex holomorphic functions h(s) ∈ O that grow as exponentials as |s| → ∞.

Since every other operator ring we will encounter is a subring of holomorphic

functions, the way O operates on functions of exponential type is inherited by all

operator rings in use throughout this thesis.

In particular it is important to show how holomorphic functions operate on

polynomial–exponential functions so defined in the generic matrix case:

Pp×qe
M
=
{
P (t)eλt : P (t) ∈ R[t]p×q, λ ∈ C

}
. (4.8)

3More precisely: analytic functionals are isomorphic to holomorphic functions of exponential
type [Tre67, ch. 22]; by reflexivity [Tre67, prop. 36.10] O is the dual of holomorphic function of
exponential type. We can extend O to a ring of operators.
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Proposition 4.15. If h(s) ∈ O is a generic holomorphic function then there

exists a unique operator

h̃ : tneλt 7→ h̃
(
tneλt

)
M
=

n∑
i=0

(
n

i

)
h(n−i)(λ)tieλt (4.9)

where h(k)(λ) = dk

dsk
h(s)

∣∣∣
s=λ

, that can be extended to a linear operator on Pe.

Moreover for any h(s), k(s) ∈ O, h̃k̃ = h̃k.

Proof. The operator h̃ can be extended easily to linear combinations of elements

tneλt and then to non scalar cases, so to map the set of exponential–polynomial

functions (4.8) into itself.

It remains to show that given h(s), k(s) ∈ O then h̃(k̃p) = h̃k(p) for every

p(t) ∈ Pe or, without loss of generality, for every p(t) = tneλt:

h̃(k̃(tneλt)) =
n∑
i=0

(
n

i

)
k(n−i)(λ)h̃(tieλt)

=
n∑
i=0

(
n

i

)
k(n−i)(λ)

i∑
j=0

(
i

j

)
h(i−j)(λ)tjeλt

= eλt
n∑
j=0

n∑
i=j

(
n

i

)(
i

j

)
k(n−i)(λ)h(i−j)(λ)tj

and, since it is relatively simple to show that

(
n

i

)(
i

j

)
=

(
n

j

)(
n− j
i− j

)
,

= eλt
n∑
j=0

(
n

j

)
tj

n∑
i=j

(
n− j
i− j

)
k(n−i)(λ)h(i−j)(λ)

= eλt
n∑
j=0

(
n

j

)
tj

n−j∑
l=0

(
n− j
l

)
k(n−j−l)(λ)h(l)(λ)p43

= eλt
n∑
j=0

(
n

j

)
tj
dn−j

dsn−j
(k(s)h(s))

∣∣∣
s=λ

= h̃k
(
tneλt

)
.

Remark 4.16. Polynomial{exponential functions are useful as a class of test

functions since they can detect zeros, and multiplicities, of holomorphic functions:
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λ ∈ C is a zero of multiplicity m of the holomorphic function h(s) ∈ O if and

only if

∀n ≤ m, h̃
(
tneλt

)
= 0.

The ring O of holomorphic functions has two very important properties: it

admits the Smith form [Hel43] hence it is a Bézout domain (see also [Rud87,

p. 306]).

4.2.1 Paley–Wiener functions

We recall here the definition of the ring A of Paley–Wiener functions given in

equation (2.26) and (2.27):

A =
{
f(s) ∈ O : ∃A,B > 0, |f(s)| ≤ AeBp(s) ∀s ∈ C

}
(4.10)

where

p(s) = log
(
1 + |s|2

)
+ |Re s|. (4.11)

This definition can also be written in the following way:

A =
{
f ∈ O : ∃A,B,C > 0, |f(s)| ≤ A(1 + |s|B)eC|Re(s)| ∀s ∈ C

}
. (4.12)

This ring plays a fundamental role as we already noticed, but it lacks the nice

properties (the ones formerly listed and others that will be soon introduced) that

holomorphic functions possess.

First of all, Paley–Wiener functions without common zeros do not generate the

whole ring, hence A is not a Bézout domain: as following example shows there

exist two elements of A that do not have common zeros, i.e. they do not have

common factors in O, but do not satisfy a Bézout equation.

Example 4.17. Let us consider the following two functions in A:

h1(s) =
es − e−s

2s
=
i sin(−is)

s
h2(s) =

eas − e−as

2
= i sin(−ias).

We have shown that h1(s) ∈ A in example 2.22; as a consequence of the same

proof, even h2(s) ∈ A.
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The zeros of h1(s) are exactly the points of the set Z1
M
= {ikπ : 0 6= k ∈ Z}

and the zeros of h2(s) are Z2
M
= {inπ/a : n ∈ Z}.

When a = p/q ∈ Q, h1(s) and h2(s) have common zeros:

Z M
= Z1 ∩ Z2 = {ikpπ : 0 6= k ∈ Z} 6= ∅

and the factors s− z with z ∈ Z are common to h1(s) and h2(s).

If a 6∈ Q then Z = ∅: h1(s) and h2(s) have no common zeros. In this case we

want to see if they satisfy a Bézout equation, i.e.

∃x1(s), x2(s) ∈ A such that x1(s)h1(s) + x2(s)h2(s) = 1. (4.13)

Let us recall here the definition of Liouville numbers [Niv56]: a 6∈ Q is a

Liouville number if for every C ∈ N there are infinitely many fractions p/q

such that ∣∣∣∣a− p

q

∣∣∣∣ ≤ q−1−C . (4.14)

If C = 0 then this is true for every a ∈ R (C = 1 at least for irrational numbers)

and is the basis of the standard approximation of real numbers by continued

fractions; Liouville numbers, in this sense, are trascendental numbers that are

well approximated by rational numbers up to any ‘order’ C + 1.

If we suppose that a is a Liouville number and equation (4.13) is true, then

using a basic trigonometry result and (4.14):

| sin aqπ| = | sin(aqπ − pπ)| ≤ |aqπ − pπ| ≤ q−Cπ;

when s = iqπ ∈ Z1, zero of h1(s), substituting it in (4.13) we get

ix2(−iqπ) sin aqπ = 1 ⇒ 1 = |x2(−iqπ)| · | sin aqπ| ≤ |x2(−iqπ)|πq−C (4.15)

But x2(s) ∈ A: by definition (4.12) there exist constants A,B > 0 such that

|x2(−iqπ)| ≤ A(1 + qπ)B
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and from (4.15)

1 ≤ |x2(−iqπ)|πq−C ≤ Aπ(1 + qπ)Bq−C (4.16)

which is clearly impossible since it should be valid for infinitely many q ∈ N
while B is fixed and C may be arbitrarily chosen. In other words, if we take

C > B there are infinitely many fractions p/q satisfying relation (4.14): we can

let q go to infinity, so the right part of equation (4.16) tends to zero. ♣

If the elements hi(s) ∈ A satisfy a Bézout equation in A, then

1 =
∑

hi(s)ki(s) ≤
∑
|hi(s)||ki(s)| ≤

∑
|hi(s)|AeBp(s)

⇒
∑
|hi(s)| ≥

1

A
e−Bp(s)

This condition is not only necessary, as Hörmander proved in [Hör67]:

Theorem 4.18. The set of functions {h1(s), . . . , hn(s)} ⊂ A is a set of generators

of A if and only if there are constants ε, B, C > 0 such that

n∑
i=1

|fi(s)| ≥ ε(1 + |s|−C)e−B|Re(s)| ∀s ∈ C. (4.17)

Condition (4.17) is apparently simple, but it is really hard to verify in gen-

eral. There are some other properties of holomorphic functions strictly related to

the solution of a Bézout equation, that will be useful in the following sections:

in [Ehr60, p. 523] we find

Definition 4.19. A function h(s) ∈ A is slowly decreasing if there is a real

constant ε > 0 such that

∀x ∈ R, ∃y ∈ R : |x− y| ≤ ε log(1 + |x|) and |h(y)| ≥ (ε+ |y|)−ε.

The same paper of Ehrenpreis contains the following

Theorem 4.20. Let α ∈ E ′ be a distribution with compact support. The follow-

ing conditions are equivalent:

• α̂(s) is slowly decreasing

• α̃ : E → E is a surjective operator
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• the ideal Aα̂(s) is closed.

These definitions have been extended in various ways (see for example [Ehr70,

ch. XI.1] and [Str83]); in [BT79] there is an important definition:

Definition 4.21. The local ideal generated by {h1(s), . . . , hn(s)} ⊂ A is the

set

(h1, . . . , hn)lA = {f ∈ A : ∀s ∈ C ∃open U 3 s, ki(s) ∈ O(U), f =
∑
hiki in U}

(4.18)

where O(U) is the set of holomorphic functions defined on the open set U ⊆ C.

The functions {hi(s)} are jointly slowly decreasing if

(h1, . . . , hn)lA = (h1, . . . , hn)A

i.e. the ideal they generate on A coincides with the local ideal.

Proposition 4.22. Suppose that the functions {h1, . . . , hn} ⊂ A have no com-

mon zeros; they satisfy the Bézout equation if and only if they are jointly slowly

decreasing.

Proof. Since (h1, . . . , hn)lA ⊇ (h1, . . . , hn)A, if the functions satisfy a Bézout equa-

tion in A, then the ideal they generate coincides with A and so must do the local

ideal.

If the functions have no common zeros, then they satisfy a Bézout equation

on O; this implies that 1 ∈ (h1, . . . , hn)lA by its definition. If additionally the

functions are jointly slowly decreasing, then also 1 ∈ (h1, . . . , hn)A.

Remark 4.23. There exists a nice characterization of the local ideal generated

by {hi(s)} in A: it is the set of Paley{Wiener functions whose zeros are the set

of common zeros of {hi} with greater or equal multiplicities.

There are three important theorems, proved by Malgrange and by Schwartz,

that regard matrices in A.

The first one is similar to what is now called Fundamental Principle that

Ehrenpreis and Palamodov discovered independently in [Ehr70] and [Pal70] (for
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generic linear partial differential equations) and can be stated for differential sys-

tems in a behavioral framework as follows: if R
(
d
dt

)
∈ R

[
d
dt

]p×q
is a matrix of

polynomial differential operators, then

B = kerE R
(
d
dt

)
= kerPe R

(
d
dt

)
(4.19)

where the closure of last term is with respect to the topology of E .

The theorem proved earlier by Malgrange in [Mal56, p.318] needs a stronger

hypothesis:

Theorem 4.24. If R(s) ∈ Ap×q is a full row rank matrix of Paley–Wiener func-

tions, then

B = kerE R(s) = kerPe R(s).

The second result generalizes the fact that for any two holomorphic functions

a(s), b(s) ∈ O, a(s)/b(s) ∈ O if and only if the zeros of b(s) are also zeros of a(s)

with greater multiplicity.

Remembering that there is a relation between zeros of holomorphic functions

and polynomial–exponential functions, as underlined in remark 4.16, the following

theorem [Mal56, p. 282] should be quite intuitive:

Theorem 4.25. Given two matrices of Paley–Wiener functions R1(s) ∈ Ap1×q

and R2(s) ∈ Ap2×q then

∃X(s) ∈ Op2×p1 such that X(s)R1(s) = R2(s) ⇔ kerPe R1(s) ⊆ kerPe R2(s).

Finally we recall the following theorem, a classical result of Schwartz [Sch47]

(see also [BS93, p. 38]):

Theorem 4.26 (Spectral analysis theorem). Let R(s) ∈ Ap×1 be a column

vector; if its elements have no common zeros, then kerE R(s) = {0}.

4.2.2 Exponential polynomials

Polynomials are undoubtedly the most known subring of holomorphic functions

also from an operatorial point of view, because of their immediate meaning as

polynomial differential operators (see definition 3.4).
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The consistency we pointed out in remark 3.5 extends the definition of holo-

morphic operators since also on polynomial–exponential functions Pe the function

s is a differential operator, as we can clearly see from (4.9).

The ring of polynomials has many well-known algebraic properties: basically

it is a principal ideal domain, hence it is a Bézout domain; furthermore it is

an elementary divisor domain. Besides these one there are, perhaps less known,

operatorial properties that are surely important in this context.

The most important one is that polynomials, as Ehrenpreis proved in [Ehr54,

p. 898], are surjective operators on E ; this fact still holds for polynomials in more

than one variable (i.e. partial differential operators) and extends to systems of

(partial) differential equations.

As regards delay–differential equations, in section 3.1.4 delay–differential poly-

nomial operators in m delays τ1, . . . , τm were defined as polynomials in m + 1

variables, the first one corresponding, roughly speaking, to derivation or to the

function s and the other ones to the m delay operators στ1 , . . . , στm that, as shown

in example 2.20, correspond to the holomorphic functions e−sτ1 , . . . , e−sτm .

The question is: if we have m shift operators, the following rings (the first

one is the so called ring of exponential polynomials not to be confused with

polynomial–exponential functions Pe)

R

[
s, e−sτ1 , . . . , e−sτm

]
, R
[
d
dt
, στ1 , . . . , στm

]
and R [s, z1, . . . , zm] (4.20)

are still isomorphic?

First we note that the first two rings in (4.20) are naturally isomorphic since

their generators (as a monoid algebra over R) are the Laplace transform (α̂(s) ∈
A) and, respectively, the operatorial form (α̃) of the same set of distributions

δ(1), δτ1 , . . . , δτm

viewed as a convolutional subalgebra of E ′: the monomials
(
d
dt

)n0
σn1
τ1
· · ·σnmτm and

sn0e−n1τ1s · · · e−nmτms, which if we set τ =
∑
niτi are respectively

(
d
dt

)n0
στ and

sn0e−τs, are in bijective relation with the distribution

δ(n0) ? δn1τ1 ? · · · ? δnmτm = δ(n0) ? δτ = δ(n0)
τ .
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Last passage is true since by (2.30), (2.23) and (2.24)

∀f,
〈
δ(n0) ? δτ , f

〉
=
〈
δ(n0) ? δ̌−τ , f

〉
=
〈
δ(n0), δ̃−τf

〉
=
〈
δ(n0), σ−τf

〉
= (−1)n0

〈
δ, σ−τf

(n0)
〉

= (−1)n0
〈
δτ , f

(n0)
〉

=
〈
δ(n0)
τ , f

〉
.

Next proposition shows the relation between the ring of polynomials and the

other ones; it justifies a posteriori the definitions of section 3.1.4 in case of incom-

mensurate delays.

Proposition 4.27. The rings listed in (4.20) are isomorphic if and only if the

delays τ1, . . . , τm are independent over Q, i.e there is no linear combination∑
qiτi = 0 with qi ∈ Q, at least one qi 6= 0.

Proof. The last ring in (4.20) may be projected onto the first one substituting

zi → e−τis, but this operation is not necessarily injective. Let us consider the

projection of a generic monomial onto the convolution algebra formerly described:

Θ(sn0zn1
1 · · · znmm ) = δ(n0)

τ , τ =
m∑
i=1

niτi

so that it is clear that another monomial sn
′
0z
n′1
1 · · · z

n′m
m will be projected onto the

same element if and only if n0 = n′0 and τ = τ ′ =
∑
n′iτi; last relation may be

written as

0 = τ − τ ′ =
m∑
i=1

(ni − n′i)τi.

Now the result follows since a Z-linear independency is equivalent to Q-linear

independency.

We note that the same result holds for Laurent exponential polynomials, i.e.

also the following rings are isomorphic when the hypothesis of proposition 4.27 is

satisfied:

R

[
s, e−sτ , esτ

]
, R
[
d
dt
, στ , σ−τ

]
and R

[
s, z,z−1

]
written with compact notation (i.e. e−sτ = e−sτ1 , . . . , e−sτm and so on).

Remark 4.28. Because of this isomorphism, we can use indi�erently one of the

three rings in (4.20), but only from a formal point of view.
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It is trivial that e.g. zeros of a polynomial in m+ 1 variables and of the corre-

sponding exponential polynomial are generally di�erent: the simplest example with

one delay is p(s, z) = z which is zero along the whole s axis whereas p(s, e−s) = e−s

has no zeros. Therefore also factorization properties di�er (see [EP97]).

Like polynomials, also exponential polynomials are surjective operators on

E [Ehr55]:

Theorem 4.29. Let f(s) =
∑
fi(s)e

αis where fi(s) ∈ C[s] and αi ∈ C; if f(s) =

φ̂(s), Laplace transform of φ ∈ E ′, then φ̃ : E → E is injective.

A fundamental property of polynomials is that p(s)/q(s) is an holomorphic

function if and only if the fraction is a polynomial.

This equivalence does not hold for exponential polynomials: in general holo-

morphic fractions of exponential polynomials are not exponential polynomials.

