
Abstract

Driven by fundamental technological achievements like the digital rev-
olution in communication and computing and the miniaturization of elec-
tronic components, a growing interest in the field of networked systems has
appeared, in recent years, in different scientific areas like physics, communi-
cation and control engineering, economy, and lately, mathematics. Besides
differences among the various approaches, the basic model consists of a cer-
tain number of agents, namely, systems living in a common environment and
which communicate among each other according to some pre-specified com-
munication pattern. Such a pattern may be fixed or varying according to
their physical position, to their internal state and can possibly be affected by
noises. The evolution law of each system typically depends on the informa-
tion obtained through its communication links and is, in general, modeled
by a difference or differential equation. For this type of models, the interest
is, in general, in studying time evolution, asymptotic behaviors, and in for-
mulating and solving related control problem. In particular, a fundamental
issue is understanding the emerging of a group behavior from the individual
dynamics and the communication pattern. While many models have already
been proposed, the mechanisms which determine how the various individual
actions get reflect in the group behavior are, in general, hard to understand
and, up to now, few results are known.
In this thesis we will focus on the so-called consensus problem, where the
group of agents has to reach an agreement on key pieces of information or on
a common decision (represented by scalar or vector values) that enable them
to cooperate in a coordinate fashion. We will consider a standard algorithm
proposed in literature to solve this problem. We will provide some theoretical
developments by

• characterizing the speed of convergence of this algorithm for particular
communication pattern exhibiting symmetries,

• investigating the realistic and practical situation in which the systems
can communicate each other only through digital channels and hence
can exchange only quantized information,

• proposing the application of this algorithm to a problem of distributed
estimation.
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Chapter 1

Introduction

In recent years there has been an increasing interest in studying dynamical
systems which can be modeled as an interconnection of a large number of
identical subsystems [98, 141, 2, 50]. Typically the subsystems exhibit simple
dynamics while the overall behavior of the aggregated dynamical units has
the complexity features depending on the way the interconnection is built
up. The scientific fields where these models appear are manifold.

On the one hand, interesting dynamical systems arise in biological net-
works at multiple levels of resolution, from interactions among molecules
and cells [87] to the behavioral ecology of animal groups [95]. The brain
is a network of nerve cells connected by axons, while cells are networks of
molecules connected by biochemical reactions. Flocks of birds and schools
of fish can travel in formation and act as one unit (see [105] and Figures
1.2 and 1.1), allowing these animals to defend themselves against predator
and protect their territories. Wildebeest and other animals exhibit complex
collective behaviors when migrating, such as obstacle avoiding, leader elec-
tion, and formation keeping (see [126, 66] and Figure 1.3). Certain foraging
behaviors include animals partitioning their environment into nonverlapping
zones (see [12] and Figure 4). Honey bees [122], gorillas [133], and white-
faced capuchins [17] exhibit synchronized group activities such as initiation
of motion and change of travel direction.

All these social animal behavior has been investigated since many years:
see [95, 105] and [126, 66, 12, 122, 133, 17] for specific examples of animal
species and [38] and [41] for general studies. Remarkably, it has been noticed
that all the above coherent behaviors (individuals typically maintain a fixed
distance from neighbors) are obtained by individuals following simple decen-
tralized rules and often with clear bio-mechanical limits to locomotion and
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Figure 1.1: School of fish. Groups of animals can act as one unit apparently
without following a group leader.

Figure 1.2: Flock of snow geese. Self-organized behaviors emerge in biological
groups, even though no individual has global knowledge of the group state.
Snow geese fly in formation during migration.

information exchange (an individual changes its trajectory only on the basis
of the behavior of its closest neighbors). In other words, these coordination
behaviors emerge despite the fact that each individual lacks global knowledge
of the network state and can plan its motion by observing only its closest
neighbors.
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Figure 1.3: Herd of wildebeest in the Serengeti National Park, Tanzania.
Wildebeest and other animals exhibit complex coordinated behaviors when
migrating, such as obstacle avoiding, leader election, and formation keeping.

At the same time, recently, technological advances in communication and
computation have paved the way for the development of large scale multi-
agent systems, in particular groups of embedded systems, such as multivehi-
cle and sensor networks. The ambitious goal in this context is to determine
local individual rules which under a certain communication exchange pat-
tern make it possible to reach certain global goals. In particular in few years,
groups of autonomous agents with computing, communication, and mobil-
ity capabilities are expected to become economically feasible and perform
a variety of spatially distributed sensing tasks, such as search and rescue,
surveillance, environmental monitoring, and exploration.

In general, there are technological limitations on the amount of com-
putation and communication that each unit can perform and the solution
will have to take into consideration these constraints. This has stimulated
the growth of a new area in control theory known has cooperative control:
many identical input/output subsystems are connected through a commu-
nication network and each individual has at disposal, at every instant, the
information on the state of only a limited number of other units and must
implement a local feedback rule only based of this information. Different
models are possible depending on the choice of the communication pattern:
the set of neighbor systems with which each system exchange information
can be fixed (a typically wired situation) or may be time-varying depending
on the mutual positions (a typically wireless situation). Moreover, this in-
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formation can be exact, but often instead quantized if we are using a digital
channel with limited capacity and also possibly corrupted by noise. More-
over, there may be exhogeneous disturbances in the system. The control
goals can be of classical type (as stabilization, rendezvous, tracking of a ref-
erence trajectory) or of new type (as shape formation), often the goal can be
multi-objective: maintaining formation while moving in a certain direction
and avoiding obstacles.

A fundamental issue both on the ’natural’ and ’artificial’ side is to quanti-
tatively explain the emerging of group behavior from the individual dynamics
and communication pattern (experimentally deduced in biology or chosen in
artificial systems). Though many models have already been proposed, the
mechanisms explaining how the group behavior arises from the various in-
dividual actions are, in general, hard to understand and, up to now, few
results are known. In the cooperative control context however other issues
show up. We want in this case to be able to explicitly synthesize control laws
for which provable desired behaviors can be achieved and also understand
which are the fundamental limitations: indeed a trade-off between perfor-
mance of the overall system measured through some suitable cost functional
and the amount of exchanged information allowed (capacity of the digital
channels, number of individual connections, etc.) is expected.

A first intermediate goal toward a comprehensive understanding of how
the dynamics of the individual systems can give rise to a group behavior, is
to study in full depth some simple problem for N units whose state evolution
is described by a simple difference or differential equation (of degree 1 or
2 typically). In this thesis, we will focus on the so-called consensus prob-
lem where a group of systems must communicate with its neighbors to reach
agreement (consensus) on key pieces of information or on a common decision
(represented by scalar or vector values) that enable them to cooperate in a
coordinate fashion. In general, the systems start with some different initial
decisions and communicate between them locally, under some constraints on
connectivity and inter-agent information exchange. The averaging problem
is a special case in which the goal is to compute the exact average of the
initial values of the systems. A natural and widely studied consensus algo-
rithm, proposed and analyzed by Tsitsiklis [138] and Tsitsiklis and al. [139],
involves, at each time step, every system taking a weighted average of its
own value with values received from some of the other systems. To be more
precise, we consider a set V of N agents, numbered 1 through N , which
will henceforth be referred to as nodes (we will see later that the nodes can
represent different objects, autonomous agents, sensors, processors, vehicles,
clocks according to the different application we are considering). Each node
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i starts with a scalar value xi(0). At each nonnegative integer time t, node
i receives from some of the other nodes j a message with the value of xj(t),
and updates its value according to:

xi(t+ 1) =
N∑
j=1

Pij(t)xj(t)

where the Pij(t) are weights with the property that Pij(t) 6= 0 only if node
i receives information from node j at time t. We use the notation P (t) to
denote the weighted matrix {Pij(t)}i,j=1,...,N . Given a matrix P , let E(P )
denote the set of directed edges (j, i), including self-edges (i, i), such that
Pij 6= 0. At each time t, the nodes’ connectivity can be represented by the
directed graph G(t) = (V, E(P (t))). The goal is to study the convergence of
the iterates xi(t) to some common value x̄, as t approaches infinity. In the
case of the average consensus problem this value x̄ is the average of the initial
values, x̄ = xave := 1

N

∑N
i=1 xi(0). In this thesis we will focus particularly on

the average consensus algorithm.