Indeed there is a weaker4 but fundamental property [BD74]:

Theorem 4.30. Given the set of complex exponential polynomials

E =

{
f(s) =

n∑
1

fi(s)e
αis : fi(s) ∈ C[s], αi ∈ C

}

then for any two f(s), g(s) ∈ E we have that

f(s)

g(s)
∈ O ⇒ f(s)

g(s)
=
h(s)

p(s)
, h(s) ∈ E, p(s) ∈ C[s].

Moreover let dh(s) be the greatest common divisor of the polynomials hi(s),

coefficients of the exponentials in

h(s) =
k∑
1

hi(s)e
γis.

Then, if h(s)/p(s) is reduced such that dh(s) and p(s) have no common factors,

p(s) divides dg(s).

This theorem suggests the definition of another important ring of operators.

4The original theorem applies to n–variables exponential polynomials; the theorem that is
stated here is a simpler but rich enough ‘corollary’.
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4.2.3 The ring Hm

Theorem 4.30 becomes in our context (delays and coefficients in R):

Proposition 4.31. If f(s), g(s) ∈ R [s, e−τs] then

f(s)

g(s)
∈ O ⇒ f(s)

g(s)
=

h(s)

p(s)e−τs

where h(s) ∈ R [s, e−τs], p(s) ∈ R[s], and τ is an N-linear combination of the

delays: τ =
∑
niτi, ni ∈ N.

Proof. (Sketch) Theorem 4.30 states that, following its notation, if

f(s) =
∑

fi(s)e
αis, g(s) =

∑
gj(s)e

βjs and h(s) =
∑

hk(s)e
γks,

with αi and βj N-linear combination of the delays, then p(s)f(s) = g(s)h(s). Since

p(s) is a polynomial p(s)f(s) must have the exponentials of f(s) while g(s)h(s)

has exponentials like e−(βj+γk)s.

The exponential polynomials are equal if every βj + γk is equal to some αi

(and the polynomial coefficients coincide); therefore γk = αi − βj is a Z-linear

combination of the delays.

Finally we can let the negative combinations vanish dividing by a suitable

monomial e−τs.

Definition 4.32. The set Hm contains the holomorphic fractions of exponential

polynomials with m delays:

Hm
M
= O ∩

{
f(s)

g(s)
: f(s), g(s) ∈ R

[
s, e−τs

]}
.

Proposition 4.33. The set Hm is a ring and whenever

h(s), k(s) ∈ Hm,
h(s)

k(s)
∈ O ⇒ h(s)

k(s)
∈ Hm.

Proof. Trivially Hm is a ring; then by proposition 4.31 every fraction of elements

in Hm is again a fraction of exponential polynomials, hence if it is holomorphic it

belongs to Hm.
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Remark 4.34. The ring Hm may also be de�ned in this way:

Hm = O ∩ R(s)
[
e−τs, eτs

]
i.e. as the holomorphic elements of the ring of Laurent polynomials in e−τs whose

coe�cients are rational functions.

The ring Hm extends the ring of exponential polynomials without becoming

too large for our purposes:

Theorem 4.35. The ring Hm is a subring of A, and its elements operate on E in

the following way: let h(s) ∈ Hm and let f(s), g(s) be two exponential polynomials

such that h(s) = f(s)/g(s); so

∀w(t) ∈ E , h(s)w = v ∈ E if and only if f(s)w = g(s)v. (4.21)

Proof. First we show that the way elements of Hm operate on E is well defined.

From theorem 4.29 we know that g(s) is a surjective operator:

∀w(t) ∈ E ∃u(t) ∈ E : g(s)u = w;

u(t) is defined up to sum with elements in kerE g(s), i.e.

g(s)u = g(s)ũ = w ⇒ u(t)− ũ(t) = n(t) ∈ kerE g(s). (4.22)

Combining theorems 4.24 and 4.25 we see that

kerE g(s) = kerPe g(s) ⊆ kerPe f(s) = kerE f(s)

thus for every n(t) ∈ kerE g(s) also f(s)n = 0. Therefore for any two u(t) and ũ(t)

as in (4.22) f(s)u = f(s)(ũ + n) = f(s)ũ = v(t) so v(t) is uniquely determined

for every w(t).

The fact that Hm ⊆ A may be proved as in example 2.22: we give only a

sketch of the proof.

Suppose that h(s) = f(s)/g(s) with f(s) a Laurent exponential polynomial,

thus f(s) ∈ A, and g(s) a polynomial whose zeros are zeros of f(s). If Zi are non

intersecating neighborhoods of the zeros of g(s), then outside ∪Zi, |g(s)| ≥ 1/G
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for some constant G > 0, therefore

∀s 6= ∪Zi, |h(s)| = |f(s)|
|g(s)|

≤ G|f(s)|

thus h(s) also satisfies the definition of A.

When s ∈ Zi, a compact set, h(s) is a continuous function, hence bounded; a

fortiori

∀s ∈ Zi, |h(s)| ≤ Aie
Bip(s) for some constants Ai, Bi > 0

as in (4.10) proving in conclusion that h(s) ∈ A.

Eventually, the most important property of H1 (unfortunately it is false when

there are more incommensurable delays) is the existence of the Smith form.

In [GL97a], a fundamental paper for the behavioral approach to delay–differential

systems, there are some noteworhty properties of H1:

Theorem 4.36. The ring H1 is not a unique factorization domain and not a

Noetherian ring. But it is a greatest common divisor domain, a Bézout domain

and an elementary divisor domain.

We will come back to the fruitful consequences of this theorem in chap-

ter 6, showing how delay–differential systems with commensurable delays may

be treated very satisfactorily with behavioral techniques.



Chapter 5

Duality

Steenrod called ‘abstract nonsense’ the arrow-theoretic constructions he and other

mathematicians like Cartan and MacLane developed mainly in the forties and

fifties; these ideas had been used in the study of topological spaces, partial differ-

ential equations, algebraic geometry.

This chapter will only touch on these topics in order to prove that there is

a deep relation between the two different approaches to system theory that were

introduced in chapter 3: we try to link the ‘trajectory’ side of behaviors and the

‘algebraic’ side of Fliess’ approach showing a kind of duality between them.

5.1 Behaviors are homomorphisms

Behaviors have their own place inside the algebraic constructions suggested by

Fliess; however a neat treatment of this subject should involve homological alge-

braic tools, that would need more than one chapter only to be introduced.

Therefore we will only show some important results, without getting too deep

into mathematic details (appendix A contains more precise definitions), mainly

to be able to link the module theory and the behavioral world. A good reference,

for linear time–invariant systems, is [Obe90]; time–varying linear system has also

been studied as is shown in [OF98].

There are also some works on delay–differential systems or in general on con-

volutional systems (see e.g. [Str83]) but they are not so satisfactory from an en-

gineering point of view since they do not deal with typical problems of systems

theory, but with different functional analytical questions.

60
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Remark 5.1. If R is a ring and M and N are left modules over R then we

denote the set of R{homomorphisms (i.e. the R-linear maps) of M into N by

HomR(M,N).

It can be proved easily that if S is another ring, then if M [or N ] is also a right

S{module, the set HomR(M,N) is a left [or right] S{module, the multiplication by

an element s ∈ S being de�ned as

(sf)(x) = f(xs) [or (fs)(x) = f(x)s]. (5.1)

We will suppose that the rings we consider are rings of operators on E (R, for

instance, may be equal to A, Hm and so on) or, in other words, that E is a left

R–module.

Proposition 5.2. Given a matrix R ∈ Rp×q, it can be both a presentation matrix

of the linear system M M
= cokerR ◦R and a kernel representation of the behavior

B = kerE R. We have B ∼= HomR(M, E).

Proof. This is more an explanation rather than a proof; to be more concrete we

suppose that R = A. Since M is not only a left but also a right A–module, B
gets the structure of left A–module by remark 5.1.

First let us show that every trajectory in B is an homomorphism: let w(t) ∈ B;

the map

Φw :M→ E , m = m(s) +ApR(s) 7→ Φw(m)
M
= m(s)w ∈ E (5.2)

is a well defined linear map: indeed any other n(s) in the same equivalence class

of m(s) differs from it up to elements in the image of R(s), thus

n(s)w = (m(s) + a(s)R(s))w = m(s)w + a(s)R(s)w = m(s)w

since w(t) is in the kernel of R(s).

Conversely every linear map Φ is given by (5.2): let {ei} be the standard basis

of Aq, the set of vectors with i-th component 1 and zero elsewhere and {ei} the

corresponding generators of M. In this case

wi(t)
M
= Φ(ei) ⇒ Φ = Φw with w(t)

M
= [w1(t) · · · wq(t)]>

by linearity.
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We note that the left A–module structure of B is exactly the one defined

by (5.1):

∀a(s) ∈ A, a(s)Φw(m) = Φw(ma(s)) = m(s)a(s)w = Φa(s)w(m).

Next theorem shows that, at least in the particular case of linear differential

systems, this duality between B and M has a deep meaning.

Theorem 5.3. Given a matrix R
(
d
dt

)
∈ R

[
d
dt

]p×q
, the linear system M =

cokerR[ d
dt

]
◦R
(
d
dt

)
is controllable if and only if the corresponding behavior B =

kerE R
(
d
dt

)
is controllable.

Proof. About the notation: an element m ∈ M is an equivalence class m =

m
(
d
dt

)
+ R

[
d
dt

]p
R
(
d
dt

)
and Φ operates as in (5.2): Φw(m) = m

(
d
dt

)
w for every

w(t) ∈ B ⊆ Eq.
Let us point out that the trajectory f

M
= Φw(m) = m

(
d
dt

)
w ∈ E depends

only locally on w(t), i.e. if w1(t) and w2(t) coincide on an interval I then also

Φw1(m) and Φw2(m) coincide on I; conversely if Φw1(m) coincides with Φw2(m) on

an interval I for every m ∈ M, then also w1(t) and w2(t) coincide on I. Finally,

by (5.2), Φστw(m) = στΦw(m).

Let us suppose that M is controllable. Then, by definition given in sec-

tion 3.2.2,M is free hence it has a basis, say {m1, . . . ,mk}. Every homomorphism

Φw with w(t) ∈ B is defined by linearity on the wholeM once we know its values

Φw(mi).

Given any two w1(t), w2(t) ∈ B then there is always a smooth way to connect

the past t ≤ 0 of Φw1(mi) with the future t ≥ τ ≥ 0 of Φστw2(mi) = στΦw2(mi) (see

e.g. proposition 3.14). Let us call fi(t) this trajectory. Then, if we let Φ(mi)
M
= fi

we have defined a homomorphism ofM into E , hence a trajectory w(t) ∈ B that,

by definition and following what we said before, coincides with w1(t) as t ≤ 0 and

with στw2(t) as t ≥ τ .

Suppose now that the behavior B is controllable and thatM is not free. Then

since M = Mf ⊕Mt is a direct sum of a free and a torsion submodule [Lan93,

p. 147], Mt 6= 0.

So, if 0 6= m ∈ Mt there is a p
(
d
dt

)
∈ R

[
d
dt

]
such that p

(
d
dt

)
m = 0, therefore

Φw(p
(
d
dt

)
m) = 0 for every w(t) ∈ B.
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This means that if f
M
= m

(
d
dt

)
w, p

(
d
dt

)
f = p

(
d
dt

)
m
(
d
dt

)
w = 0, i.e. f(t) satis-

fies an homogeneous scalar differential equation therefore it is the zero trajectory

if and only if it vanishes for some t ∈ R.

Let w(t) ∈ B be such that f = m
(
d
dt

)
w is not zero in some interval I = [t1, t2]

of the positive time-axis and w̄(t) ∈ B a trajectory equal to w(t) for t ≤ 0 and

zero for t ≥ τ ≥ 0 for some τ ≤ t1 that exists since B is controllable.

Then f̄ = m
(
d
dt

)
w̄ is the zero trajectory since it vanishes for t ≥ τ ; f(t) = f̄(t)

for t ≤ 0 hence also f(t) is zero everywhere, in contradiction with the definition

of w(t).

We will investigate further the relation between controllability of behaviors

and various types of algebraic controllabilities in chapter 7.

5.2 Algebraic duality

The relation between the module of relations M and the behavior B, kernel of

the representation matrix, can be proposed using exact sequences of modules:

Rp
◦R // Rq

φ //M // 0

HomR(·,E)
��Ep EqR◦oo Bioo 0oo

Actually HomR(·,E) is a contravariant functor (i.e. it ‘reverses arrows’) that maps

the category of left and right R–modules, where the operation is the ring product of

R, into the category of left modules over R: this time the operation consists in ap-

plying operators (elements of R) to functions (in E). So, since HomR(Rk, E) ∼= Ek,
this simple diagram yealds, in a more abstract way, the result of proposition 5.2,

i.e. B = kerE R ∼= HomR(M, E).

Moreover the functor HomR(·,E) maps morphisms of one category into mor-

phisms of the other one: e.g. the projection φ becomes an injection i for functions

while matrix operators simply operate ‘on the other side’.

When R = R

[
d
dt

]
(and many other rings indeed, see [Obe90]) the functor

becomes a so called categorical duality, in other words there is a perfect du-

ality between the algebraic modules and the functions modules: for example

kerE R
(
d
dt

)
= imEM

(
d
dt

)
if and only if imR[ d

dt
]
◦R
(
d
dt

)
= kerR[ d

dt
]
◦M
(
d
dt

)
.
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This duality implies the Fundamental Principle for non homogeneous equa-

tions (see theorem 3.10): actually, given a behavior in image representation

B = imEM
(
d
dt

)
, we can find its kernel representation simply constructing (gener-

ators of) the kernel kerR[ d
dt

]
◦M
(
d
dt

)
over the polynomial ring, fact that is allowed

by Noetherianity of R
[
d
dt

]
.

Dealing with more general linear systems, with other operator rings, makes

it necessary to take topology into consideration, in order to deal with continuous

operators.

5.3 Topological duality

The first fundamental fact involving duality is theorem 4.20, (see [BS93, p. 35]

for a sketch of the proof). The following proposition is an immediate consequence

that generalizes theorem 4.35:

Proposition 5.4. Let a(s), b(s) ∈ A such that the fraction c(s) = a(s)/b(s) is

holomorphic. Then c(s) is a Paley–Wiener function if and only if Ab(s) is closed.

Proof. The proposition may be restated more concisely: Ob(s) ∩ A = Ab(s) ⇔
Ab(s) is closed. By Cartan’s Theorem B (see [Hör73, p. 182]), Ob(s) is closed, so

implication ‘⇒’ follows.

Conversely we must prove that if Ab(s) is closed then Ob(s)∩A ⊆ Ab(s) (the

opposite inclusion being trivial).

From the definition 4.18 of local ideal generated by b(s), we see that

Ab(s) = (b(s))A ⊆ (b(s))O ∩ A = Ob(s) ∩ A ⊆ (b(s))lA;

now, being Ab(s) closed, b(s) is slowly decreasing by theorem 4.20 therefore

(b(s))A = (b(s))lA proving the proposition.

Corollary 5.5. Let a(s) ∈ A and b(s) ∈ Hm such that a(s)/b(s) ∈ O. Then

a(s)/b(s) ∈ A.

Proof. By definition 4.32 of Hm, b(s) = c(s)/d(s) where c(s) and d(s) are expo-

nential polynomials; therefore a(s)/b(s) = a(s)d(s)/c(s) that is a Paley–Wiener

function by theorems 4.29 and 4.20.
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Remark 5.6. We note that when proposition 5.4 holds, theorem 4.20 permits us

to give c(s) = a(s)/b(s) ∈ A an operatorial meaning like the one described in

theorem 4.35: for every w(t) ∈ E there is a v(t) ∈ E such that b(s)v(t) = w(t);

so, since kerE b(s) ⊆ kerE a(s) (employing both theorems 4.24 and 4.25), the map

c(s) =
a(s)

b(s)
: w(t) 7→ v(t) + kerE b(s) 7→ a(s)v(t)

is well de�ned.

We have employed often the fact that the ideal in A generated by surjective

operators is closed (theorem 4.20); this result may be extended also to matrix

operators [Tre67, thm. 37.2]:

Theorem 5.7. A matrix R(s) ∈ Ap×q is surjective as operator on Eq if and only

if kerA ◦R(s) = {0} and imA ◦R(s) is closed.

We can obtain a result that is dual to previous theorem; we begin with a very

useful lemma:

Lemma 5.8. Let R be a generic ring of operators on E ; if R(s) ∈ Rp×q admits a

generalized inverse G(s) ∈ Rq×p then

imE R = kerE(I −RG) and kerE R = imE(I −GR);

dually we have that

kerR ◦R = imR ◦(I −RG) and imR ◦R = kerR ◦(I −GR).

Proof. Since R = RGR we have (I −RG)R = 0 and R(I −GR) = 0; so

imE R ⊆ kerE(I −RG) and imE(I −GR) ⊆ kerE R.

Conversely if w ∈ kerE(I −RG) then

0 = (I −RG)w = w −RGw ⇒ w = RGw ∈ imE R

thus kerE(I −RG) ⊆ imE R; even more trivially we obtain that

w ∈ kerE R ⇒ w = (I −GR)w ⇒ w ∈ imE(I −GR).
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The dual inclusions follows similarly.

Theorem 5.9. Given R(s) ∈ Ap×q, there exists a matrix X(s) ∈ Aq×p such that

X(s)R(s) = I if and only if kerE R(s) = {0} and imE R(s) is closed.

Proof. IfR(s) has a left inverseX(s), by lemma 5.8 imE R(s) = kerE(I−R(s)X(s))

which is always closed. The operator R(s)◦ is injective since R(s)v = 0 implies

that v = Iv = X(s)R(s)v = 0.

On the other hand, since imE R(s) is closed, it is complete in the topology

of Ep thus is itself an F-space; we can apply the open mapping theorem 2.6 to

R̄(s) : Eq → imE R(s) since it is clearly an injective and onto linear mapping

between F-spaces: X̄ = R̄(s)−1 exists, is linear and continuous.

The definition of X̄ implies that R(s)f = v ⇔ X̄v = f . Since R(s) is shift

invariant

στv = στR(s)f = R(s)στf ⇒ X̄στv = X̄R(s)στf = στf = στX̄v

also X̄ is shift invariant. Modifying slightly the proof of lemma 2.15 we have

that χ̄ : v 7→ 〈χ̄, v〉 = (X̄v̌)(0) (v̌(t) = v(−t) as in (2.8)) is a linear functional

on imE R(s); by the Hahn–Banach theorem 2.7 it can be extended to a linear

functional χ on Ep.
Now, if X(s) = χ̂(s), matrix Laplace transform of χ, then

∀v(t) ∈ imE R(s), (X(s)v)(τ) = 〈χ, στ v̌〉 = 〈χ̄, στ v̌〉 = 〈χ̄, (σ−τv)∨〉

= (X̄(σ−τv))(0) = (σ−τ (X̄v))(0) = (X̄v)(τ),

so that X(s) extends in the same way X̄ on Ep. By definition of X̄, X(s)R(s) =

X̄R(s) = I.

Corollary 5.10. A matrix R(s) ∈ Ap×q, is left–surjective on A, i.e. ApR(s) =

Aq, if and only if kerE R(s) = {0} and imE R(s) is closed.

Proof. We only need to prove that R(s) has a left inverse if and only if ◦R(s) is

surjective.

If X(s)R(s) = I, every a(s) ∈ Ap then a(s) = b(s)R(s) with b(s) = a(s)X(s).

Conversely when ◦R(s) is surjective, then we can construct a left inverse X(s) ∈
Aq×p having as rows xi(s) ∈ Ap such that xi(s)R(s) = ei where ei is the standard

basis of the free module Aq.
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Remark 5.11. This corollary is the dual of theorem 5.7, but there is no proper

dual of theorem 5.9. Indeed there is no algebraic condition for surjectivity over Eq

analogous to the existence of a left inverse.

If R(s)◦ is not surjective but its image imA ◦R(s) is closed, we still have an inter-

esting result, namely a topological interpretation of the moduleM = cokerA ◦R(s)

with respect to the behavior B = kerE R(s).

Definition 5.12. Given a subset of smooth functions E ⊆ Eq, the orthogonal

of E is the submodule of Aq

E⊥ = {a(s) ∈ Aq : a(s)v = 0 ∀v(t) ∈ E} .

Dually the orthogonal of a subset A ⊆ Aq of Paley–Wiener functions is the

A-submodule of Eq

A⊥ = {v(t) ∈ Eq : a(s)v = 0 ∀a(s) ∈ A} .

We state in the following proposition some very basic but useful facts about

orthogonals.

Proposition 5.13. If A and B are subsets of Eq or ofAq, the following statements

are always true:

• A⊥ is closed;

• A ⊆ B ⇒ A⊥ ⊇ B⊥;

• A ⊆ A⊥⊥;

• A⊥ = A⊥⊥⊥.

Proof. Let us suppose without loss of generality that A,B ⊆ Aq.
Let vn(t) ∈ A⊥; for every a(s) ∈ A we have fn = a(s)vn = 0 ∈ E . Since

fn(t)→ 0, if vn(t)→ v(t), then a(s)vn → a(s)v = 0, therefore v(t) ∈ A⊥.

Let v(t) ∈ B⊥. Then, by definition, b(s)v = 0 for every b(s) ∈ B and, a

fortiori, a(s)v = 0 for every a(s) ∈ A ⊆ B. Therefore v(t) ∈ A⊥.

Now, let a(s) ∈ A: for every v(t) ∈ A⊥, a(s)v = 0, therefore a(s) ∈ A⊥⊥.

In conclusion, since A ⊆ A⊥⊥ we have that A⊥ ⊇ (A⊥⊥)⊥ = A⊥⊥⊥; conversely

we have also A⊥ ⊆ (A⊥)⊥⊥ = A⊥⊥⊥.
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Next lemma shows which fundamental duality relates kernels and images.

Lemma 5.14. For every R(s) ∈ Ap×q

kerE R(s) = (imA ◦R(s))⊥ , (kerE R(s))⊥ = imA ◦R(s),

kerA ◦R(s) = (imE R(s))⊥ , (kerA ◦R(s))⊥ = imE R(s).

Proof. We prove only first two equations; the proof of the other ones is similar.

Let for simplicity I = imA ◦R(s). The first equality is quite trivial: indeed

w(t) ∈ kerE R(s)⇔ R(s)w(t) = 0⇔ a(s)R(s)w(t) = 0 ∀a(s) ∈ Ap ⇔ w(t) ∈ I⊥.

Applying ‘⊥’ to both members of the equation we get (kerE R(s))⊥ = I⊥⊥, so

we prove the second equality if I = I⊥⊥.

Let us now consider I ⊆ E ′, topologically isomorphic to I (via Laplace trans-

form). It is a subspace of E ′ and, by proposition 5.13, I ⊆ I⊥⊥ and the latter set

is closed; therefore also I ⊆ I⊥⊥. Let us suppose that

α ∈ I⊥⊥ but α 6∈ I; (5.3)

by corollary 2.8 there is a linear functional λ ∈ (E ′)′ such that λ(α) = 1 and λ is

zero for any other element in I.

The reflexivity of E implies that there is a w(t) ∈ E such that λ(γ) = 〈γ, w〉
for every γ ∈ E ′. Therefore

〈α,w〉 = 1 and 〈β,w〉 = 0 ∀β ∈ I. (5.4)

Second equation in (5.4) implies that w(t) ∈ I⊥ so, by (5.3), we have that

〈α,w〉 = 0 that contradicts the first equation in (5.4).

Corollary 5.15. For every R(s) ∈ Ap×q,

(imA ◦R(s))⊥ =
(

imA ◦R(s)
)⊥

and (imE R(s))⊥ =
(

imE R(s)
)⊥

.

Proof. Let us consider without loss of generality only images over A. We have

just showed that(
imA ◦R(s)

)⊥
= (kerE R(s))⊥⊥ = (imA ◦R(s))⊥⊥⊥ ;

proposition 5.13, stating that (imA ◦R(s))⊥ = (imA ◦R(s))⊥⊥⊥, ends the proof.
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Lemma 5.16. For any R(s) ∈ Ap×q, if imE R(s) is closed then imA ◦R(s) is closed

too.

Proof. Let R̄(s) : Eq/ kerE R(s) → imE R(s) ⊆ Ep be the canonical algebraic iso-

morphism induced by R(s). Since imE R(s) is a closed subspace and Eq/ kerE R(s)

is a Fréchet space by proposition 2.5, then R̄(s)−1 is a continuous linear map (open

mapping theorem 2.6).

For every a(s) ∈ (kerE R(s))⊥ define ρ̄a : imE R(s)→ R such that

R(s)w = v ⇒ 〈ρ̄a, v̌〉 = (a(s)w̌)(0);

where v̌(t) = v(−t) as defined in (2.8); ρ̄a is a continuous linear functional on

imE R(s) since it is the composition of continuous linear mappings: ρ̄a = δ ◦a(s)◦
R̄(s)−1◦∨.

Applying the Hahn–Banach theorem 2.7 we extend ρ̄a to a functional ρa ∈ E ′p.
Thus, remembering definition (2.15) and (2.11), we have

(ρ̂a(s)R(s)w)(t) = (ρ̂a(s)v)(t) = 〈ρa, σtv̌〉 = 〈ρ̄a, (σ−tv)∨〉

= (a(s)σ−tw)(0) = (a(s)w)(t)

i.e. every a(s) ∈ (kerE R(s))⊥ is in imA ◦R(s): by lemma 5.14 we obtain that

imA ◦R(s) = (kerE R(s))⊥ ⊆ imA ◦R(s) ⇒ imA ◦R(s) is closed.

Theorem 5.17. Suppose that R(s) ∈ Ap×q and let B = kerE R(s) and M =

cokerA ◦R(s). If imE R(s) is closed then M is the set of linear continuous shift

invariant operators of B into E (i.e. M∼= B′, the topological dual of B).

Proof. It is easy to see that Aq/B⊥ is the set of all linear shift invariant operators

on B: actually a(s)w(t) = (a(s) + b(s))w(t), for every w(t) ∈ B and b(s) ∈ B⊥.

If imE R(s) is closed, lemma 5.16 shows that also imA ◦R(s) is closed. So, by

lemma 5.14, B⊥ = imA ◦R(s) = ApR(s), that is to say

M = Aq/ApR(s) = Aq/B⊥.
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Moreover if R(s) = ρ̂(s) with ρ ∈ E ′p×q, the following diagram (L is the

topological Laplace isomorphism) commutes:

Ap
◦R //

L
��

Aq
φ //

L
��

M //

��

0

E ′p
?ρ // E ′q

φ // E ′q/E ′p ? ρ // 0

therefore E ′p ? ρ ∼= ApR(s) ∼= B⊥ and E ′q/E ′p ? ρ ∼=M. If we let

B(⊥) = {α ∈ E ′q : ∀w(t) ∈ B 〈α,w〉 = 0}

then it is easy to see that both B′ ∼= E ′q/B(⊥). and B(⊥) ∼= B⊥. So we obtain that

B′ ∼= E ′q/E ′p ? ρ ∼=M.



Chapter 6

Systems with one delay

This chapter presents a brief survey on delay–differential behaviors with commen-

surate time delays. The shift operator is simply σ such that (σf)(t) = f(t − 1);

it corresponds to the function e−s ∈ A, also denoted with z.

6.1 The ring H1

As shown in section 4.2.3 the ring H1 is an elementary divisor domain: stan-

dard techniques involving the Smith form of matrices may be applied to delay–

differential systems once we extend the ring of operators from delay–differential

polynomials to H1.

This extension, which is the price we have to pay for having nice and elegant

results, introduces so called distributed delays, a particular class of operators with

compact support. These kind of operators are not new to researchers in the area

of systems over rings: in [KKT86] there is a construction that leads to a ring

(strictly included in H1) containing such operators.

A simple example will better explain how elements of H1 operate on functions.

Example 6.1. Let h(s) ∈ H1 be the function h(s) = (1 − e−s)/s. Given a

function w(t) ∈ E we have

h(s)w =
1− e−s

s
w = v ⇔ (1− σ)w = sv ⇔ w(t)− w(t− 1) = d

dt
v(t).

In order to understand how we can express v(t) in terms of w(t) we have only to

remember the way elements of h(s) operate (see theorem 4.35):

71



6.2 Representations in H1 72Systems with one delay

h(s)w =
1− e−s

s
w = v ⇔ ∃x(t) ∈ E : sx = w, (1− e−s)x = v,

therefore we can take any function x(t) such that d
dt
x = w, for example

x(t) =

∫ t

0

w(τ) dτ

and then, since v = (1− σ)x

v(t) = x(t)− x(t− 1) =

∫ t

0

w(τ) dτ −
∫ t−1

0

w(τ) dτ =

∫ t

t−1

w(τ) dτ.

This definition leads to correct results because kerE s contains constant func-

tions while kerE(1−e−s) contains every periodic function with period one and this

implies that kerE s ⊆ kerE 1−e−s. We could not, for example, take x = (1−e−s)w
and then find a v(t) such that sv = x: we would obtain v(t) = C +

∫ t
t−1

w(τ) dτ

with some constant C ∈ R. ♣

6.2 Representations in H1

In this section we show how the fact that H1 is an elementary divisor domain

always permits to find nice representations of any behavior. However, we will not

be exhaustive: the following facts are the most important, but there are other

results and also other important way to represent a behavior. For example, an

input/output representation will be introduced for Hm in section 7.2.5; for the

definition and properties of a �rst order representation see [GL97b].

First of all, given a behavior in latent variable representation (this case includes

image representations), it is always possible to find a kernel representation.

Theorem 6.2. Latent variable elimination is always possible for delay–differen-

tial systems with commensurate delays; therefore the projection of every delay–

differential latent variable representation admits kernel representation.

Proof. Suppose that the behavior is defined as

B =
{
w(t) : ∃x(t) ∈ Ed, R(s)w = M(s)x

}
, R(s) ∈ Hp×q

1 , M(s) ∈ Hp×d
1 . (6.1)
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We can suppose without loss of generality that the Smith form (definition 4.1) of

M(s) is M̄(s)Q(s), i.e. that P (s) = I (otherwise, premultiplying both M(s) and

R(s) by the inverse of P (s), we obtain such an equivalent behavior). So we have

M(s) =

[
M̆(s) 0

0 0

]
Q(s) =

[
M1(s)

0

]

where M1(s) = [M̆(s) 0]Q(s) ∈ Hr×d
1 is a surjective matrix: actually M̆(s) is

diagonal with surjective entries (theorem 4.29) and Q(s) is invertible, i.e. there is

a V (s) ∈ Hd×d
1 such that V (s)Q(s) = Q(s)V (s) = Id; in conclusion

∀y(t) ∈ Er ∃x̄(t) ∈ Er : M̆(s)x̄ = y;

so if the first r components of x̃(t) ∈ Ed coincide with x̄(t) and we pose x = V (s)x̃,

we get

M1(s)x = [M̆(s) 0]Q(s)V (s)x̃ = [M̆(s) 0]x̃ = M̆(s)x̄ = y.

If we partition R(s) accordingly to M(s) we obtain

R(s)w = M(s)x ⇔ R1(s)w = M1(s)x and R2(s)w = 0.

We see that B = kerE R2(s): obviously B ⊆ kerE R2(s) and, vice versa, if R2(s)w =

0 then there is an x(t) ∈ Ed such that M1(s)x = R1(s)w by surjectivity of M1(s)

and so R(s)w = M(s)x. Therefore w(t) ∈ B.

Corollary 6.3. If there is only one delay, every delay–differential image repre-

sentation has an injective delay–differential image representation and a surjective

delay–differential kernel representation.

Proof. An image representation corresponds to the latent variable representa-

tion (6.1) with R(s) = I. Using (4.6) we see immediately that imEM(s) =

imE P∗1(s) = kerE U2∗(s), where P∗1(s) is injective and U2∗(s) surjective; latter

relation follows also from the previous proof: with the notation therein used, if

U(s) is the inverse of P (s) as in (4.6), then the behavior is defined by

U(s)w = M̄(s)Q(s)x ⇔ U1∗(s)w = M1(s)x and U2∗(s)w = 0
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and B = kerE U2∗(s).

A behavior that admits a kernel representation does not admit in general an

image representation: this problem concerns controllability that will be treated

in the following section.

Nevertheless, part of the above corollary still holds for kernel representations:

Proposition 6.4. Every delay–differential kernel representation with commen-

surate delays always admits a surjective delay–differential kernel representation.

Proof. This fact is very simple to prove: if B = kerE R(s) with R(s) ∈ Hp×q
1 and

the Smith form (4.1) of the matrix is P (s)R̆(s)Q(s), then

B = kerE R̆(s)Q(s)

since P (s) admits a left inverse; obviously R̆(s)Q(s) is surjective being the product

of surjective matrices: the first by theorem 4.29, the second being right invertible.

We show now which relation exists between two kernel representations of the

same behavior or, more generally, of two behaviors when one is a subset of the

other.

Actually, the following theorem provides a test which allows us to verify

whether the kernel of an operator is a subset of the kernel of another operator.

The proof may be found in [GL97a, prop. 4.4 (2)].