The consensus problem has been massively addressed in the last years
by many researchers. Indeed the consensus problem arises in a number of
applications including distributed algorithms in Multi-vehicle Cooperative
Control, information processing in sensor networks, load balancing, and dis-
tributed optimization (e.g. agreeing on the estimates of some unknown pa-
rameters). In the following, we will briefly review the applications of the
algorithms of consensus.

Distributed Algorithms in Multi-Vehicle Cooperative control

The recent advances in miniaturizing of computing, communication, sensing,
and actuation, that we have already cited in the Abstract and along the In-
troduction, have made it feasible to envision large numbers of autonomous
vehicles (air, ground and water) working cooperatively to accomplish an
objective. Compared to autonomous vehicles that perform solo missions,
greater efficiency and operational capability can be realized from teams of
autonomous vehicles operating in a coordinated fashion. Cooperative control
of multivehicle systems has potential impact in numerous civilian, homeland
security, and military applications. Potential civilian applications include
monitoring forest fires, oil fields, pipelines, and tracking wildlife. Poten-
tial homeland security applications include border patrol and monitoring the
perimeter of nuclear power plants. For the military, applications include
surveillance, reconnaissance, and battle damage assessment. To enable these
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applications, various cooperative control capabilities need to be developed,
including formation control, rendezvous, attitude alignment, flocking, for-
aging, task and role assignment, payload transport, air traffic control and
cooperative search. Many of these capabilities require that the team of au-
tonomous vehicles reach the agreement on key pieces of information or on a
common decision in order to operate in a coordinating fashion. This agree-
ment can be obtain by the standard consensus algorithm, briefly described
above.

Load Balancing

In load balancing [44] the nodes are processors, computers, and the edges as
physical connections among them. The corresponding communication graph
presents in general some nice symmetry (e.g. a line, a ring, a torus, a hy-
percube, etc) and also symmetry with respect to communication exchange
(if i and j are connected by an edge, it means that i can send data to j and
viceversa). In most situations the communication graph is fixed. The mea-
sure xi at each node is in this case the number of tasks which the processor i
has to accomplish. The idea is that, in order to speed up the whole compu-
tation, processors should exchange tasks along the available edges in order
to balance as much as possible the tasks among the various processors. The
natural goal is that each processor will have at the end the same quantity of
tasks to work on, namely a quantity of task close to the average.

Clock Synchronization

The recent advances in technology have also made low cost, low power wire-
less sensors a reality. For several applications of a wireless sensor networks,
such as mobile target tracking, event detection, efficient TDMA scheduling,
and sleep scheduling with very low duty cycle, it is essential that the nodes act
in a coordinated and synchronized fashion. All these applications required
global clock synchronization, that is, all the nodes of the network need to refer
to a common notion of time. For instance, consider the problem of tracking
a moving target using proximity sensors, where some nodes are deployed in
the environment and their proximity sensors detect when the moving ob-
ject passes in their vicinity [94]. Assuming that the position of the sensors
is known, it is essential that the instants of detection are precisely time-
stamped for determining the trajectory (direction and speed) of the moving
object. Clearly, the precision of the tracking algorithm based on this system
is limited by the accuracy of the clock synchronization. Other interesting ap-
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plications, which need a time-synchronization service, are habitat monitoring
[136], power scheduling and TDMA communication schemes in wireless sen-
sor networks [72], and rapid synchronized coordination of powerlines nodes
in electric power distribution networks for catastrophic power-outage pre-
vention [6]. Recently novel consensus-based protocol, for synchronizing a
wireless has been elaborated, see for instance [120, 125, 32].

Decentralized estimation

Wireless sensor networks (WSN) have broad applications in surveillance and
environmental monitoring, collaborative processing and information, and
gathering scientific data from spatially distributed sources for environmental
modeling and protection. Dealing with sensor networks, distributed estima-
tion and tracking is one of the most fundamental collaborative information
processing problem. Multi-sensor data fusion and tracking problems have
a long history in signal processing, control theory, and robotics [1]. More-
over, estimation issues in wireless networks with fully distributed protocol
of communication and elaboration data, i.e., without any hierarchical struc-
ture, have been the center of much attention only lately [96, 130]. Due to
the huge number of devices that many applications could involve, collecting
measurements from distributed wireless sensors nodes at a single location for
on-line data processing may not be feasible due to several reasons among
which long packet delay (e.g. due to multi-hop transmission) and/or lim-
ited bandwidth of the wireless network (e.g. due to energy consumption re-
quirements). This problem is particularly relevant in wireless ad-hoc sensor
networks where information needs to be multi-hopped from one to another
using closer neighbors.
It turns out that a fundamental problem in sensor networks is to solve detec-
tion and estimation problem using scalable algorithms. This requires devel-
opment of novel distributed algorithms for estimation and in particular for
Kalman filtering. Recently, new scalable sensor fusion schemes requiring fu-
sion of sensor measurements combined with local Kalman filtering have been
proposed [130]. The key component of this approach is the introduction of a
distributed filter that allows the nodes of a sensor network to track the aver-
age of N sensor measurements using an average consensus based distributed
filter called consensus filter [102].

.



16 1. Introduction

1.1 Overview and contributions of the Thesis

The dissertation is organized as follows:

• Chapter 2. In this chapter we review the fundamental features of the
consensus algorithm and of the average consensus algorithm, both for
the time-varying case and for the time-invariant case. In particular,
we summarize the main results concerning the convergence and we
introduce the concept of speed of convergence toward the consensus.

• Chapter 3. In this chapter we derive bounds on the convergence
rate to the average consensus for set of systems that exchange infor-
mation over time-invariant communication networks with symmetries
(the Cayley symmetries). We show that, in time-invarinat networks,
symmetries yield rather slow convergence to the average consensus. In
particular for such networks we have computed a tight bound for the
convergence rate.

• Chapter 4. In this chapter we focus on the time-varying consensus
problem, by addressing, in particular, the analysis of the so-called ran-
domized consensus algorithms. Precisely, in this chapter, we assume
that the consensus matrices constitute a sequence of i.i.d. matrix val-
ued random variables. We review the concepts of probabilistic consen-
sus and average probabilistic consensus. In the first part of the chapter,
we introduce two random strategies, that illustrate a remarkable prop-
erty of the randomized consensus algorithms, i.e., they allow to achieve
better performance than deterministic ones with comparable complex-
ity. In the second part of the chapter we review a well-known random
consensus algorithm: the symmetric gossip. In particular, we will pro-
vide an interesting characterization of the symmetric gossip algorithm
over Cayley graphs.