Theorem 6.5. If B1 = kerE R1(s), R1(s) ∈ Hp1×q
1 and B2 = kerE R2(s), R2(s) ∈

Hp2×q
1 , then B1 ⊆ B2 if and only if there is a matrix X(s) ∈ Hp2×p1

1 such that

X(s)R1(s) = R2(s).

6.3 Controllability in H1

Validity of theorems 3.12 and 3.13, that give necessary and sufficient conditions

for controllability, have been verified independently, and with rather different

algebraic tools, by H. Glüsing Lüerßen [GL97a] and P. Rocha together with J. C.

Willems [RW97] for delay–differential behaviors. The latter proof relies heavily

on 2-dimensional algebraic techniques (applied to the operator ring R[s, z]) that

become false for n-dimensional systems as soon as n > 2 (see [YP84]) while the
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proof given in [GL97a] takes advantage of the existence of the Smith form of

matrices therein established: both are not useful in the case of non commensurate

delays.

The following theorem shows how differential behaviors are similar, with re-

spect to controllability, to delay–differential behaviors with commensurate delays:

Theorem 6.6. Given the delay–differential behavior B = kerE R(s), R(s) ∈
Hp×q

1 , the following conditions are equivalent:

• R(s) admits a generalized inverse;

• B admits an image representation;

• B is controllable;

• the rank of the complex matrix R(λ) does not depend on λ ∈ C;

• the module M = cokerH1
◦R(s) = Hq

1/H
p
1R(s) is (torsion free or projective

or free) controllable.

Proof. The equivalence of the first four conditions is a simple consequence of

theorem 7.12 and of the fact thatH1 is a Bézout domain. As regards last condition,

we have to prove that the torsion free module M is free.

Since H1 is an elementary divisor domain, R(s) admits a Smith form

R(s) = P (s)R̄(s)Q(s) = P1(s)R̆(s)Q1(s);

we will denote by qi(s) the rows of Q(s); being rows of an invertible matrix, they

are linearly independent. If r is the rank of R(s), then the rows of Q1(s) are the

first r rows qi(s). Moreover, we remark that, by surjectivity of P1(s),

Hp
1R(s) = Hr

1R̆(s)Q1(s). (6.2)

First we want to show that di(s), the r diagonal elements of R̆(s), are constants.

Every element in Hr
1R̆(s)Q1(s) is a linear combination with coefficients hi(s) ∈

H1(s) of di(s)qi(s). Obviously dj(s)qj(s) ∈ Hp
1R(s) therefore, under the hypothe-

sis that M is torsion free, we have that qj(s) ∈ Hp
1R(s) = Hr

1R̆(s)Q1(s). So

qj(s) =
∑r

i=1 hi(s)di(s)qi(s) therefore

h1(s)d1(s)q1(s) + · · ·+ (hj(s)dj(s)− 1)qj(s) + · · ·+ hr(s)dr(s)qr(s) = 0;
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being linearly independent, the coefficients of qi(s) must be zero and, since H1

is a domain, hi(s) = 0 for i 6= j and hj(s)dj(s) = 1. This equation implies that

hj(s) and dj(s) have no zeros, thus are constants; hence, by 6.2,

Hp
1R(s) = Hr

1Q1(s).

Now we show that the elements

qi = qi(s) +Hp
1R(s), i = r + 1, . . . , q

are a basis of M.

Actually they are independent:
∑q

r+1 hj(s)qj = 0 if and only if

q∑
i=r+1

hi(s)qi(s) ∈ Hr
1Q1(s) ⇔

q∑
i=r+1

hi(s)qi(s) =
r∑
j=1

kj(s)qj(s); (6.3)

if we set hj(s) = −kj(s) for j = 1, . . . , r, then equation (6.3) is equivalent to

h(s)Q(s) = 0, true if and only if h(s) = 0 by invertibility of Q(s).

They are also a generating set: indeed let a ∈ M, i.e. a = a(s) +Hr
1Q1(s); if

we let b(s) = a(s)Q(s)−1, then partitioning b(s) = [h(s) k(s)] with k(s) ∈ Hq−r
1 ,

we have also a(s) = h(s)Q1(s) + k(s)Q2(s) therefore

a = k(s)Q2(s) +Hr
1Q1(s) =

q∑
i=r+1

ki(s)qi.

We note that a delay–differential behavior is autonomous (definition 3.16) if

and only if every admissible trajectory that is zero in the past (i.e. ∀t ≤ τ for

some τ) is zero everywhere (trivially by linearity and shift–invariance). For delay–

differential behaviors in H1 we show that (see also [Val98])

Proposition 6.7. A delay–differential behavior B = kerE R(s) is autonomous if

and only if R(s) ∈ Hp×q
1 has full column rank q.

Proof. If B is autonomous, and R(s) does not have full column rank, then, using

the Smith form (4.1) of R(s) we can write

R(s)w = 0 ⇔ P (s)R̄(s)Q(s)w = 0 ⇔ R̄(s)Q(s)w = 0 ⇔ [R̆(s) 0]Q(s)w = 0
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exploiting the invertibility of P (s); if we take w̄(t) ∈ Eq containing as last com-

ponent a function that is zero in the past and non zero in the future, then

[R̆(s) 0]w̄ = 0; if V (s) is the inverse of Q(s) we can find a trajectory 0 6= w(t) ∈ Hq
1

such that w = V (s)w̄ hence Q(s)w = w̄:

[R̆(s) 0]Q(s)w = [R̆(s) 0]w̄ = 0 ⇒ w(t) ∈ B.

Being V (s) the Laplace transform of a compact support distribution, even w(t) is

zero in the past, contradicting the hypothesis.

On the converse, if R(s) has full column rank, then, using the same notation

as before, R̆(s) ∈ Hd×d
1 ; therefore

w(t) ∈ B ⇔ R̆(s)Q(s)w = 0 ⇔ R̆(s)w̄ = 0, w̄ = Q(s)w.

The equation R̆(s)w̄ = 0 is a system of d scalar equations di(s)w̄i = 0, i.e. w̄i(t) are

finite linear combinations of polynomial–exponential functions (see remark 4.16);

they are real holomorphic functions that cannot vanish only on bounded open

intervals. Therefore w̄(t), and consequently w(t), is zero in the past if and only if

it is the zero trajectory.

Finally we get a decomposition of delay–differential behaviors that extends

theorem 3.17:

Theorem 6.8. Given a delay–differential behavior B = kerE R(s), R(s) ∈ Hp×q
1 ,

it is always possible to find two delay–differential behaviors Ba, autonomous, and

Bc, controllable, such that B = Ba ⊕ Bc; the controllable subsystem is uniquely

determined.

See, for the proof, [Val98].



Chapter 7

Systems with m delays

Delay–differential behaviors with noncommensurate time delays have intrinsic

properties that make it difficult to extend results and sometimes even definitions

given in the commensurate case.

This chapter may seem to be incomplete, but this is effectively the state of the

art of behavioral theory: there are some partial results and many open problems.

7.1 Representations in Hm

L. Habets developed a different approach to dynamical systems recently proposed

in [Hab98] that, roughly speaking, starts from a module M over a ring R; unlike the

module theory of Fliess described in section 3.2, M is a function space considered

as a module over a ring of operators acting on it.

In our context E is such a module whereas the ring could be the polynomial

ring, the ring Hm, or the algebra of Paley–Wiener functions A.

His approach substantially aims at giving conditions which allow us to verify

whether two different kernel representations are equivalent, i.e. define the same

behavior.

Noting that some operator rings cannot describe properly the algebraic trans-

formations from a representation to an equivalent one, he extends the operator

ring in a way that resembles the definition of Hm. He considers the set fractions

of elements in the ring such that, as operators, the denominator is surjective and

78



7.1 Representations in Hm 79Systems with m delays

its kernel is included in the numerator’s kernel; in formulas:

RM =

{
p

q
: p, q ∈ R, imM q = M and kerM q ⊆ kerM p

}
.

This definition permits to describe the way r = p/q ∈ RM operates on M:

p

q
: M→M, m 7→ p

q
m = w ⇔ ∃x ∈M such that qx = m and px = w;

which is well defined as we showed in 4.35 for Hm.

This analogy with Hm is concrete: actually Habets proves [Hab98, thm. 5.4]

that if R = R

[
d
dt
,σ
]

is the delay–differential polynomial ring with m time delays

and M = E , then RM = Hm. Therefore his results about RM hold true in our

context too. The most important one is the following [Hab98, p. 10-11]:

Theorem 7.1. Let B1 = kerE R1(s) and B2 = kerE R2(s) with R1(s) ∈ Hp1×q
m and

R2(s) ∈ Hp2×q
m ; suppose that R1(s) has full row rank. Then

B1 ⊆ B2 ⇔ ∃X(s) ∈ Hp2×p1
m such that X(s)R1(s) = R2(s).

The proof of this theorem is based on this idea: if R1(s) is a full row rank

matrix, then it is surjective as operator on Eq, because there is a matrix Y (s) ∈
Hq×p1
m and a scalar q(s) ∈ Hm (always surjective by theorem 4.29) such that

R1(s)Y (s) = q(s)I. Therefore

∀v(t) ∈ Ep ∃v̄(t) ∈ Ep : q(s)v̄=v ⇒ w=Y (s)v̄ ∈ Eq and R(s)w=q(s)v̄=v.

So we can define X(s) = Y (s)R2(s)q−1(s) where the ‘fraction’ is still in Hm due

to the kernel inclusion B1 ⊆ B2.

The above result can be extended to generic convolutional behaviors:

Theorem 7.2. Let B1 = kerE R1(s) and B2 = kerE R2(s) with R1(s) ∈ Ap1×q and

R2(s) ∈ Ap2×q; suppose that R1(s) has full row rank. Then

B1 ⊆ B2 ⇔ ∃X(s) ∈ Op2×p1 such that X(s)R1(s) = R2(s).

Proof. We know that B1 ⊆ B2 implies that kerPe R1(s) ⊆ kerPe R2(s), therefore, by

theorem 4.25, there is an holomorphic matrix X(s) such that X(s)R1(s) = R2(s).
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On the other hand, the existence of X(s) implies by the same theorem that

kerPe R1(s) ⊆ kerPe R2(s); however, kerPe R2(s) ⊆ kerE R2(s) = B2. Employing

theorem 4.24 we have also

B1 = kerPe R1(s) ⊆ kerPe R1(s) ⊆ B2.

We can drop the hypothesis that R1(s) is a full row rank matrix, and in-

stead assume that imE R1(s) (or imA ◦R1(s)) is closed, condition that is true, for

instance, when R1(s) admits a generalized inverse (lemma 5.8). We obtain, for

convolutional behaviors, that

Theorem 7.3. Let B1 = kerE R1(s) and B2 = kerE R2(s) with R1(s) ∈ Ap1×q and

R2(s) ∈ Ap2×q; suppose that imE R1(s) is closed. Then

B1 ⊆ B2 ⇔ ∃X(s) ∈ Ap2×p1 such that X(s)R1(s) = R2(s).

Proof. If X(s)R1(s) = R2(s) then every w(t) ∈ kerE R1(s) is also in kerE R2(s).

Conversely, as lemma 5.16 shows, imA ◦R1(s) is closed hence it is equal to

(kerE R1(s))⊥ by lemma 5.14.

Since kerE R1(s) ⊆ kerE R2(s), each row ri(s) of R2(s) annihilates every w(t) ∈
kerE R1(s); so it belongs to (kerE R1(s))⊥ = imA ◦R1(s), i.e. there are xi(s) such

that ri(s) = xi(s)R1(s).

7.2 Controllability in Hm

For systems more generic than delay–differential systems with commensurate de-

lays there is no analogous of theorem 6.6; this section is mainly devoted to inves-

tigate in Hm and A relations existing between conditions similar to those that in

theorem 6.6 are equivalent.

7.2.1 Algebraic controllabilities

This first part deals with the definitions of controllability relative to the module

theoretic approach that were introduced in section 3.2.2.

A fundamental theorem about controllable systems in this framework is proved

by H. Mounier in [Mou98a]:
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Theorem 7.4. Let R
(
d
dt
,σ
)
∈ R

[
d
dt
,σ
]p×q

, with full row rank, be the presen-

tation matrix of a delay–differential system M = cokerR[ d
dt
,σ]
◦R
(
d
dt
,σ
)

which we

suppose R
[
d
dt
,σ,σ−1

]
-torsion free controllable. ThenM is spectrally controllable

if and only if it is Hm-torsion free controllable.

A brief explanation is necessary: M is supposed to be R
[
d
dt
,σ,σ−1

]
-torsion

free controllable to permit the existence of ‘forward shifts’ (see remark 3.18):

this hypothesis is no longer necessary if we assume, as we do for behavioral sys-

tems, that the basic ring of operators for delay–differential systems is exactly

R

[
d
dt
,σ,σ−1

]
, the ring of delay–differential Laurent polynomials.

Theorem 7.4 may be extended in two ways: first of all we can remove the

‘full rank’ constraint but we cannot have a necessary and sufficient condition for

spectral controllability:

Theorem 7.5. Suppose that R(s) ∈ Ap×q is the presentation matrix of the sys-

tem M. Then M is spectrally controllable if it is torsion free controllable.

Proof. Suppose that M is not spectrally controllable, i.e. there is a value s0 ∈ C
such that rankR(s0) < r where r is the rank of R(s). We want to show that

there is a torsion element in M, i.e. an element m = m(s) + ApR(s) that is not

zero, m(s) 6∈ ApR(s), but vanishes when it is multiplied by an element a(s) ∈ A:

a(s)m = 0, that is to say a(s)m(s) ∈ ApR(s).

The existence of the Smith form of R(s) over O implies that, since O is a

domain, every element is injective as a multiplier in O, thus by (4.5) there ex-

ist a left–injective matrix with full row rank p − r U(s) ∈ O(p−r)×p such that

kerO ◦R(s) = imO ◦U(s). We know that

rankC U(s0) = rankU(s) = p− rankR(s) < p− rankCR(s0)

therefore rankC U(s0) + rankCR(s0) < p which implies that

∃c ∈ Cp, c 6∈ imC ◦U(s0) such that cR(s0) = 0. (7.1)

The vector cR(s)/(s− s0) is holomorphic so by corollary 5.5, if we let

m(s) =
cR(s)

s− s0

∈ Aq, we have that m = m(s) +ApR(s) ∈M.
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Then clearly

(s− s0)m(s) = cR(s) ∈ ApR(s) ⇒ (s− s0)m = 0

therefore if we can prove that m 6= 0 then this is the torsion element we are

searching for.

If m were zero then, by definition, m(s) ∈ ApR(s) hence there is a b(s) ∈ Ap

such that

m(s) =
cR(s)

s− s0

= b(s)R(s) ⇒ (c− (s− s0)b(s))R(s) = 0;

the kernel of ◦R(s) is the image over O of ◦U(s) therefore

∃c(s) ∈ Op−r : c− (s− s0)b(s) = c(s)U(s)

and evaluating at s0, c = c(s0)U(s0) contradicting the initial hypothesis (7.1).

Corollary 7.6. Suppose that R(s) ∈ Hp×q
m is the presentation matrix of the

system M. Then M is spectrally controllable if it is torsion free controllable.

Proof. This result follows trivially from the preceding proof mutatis mutandi.

Another way to extend theorem 7.4 removing the ‘full rank’ condition but still

mantaining necessary and sufficient conditions for spectral controllability consists

in testing torsion freeness over a larger ring.

Theorem 7.7. Suppose that R(s) ∈ Hp×q
m (or R(s) ∈ Ap×q) is the presentation

matrix of the system M. Then M is spectrally controllable if and only if it is O
(torsion free, projective and free) controllable.

Proof. We remind that torsion free, projective and free controllability are equiv-

alent over O, an elementary divisor domain, as we showed in the proof of theo-

rem 6.6. We consider here the weakest: torsion free controllability.

If M is spectrally controllable, then R(s) does not loose rank: the matrix

R̆(s) of the Smith form (4.2) of R(s) over O cannot have zeros; it is invertible

and, without loss of generality, we can suppose that it is the identity I. So we can

write as in (4.3) R(s) = P1(s)Q1(s) where P1(s) is left-injective and Q1(s) right

invertible: Q1(s)V1(s) = I.
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If given an a(s) ∈ Oq there is a h(s) ∈ O such that

∃b(s) ∈ Op : h(s)a(s) = b(s)R(s) ⇒ h(s)a(s)V (s) = b(s)P (s);

if h(s0) = 0 then b(s0)P (s0) = 0 but by injectivity of ◦P (s), b(s0) = 0. So,

since every zero of h(s) is a zero of b(s) then c(s) = b(s)/h(s) is holomorphic and

a(s) = c(s)R(s).

In a more abstract language,

∀a = a(s) +OpR(s) ∈ O ⊗M, h(s)a = 0 ⇒ a = 0

hence the system is O–torsion free controllable.

The proof of the converse statement follows, with only slight modifications,

the proof of theorem 7.5.

A condition strictly related to (behavioral) controllability is the existence of a

generalized inverse of the presentation matrix, as we shall show in corollary 7.13:

we prove that for convolutional systems this is equivalent to A–projective control-

lability.

Theorem 7.8. LetR(s) ∈ Ap×q be the presentation matrix ofM = cokerA ◦R(s).

ThenM is projective controllable if and only if R(s) admits a generalized inverse

G(s) ∈ Aq×p.

Proof. By lemma 3.25M is projective if and only if there are n elements xi ∈M
and n A–homomorphisms fi :M→A such that

∀m ∈M, m =
n∑
i=1

fi(m)xi

or, if we let m = m(s) +ApR(s) and xi = xi(s) +ApR(s),

m(s)−
n∑
i=1

fi(m)xi(s) ∈ ApR(s). (7.2)

Now, if R(s) = R(s)G(s)R(s) with G(s) ∈ Aq×p and we let Y (s) = I −
G(s)R(s), then R(s)Y (s) = 0: the columns of Y (s), yi(s)

>, are homomorphisms
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of M into A:

myi(s)
> = (m(s) +ApR(s))yi(s)

> = m(s)yi(s)
>.

So, if we put fi(m)
M
= myi(s)

> and xi(s)
M
= ei, the canonical basis of Aq, then

equation (7.2) becomes

m(s)−
q∑
i=1

m(s)yi(s)
>ei = m(s)−m(s)Y (s) = m(s)G(s)R(s) ∈ ApR(s).

On the converse, given the n homomorphisms fi of equation (7.2), we can

define homomorphisms fi : Aq → A fixing their values at ej, i.e.

∀i = 1, . . . , n ∀j = 1, . . . , q fi(ej)
M
= fi(ej).

Since, moreover, HomA(Aq,A) ∼= Aq as we pointed out in section 5.2, every fi

corresponds to a vector yi(s) ∈ Aq and fi(m(s)) = m(s)yi(s)
>; we will denote by

Y (s) ∈ Aq×n the matrix having yi(s)
> as its columns. We note also that since fi

are homomorphisms, then fi(0) = 0, i.e.

m(s) = a(s)R(s) ⇒ m(s)yi(s)
> = a(s)R(s)yi(s) = 0 ⇒ R(s)Y (s) = 0. (7.3)

We can rewrite now equation 7.2 as

m(s)−
n∑
i=1

fi(m)xi(s) = m(s)(I − Y (s)X(s)) ∈ ApR(s)

where the vectors xi(s) become the rows of X(s) ∈ An×q. If we take m(s) = ei,

then we can construct a matrix G(s) ∈ Aq×p such that I−Y (s)X(s) = G(s)R(s);

therefore, by equation (7.3)

R(s) = R(s)(I − Y (s)X(s)) = R(s)G(s)R(s).

Corollary 7.9. Let R(s) ∈ Hp×q
m be the presentation matrix of the systemM =

cokerHm ◦R(s). Then M is projective controllable if and only if R(s) admits a

generalized inverse G(s) ∈ Hq×p
m .
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7.2.2 Behavioral controllability in A

There is no published result about controllability of delay–differential behaviors

with non commensurate delays. In particular the link between rank of R(λ) as

λ ∈ C and controllability of kerE R(s) is not so clear.

Results given in this section permit to say something in particular cases but

the full generality has not been arranged in a satisfactory theoretic framework.

Three main concepts have been introduced so far: existence of image represen-

tation, (behavioral) controllability and spectral controllability as defined in 3.27.

Even for generic convolutional behaviors, as we shall see in following theorems, the

first one implies the second one and controllability implies spectral controllability.

Unfortunately spectral controllability does not always imply the existence of

an image representation, as example 7.14 will show, and this is due to number-

theoretic properties of the delays involved.

Precisely this intrinsic difficulty suggests that, being so scarcely robust with

respect to the value of time delays, the notions of controllability we are using may

be improper.

Theorem 7.10. A convolutional behavior which has an image representation is

controllable.

Proof. Let B a behavior that admits an image representation B = imEM(s) with

M(s) = µ̂(s), Laplace transform of µ ∈ E ′q×d. Given two trajectories wi =

M(s)vi ∈ B we want to find a T ≥ 0 and a trajectory w(t) ∈ B such that

w(t) = w1(t) for t ≤ 0 and w(t) = w2(t− T ) for t ≥ T .

The distribution µ has compact support: suppose that for every i and j

suppµij ⊆ [a, b]. Since for every w(t) ∈ B we have

w(τ) = (µ̃v)(τ) = 〈µ̌, σ−τv〉 = 〈στ µ̌, v〉 (7.4)

and ∪i,j suppστ µ̌ij ⊆ [τ − b, τ − a], then w(τ) depends only on the values of v(t),

t ∈ [τ − b, τ − a].

Given any T > b− a ≥ 0 let us consider the smooth function ψ of lemma 3.15

and let

χ(t) = ψ

(
t+ a

T + a− b

)
;
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χ(t) is zero for t ≤ −a and 1 for t ≥ T − b. Let

v(t) = v1(t) + χ(t)[v2(t− T )− v1(t)] =

v1(t) t ≤ −a

v2(t− T ) t ≥ T − b
(7.5)

and w = M(s)v. Then, when τ ≤ 0, the function w(τ) depends only on the values

of v(t) for t ≤ −a and in this interval v(t) = v1(t) by definition (7.5); that is to

say: when τ ≤ 0, w(τ) coincides with w1(τ).

When τ ≥ T , the function w(τ) depends on v(t) for t ≥ T − b; analogously

then (7.5) implies that w(τ) = w2(τ − T ) in the interval τ ≥ T .

Theorem 7.11. If the convolutional behavior B = kerE R(s) with R(s) ∈ Ap×q

is controllable then it is also spectrally controllable.

Proof. Let us consider the Smith form of R(s) over the ring of holomorphic func-

tions (4.1); we suppose its rank over A equal to r and denote U1∗(s) and U2∗(s)

simply as U1(s) and U2(s). Then

kerO ◦R(s) = imO ◦U2(s) = Op−rU2(s), (7.6)

by lemma 4.4, and

U(s) =

[
U1(s)

U2(s)

]

is a square, invertible matrix in Op×p; therefore

imC ◦U1(s0)⊕ imC ◦U2(s0) = C
p ∀s0 ∈ C. (7.7)

Indeed, if c = c1U1(s0) = c2U2(s0), then

0 = c1U1(s0)− c2U2(s0) = [c1 −c2]

[
U1(s0)

U2(s0)

]
⇔ [c1 −c2] = 0 ⇔ c = 0.

Note that the dimension of the kernel of a matrix over a field gets bigger as

its rank lowers; thus the above relation, together with equation (7.6), shows that

R(s) does not loose rank at s0 ⇔ kerC ◦R(s0) ∩ imC ◦U1(s0) = {0} . (7.8)
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We want to prove that controllability implies condition (7.8): let us take

s0 ∈ C and c ∈ kerC ◦R(s0) ∩ imC ◦U1(s0) (7.9)

and construct the operator (well defined by corollary 5.5 because cR(s0) = 0)

h(s) =
1

s− s0

cR(s) ∈ Aq.

Let Bh = kerE h(s): we show that B ⊆ Bh.
Indeed: take a w(t) ∈ B; the way h(s) operates (see remark 5.6) implies that

f = h(s)w ⇔ (s− s0)f=cR(s)w=0⇔ d
dt
f=s0f ⇔ f(t)=kes0t

so the image of B through h(s) consists only in exponentials (that are zero every-

where if and only if they vanish at a single point t0 ∈ R).

Let us take any w(t) ∈ B; since B is controllable there is a trajectory w̄(t)

equal to w(t) as t ≤ 0 and zero as t ≥ τ for some τ ≥ 0. Let f = h(s)w and

f̄ = h(s)w̄.

We know that h(s) = θ̂(s) is the Laplace transform of θ ∈ E ′, a distribution

with compact support, say [a, b]. This implies, as we saw more precisely in the-

orem 7.10, that f(t) = f̄(t) when t ≤ a and f̄(t) = 0 when t ≥ τ + b: we see at

once that f̄ = 0 and so f = 0, proving that B ⊆ Bh.
Now, in particular, kerPe R(s) ⊆ kerPe h(s) hence, by theorem 4.25,

∃a(s) ∈ Op : h(s) = a(s)R(s);

by definition of h(s) we also have (s− s0)h(s) = cR(s) and

(c− (s− s0)a(s))R(s) = 0 ⇔ ∃b(s) ∈ Op−r : c− (s− s0)a(s) = b(s)U2(s)

by equation (7.6); we deduce that c = b(s0)U2(s0) but, as supposed in (7.9), also

c = c0U1(s0) for some c0 ∈ Cr, hence, since the sum in (7.7) is direct, c = 0.

This result, together with equation (7.8), proves that the system is spectrally

controllable.

If we require that the minors of R(s) not only do not have common zeros, but

also satisfy a Bézout equation, then it is easy to see that
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Theorem 7.12. Let R(s) ∈ Ap×q have rank r. If its minors ri(s) of dimension r

satisfy a Bézout equation ∑
i

ri(s)gi(s) = 1, gi(s) ∈ A

then B = kerE R(s) admits an image represention that can be constructed using

the elements gi(s).

Proof. By theorem 4.12 R(s) has a generalized inverse G(s) ∈ Aq×p; the proof

in [BR83] is constructive and shows precisely how G(s) is built up starting from

gi(s).

In the end lemma 5.8 shows that if M(s) = I − G(s)R(s), then kerE R(s) =

imEM(s).

Corollary 7.13. If R(s) ∈ Ap×q admits a generalized inverse G(s) ∈ Aq×p, then

B = kerE R(s) admits an image representation B = imE(I −G(s)R(s)).

If a behavior is only spectrally controllable then, in general, it does not admit

an image representation.

Example 7.14. Let B = kerE R(s) be the behavior in kernel representation with

R(s)=[h1(s) h2(s)]=

[
es − e−s

2s

eas − e−as

2

]
=

[
i sin(−is)

s
i sin(−ias)

]
. (7.10)

We have already showed in example 4.17 that if a 6∈ Q, h1(s) and h2(s) do

not have common zeros, therefore B is spectrally controllable. Moreover, if a is a

Liouville number (4.14), R(s) does not satisfy the hypothesis of theorem 7.12. Is

there anyway an image representation of B?

Let us suppose that a is a Liouville number therefore hi(s) do not have common

zeros and do not satisfy a Bézout equation. If kerE R(s) = imE N(s), with N(s) =

[nij(s)] ∈ A2×d, since R(s)N(s) = 0, it must be h1(s)n1j(s) = −h2(s)n2j(s). We

know also that if h1(s0) = 0, h2(s0) cannot be zero hence n2j(s0) = 0; by symmetry

yj(s)
M
=
n1j(s)

h2(s)
= −n2j(s)

h1(s)
∈ O.

By corollary 5.5, yj(s) ∈ A and if we let M(s)>
M
= [h2(s) −h1(s)] (we have trivially
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R(s)M(s) = 0), and Y (s)
M
= [yj(s)] ∈ Ad, then N(s) = M(s)Y (s) therefore

kerE R(s) = imE N(s) = imEM(s)Y (s) ⊆ imEM(s) ⊆ kerE R(s).

This is a contradiction: imEM(s) = kerE R(s) implies that the operator M(s) has

a closed image; the Spectral analysis theorem 4.26 states that it is also injective

therefore, by theorem 5.9, M(s) has a left inverse X(s), i.e. there are two elements

xi(s) ∈ A such that x1(s)h1(s) + x2(s)h2(s) = 1, impossible by the assumption

on a. ♣

7.2.3 A preliminary result

The following results on controllability of delay–differential behaviors need a pre-

liminary theorem.

Theorem 7.15. Suppose that R(s) ∈ Ap×q with rank r admits a generalized

inverse over O, i.e.

∃X(s) ∈ Oq×p such that R(s)X(s)R(s) = R(s).

Then there is a matrix M(s) ∈ Aq×d with rank q − r such that

kerO R(s)◦ = imOM(s)◦ and imO ◦R(s) = kerO ◦M(s); (7.11)

moreover also M(s) admits a generalized inverse over O.

Remark 7.16. As the proof will show, theorem 7.15 employs only the fact that A
is a subring of O, hence this result is still valid if we replace A with any operator

ring among the ones we encountered.

The proof of this theorem needs a rather involved notation, so two simple

examples will help in understanding it.

Example 7.17. Given R(s) = [a b c d] ∈ A1×4 (we omit to explicit the de-

pendence of the elements on s), we satisfy the hypotheses of theorem 7.15 with

r = p = 1, q = 4 as soon as R(λ) 6= 0 for all λ ∈ C: O is a Bézout domain

and in this case the elements of R(s) satisfy the equation R(s)X(s) = 1 with

X(s) ∈ O4×1.
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We show how we can construct a matrix M(s) ∈ A4×6 of rank q−r = q−p = 3

such that R(s)M(s) = 0: let us consider the matrix

R̃(s) =

[
w x y z

a b c d

]

where the vector [w x y z] belongs to the image of ◦R(s), i.e. it is a scalar multiple

of R(s). In this case R̃(s) has still rank p = 1 therefore its minors of order p + 1

are zero. Note that the minors of R̃(s) are linear functions of w, x, y or z: we will

show that we can write them as particular row-column products.

We have 6 =
(

4
2

)
=
(
q
p+1

)
different (ordered) sets of 2 = p+ 1 columns of R(s):

ρ1 = {1, 4} , ρ2 = {2, 4} , ρ3 = {3, 4} , ρ4 = {1, 3} , ρ5 = {2, 3} , ρ6 = {1, 2}

that correspond to every minor of order p + 1 of R̃(s). The minor given by ρ1 is

wd− za = 0 that can be written (up to multiplication by −1):

[
w x y z

]

−d
0

0

a


i.e. the first element in the column is −d, minor of R(s) corresponding to the set

of columns {4} = ρ1 \ {1} (we consider it with the opposite sign if the row we

are considering, 1, occupies an odd position in ρ). Second and third elements are

zero (2, 3 6∈ ρ1) and the fourth element is a, the minor of column {1} = ρ1 \ {4}
of R(s).

From every ρi we can construct such a row and obtain

M(s) =


−d 0 0 −c 0 −b
0 −d 0 0 −c a

0 0 −d a b 0

a b c 0 0 0

 ;

it is easy to check that it satisfies equation R(s)M(s) = 0.

Note that −d3 is a minor of order 3 = q − p of M(s); browsing patiently we

could find every other third power of the minors of R(s); some of them is not zero,
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so M(s) has at least rank 3; it cannot have (full row) rank 4 because otherwise

equation R(s)M(s) = 0 would imply that R(s) = 0. ♣

Example 7.18. Without being so detailed, we show what happens when p = 2

and q = 4:

R(s) =

[
a b c d

α β γ δ

]
.

Matrix R̃(s) is now

R̃(s) =

w x y z

a b c d

α β γ δ


where [w x y z] is a linear combination of the rows of R(s); its minors of order

p+ 1 = 3 correspond to columns in the d =
(
q
p+1

)
=
(

4
3

)
= 4 sets

ρ1 = {1, 3, 4} , ρ2 = {2, 3, 4} , ρ3 = {1, 2, 4} , ρ4 = {1, 2, 3}

and permit to construct M(s) in the following way:

M(s) =


dγ − cδ 0 dβ − bδ cβ − bγ

0 dγ − cδ aδ − dα aγ − cα
aδ − dα bδ − dβ 0 bα− aβ
cα− aγ cβ − bγ bα− aβ 0

 .

M(s) has obviously rank 2 = p since among its minors of order q−p = 2 there

are the squares of the minors of order p = 2 of R(s). ♣

Lemma 7.19. Let R(s) ∈ Ap×q with full row rank and

∃X(s) ∈ Oq×p such that R(s)X(s) = I.

Then there is a matrix M(s) ∈ Aq×d with rank q − p admitting a generalized

inverse over O and such that

kerO R(s)◦ = imOM(s)◦ and imO ◦R(s) = kerO ◦M(s).
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Proof. Since this proof is quite long, we divide it into smaller steps.

First step: Existence of M(s) such that R(s)M(s) = 0.

If p = q there is only a minor, the non zero determinant, that is a unit being

R(s) invertible on O. Thus the kernel of R(s) is trivial and is the image of a zero

matrix.

Let us suppose that p < q. If r(s) is any element in OpR(s), we can build the

matrix

R̃(s) =

[
r(s)

R(s)

]
. (7.12)

R̃(s) has rank p, so every minor of order p+ 1 is zero and is a linear combination

of p+ 1 elements of r(s), the coefficients being p+ 1 minors of order p of R(s).