• Chapter 5. In this chapter we consider the more realistic and practi-
cal situation in which the communication network between the systems
is constituted of only rate-constrained digital links. This, in general,
prevents the nodes from having a precise knowledge about the state
of the other nodes. Indeed, through digital channels the nodes can
exchange only symbolic data in a finite alphabet and using this infor-
mation they can build at most an estimate of their neighbors. Here, we
assume that the nodes quantize their information before transmitting
it. In particular we introduce two quantizers, well-known in the litera-
ture: the deterministic uniform quantizer and the probabilistic uniform
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quantizer. Moreover, we restrict to the time-invariant average con-
sensus problem. Since in the literature, remarkable results regarding
the time-invariant quantized average consensus problem via probabilis-
tic quantizers are already present, we focus mainly to the study of
the time-invariant quantized average consensus problem via determin-
istic quantizers. The main contribution is the introduction of a simple
and effective adaptation of the standard average consensus algorithm
which does not converge to an asymptotic agreement, but is able to
preserve the average of states and to drive the systems reasonably near
to the consensus. We analyze this scheme by means of a worst-case
model and a probabilistic model showing favorable convergence prop-
erties and providing performance bounds for the limit points of the
iterates generated.

• Chapter 6. In this chapter we analyze the effects due to the pres-
ence of a communication network constituted of only digital channels
on the symmetric gossip algorithm introduced in Chapter 4. We intro-
duce two particular strategies, the partially quantized strategy and the
globally quantized strategy, depending whether the systems use exact
information regarding their own state or not to update their states. We
will analyze these strategies both via the deterministic quantizer and
via the probabilistic quantizer. We show that the globally quantized
strategy both via the deterministic quantizer and via the probabilistic
quantizer ensures that, almost surely, the consensus is reached. The
drawback of this strategy is that it does not preserve the average of the
initial conditions. On the other hand, the partially quantized strategy
maintains the initial average at each iteration of the algorithm, but
does not guarantee that the consensus is reached in general. However
we show that the partially quantized drives asymptotically all the states
very close to the initial average (we quantify how close).

• Chapter 7. Also in this chapter we assume that the nodes can com-
municate between them only through digital channels. As in Chapter
5, we consider, here, the time-invariant case. In the previous two chap-
ters, in order to face with the effects due to the forced quantization,
we have elaborated strategies which either preserves the average of the
state but do not converge to a consensus or do not preserve the aver-
age but converge to a consensus which, in general, does not coincide
with the initial average. The main contribution of this chapter is to
introduce a novel quantized strategy that permits both to maintain the
initial average and to reach it asymptotically. More precisely we adapt
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coding/decoding strategies, that were proposed for centralized control
and communication problems, to the distributed consensus problem. In
particular, we present two coding/decoding strategies, one based on the
exchange of logarithmically quantized information, the other on a zoom
in - zoom out strategy (this latter involves the use of uniform quan-
tizers). We provide analytical and simulative results illustrating the
convergence properties of these strategies. In particular we show that
the convergence factors depend smoothly on the accuracy parameter
of the quantizers used and that, remarkably, that the critical quantizer
accuracy sufficient to guarantee convergence is independent from the
network dimension.

• Chapter 8. In this chapter we deal with a possible application of
the consensus ideas to the wide field of the distributed estimation. In
particular we study a prototypical problem of distributed estimation for
sensor networks; the state of a scalar linear system is estimated via a
two stage procedure which consists in (i) a standard (and decentralized)
Kalman-like update and (ii) information propagation using consensus
strategies. To this purpose, two design parameters, i.e. the Kalman
gain and the consensus matrix have to be designed. This choice is made
by optimizing the steady state prediction (or estimation) error. We
discusse, under specific circumstances, the behavior of the “optimal”
parameters.

• Chapter 9. In this chapter we summarize the result found and we
gather out our conclusions.

In the appendices, we include some reference material for the reader, in
particular

• Appendix A. In this appendix, we review some concepts on harmonic
analysis on finite groups which are useful for the analysis, illustrated
in Chapter 3, of the spectral properties of the Cayley matrices

• Appendix B. In this appendix, we recall some notation and concepts
on directed and undirected graphs which are useful throughout all the
thesis.

• Appendix C. In this appendix, we collect some algebraic results re-
garding the stability of discrete time linear parameter varying (LPV)
systems and the solvability of a particular Lyapunov equation. The
proofs of some theorem stated in this thesis, are based on these alge-
braic results.
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Notation

We let
∏

i∈{1,...,N} Si denote the Cartesian product of sets S1, . . . , SN .

We let C, R denote the set of complex numbers and the set of real num-
bers, respectively. The set of natural numbers is denoted by N.

For x ∈ Rd, we denote by ‖x‖ (or ‖x‖2), by ‖x‖∞ and by ‖x‖F the
Euclidean norm, the ∞-norm and the Frobenius norm of x, respectively.

Given a vector x ∈ Cd we denote by x∗ its conjugate transpose. We use
the same notation even if x ∈ Rd.

We define the vectors 0 = [0, . . . , 0]∗ and 1 = [1, . . . , 1]∗ in Rd.

Given a vector x = [x1, . . . , xd]
∗ belonging to Rd or to Cd, diag {x} or

diag {x1, . . . , xN} mean a diagonal matrix having the components of x as
diagonal elements.

Given a matrix M ∈ Rd×d, with σ(M) we denote the spectrum of M ,
i.e., the set of its eigenvalues.

Let M any matrix belonging to Rd×d. With trM we denote the trace of
M , i.e., the sum of the diagonal entries. With M∗ we denote the transpose
of M .

For f, g : N→ R, we say that f ∈ O(g) if there exist N0 ∈ N and k > 0
such that |f(N)| ≤ k|g(N)| for all N ≥ N0. For f, g : N → R, we say that

f ∈ o(g) if limn→∞
f(n)
g(n)

= 0.

Let Ω be a random variable. Then, E [Ω] denotes the expectation of Ω.

For notations related to graphs, we refer the reader to the Appendix A.





Chapter 2

The Consensus Problem

2.1 Introduction

This chapter overviews the fundamental discrete-time consensus algorithm in
which a scalar information state is updated by each system using a first-order
difference equation [101, 74, 112, 88, 139]. The information flow between
the systems is modeled by a direct graph. No constraints of bandwidth
are considered. Both fixed and dynamically changing interaction topologies
are analyzed. The main results regarding the convergence of the consensus
algorithm, are summarized. The concept of speed of convergence toward the
consensus is introduced and a optimization problem is formulated.

In this chapter we will refer to the notions of graph theory collected in
Appendix B.

2.2 Problem Formulation

Consider N > 1 systems whose dynamics are coupled by the following dis-
crete time state equations

xi(t+ 1) =
N∑
j=1

Pij(t)xj(t) i = 1, . . . , N , (2.1)

where xi(t) ∈ R is the state of the i-th system at time t and Pij(t) ∈ R are
coefficients which vary with the time t. More compactly we can write

x(t+ 1) = P (t)x(t), (2.2)
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where x(t) ∈ RN and P (t) ∈ RN×N . The sequence P (t) is said to achieve
the consensus if the following conditions are satisfied:

(a) If x(0) ∈ I then x(t) = x(0) for every t ∈ N, where I is the subspace
generated by the N - dimensional vector 1 := [1, . . . , 1]∗.

(b) For any x(0) ∈ RN , there exists a scalar α such that

lim
t→∞

x(t) = α1.

Moreover, if α = N−11∗x(0), we say that average consensus is achieved.

It is worth noting that condition (a) is imposed in order to avoid mean-
ingless updating rules. Indeed if x(t̄) = α1 at some time instant t̄, then
condition (a) guarantees that x(t) = α1 for all t ≥ t̄. Moreover it is possible
to see that condition (a) implies also that

P (t)1 = 1 (2.3)

for every t ∈ N. A matrix satisfying (2.3) is called quasi-stochastic [128].

From now on, we assume that this condition holds for the sequence of
matrices P (t).

Assumption 2.1 The matrix P (t) in (2.2) is a quasi-stochastic matrix for
each time instant t ∈ N.

It is worth providing now other three definitions that will be useful through-
out all this thesis and that specify the concept of quasi-stochastic matrix for
some particular case. If the quasi-stochastic matrix P (t) satisfies also the
condition 1∗P (t) = 1∗ then it is called quasi-doubly stochastic. Moreover
if we restrict the quasi-stochastic (respectively the quasi-doubly stochastic)
matrix P (t) to have all the elements nonnegative, namely Pij(t) ≥ 0 for all
pair i, j, then P (t) is said to be a stochastic (respectively a doubly stochastic)
matrix [123].

Note now that, the fact that in the matrix P (t) the element in position i, j
is different from zero, means that the system i needs the state of the system
j in order to update its state. This implies that we need to communicate
the state xj(t) from the system j to the system i. In this context, a good
description of the information flow required by a specific matrix P (t) is given
by the directed graph GP (t) with set of vertices {1, . . . , N} in which there is
an arc from j to i whenever in the matrix P (t) the element Pij(t) 6= 0.
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The graph GP (t) is said to be the communication graph associated with P (t).
Conversely, given any directed graph G with set of vertices {1, . . . , N}, we
say that a matrix P (t) is compatible with G if GP (t) is a subgraph of G (we
will use the notation GP (t) ⊆ G). For the sake of the clarity, it is worth noting
that if a graph G contains the self loop (i, i) it means that the i-th agent has
access to its own state.

We say that the consensus problem is solvable on a sequence of graphs
G(t) if there exists a sequence of matrices P (t) compatible with the sequence
G(t) and satisfying conditions (a) and (b).

Observe now that, if both Pij(t) and Pji(t) are different from zero, then
both the edges (j, i) and (i, j) belongs to GP (t). In such case the interac-
tion topology between the systems can be modeled by an undirected graph.
However, in general, an undirected graph can be viewed as a special case of
a direct graph. A direct graph is useful because it takes into account the
general case where information flow may be unidirectional.

Note that consensus algorithm (2.1) is distributed in the sense that each
system needs only the information from its neighbors. Intuitively, the infor-
mation state of each system is updated as the weighted average (with possible
negative weights) of its current state and the current states of its neighbors.
Also note that the weights Pij(t) in (2.1) may be time-varying to represent
both the time-varying relative confidence of each’system information state
and the fact that the interaction topology may be changing dynamically due
to unreliable transmission or a limited communication/sensing range.

Remark 2.2 The consensus problem first appeared in [141]. It is worth
noting that the Vicsek model can be viewed as a special case of (2.1) by
letting

Pij =

{ 1
1+|Ni| if (j, i) ∈ G(t) or i = j

0 otherwise

where Ni(t) = {j ∈ V : j 6= i, (j, i) ∈ G(t)} represents the set of neighbors
of system i at time t and |Ni(t)| its cardinality, that is, each system simply
averages its own information state with those that are communicated to it.
Note that the matrix P (t) built in this way is a stochastic matrix but not
in general a doubly stochastic matrix, even if G is an undirected graph.
Instead the simplified Vicsek model used in [74] which is obtained by letting
Pij(t) = 1/k if (j, i) ∈ G(t) and Pij(t) = 0 otherwise, ∀ j 6= i, and Pii(t) =
1 −

∑
j 6=i Pij(t), where k > N is a constant, leads to a doubly stochastic

matrix in the case G is undirected.

Remark 2.3 When considering a team of vehicles cooperating together, a
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nice interpretation of the consensus problem (called in this case also ren-
dezvous problem), closer to the classical control theory, is the following. Let
us rewrite (2.1) as a discrete time single-integrator

xi(t+ 1) = xi(t) + ui(t) i = 1, . . . , N , (2.4)

where ui(t) ∈ R is the control input that the i-th vehicle applies at time t.
More compactly, we can write that

x(t+ 1) = x(t) + u(t) , (2.5)

where x(t), u(t) ∈ RN . In the rendezvous problem, the goal will be to design
a sequence of feedback control laws

u(t) = K(t)x(t), K(t) ∈ RN×N

yielding the consensus of the states, namely a sequence of feedback control
laws control such that the closed loop system

x(t+ 1) = (I +K(t))x(t) (2.6)

yields
lim
t→∞

x(t) = α1, (2.7)

where α is a scalar depending only on x(0) and on the sequences K(t). Note
that if we define

P (t) := I +K(t)

then we obtain (2.2). Conversely, we can rewrite (2.1) as

xi(t+ 1) = xi(t) +
N∑
j=1

Pij(t) (xj(t)− xi(t)) ,

and defining

ui(t) =
N∑
j=1

Pij(t) (xj(t)− xi(t))

or, more compactly,
u(t) = (P (t)− I)x(t) (2.8)

we obtain (2.4) and (2.5).

We conclude this section by formulating a first preliminary algebraic result
on the convergence of the consensus algorithm. The proof can be found in
[112].
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Theorem 2.4 Discrete-time algorithm (2.1) achieves consensus if and only
if

P (t)P (t− 1) · · ·P (2)P (1)P (0)→ 1c∗, (2.9)

as t→∞, where c is a N-dimensional vector.

2.2.1 Convergence Analysis of Consensus Algorithms

In this subsection we summarize the results known about the conditions en-
suring the solvability and the convergence of the consensus algorithm. First
we will consider the general case of Time-varying Communication Topolo-
gies, then we will specialize to the case of Time-invariant Communication
Topologies and weights Pij constant.

Convergence Analysis for Time-varying Communication Topologies

We start by considering the case of direct switching interaction topologies.
The next two theorems, whose proof can be found in [88, 25], rely mainly on
the notion of connectivity of a node to an another node, provided at the end
of Appendix B.

Theorem 2.5 Let P (t), t ∈ N, be a sequence of stochastic matrices, such
that Pii(t) 6= 0, i = 1, . . . , N , for all t ∈ N. Consider the sequence of
directed graphs GP (t), associated to the sequence P (t). Assume the existence
of real numbers 0 < m ≤ M such that m ≤ Pij(t) ≤ M for all t ∈ N and
(j, i) ∈ GP (t). If there exists a duration T ≥ 0 such that for all t0 ∈ N the
graph

GP (t0+1) ∪ · · · ∪ GP (t0+T )

contains a node connected to all the other nodes, then

lim
t→∞

x(t) = c1,

where c ∈ R is a constant depending only on the initial condition x(0) and
on the sequence P (t).