More precisely: let ρ ⊆ N be a subset of p+1 elements of the set {1, 2, . . . , q};
we write ρ(i) to indicate the i-th element of ρ and suppose that ρ is ordered, i.e.

ρ(i) < ρ(j) whenever 1 ≤ i < j ≤ q. Further we denote by

ρ̄(i) = ρ \ ρ(i) (7.13)

the ordered set with p elements that has the elements of ρ except ρ(i) and let

nρ(i)
M
=

0 if i 6∈ ρ

(−1)k if ρ(k) = i
(7.14)

that is to say: if i ∈ ρ then nρ(i) is equal to 1 when i occupies an even ‘position’

in ρ.

We know by basic combinatorics that there are exactly d =
(
q
p+1

)
different sets

ρj, so we can construct a matrix M(s) ∈ Aq×d with elements mij(s) defined as

mij(s)
M
= nρj(i)R(s)ρ̄j(i) (7.15)

where R(s)ρ is a minor of R(s), the determinant of the matrix formed by columns

of R(s) indexed by elements in the set ρ.

We see that if r(s) in (7.12) has elements ri(s) and Mj(s) is the j-th column
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of M(s) then, remembering that by definition (7.14) nρj(i) = 0 when i 6∈ ρj,

0 = R̃(s)ρj =
∑
i∈ρj

ri(s)nρj(i)R(s)ρ̄j(i) =

q∑
i=1

ri(s)nρj(i)R(s)ρ̄j(i) = r(s)Mj(s).

Since r(s) may be any row in OpR(s), thus any row of R(s), this proves that

R(s)M(s) = 0. (7.16)

Second step: The matrix M(s) has rank q − p.
Let ρ = {q − p+ 1, q − p+ 2, . . . , q − 1, q}, the last p columns of R(s) and let ρj,

j = 1, . . . , d be such that

ρj = {j} ∪ ρ, ∀j ∈ {1, 2, . . . , q − p} .

By definition (7.13) ρ̄j(j) = ρ thus by (7.15)

|mjj(s)| = |R(s)ρ|, ∀j ∈ {1, 2, . . . , q − p} .

Again the definition (7.15) of mij(s) and (7.14) imply that

∀i, j ∈ {1, 2, . . . , q − p} , i 6= j ⇒ nρj(i) = 0 therefore mij(s) = 0

so the submatrix containing the first q−p rows and columns of M(s) is the identity

matrix multiplied by the minor R(s)ρ of R(s).

It is obvious, by the symmetric structure of the problem, that the set of minors

of order q − p of M(s) contains every (q−p)–th power of the maximal minors of

R(s). This shows that M(s) has at least rank m ≥ q − p.
If we consider the Smith form (4.1) over O of M(s), then

0 = R(s)M(s) = R(s)P (s)M̄(s)Q(s) ⇒ R̄(s)M̄(s) = 0

where R̄(s) = R(s)P (s) ∈ Op×q is still a full row rank matrix. M̄(s) has only

m non zero diagonal entries, that is to say: the first m columns of R̄(s) are zero

hence q − m ≥ p ⇔ m ≤ q − p. Together with the previously found relation

m = q − p.
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Third step: imO ◦R(s) = kerO ◦M(s).

Equation (7.16) implies that imO ◦R(s) ⊆ kerO ◦M(s); we want to prove that also

the converse is true.

We know by theorem 4.12 that since R(s) admits a generalized inverse, its

p× p minors satisfy a Bézout equation. This implies that they have no common

zero thus R(s) is the presentation matrix of a spectrally controllable system and,

by theorem 7.7, Oq/OpR(s) is torsion free.

By construction of M(s) we know that if r(s)M(s) = 0 then matrix R̃(s)

defined in (7.12) does not have full rank:

∃a(s) ∈ O, v(s) ∈ Op such that a(s)r(s) = v(s)R(s).

So, if r = r(s) + OpR(s) is the equivalence class of r(s) in Oq/OpR(s), then

previous equations say that a(s)r = 0 and by (torsion) freeness also r = 0, i.e.

r(s) ∈ imO ◦R(s).

Fourth step: kerO R(s)◦ = imOM(s)◦.

As we pointed out, the maximal minor of R(s) have no common zeros and their

(q−p)-th power is contained in the set of minors of order q−p of M(s). This shows

that neither these minors have common zeros; therefore, again by theorem 4.12,

also M(s) has a generalized inverse:

∃G(s) ∈ Od×q such that M(s)G(s)M(s) = M(s).

Condition (7.16) may be restated also as

R(s)M(s) = 0 ⇒ imOM(s)◦ ⊆ kerO R(s)◦. (7.17)

On the other hand, using the result proved in the last step and lemma 5.8,

imO ◦(G(s)M(s)− I) = kerO ◦M(s) = imO ◦R(s) = kerO ◦(X(s)R(s)− I)

which implies that (G(s)M(s) − I)(X(s)R(s) − I) = 0 and therefore, ‘changing

side’, imO(X(s)R(s)− I)◦ ⊆ kerO(G(s)M(s)− I)◦. Thus, by (7.17)

kerO R(s)◦ = imO(X(s)R(s)− I)◦ ⊆ kerO(G(s)M(s)− I)◦ = imOM(s)◦



7.2 Controllability in Hm 95Systems with m delays

and so imOM(s)◦ = kerO R(s)◦.

Proof of theorem 7.15. Let us suppose that R(s) has rank r and that F (s) ∈ Ar×q

is a full row rank submatrix of R(s) (i.e. every row of F (s) is a row of R(s)). By

theorem 4.12, the r× r minors of R(s) satisfy a Bézout equation with coefficients

in O or, in other words, have no common zeros; the minors of F (s) are a subset of

the minors of R(s), hence also F (s) has a generalized inverse and, by lemma 7.19,

we can construct M(s) ∈ Aq×d with d =
(
q
r+1

)
such that

kerO F (s)◦ = imOM(s)◦ and imO ◦F (s) = kerO ◦M(s).

It is easy to verify that F (s) = Y (s)R(s) where Y (s) ∈ {0, 1}r×p only chooses

the suitable rows of R(s). This implies that

kerO R(s)◦ ⊆ kerO F (s)◦ and imO ◦R(s) ⊇ imO ◦F (s).

Vice versa we know that given any row r(s) of R(s) there are a scalar a(s) ∈ O
and a vector z(s) ∈ Or such that

a(s)r(s) = z(s)F (s).

By definition 3.27, F (s) is the presentation matrix of a spectrally controllable

system; then, by theorem 7.7, Oq/OpR(s) is torsion free: that is to say that

r(s) = z̃(s)F (s) with z̃(s) =
z(s)

a(s)
∈ Or.

This proves that also R(s) = Z(s)F (s) whence

kerO R(s)◦ = kerO F (s)◦ = imOM(s)◦ and imO ◦R(s) = imO ◦F (s) = kerO ◦M(s).

Remark 7.20. We note that theorem 7.15 gives a necessary and su�cient condi-

tion: actually we could start with a matrix M(s) ∈ Aq×d with rank m that admits

a generalized inverse over O and construct R(s) ∈ Ap×q with rank q −m which

also admits a generalized inverse over O and satis�es relations (7.11). To prove

this fact we only have apply theorem 7.15 to M(s)>.
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7.2.4 Behavioral controllability in Hm

In this section we present results concerning more specifically delay–differential

behaviors.

A condition that assures controllability of a behavior once we know that it is

spectrally controllable, is the following:

Theorem 7.21. Let B = kerE R(s), R(s) ∈ Ap×q of rank r, be spectrally con-

trollable and suppose that a linear combination of the minors of order r with

coefficients in A is equal to a polynomial, i.e. if xi(s) are the r× r minors of R(s)

and

∃hi(s) ∈ A :
∑
i

xi(s)hi(s) ∈ R[s].

Then R(s) admits a generalized inverse G(s) ∈ Aq×p.

Proof. Let X(s) ∈ At×1 be the row vector containing all the r× r minors of R(s)

and H(s) ∈ A1×t such that we have

a(s)
M
= X(s)H(s) =

∑
i

xi(s)hi(s) ∈ R[s].

If s0 is a zero of a(s), then also X(s0)H(s0) = 0. Since B is spectrally control-

lable, xi(s) have no common zeros hence X(s0) 6= 0.

By theorem 7.15 we know that there is a matrix M(s) ∈ At×d such that

kerOX(s)◦ = imOM(s)◦ with constant rankCM(λ) for every λ ∈ C, therefore

kerCX(s0)◦ = imCM(s0)◦: there exist a constant column c ∈ C
d such that

H(s0) = M(s0)c.

Since X(s)M(s)c = 0 we can write

a(s) = X(s)(H(s)−M(s)c) ⇒ ã(s) =
a(s)

s−s0

= X(s)
H(s)−M(s)c

s− s0

= X(s)H̃(s)

where ã(s) is a polynomial with lower degree than a(s) and H̃(s) is a vector in

A; iterating this procedure we get a Bézout equation for the minors of R(s), with

coefficients in A: this permits to construct, by theorem 4.12 and lemma 5.8, a

convolutional image representation of B.
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Corollary 7.22. Let B = kerE R(s), R(s) ∈ Hp×q
m of rank r, be spectrally con-

trollable and suppose that a linear combination with coefficients in Hm of the

minors of order r is equal to a polynomial, i.e. if xi(s) are the r×r minors of R(s)

and

∃hi(s) ∈ Hm :
∑
i

xi(s)hi(s) ∈ R[s]. (7.18)

Then R(s) admits a generalized inverse G(s) ∈ Hq×p
m .

Remark 7.23. The above result is an algebraic-geometric criterion that, more-

over, is computationally realizable by standard Gr�obner bases algorithms: we must

check equation (7.18) with hi(s) ∈ Hm. Actually it can be written using delay{

di�erential polynomials multiplying by a common denominator

a(s) =
∑
i

ri(s, z)

r̃i(s)zni
hi(s, z)

h̃i(s)zki
⇔ ã(s)zn =

∑
i

ri(s, z)hi(s, z)

that employes only polynomials in m+ 1 variables. Anyway, the same result may

be achieved directly in R[s,z, z−1] [BW93].

In general, a delay–differential behavior may admit a convolutional image rep-

resentation; the following results show that once we know that a behavior admits a

convolutional image representation, we can always find suitable delay–differential

representations.

Lemma 7.24. Let R(s) ∈ Ap×q such that kerE R(s) = imE N(s), N(s) ∈ Aq×d,
and kerO R(s)◦ = imOM(s)◦ for some M(s) ∈ Hq×d; then kerE R(s) = imEM(s).

Proof. We know that R(s)N(s) = 0 and that M(s)◦ generates over O every holo-

morphic vector belonging to kerO R(s)◦, hence N(s) = M(s)X(s) with X(s) a

holomorphic function. By theorem 4.14 there are G(s) ∈ Hd×q
m and a(s) ∈ Hm

such that M(s)G(s)M(s) = a(s)M(s). Then

M(s)G(s)N(s) = M(s)G(s)M(s)X(s) = a(s)M(s)X(s) = a(s)N(s)

and, since a(s) is surjective by theorem 4.29, imE N(s) = imE N(s)a(s), therefore:

imE N(s) = imEM(s)G(s)N(s) ⊆ imEM(s) ⊆ kerE R(s) = imE N(s).
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Combining the above lemma and what is said in remark 7.16 about theo-

rem 7.15, we obtain the following useful proposition.

Proposition 7.25. If B = kerE R(s), with R(s) ∈ Hp×q
m , has an image represen-

tation, then B = imEM(s) with some M(s) ∈ Hq×d
m .

So, once we know that an image representation exists, we can find one in Hm;

furthermore, there is a smaller matrix than the one showed by proposition 7.25:

Theorem 7.26. Let R(s) ∈ Hp×q
m with rank r; if B = kerE R(s), has an image

representation, then B = imEM(s) with M(s) ∈ Hq×(q−r)
m with full column rank.

Proof. We know, by proposition 7.25, that there is an image representation with

matrix N(s) ∈ Hq×d
m . If we denote by Km the field of fractions of elements in

Hm (which coincides with the field of fractions of exponential polynomials), R(s)

admits a Smith form, therefore lemma 4.4 states that there is an injective matrix

M̃(s) ∈ Kq×(q−r)
m such that

kerKm R(s)◦ = imKm M̃(s)◦.

So, since R(s)N(s) = 0, we have also N(s) = M̃(s)X̃(s) with some ma-

trix X̃(s) ∈ K(q−r)×d
m and collecting the common denominator a(s), a(s)N(s) =

M(s)X(s), with M(s) ∈ Hq×(q−r)
m and X(s) ∈ H(q−r)×d

m .

By theorem 4.29 the polynomial a(s) is surjective on E ; therefore

imE N(s) = imE a(s)N(s)

and also

kerE R(s) = imE N(s) = imE a(s)N(s) = imEM(s)X(s) ⊆ imEM(s) ⊆ kerE R(s)

(7.19)

since R(s)M̃(s) = 0: this proves that kerE R(s) = imEM(s).

7.2.5 The single input case

Theorem 6.6 states among other facts, that inH1 a behavior B = kerE R(s) admits

an image representation if and only if R(s) admits a generalized inverse. We show

that this holds in Hm in a particular case.
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Definition 7.27. An input/output representation of a behavior1 B is a par-

tition of its variables w(t) in input variables u(t) and output variables y(t), such

that the input is free (i.e. for every u(t) there is a y(t) such that the trajectory

w(t) consisting of y(t) and u(t) is in B) and maximal (i.e. once u(t) has been

fixed, y(t) does not contain other free variables).

If we know that B = kerE R(s), where R(s) ∈ Ap×q with rank r, after a suitable

permutation of its columns we can partition w> = [y> u>] and R(s) consinstently

as R(s) = [P (s) − Q(s)] such that P (s) is a full column rank matrix, i.e. there

is a matrix Y (s) ∈ Ar×p and a scalar a(s) ∈ A such that Y (s)P (s) = a(s)Ir and

the behavioral equations are

w(t) ∈ B ⇔ R(s)w = 0 ⇔ P (s)y = Q(s)u.

If we suppose that amongst all possible choices of P (s) there is one such that

a(s) is surjective on E (and this always happens if R(s) ∈ Hp×q
m ), we can obtain

an input/output representation:

∀u(t) ∈ Eq−r ∃y(t) ∈ Er : P (s)y = Q(s)u.

Indeed we know that ∃v(t) ∈ Ep such that a(s)v = Q(s)u, so

y = Y (s)v ⇒ P (s)y = P (s)Y (s)v = a(s)v = Q(s)u;

moreover, fixing u(t) = 0 then P (s)y = 0 implies that Y (s)P (s)y = a(s)y = 0

hence y(t) is not free: every component is a solution of the same delay–differential

equation. Note that the number of inputs is equal to q − r.
The following theorem, valid with much more generality for differential behav-

iors, is still valid for delay–differential behaviors with one input:

Theorem 7.28. Suppose that B = kerE R(s), with R(s) ∈ Hp×q
m with rank q − 1

(i.e. B is a single–input behavior); then

B admits image representation⇔ ∃X(s)∈ Aq×p such that R(s)X(s)R(s)=R(s).

Proof. If R(s)X(s)R(s) = R(s), we can use theorem 7.12. On the converse,

1We are disregarding properness issues for the sake of simplicity: see for more details [PW97,
ch. 3.3].
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remark 7.16 and the proof of lemma 7.19 state that there is a column M(s) ∈ Hq×1
m

made with minors of R(s) such that

kerO R(s)◦ = imOM(s)◦.

If we prove that 1 ∈ imA ◦M(s) we have proven that the minors of R(s) satisfy a

Bézout equation over A and, by theorem 4.12, R(s) admits a generalized inverse.

Since the behavior admits an image representation, say B = imE N(s) with

N(s) ∈ Aq×d, then R(s)N(s) = 0 thus each row of N(s) is in kerO R(s)◦: we have

that

∃Y (s) ∈ O1×d : M(s)Y (s) = N(s) ⇒ mi(s)yj(s) = nij(s).

By corollary 5.5 nij(s)/mi(s) = yj(s) ∈ O is a Paley–Wiener function, so

Y (s) ∈ A1×d; now since M(s)Y (s) = N(s) where every matrix is an operator,

imE N(s) ⊆ imEM(s). Therefore

kerE R(s) = imE N(s) ⊆ imEM(s) ⊆ kerE R(s)

so imEM(s) is closed and, by lemmas 5.14 and 5.16, imA ◦M(s) is closed and equal

to (kerEM(s))⊥.