Theorem 2.5 gives a general result about stochastic matrices that are not nec-
essarily symmetric. The following theorem presents a convergence result for
the case of symmetric matrices (i.e., undirected graphs) under connectivity
requirements that are weaker than the ones stated in the previous Theorem
2.5.
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Theorem 2.6 Let P (t), t ∈ N, be a sequence of symmetric stochastic ma-
trices, such that Pii(t) 6= 0, i = 1, . . . , N , for all t ∈ N. Consider the
sequence of undirected graphs GP (t), associated to the sequence P (t), t ∈ N.
Assume the existence of real numbers 0 < m ≤M such that m ≤ Pij(t) ≤M
for all t ∈ N and (j, i) ∈ GP (t). If for all t0 ∈ N the graph⋃

t≥t0

GP (t)

is connected, then
lim
t→∞

x(t) = c1,

where c ∈ R is a constant depending only on the initial condition x(0) and
on the sequence P (t).

Remark 2.7 Note that the above two Theorems provide conditions ensuring
the convergence of the consensus algorithms, only for sequence of stochastic
matrices. To the best of our knowledge, there are no similar result for the
more general case of quasi-stochastic matrices.

Remark 2.8 For the sake of the completeness it is worth noting that the
authors in [113] and [112] provide very similar results. In particular, given
a sequence of stochastic matrices graphs (respectively a sequence of symmet-
ric stochastic matrices) P (t), they relate the convergence of the consensus
problem to the following two facts:

(i) Pij(t) ∈ P̄ , for all t ∈ N, where P̄ is a finite set of nonnegative
numbers that are no larger than one;

(ii) there exists an infinite sequence of contiguous, nonempty, uniformly
bounded time intervals [tj, tj+1), j = 1, 2, . . . starting at t1 = 0, with
the property that the union of the directed graphs associated to the
matrices (respectively undirected graphs) across each such interval has
a directed spanning tree (respectively is connected).

If the above two facts yield true, then

lim
t→∞

x(t) = c1,

where c ∈ R is a constant depending only on the initial condition x(0) and
on the sequence P (t).
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Convergence Analysis for Time-Invariant Communication Topolo-
gies

In this subsection, we investigate conditions under which the information
state of consensus algorithm converges when the communication topology is
time invariant and the gains Pij are constant. In this case (2.1) and (2.2)
become

xi(t+ 1) =
N∑
j=1

Pijxj i = 1, . . . , N , (2.10)

and
x(t+ 1) = Px(t) (2.11)

where P ∈ RN×N .

We state immediately the following proposition which provides an alge-
braic characterization of the quasi-stochastic matrices achieving the consen-
sus (see [35]).

Proposition 2.9 Let P be any quasi-stochastic matrix, namely P1 = 1.
Then P yields asymptotically the consensus if and only if the following three
conditions hold :

(A) 1 is the only eigenvalue of P on the unit circle centered in 0;

(B) the eigenvalue 1 has algebraic multiplicity one (namely it is a simple
root of the characteristic polynomial of P ) and 1 is its eigenvector;

(C) all the other eigenvalues are strictly inside the unit disk centered in 0.

Now, it is worth noting that a matrix P satisfying the above three properties
achieves the average consensus if and only if 1∗P = 1∗, that is if and only if
P is a quasi- doubly stochastic matrix. To the best of our knowledge, there
are no other conditions regarding the quasi-stochastic matrices (or quasi-
doubly stochastic matrices) characterizing the convergence of the consensus
algorithm (2.11). Something more can be said if we restrict to nonnegative
matrices, i.e., to stochastic (or doubly stochastic) matrices. The following
result is the straightforward consequence of standard results on stochastic
matrices [63, pag. 88 and pag. 95].

Theorem 2.10 Let G be a directed graph and assume that G contains all
loops (i, i). The following conditions are equivalent:
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(i) the consensus problem is solvable on G;

(ii) G contains a node which is connected to all the other node.

Moreover, if the above conditions are satisfied, any stochastic matrix P such
that GP = G and Pii 6= 0 for every i = 1, . . . , n solves the consensus problem.

We observe that requiring that a graph G has a node connected to all the
other nodes is equivalent to requiring that the graph G has a spanning tree.
Moreover it is worth also noting that, as shown in [115], if (2.11) converges
asymptotically, then the consensus equilibrium will be equal to a weighted
average of the initial conditions of those systems that have a direct path
to all other systems. Hence we can hope that, if G is strongly connected,
adding probably some further condition, also the average consensus problem
can be solved. Indeed the next proposition, shows that, differently from the
time-varying case, for the time-invariant consensus algorithm it is also possi-
ble provide conditions guaranteeing the solvability of the average consensus
problem (see [101]). Also the next theorem is the straightforward of standard
results on stochastic matrices.

Theorem 2.11 Let G be a directed graph and assume that G contains all
loops (i, i). The following conditions are equivalent:

(i) the average consensus problem is solvable on G;

(ii) G is strongly connected.

Moreover, if the above conditions are satisfied, any doubly stochastic matrix
P such that GP = G and Pii 6= 0 for every i = 1, . . . , n solves the average
consensus problem.

We conclude this subsection by stating the following result which is a
direct consequence of the above Theorem and characterizes the undirected
communication graphs and symmetric matrices P . Moreover we provide
two interesting and simple rules for choosing the weights of the symmetric
matrix P , often used in the literature: the Maximum-degree weights and the
Metropolis weights (see [149]).

Theorem 2.12 Let G be an undirected graph. Assume that G is connected
and it contains all loops (i, i). Then any symmetric stochastic matrix P such
that GP = G and Pii 6= 0 for every i = 1, . . . , N achieves asymptotically the
average consensus.
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Example 2.13 [Maximum-degree weights]
Given an undirected graph G = (V, E), let d ∈ R be such that

d ≥ max
1≤i≤N

{di}

where di = |Ni|, with Ni = {j ∈ V | j 6= i, (j, i) ∈ E}. Here we use the
constant weight 1/(d + 1) on all the edges, and choose the self-weights so
that the sum of weights at each node is 1:

Pij =


1
d+1

if (j, i) ∈ E and i 6= j

1− di
d+1

if i = j

0 otherwise

Example 2.14 [Metropolis weights]
Let G be as in the previous example. The Metropolis weights are defined as

Pij =


1

1+max{di,dj} if (j, i) ∈ E
1−

∑
(i,k)∈E\{(i,i)} Pik if i = j

0 otherwise

where di is as in the above example. With Metropolis weights, the weight on
each edge is one over one plus the larger degree at its two incident vertices,
and the self-weights are chosen so the sum of weights at each node is 1.

2.2.2 Consensus Synthesis

In some applications, consensus algorithms must satisfy given requirements
or optimize a suitable performance index. The simplest control performance
index is the rate of convergence toward the consensus equilibrium. We follow
the approach proposed in [147]. Given a sequence of matrices P(t), t ∈ N,
yielding the consensus, i.e satisfying (2.9), we define the asymptotic conver-
gence factor as

rasym = sup
x(0)

lim sup
t→∞

(‖x(t)− xave(t)‖2)
1
t .

where xave(t) = 1/N1∗x(t).

From this choice of performance, the problem one would like to solve is
the following.

Problem: Given a sequence of graphs G(t), t ∈ N, find a sequence of
matrices P (t), t ∈ N, such that GP (t) ⊆ G(t) and minimizing rasym.
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The solution of the above problem is very hard in general. Some interest-
ing results can be found in the literature, if we restrict to the time-invariant
average consensus. In order to illustrate them, we need first to introduce the
concept of essential spectral radius. Given any quasi-stochastic matrix P , we
define the quantity

ρess(P ) =

{
1 if dim ker(P − I) > 1
max{|λ| : λ ∈ σ(P ) \ {1}} if dim ker(P − I) = 1 ,

(2.12)

which is called the essential spectral radius of the matrix P .
It is easy to see that a quasi-stochastic matrix P yields asymptotically the
consensus, namely satisfies the conditions (A), (B), (C) stated in Proposition
2.9, if and only if ρess(P ) < 1.
Consider now the time-invariant average consensus algorithm

x(t+ 1) = Px(t),

where P is a quasi-doubly stochastic matrix such that ρess(P ) < 1. The
following result relates the asymptotic convergence to the essential spectral
radius of P (see [25]).