We know that the minors of R(s), that are the elements of M(s), have no

common zeros, thus by theorem 4.26 kerEM(s) = {0}: so 1 ∈ A = imA ◦M(s).

7.2.6 Behavior closure

We have already introduced two statements that are equivalent to behavioral con-

trollability for differential systems: existence of image representation and spectral

controllability (the proof of this equivalence for delay–differential behaviors with

one delay is the subject of [RW97]). There is another well-known way to charac-

terize controllable behaviors (see e.g. [Wil91, p. 266] for discrete-time systems): if

we take only the set of trajectories of a differential behavior B that are zero for

large |t| and consider its closure in E , this set is equal to B itself if and only it is

controllable.

We shall prove that the aforementioned property is equivalent to spectral con-

trollability for the class of convolutional behaviors that admit a full row rank

kernel representation; as a corollary we obtain an extension of theorem 6.6 for
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delay–differential behaviors with commensurate delays.

Definition 7.29. Given a behavior B we let Bcs be the subset of B containing

only functions with compact support: if we recall the definition of D (the set of

smooth functions with compact support introduced at page 14) and suppose that

B ⊆ Eq then

Bcs = B ∩ Dq = {w(t) ∈ B such that w(t) has compact support} .

We have seen that the existence of an image representation is a rather strong

property for convolutional behaviors; the main problem is the following: while

kernels are always closed sets, images are not closed in general. So we can weaken

the former property and ask for the equality of a given behavior and the closure of

some behavior in image representation, fact that has still interesting consequences

as next proposition will show.

Remark 7.30. We note that if M(s) ∈ Aq×d; then

imEM(s) ⊆ imDM(s). (7.20)

Indeed, one of the equivalent de�nitions of continuity (see appendix B.1), is the

following: a function f : V → W is continuous if and only if for every subspace

U ⊂ V, imU f ⊆ imU f (see [Dug66, thm. 8.3]).

Since D is dense in E (see e.g. [Tre67, cor. 1, p. 159]) then

imEM(s) = imDM(s) ⊆ imDM(s).

Proposition 7.31. Suppose that the behavior B admits a kernel representation,

B = kerE R(s) with R(s) ∈ Ap×q, and let M(s) ∈ Aq×d. Then

B = imEM(s) ⇒ B = Bcs.

Proof. Since B is closed and

Bcs = B ∩ Dq = kerE R(s) ∩ Dq = kerD R(s)

then Bcs ⊆ B.
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To prove the converse, we note first that imDM(s) ⊆ kerD R(s); then, by

equation (7.20), imEM(s) ⊆ imDM(s) and so

B = imEM(s) ⊆ imDM(s) ⊆ kerD R(s) = Bcs.

Next theorem shows that B = Bcs always implies spectral controllability.

Theorem 7.32. Let B = kerE R(s) with R(s) ∈ Ap×q. Then

B = Bcs ⇒ B is spectrally controllable.

Proof. This proof is similar to the proof of theorem 7.11: we omit some details

that may be found therein.

We know that if R(s) has rank r, there are two matrices U1(s) ∈ Or×p and

U2(s) ∈ Op−r×p such that

kerO ◦R(s) = imO ◦U2(s), (7.21)

imC ◦U1(s0)⊕ imC ◦U2(s0) = C
p ∀s0 ∈ C (7.22)

and that

R(s) does not loose rank at s0 ⇔ kerC ◦R(s0) ∩ imC ◦U1(s0) = {0} . (7.23)

We remind that B is spectrally controllable if and only if the above conditions are

satisfied for every s0 ∈ C.

So, given an s0 ∈ C, let us take c ∈ kerC ◦R(s0) ∩ imC ◦U1(s0) and define

h(s)
M
=

1

s− s0

cR(s) ∈ Ap.

As pointed out in remark 5.6, f = h(s)w if and only if (s − s0)f = cR(s)w:

if w(t) ∈ B = kerE R(s) then f(t) = kes0t and hence the set h(B) contains only

exponentials.

If we take w(t) ∈ Bcs ⊆ B and f = h(s)w, then, for large |τ |, f(τ) = 0 since

h(s) is the Laplace transform of a distribution with compact support; being f(t)

an exponential, it must be zero for every t ∈ R. Employing the hypothesis on B,
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by equation (7.20), we can write that

h(B) = h(Bcs) ⊆ h(Bcs) = {0} = {0} ⇒ kerE R(s) ⊆ kerE h(s).

This implies, by theorem 4.25, that h(s) = a(s)R(s) for some a(s) ∈ Oq. So, by

definition of h(s) and equation (7.21),

∃b(s) ∈ Op−r : c− (s− s0)a(s) = b(s)U2(s) ⇒ c = b(s0)U2(s0);

since c ∈ imC U1(s0) by hypothesis and the sum in (7.22) is direct, c = 0 and so

R(s0) does not loose rank for any s0 ∈ C.

Dealing with delay–differential systems with one delay it is very easy to prove

that the conditions we have introduced in this section are equivalent to behavioral

controllability:

Corollary 7.33. Given the delay–differential behavior B = kerE R(s), R(s) ∈
Hp×q

1 with commensurate delays, controllability, and the conditions listed in the-

orem 6.6, are equivalent to the following ones:

• B = Bcs;

• there is a matrix M(s) ∈ Hq×d
1 such that B = imEM(s).

Proof. Theorem 6.6 states that if B is spectrally controllable, it admits an image

representation: B = imEM(s). Since B is the kernel of an operator, the image of

M(s) is closed: the hypothesis of proposition 7.31 are satisfied and this, together

with theorem 7.32, ends the proof.

Convolutional behaviors do not share with delay–differential behaviors with

one delay such elegant theorems but at least in a particular case, when B =

kerE R(s) and R(s) is a full row rank matrix, it is possible to reverse the implica-

tions of proposition 7.31 and theorem 7.32:

Theorem 7.34. Let R(s) ∈ Ap×q with full row rank and B = kerE R(s). Then

B is spectrally controllable ⇒ ∃M(s) ∈ Aq×d such that B = imEM(s).
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Remark 7.35. Since this theorem is based on theorem 7.15, we may substitute

any other operator ring of holomorphic functions for the ring A within the state-

ment, as we noticed in remark 7.16. Therefore if e.g. R(s) is a delay{di�erential

polynomial matrix, the matrix M(s) we can construct belongs to the same class.

Proof of theorem 7.34. By theorem 7.15 we know that there is a matrix M(s) ∈
Aq×d such that

imO ◦R(s) = kerO ◦M(s); (7.24)

since this implies that R(s)M(s) = 0, we have that also

imA ◦R(s) ⊆ kerA ◦M(s). (7.25)

We want to prove that the converse inclusion holds for the closure of these sets.

Let x(s) ∈ kerA ◦M(s); by (7.24) there is a y(s) ∈ Op such that

x(s) = y(s)R(s). (7.26)

Let us suppose, without loss of generality, that R(s) = [R1(s) R2(s)] where R1(s)

is a square full rank submatrix of R(s). Let x(s) be partitioned in the same way:

we obtain

x1(s)=y(s)R1(s)⇒ x1(s)adjR1(s)=y(s)R1(s)adjR1(s)=y(s)detR1(s). (7.27)

We need now the following important result: if we let

H(r)
M
= {a(s) ∈ A : b(s) ∈ A ∩Or(s)⇒ a(s)b(s) ∈ Ar(s)} (7.28)

then, as stated in [Mal56, p. 308], for any non zero Paley–Wiener function

∀r(s) ∈ A, r(s) 6= 0, we have that H(r) = A. (7.29)

In other words: we know that if b(s) and r(s) are Paley–Wiener functions and

c(s) = b(s)/r(s) is holomorphic then, by proposition 5.4, c(s) ∈ A if and only if

Ar(s) is closed. However, even if c(s) /∈ A, we may find a function a(s) ∈ A such

that a(s)c(s) ∈ A. Malgrange’s theorem, i.e. equation (7.29), tells us that the set

H(r) of functions a(s) that map, by multiplication, every holomorphic fraction
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with denominator r(s) into A, is not only non trivial, but also dense in A.

So, if we set r(s)
M
= detR1(s) and x̄1(s) = x1(s) adjR1(s) ∈ Ap, then in

particular equation 7.27 becomes

x̄1(s) = y(s)r(s) (7.30)

therefore x̄1(s) ∈ Ap ∩ Opr(s); so, by definition (7.28) of H(r),

if a(s) ∈ H(r) then a(s)x̄1(s) ∈ Apr(s). (7.31)

Actually H(r) was defined only for scalar equations, but we remark that H(r)

depends only on r(s), hence equation (7.31) is true componentwise.

Since H(r) is dense in A by (7.29), there must be a sequence an(s) ∈ H(r)

converging to 1 ∈ A; from equation (7.31) we obtain that

∃hn(s) ∈ Ap : an(s)x̄1(s) = hn(s)r(s)

and by equation (7.30)

an(s)x̄1(s) = an(s)y(s)r(s) = hn(s)r(s) ⇒ an(s)y(s) = hn(s).

If we multiply by an(s) both members of equation (7.26) we obtain

an(s)x(s) = an(s)y(s)R(s) = hn(s)R(s) ∈ ApR(s).

Therefore an(s)x(s) is a sequence in ApR(s) and its limit lies in the closure; since

an(s) converges to 1, an(s)x(s)→ x(s) ∈ ApR(s). In other words:

kerA ◦M(s) ⊆ imA ◦R(s).

Considering also equation (7.25), if we take the orthogonals, we obtain(
imA ◦R(s)

)⊥
⊆ (kerA ◦M(s))⊥ ⊆ (imA ◦R(s))⊥ .

by proposition 5.13; the same proposition, together with lemma 5.14, states that(
imA ◦R(s)

)⊥
= (imA ◦R(s))⊥ = kerE R(s),
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thus, since also (kerA ◦M(s))⊥ = imEM(s), we get the desired result: kerE R(s) =

imEM(s).

Furthermore there is another implication that holds for convolutional behav-

iors: if B is controllable then B = Bcs.

By the way, definition 3.11 of controllability is not the only possible: as a

matter of fact, researchers in the behavioral framework proposed different types

of controllability that are still based on trajectories like the one we have con-

sidered throughout this thesis, (see e.g. [ZM96] where relations between various

concepts are showed). Next proposition actually employs, as intermediate step,

the notion of symmetric controllability: a behavior is symmetric controllable

if it is possible to steer every trajectory to zero both in the future and in the past.

Proposition 7.36. Suppose that the behavior B is controllable. Then B = Bcs.

Proof. First of all we prove that a controllable behavior is symmetric controllable:

we know that every trajectory may be steered to zero; we have to show that for

every w(t) ∈ B we can find a w̃(t) ∈ B such that

∃T > 0 such that w̃(t) = 0 ∀t < −T and w̃(t) = w(t) ∀t > 0.

This is rather simple: by definition 3.11, given w1(t) = 0 and w2(t) = w(t), there

is a τ > 0 and a w̄(t) that is zero for t ≤ 0 and coincides with στw(t) for t ≥ τ .

If we take T = τ , then w̃(t) = σ−τ w̄(t) is the desired function.

Next we suppose that the behavior is symmetric controllable and w(t) ∈ B; if

we consider an increasing sequence of compact intervals

[ti, τi] = Ki ⊂ Ki+1 such that ∪Ki = R,

then for every i we can find a trajectory ui(t) ∈ B that is equal to w(t) for t ≥ ti

and zero in the ‘past’; we can also find a trajectory vi(t) ∈ B that is equal to ui(t)

for t ≤ τi and zero in the ‘future’.

Clearly

vi(t) ∈ Bcs and v(t) = w(t) ∀t ∈ Ki;

the sequence vn(t) converges to w(t) on compacts, i.e. in the topology of E , there-

fore w(t) is a limit point of Bcs. So B ⊆ Bcs.
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The converse inclusion, that completes the proof, trivially holds always.

In conclusion we note that slight variations of lemma 7.24, proposition 7.25

and theorem 7.26 hold in this context too: as regards lemma 7.24 we remark that

if

kerE R(s) = imE N(s) with R(s) ∈ Ap×q and N(s) ∈ Aq×d,

then clearly kerE R(s) ⊇ imE N(s) therefore R(s)N(s) = 0. If there is an M(s) ∈
Hq×d such that kerO R(s)◦ = imOM(s)◦ then, as the proof of the lemma 7.24

shows, imE N(s) = imEM(s) therefore kerE R(s) = imEM(s).

The matrix M(s) always exists whenever B is a delay–differential behavior by

theorem 7.15 and remark 7.16; we record in the following proposition the most

important consequence.

Proposition 7.37. Let R(s) ∈ Hp×q
m with rank r and B = kerE R(s); if B =

imE N(s) with N(s) ∈ Aq×d then B = imEM(s) with M(s) ∈ Hq×(q−r)
m with full

column rank.

Proof. We have just proved that there is a matrix L(s) ∈ Hq×d
m such that B =

imE L(s). As proof of theorem 7.26 shows, we can find an element a(s) ∈ Hm and

matrices M(s) ∈ Hq×(q−r)
m with full column rank and X(s) ∈ H(q−r)×d

m such that

a(s)L(s) = M(s)X(s). We obtain

imE L(s) = imE a(s)L(s) = imEM(s)X(s) ⊆ imEM(s) ⊆ kerE R(s)

and, closing with respect to the topology of E ,

kerE R(s) = imE L(s) ⊆ imEM(s) ⊆ kerE R(s).

7.3 Summarizing pictures

Since for delay differential systems with non commensurate delays, or more gener-

ically, for convolutional systems there is no simple and unifying theorem on con-

trollabilities like 6.6, we show three pictorial representations of the relations we

have found between various conditions related to controllability.
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The first two sum up, roughly speaking, the content of sections 7.2.1–7.2.5

regarding delay–differential systems (in Hm) and, respectively, convolutional sys-

tems (in A) both in the behavioral and in the Fliess’ approach.

The third one is concerned only with behavioral notions and presents the

results of section 7.2.6.
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The following picture holds for delay–differential behaviors, i.e. we let R(s) ∈
Hp×q
m with rank r, so B = kerE R(s) and M = cokerHm ◦R(s).
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O–controllable

oo 7.7 //

M or B spectrally
controllable:

∀λ ∈ C
rankCR(λ) = r
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7.14(†)
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B is (behaviorally)
controllable
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M is
Hm–torsion free

controllable

7.6
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7.26(‡)

__

B admits an
image representation

∃M(s)∈Hq×d
m :

B = imEM(s)

7.10

OO

7.28(s)
ttj j j j
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M is
Hm–projective

controllable

OO

oo 7.9 //

R(s) admits a
generalized inverse:

∃G(s)∈Hq×p
m :

R(s)=R(s)G(s)R(s)

7.13 55kkkkkkkk

Legenda

Rounded boxes refer to the module and shaded to the behavioral approach.

Numbers on arrows refer to propositions; continuous arrows // always hold;

dashed arrows //___ need additional hypotheses indicated by small parenthesized

letters (in the following list we denote by xi(s) the r × r minors of R(s)):
(b): the minors xi(s) of R(s) satisfy a Bézout equation over Hm;
(p): the ideal generated by the minors xi(s) of R(s) in Hm contains a polynomial;
(r): R(s) has full row rank (i.e. p = r);
(s): the system has a single input.

Moreover:
(†): this is a counterexample;
(‡): we can always find a full column rank M(s) ∈ Hq×(q−r)

m .
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This picture holds for convolutional systems: we let R(s) ∈ Ap×q with rank r, so

B = kerE R(s) and M = cokerA ◦R(s).
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M is
O–controllable

oo 7.7 //

M or B spectrally
controllable:

∀λ ∈ C
rankCR(λ) = r
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M is
A–torsion free

controllable

7.5

;;vvvvvvvvvvvvvvv

B admits an
image representation

∃M(s)∈Aq×d :
B = imEM(s)

7.10

OO

�� ��

�� ��

M is
A–projective
controllable

OO

oo 7.8 //

R(s) admits a
generalized inverse:

∃G(s)∈Aq×p :
R(s)=R(s)G(s)R(s)

7.13 55kkkkkkkk

Legenda

Rounded boxes refer to the module and shaded to the behavioral approach.

Numbers on arrows refer to propositions; continuous arrows // always hold;

dashed arrows //___ need additional hypotheses indicated by small parenthesized

letters (in the following list we denote by xi(s) the r × r minors of R(s)):
(b): the minors xi(s) of R(s) satisfy a Bézout equation over A;
(p): the ideal generated by the minors xi(s) of R(s) in A contains a polynomial.

Moreover:
(†): this is a counterexample.
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This picture holds for convolutional and delay–differential systems: we let gener-

ically R(s) ∈ Ap×q with rank r and B = kerE R(s).