Theorem 2.15

ρess(P ) = rasym(P ).

Using this result the above problem can be formulated as the following min-
imization problem:

minimize ρess(P )
subject to P ∈ P (2.13)

where P = {P : GP ⊆ G,P1 = 1,1∗P = 1∗}. The authors in [147] refer to
this problem as the fastest distributed linear averaging problem (FDLA). It
is worth noting that ρess(P ) = ρ(P − 1/N11∗), where given a matrix M ∈
RN×N , ρ(M) denotes the spectral radius of M . Hence the above problem
can be seen as a spectral radius minimization problem. Even though the
constraint in this problem are linear equalities, the solution of the problem
in general is very hard. The main reason is that the objective function, i.e.
the spectral radius of a matrix, is not a convex function.
Now suppose we add the additional constraint that weights are symmetric,
i.e., Pij = Pji. In this case the problem can be posed as

minimize ρess(P )
subject to P ∈ P , P = P ∗

(2.14)
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which is a convex problem. This represent the symmetric version of the
FDLA problem. In [147] it is shown that this problem can be cast as a
semidefinite program, and therefore efficiently and globally solved.

Remark 2.16 When we are dealing with average consensus algorithm it
is meaningful to consider the displacement from the average of the initial
conditions

∆(t) := x(t)−
(

1

N
1Tx(0)

)
1 . (2.15)

It is immediate to check that, if P satisfies condition P1 = 1 then ∆(t)
satisfies the recursive equation

∆(t+ 1) = P∆(t) . (2.16)

Moreover, if P also satisfies condition 1∗P = 1∗, then

∆(t) = x(t)−
(

1

N
1Tx(t)

)
1 .

Notice finally that the initial conditions ∆(0) are such that

1T∆(0) = 0 . (2.17)

Hence the asymptotic behavior of our average consensus problem can equiv-
alently be studied by looking at the evolution (2.16) on the hyperplane char-
acterized by the condition (2.17).

We conclude this section by noting that the FDLA problem (2.13) is closely
related to the problem of finding the fastest mixing Markov chain on a graph
[20]. This last problem can be posed as

minimize ρess(P )

subject to P ∈ P̃ , (2.18)

where P̃ = {P : GP ⊆ G,P is doubly stochastic}. Note that minimizing
the essential spectral radius ρess(P ) it is equivalently to maximizing 1 −
ρess(P )(which is called the spectral gap of the associated Markov chain).
Recently some very effective algorithms have been proposed for this maxi-
mization limited, however, to the case in which P is a symmetric matrix [20].
The only difference in the two problem formulations is that in the FDLA
problem, the weights can be (and the optimal ones often are) negative,
hence faster convergence could be achieved compared with the fastest mixing
Markov chains on the same graph.
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2.3 Conclusion

In this chapter we have overviewed the standard discrete-time consensus al-
gorithm. In particular we have summarized the main results regarding the
convergence. It is worth now ending by mentioning the numerous recent di-
rections of research on consensus and averaging: continuous-time consensus
algorithms [101, 88, 80, 81], characterization of the convergence rates and
time complexity [103, 104, 77, 35, 27, 110], consensus over random networks
[70, 145, 109, 137, 108, 106, 107, 58, 57], consensus in finite-time [40, 135],
consensus algorithms for general functions [13, 39, 84, 135], quantized con-
sensus problems [29, 30, 75, 152, 150, 148, 33, 92, 8, 61], connections with the
heat equation and partial difference equation [60], spatially-decaying interac-
tions [42], convergence in time- delayed and asynchronous settings [16, 7, 59],
consensus on manifolds [118, 119, 73], applications to distributed signal pro-
cessing [151, 31, 130, 149, 100]. Numerous interesting results are reported
in the recent PhD theses [79, 83, 26, 71]. Finally, we point out two recent
surveys [99, 114] and the texts [113, 25].



Chapter 3

The symmetries in the
consensus problem

3.1 Introduction

As explained in the previous chapter, the connectivity properties of the com-
munication graph influence the convergence properties of the consensus algo-
rithm (2.2). A natural question now arises: ” How much does the amount of
information exchanged by the systems in the consensus algorithm influence
the rate of convergence towards the asymptotic agreement?”

This chapter aims to provide an answer to the above question. Intuitively
one should expect that the larger is the communication effort between the
systems, the better are the performance achievable by the consensus algo-
rithms. The main result of the chapter is a mathematical characterization of
this fact for a particular class of graphs and matrices exhibiting symmetries.

We have pointed out in the previous chapter how quasi-doubly stochastic
matrices, whose associated communication graphs satisfy some assumptions,
described in Theorem 2.5, in Theorem 2.6, in Theorem 2.10, in Theorem
2.11 and in Theorem 2.12, are matrices that guarantee the solvability of the
average consensus, with a degree of efficiency which is related to the spectral
properties of such matrices (see Theorem 2.15). Moreover we recall that, if
we restrict to the case in which the weights are nonnegative number, then
the consensus matrices are doubly stochastic and hence regarding them as
Markov chains allows to relate the consensus convergence rate to the mixing
rate of the chain [14]. The problem of bounding the mixing rate of a Markov
chain is a large research area: see for instance the survey [68] and references
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there in.

Spectral properties of doubly stochastic matrices can be characterized
in a easier way if we impose some symmetries on the matrices themselves,
and, as consequence, on the associated communication graph. Both Markov
chains and graphs satisfying symmetries, which are called Cayley graphs, are
widely studied in the literature [10, 89, 140]. It is known that symmetries
described by Abelian groups yield rather poor convergence rates [4].

In this chapter, by modelling the communication networks as Cayley
graphs defined on Abelian groups we are able to extend the available bounds
on the mixing time of Markov chains defined on such groups [48, 14, 117]. In
particular, in Section 3.3, we derive a bound that is a function of the num-
ber of agents and the incoming arcs in each vertex. The main result shows
that, if we impose symmetries in the communication network and we keep
the number of incoming arcs in each vertex bounded, then the convergence
rate degrades as the number of agents increases. Moreover, we show that
the proposed bound is tight. It is worth noting that the idea of imposing
symmetries on the communication graph is not new [45, 111, 127]. One of the
reasons to impose symmetries in the communication graph derives from the
fact that graphs with symmetries allow a much more compact representation,
which can be relevant when a very large number of agents is considered. In
particular in [127] the authors show, for particular symmetries, how it is
possible to obtain better performance by increasing the number of incoming
arcs on each vertex. In this chapter we extend the result to a broader class
of graphs with symmetries.

The chapter is organized as follows. In Section 3.2 we will formulate the
problem. In particular our goal will be to minimize the essential spectral
radius, quantity that we have defined in (2.12). We will characterize the
solution for a first class of matrices and graphs exhibiting circulant symme-
tries. In Section 3.3 we will extend our results to the broader class of Cayley
graphs and Cayley matrices. Finally we will gather out our conclusions in
Section 3.4.