B is spectrally
controllable:

∀λ ∈ C
rankCR(λ) = r

7.34(r)
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B = Bcs

with Bcs = B ∩ D

7.32 55kkkkkkkk

B is (behaviorally)
controllable
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7.36
oo

∃M(s)∈Aq×d :

B = imEM(s)

7.31

OO

7.37(†)

__

7.26(†)

__

B admits an
image representation

∃M(s)∈Aq×d :
B = imEM(s)

oo

7.10

OO

Legenda

Numbers on arrows refer to propositions; continuous arrows // always hold;

the dashed arrow //___ needs an additional hypothesis indicated by the small

parenthesized letter:
(r): R(s) has full row rank (i.e. p = r).

Moreover:
(†): if B is a delay–differential behavior, we can always find a full column rank

M(s) ∈ Hq×(q−r)
m .



Appendix A

Basic Algebra

Many concepts of linear algebra were used without being defined throughout the

thesis. This appendix offers a brief glossary of the necessary concepts and results.

A.1 Algebraic structures

A semigroup (S, ◦) is a set S equipped with a mapping, or operation, ◦ : S2 → S

that is associative, x ◦ (y ◦ z) = (x ◦ y) ◦ z. A monoid (M, ◦) is a semigroup

and admits a unit e ∈M such that e ◦ x = x ◦ e = x ∀x ∈M . A group (G, ◦) is

a monoid such that there is an inverse for every element: ∀x ∈ G ∃y ∈ G such

that x ◦ y = y ◦ x = e. A subgroup of (G, ◦) is a subset H ⊆ G such that (H, ◦)
is a group.

The operation is commutative if x ◦ y = y ◦x. Groups that are commutative

are also called Abelian.

We will use mainly a ‘multiplicative’ operation (x ◦ y = xy, the unit is 1 and

the inverse of x is x−1) or sometimes ‘additive’ operation (x ◦ y = x+ y, the unit

is 0 and the inverse of x is −x).

A group homomorphism is a mapping f : G1 → G2 such that f(xy) =

f(x)f(y). The kernel of a homomorphism is the subgroup K ⊆ G1 such that

f(x) = 0; it is denoted by ker f . The image of a homomorphism is the subgroup

R ⊆ G2 such that ∀y ∈ R there is an x ∈ G1 and f(x) = y; it is denoted by

im f . A homomorphism is injective if its kernel is ker f = {0}; it is surjective if

im f = G2; it is bijective if it is both injective and surjective.

A ring (R,+, ·) is a set equipped with two operations such that (R,+) is

an abelian group, (R, ·) is a monoid and the operations satisfy distributivity:
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(x + y)z = xz + yz. A ring is commutative if ‘·’ is commutative. A subring is a

set S ⊆ R such that 1 ∈ S, (S,+) is subgroup of (R,+), and is multiplicatively

closed: x, y ∈ S ⇒ xy ∈ S.

An invertible element or unit of the ring is an element that admits inverse

with respect to ‘·’. The set of units is a subring. A domain is a ring such that

xy = 0 implies x = 0 or y = 0. A field is a ring such that (R\{0} , ·) is an abelian

group.

A left (or right) ideal of a ring R is a subset I ⊆ R such that (I,+) is

a subgroup of (R,+) and I = RI
M
= {ri : r ∈ R, i ∈ I} (or I = IR); if we

say only ideal, we mean left and right ideal. An ideal I is called principal if

I = Rx = R {x} for some x ∈ R: x is a generator for I. If I is generated by

{a1, . . . , an} we write I = (a1, . . . , an)R.

A.2 Modules and sequences

A left or right module over the ring R is an abelian group M together with

an operation of R on M such that if a, b ∈ R and x, y ∈ M : (a + b)x = ax + bx

and a(x + y) = ax + ay (for a right module the order is inverted: xa ∈ M . A

submodule is a subgroup that is still an R-module.

M is generated by elements {xi} if every element in M is a linear combina-

tion, with coefficients in R of {xi}. A set {xi} is linearly dependent if there is

a linear combination with non zero coefficient that is zero. If M is generated by

a set that is not linearly dependent, then the set is called basis and the module

is free.

A vector space is a module over a field; it has a basis and therefore is always

free.

A module is torsion if there are non zero elements a ∈ R and x ∈ M , such

that ax = 0; in this case x is called torsion element. The set of torsion elements

is a submodule, called torsion submodule.

If M is finitely generated over R a principal ideal ring, then M = Mf ⊕Mt

where Mf is free, Mt is the torsion submodule and the sum is direct, meaning

that only 0 ∈Mt ∩Mf .

A homomorphism of two modules (M into N) over the same ring R is a

group homomorphism such that ∀a ∈ R, ∀x ∈ M f(ax) = af(x). Kernels and

images are defined in the same way as for group homomorphisms.
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An sequence of modules {Mi, φi} is a chain of maps φi : Mi → Mi+1 such

that imφi ⊆ kerφi+1, i.e. φi+1φi = 0; it is exact if imφi = kerφi+1. Usually an

exact sequence is represented graphically as

· · · // Mi−1
φi−1 // Mi

φi // Mi+1
// · · · .

Using this notation the homomorphism φ : M → N is injective or surjective if

0 // M
φ // N or M

φ // N // 0 .

The set of R-linear maps of M into N , denoted by HomR(M,N) is an abelian

group.

Another important algebraic structure is the tensor product: given a right

R-module M and a left R-module N , we say that β : M × N → G, where G is

an abelian group, is balanced if β(·, n) and β(m, ·) are R-linear for every fixed

m ∈M and n ∈ N and β(mr, n) = β(m, rn) for every r ∈ R.

Then the pair (M ⊗R N, π), where M ⊗R N is an abelian group (unique to

within isomorphisms) and π : M × N → M ⊗R N is an R-balanced map such

that every other R-balanced map β : M × N → G, determines a unique group

homomorphism f : M ⊗R N → G such that β = f ◦ π, i.e. the diagram

M ⊗R N
f

$$IIIIIIIIII

M ×N

π
88qqqqqqqqqq

β
// G

commutes. Since the map π is canonical, we indicate only M ⊗RN and call it the

tensor product of M and N .

A.3 Functors

See, for an incredibly brief summary of category theory [AF92, 0.11-0.13].

If S is a ring, then the set HomR(M,N) of homomorphisms of left R-modules

is a left (right) S-module if and only if M (N) is also a right (left) S-module. So, if

we denote by RMS the fact that M is both a left R-module and a right S-module,
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and call it a R, S-module, then

f ∈ SHT = HomR(RMS, RNT) ⇒ (sft)(m) = (f(ms))t ∀s ∈ S, t ∈ T,m ∈ RMS.

We say, in this case that HomR(·, RNT) maps R, S-modules into S,T-modules;

moreover, if φ : M1 →M2 there is a map

HomR(φ,N) : HomR(M2, N)→ HomR(M1, N), λ2 7→ λ1 = λ2 ◦ φ

where λ1 : M1 → N and λ2 : M2 → N or also

M1
φ //

λ1=λ2◦φ !!DDDDDDDD M2

λ2

��
N

with a more intuitive representation.

HomR(·, N) is a particular type of functor [Lan93]), a pair of maps, in our

case, one between different classes of modules and the other one between their

homomorphisms. This functor is contravariant since it reverses arrows:

M1
φ // M2

HomR(·, N)
��HomR(M1, N) HomR(M2, N)

HomR(φ,N)oo

Also the tensor product gives rise to a functor: in fact it is possible to

show [AF92, p. 221] that

SPT = SMR ⊗R RNT.

In this case the functor M ⊗R · maps RNT 7→ SPT; this tensor is covariant,

i.e. it preserves the direction of arrows:

N1
φ // N2

M ⊗R ·
��

M ⊗R N1
M⊗Rφ // M ⊗R N2
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A.4 Behaviors, homomorphisms and tensors

Two functors F and G, F transforming R-modules into S-modules and G vice

versa, are an adjoint pair whenever HomS(F (M), N) and HomR(M,G(N)) are

Z-isomorphic.

The two functors we have introduced so far are an adjoint pair: as shown in

[AF92, pr. 20.6]), if we have modules RM , SWR and NS then the following is an

isomorphism of abelian groups

Ψ:HomR(M,HomS(W,N))→HomS(W⊗RM,N), Ψ(φ)(w⊗m)=φ(m)(w). (A.1)

If moreover M is an R,T-module, Ψ is an isomorphism of (left) T-modules:

indeed for any t ∈ T and φ, γ ∈ HomR(M,HomS(W,N)) we have

Ψ(tφ+ γ)(w ⊗m) = [tφ(m) + γ(m)](w)

= [φ(mt) + γ(m)](w) = Ψ(φ)(w ⊗mt) + Ψ(γ)(w ⊗m)

= tΨ(φ)(w ⊗m) + Ψ(γ)(w ⊗m) = [tΨ(φ) + Ψ(γ)](w ⊗m).

We can employ this property to prove an invariance property of behaviors.

As we have shown in proposition 5.2, if we put M M
= cokerR ◦R with R ∈ Rp×q

and the ring R operates on E , then the behavior B = kerE R is isomorphic to

HomR(M, E). In section 3.2.2 we have introduced the module S ⊗RM where S

is an overring of R. If even the elements of S operate on E , then the relationship

between B and HomS(S ⊗RM, E) is very simple: they are (isomorphic to) the

same module.

Actually, since M is both a left and right R-module and S is, among others,

an S,R-module, by equation A.1 we can write

HomR(M,HomS(S, E)) ∼= HomS(S⊗RM, E). (A.2)

Finally HomS(S, E), as a left R-module, is isomorphic to RE : to any w(t) ∈ E
we can associate a left R-homomorphism θw : S → E , s 7→ θw(s) = sw, since

rθw = θrw; moreover θw(s) = sw = 0 ∀s ∈ S if and only if w(t) = 0 and for every

ξ ∈ HomS(S, E), we have ξ = θξ(1).

Therefore, from equation A.2 we obtain the following isomorphism of left R-
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modules:

B ∼= HomR(M, E) ∼= HomS(S⊗RM, E).



Appendix B

Basic Topology

This appendix contains mainly topological definitions: fundamental theorems are

listed in chapter 2

B.1 Topological spaces

A topological space (S, τ) is a set S equipped with a topology τ , i.e. a set

containing: S itself and the empty set ∅; the intersection of the elements of every

finite subset; the union of the elements of every countable subset.

Every A ∈ τ is a subset of S and is said open. Every open set that contains

x ∈ S is a neighborhood of x. Complements of open sets are closed.

E ⊆ S is dense in F ⊆ S if Ē ⊇ F ; if Ē = V then E is dense.

(S, τ) is Hausdorff if distinct points have disjoint neighborhoods.

x ∈ S is a limit point of E ⊆ S if for every neighborhood A of x, A∩E 6= ∅.
The closure of E ⊆ S is the set Ē of its limit points and also the intersection

of all closed sets that contain E. The interior of E is the set E̊, union of every

open subset of E.

An open cover of a set E ⊆ S is a collection of open sets whose union is a

superset of E. The set E ⊆ S is compact if every open cover admits a finite

subcover.

A collection τ ′ ⊆ τ is a base for τ if every open set in τ is a union of members

of τ ′.

A collection γ of neighborhoods of x ∈ S is a local base at x if every neigh-

borhood of x contains a member of γ.
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A sequence {xn} ⊆ S converges to x ∈ S if every neighborhood of x contains

all but finitely many of the points xn.

If (V, τ) and (W, ν) are topological spaces, then the map α : V → W is

continuous at x ∈ V if for every neighborhood U 3 α(x) there is a neighborhood

V 3 x such that α(V ) ⊆ U .

A function d : S2 → R
+ is a metric if d(x, y) = 0 iff x = y; d(x, y) = d(y, x);

d(x, z) ≤ d(x, y) + d(y, z). d defines a topology whose open sets are Br(x) =

{y ∈ S : d(x, y) < r}. τ is compatible with the metric d if τ is compatible with

the topology defined by d.

A set C ⊆ V is convex if tC + (1 − t)C ⊆ C, 0 ≤ t ≤ 1. A set B ⊆ V is

bounded if for every neighboorhood of zero A there is a t > 0 such that B ⊆ tA.

B.2 Topological vector spaces

A topological vector space (V, τ) is a vector space V equipped with a topology

τ , such that every x ∈ V is closed and the operation of V are continuous. These

conditions together imply that (V, τ) is Hausdorff.

A topological vector space is translation-invariant: a set E ⊆ V is open if

and only if x + E is open for every x ∈ V . Thus τ is completely determined by

one local base γ, usually the local base at 0.

A metric d on a topological vector space is invariant if d(x+ z, y+ z) = d(x, y)

forall x, y, z ∈ V .

A topological vector space is locally convex if there is a base γ whose mem-

bers are convex.

A topological vector space is metrizable if its topology is compatible with

some metric.

A seminorm on a vector space is a function p : V → R such that p(x+ y) ≤
p(x) + p(y); p(αx) = |α|p(x), α a (real or complex) scalar.

A family P of seminorms is called separating if ∀x ∈ V there is at least one

p ∈ P such that p(x) 6= 0

The dual space of the dual space, is called bidual; a topological vector space

is reflexive if it is isomorphic to its bidual. The isomorphism is given by the

‘evaluation at a point’: for every x ∈ V it is the map φx : V ′ → F that maps

α 7→ φx(α) = 〈α, x〉.
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B.3 Smooth functions

Just a few words about the properties that make C∞(R,R) into the Fréchet space

(metrizable, complete and locally convex topological vector space) E .

• E is metrizable because it has a countable separating family of seminorms

defined for every f ∈ E

pn(f) = max
x∈Kn

{
|f (i)(x)|, i ≤ n

}
where Kn is an increasing sequence of compacts such that ∪Kn = R.

• The local convex basis induced by these seminorms is

Vn =

{
f ∈ E : pn(f) <

1

n

}
.

• With this topology a sequence {fj} converges to f when every derivative

converges uniformly on any compact subset of R.



Appendix C

Notations and symbols

This appendix offers a reference to the page where some symbols or concepts have

been defined or used for the first time.

Proofs and examples are terminated by the symbols and respectively ♣.

C.1 Linear systems

B Behavior, set of trajectories of a dynamical system, 24.

Bc Subset of trajectories with compact support of B, 101.

M System in the module theoretic approach, 35.

ker, im Kernel or image of an operator, 23.

coker Cokernel of an operator, 35.

Hom Group of homomorphisms, 60, 114.

⊗ Tensor product, 37, 114.
⊥ Orthogonal module, 67.

C.2 Matrices

Id Identity matrix with d× d elements; d may be omitted.

◦R, R◦ Matrices may act, as operators, on the left or on the right, 23.

R̄, R̆ See the Smith form of matrix R, 42.

Cr(R) Compound matrix of order r of the matrix R, 45.

Generalized inverses: R(s) = R(s)G(s)R(s), 45
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C.3 Spaces of functions and distributions

D Smooth functions with compact support, test functions, 14.

S Smooth functions rapidly decreasing at infinity, 18.

E Smooth functions, 12.

Pe Polynomial exponential functions, 47.

D′ Distributions, 14.

S ′ Tempered distributions.

E ′ Distributions with compact support, 17.

C.4 Distributions and operators

στ Shift (delay) operator on functions and distributions, 15, 15.

〈·, ·〉 Evaluation of distributions at functions, e.g. 〈·, ·〉 : E ′×E → R, 14.

ˇ Symmetric of functions and distributions, 15, 16.

supp Support of a distribution, 16.

? Convolution between functions and/or distributions, 16, 16, 16.

˜ As operator on distributions, α̃ is the adjoint of ?α̌, 18.

L,ˆ Laplace operator L : E ′ → A, α 7→ α̂(s), 19.

C.5 Operator rings

R A generic operator ring; it may be any one of the following.

R

[
d
dt

]
Ring of polynomial differential operators, 26.

R

[
d
dt
,σ
]

Polynomial delay–differential operators, 32.

R

[
d
dt
,σ,σ−1

]
Laurent delay–differential operators, 33.

R[s] Differential polynomials, 26.

R [s, e−sτ ] Exponential polynomials, 54.

R [s, e−sτ, esτ ] Laurent exponential polynomials, 54.

Hm Holomorphic fractions of delay–differential polynomials, 57.

A Paley–Wiener functions, 21.

O Holomorphic functions, 47.
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[FLMOR97] M. Fliess, J. Lévine, P. Martin, F. Ollivier and P. Rou-

chon. Controlling nonlinear systems by flatness. In Systems and

Control in the Twenty-First Century (Proceedings MTNS-96, St.

Louis, MO), pages 137–154. Birkhauser Inc., Boston, MA, 1997.
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