3.2 Problem formulation

In this section we consider the minimization problem (2.18) formulated in
Section 2.2.2. For the sake of the clarity we briefly reformulate it. Suppose
that there are N system connected in a network. The network’s communica-
tion topology is given by the direct graph G = (V, E), where V = {1, . . . , N}
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is the nodes set and E ⊆ V × V is the edges set. Let xi(t) denote the state
information of the i-th system at time t. We define x(t) = [x1(t), . . . , xN(t)]∗

to be the global information state. We have that x(t) is updated according
to the following recursive equation

x(t+ 1) = Px(t),

where P ∈ RN×N is a doubly stochastic matrix, such that GP ⊆ G. Let ρ(P )
be the essential spectral radius of P 1. Moreover, given a graph G let

ρG = min {ρ(P ) |P is doubly stochastic,GP ⊆ G} .

Given a graph G , an interesting issue should be that of understand how the
connectivity of G influences the best performance achievable by the consensus
algorithm on G, which is represented by ρG. Intuitively we expect ρG to be
sensitive to the communication effort. Precisely we conjecture that if G1 ⊂ G2

then ρG1 > ρG2 . However we have been not able to prove this so far. This
analysis becomes more treatable if we limits our considerations to graphs G
and matrices P exhibiting symmetries. We will show how these symmetries
limit the achievable performance in terms of convergence rate.
We start our analysis in the next subsection by limiting ourselves to the cyclic
symmetry. Then we will extend our results to a broader class of symmetries:
the Cayley symmetries.

3.2.1 Circulant symmetries

In order to introduce cyclic symmetry, we define the following map

p : {1, . . . , N} → {1, . . . , N} : i 7→ i+ 1 mod N

The matrix P is said to be symmetric with respect to p if

Pi,j = Pp(i),p(j) ∀ i, j ∈ {1, . . . , N} .

This condition is equivalent to impose that

P =
N∑
i=0

piΠ
i

1Since there is no risk of confusion, for the sake of the notational convenience, in this
chapter we denote the essential spectral radius of P by ρ(P ) instead of ρess(P ) as in the
previous chapter.
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where

Π :=



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
1 0 0 · · · 0 0


These matrices are called circulant [46]. Notice that, in this case, since
Π1 = 1 and 1∗Π = 1∗, then circulant matrices satisfy condition P1 = 1 if
and only if

∑
i pi = 1. Moreover condition 1∗P = 1∗ is also satisfied, and

thus such matrices drive the state to the average of the initial conditions.
Consequently, if we choose P to be nonnegative, then P is always doubly
stochastic. The spectral properties of circulant matrices are particularly
simple. Indeed, it can be shown that

σ(P ) =
{
P
(
ej

2π
N
h
)

: h = 0, 1, . . . , N − 1
}

where P (z) :=
∑N

i=0 piz
i. Notice that P (ej0) = 1. Hence,

ρ(P ) = max
{∣∣∣P (ej 2π

N
h
)∣∣∣ : h = 1, . . . , N − 1

}
.

Moreover, the corresponding eigenvectors vh’s form an orthonormal basis
and v0 = (1/N)1. Notice that, in order to have consensus stability in this
context, it is sufficient to impose that∣∣P (ejθ)∣∣ < 1 ∀ θ 6= 0 . (3.1)

This condition is slightly stronger than consensus stability, however it pro-
vides a stability condition independent of the number of systems N .

Circulant solutions to the consensus problem exist if the graph G admits
an analogous symmetry. Indeed, consider a strongly connected graph G on
{1, . . . , N} containing all the self loops (i, i) and that is symmetric with
respect to p, in the sense that if there is an arc from i to j, there is also an
arc from p(i) to p(j). Then, it is immediate to find a circulant matrix P such
that GP = G and which solves the consensus problem. Indeed if j1, . . . , jµ are
the incoming arcs of vertex 1 in G, it is sufficient to choose weights p0, . . . , pµ
such that pi > 0 for i = 0, . . . , µ, and

∑
i pi = 1. If we consider P =

∑
piΠ

i,
then it is clear that condition (3.1) is satisfied.

The particular spectral structure of circulant matrices allows to obtain
asymptotic results on the behavior of the essential spectral radius ρ(P ) and
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therefore on the rate of convergence of the corresponding consensus scheme.
Define

ρcirc
G = inf{ρ(P ) | P circulant and stochastic , GP ⊆ G} .

Let us start from some examples.

Example 3.1 Suppose G is described by the arcs i ← i + 1 (mod N) and
all the self-loops (i, i). We can choose therefore P (z) = p0 + p1z, where
p0, p1 ∈ R. In this case we have that

x(t+ 1) = {p0I + p1Π}x(t) .

The condition P (1) = p0 + p1 = 1 implies that P (z) = p+ (1− p)z for some
p ∈ R. In this case it can be shown that we have consensus stability if and
only if 0 < p < 1 and that the rate of convergence is

ρ(P ) =

(
(1− p)2 + p2 − 2p(1− p) cos

(
2π

N

)) 1
2

.

The p that minimizes ρ(P ) is p = 1/2 and yields

ρcirc
G =

(
1

2
+

1

2
cos

(
2π

N

)) 1
2

' 1− π2

2

1

N2

where the last approximation is meant for N →∞.

Example 3.2 Suppose G is described by the arcs i ← i − 1 and i ← i + 1
(mod N) and all the self-loops (i, i). For the sake of simplicity we assume
that N is even; very similar results can be obtained for odd N . We can
choose in this case P (z) = p0 + p1z + p−1z

−1, where p0, p1, p−1 ∈ R. In this
case we have that

x(t+ 1) = {I + p0I + p1Π + p−1Π−1}x(t) .

The condition P (1) = 1 becomes in this case p0 + p1 + p−1 = 1. Symmetry
and convexity arguments [23, 19] allow to say that a minimum of ρ(P ) is for
sure of the type p1 = p−1. With this assumption the cost functional reduces
to

ρ(P ) = max

{∣∣∣∣1− 2p1

(
1− cos

(
2π

N

))∣∣∣∣ , |p0 − 2p1|
}
.

The minimum is achieved for

p0 = 1− 2

3− cos
(

2π
N

) , p1 = p−1 =
1

3− cos
(

2π
N

)
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and we have

ρcirc
G =

1 + cos
(

2π
N

)
3− cos

(
2π
N

) ' 1− 2π2 1

N2

where the last approximation is meant for N →∞.

Notice that in the first example the optimality is obtained when all the
nonzero elements of π are equal. This is not a general feature since the
same does not happen in the second example. Notice moreover that in this
example, as N tends to infinity, the optimal solution tends to p0 = 0, p1 =
p−1 = 1/2.

The case of communication exchange with two neighbors (Example 3.2)
offers a better performance compare to the case with one neighbor (Exam-
ple 3.1). However, in both cases ρcirc

G → 1 for N → +∞. This fact is more
general: if we keep bounded the number of incoming edges in a vertex, the
essential spectral radius will always converge to 1. This is very easy to see
in the case when there is only one incoming edge. Indeed, in this case, by
repeating the arguments of Example 3.1 we have the following result.

Proposition 3.3 Consider a strongly connected graph G on {1, . . . , N}, con-
taining all the self-loops (i, i). Assume that G is symmetric with respect to p
and assume there is only one incoming edge in any vertex. Then,

ρcirc
G ≥ 1− π2

2

1

N2
.

In the general situation a much more careful analysis permits to obtain
the following bound.

Theorem 3.4 Consider a strongly connected graph G on {1, . . . , N}, con-
taining all the self-loops (i, i). Assume that G is symmetric with respect to p
and let ν be the number of incoming edges in any vertex. Then,

ρcirc
G ≥ 1− C 1

N2/ν
,

where C is a constant independent of the chosen graph.

We omit the proofs of the above two results, since they are particular cases
of Theorem 3.7, that we will state and prove in the next Section. Moreover, in
order to avoid confusion, we remark that, given a node i, we do not encounter
the self-loop (i, i) in the set of the incoming arcs to this node i.
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Notice that in Example 3.2 we have that ν = 2 and we have an asymptotic
behavior ρcirc

G ' 1−2π2N−2, while the lower bound of Theorem 3.4 is, in this
case, 1− 2π2N−1. Now we can wonder whether it is possible to achieve the
bound performance. In other words, we would like to understand whether
the lower bound we have just found is tight or not. In the following example
we will show that this is the case.

Example 3.5 Suppose that N = Mν and that

P =
1

ν + 1

ν−1∑
i=0

ΠM i

The matrix P has eigenvalues

λh = pν

(
ej

2π
N
h
)

h = 1, . . . , N − 1

where

pν(z) :=
1

ν + 1

(
1 +

ν−1∑
i=0

zM
i

)
We will show that, for all h = 1, . . . , N − 1 we have that∣∣∣pν(ej 2π

Mν h)
∣∣∣ ≤ 1− 1

ν + 1

1

M2

This fact will be shown by induction on ν. The fact that the assertion holds
for ν = 1 follows from Example 3.1. Assume now that the assertion holds
for ν − 1. Let h0, h1 such that 0 ≤ h0 ≤ M − 1, 0 ≤ h1 ≤ Mν−1 − 1 and
h = h0 +Mh1. If h0 6= 0 then

∣∣∣pν (ej 2π
N
h
)∣∣∣ ≤ 1

ν + 1

∣∣∣1 + ej
2π
MνM

ν−1h
∣∣∣+

1

ν + 1

∣∣∣∣∣
ν−2∑
i=0

ej
2π
MνM

ih

∣∣∣∣∣
≤ 1

ν + 1

∣∣∣1 + ej
2π
M
h0

∣∣∣+
ν − 1

ν + 1

=
2

ν + 1

∣∣∣p1(ej
2π
M
h)
∣∣∣+

ν − 1

ν + 1

≤ 2

ν + 1

(
1− 1

2

1

M2

)
+
ν − 1

ν + 1

≤ 1− 1

ν + 1

1

M2
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If h0 = 0, then h = Mh1 and so

∣∣∣pν(ej 2π
N
h)
∣∣∣ =

1

ν + 1

∣∣∣∣∣1 +
ν−1∑
i=0

ej
2π

Mν−1M
ih1

∣∣∣∣∣
=

1

ν + 1

∣∣∣∣∣2 +
ν−2∑
i=0

ej
2π

Mν−1M
ih1

∣∣∣∣∣
=

ν

ν + 1

∣∣∣pν−1(ej
2π
M
h1)
∣∣∣+

1

ν + 1

≤ ν

ν + 1

(
1− 1

ν

1

M2

)
+

1

ν + 1

≤ 1− 1

ν + 1

1

M2

This bound proves that there exists a circulant graph G with ν incoming
edges in any vertex such that

ρcirc
G ≤ 1− 1

ν + 1

1

N2/ν
.

proving in this way that the bound proposed by the previous theorem is
tight.

3.3 Cayley symmetries

The analysis carried out in the previous section can be extended to graphs
G and matrices P exhibiting more general symmetries.

In order to treat symmetries on a graph G in a general setting, we need
to introduce the concept of Cayley graphs defined on Abelian groups [10, 4].
Let G be any finite Abelian group of order |G| = N , and let S be a subset
of G containing zero. The Cayley graph G(G,S) is the directed graph with
vertex set G and arc set

E = {(g, h) : h− g ∈ S} .

Note that the fact that S contains zero implies that all the self loops (g, g)
belong to E . From now on, along this section, when dealing with a graph G
we will assume that it contains all the self-loops.
Notice that a Cayley graph is always in-regular, namely the in-degree of each
vertex is equal to |S|. Notice also that strongly connectivity can be checked
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algebraically. Indeed, it can be seen that a Cayley graph G(G,S) is strongly
connected if and only if the set S generates the group G, which means that
any element in G can be expressed as a finite sum of (not necessarily distinct)
elements in S. If S is such that −S = S we say that S is inverse-closed. In
this case the graph obtained is undirected.

Symmetries can be introduced also on matrices. Let G be any finite
Abelian group of order |G| = N . A matrix P ∈ RG×G is said to be a Cayley
matrix over the group G if

Pi,j = Pi+h,j+h ∀ i, j, h ∈ G .

It is clear that for a Cayley matrix P there exists a π : G → R such that
Pi,j = π(i− j). The function π is called the generator of the Cayley matrix
P . Notice that, if π and π′ are generators of the Cayley matrices P and P ′

respectively, then π+π′ is the generator of P +P ′ and π ∗π′ is the generator
of PP ′, where (π ∗π′)(i) :=

∑
j∈G π(j)π′(i− j) for all i ∈ G. This shows that

P and P ′ commute. Notice finally that, if P is a Cayley matrix generated
by π, then GP is a Cayley graph with S = {h ∈ G : π(h) 6= 0}.

It is clear that the graph GP supporting a Cayley matrix P is a Cayley
graph with

S := {i : π(i) 6= 0} ∪ {0}.
Moreover it is easy to see that for any Cayley matrix P we have that P1 = 1

if and only if 1TP = 1T . This implies that a Cayley stochastic matrix
is automatically doubly stochastic. In this case the function π associated
with the matrix P is a probability distribution on the group G. Among the
multiple possible choices of the probability distribution π, there is one which
is particularly simple, namely π(g) = 1/|S| for every g ∈ S.

Example 3.6 Let us consider the group ZN of integers modulo N and the
Cayley graph G(ZN , S) where S = {−1, 0, 1}. Notice that in this case S is
inverse-closed. Consider the uniform probability distribution

π(0) = π(1) = π(−1) = 1/3

The corresponding Cayley stochastic matrix is given by

P =


1/3 1/3 0 0 · · · 0 0 1/3
1/3 1/3 1/3 0 · · · 0 0 0
0 1/3 1/3 1/3 · · · 0 0 0
...

...
...

... · · · ...
...

...
1/3 0 0 0 · · · 0 1/3 1/3

 .
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Notice that in this case we have two symmetries. The first is that the graph
is undirected and the second that the graph is circulant. These symmetries
can be seen in the structure of the transition matrix P that, indeed, turns
out to be both symmetric and circulant.

Given a Cayley graph G we can define

ρCayley
G = min{ρ(P ) | P Cayley stochastic, GP ⊆ G} .

It will turn out that ρCayley
G can be evaluated or estimated in many cases.

Moreover, it clearly holds that ρCayley
G ≥ ρG. Before continuing we give a

short analysis of the spectral properties of the Cayley stochastic matrices on
finite Abelian groups, which is the basis of our main results.

3.3.1 Cayley stochastic matrices on finite Abelian groups

In this subsection we will refer to notions on group characters and on har-
monic analysis on groups which are illustrated in Appendix A.

Fix now a Cayley matrix P on the Abelian group G generated by the
function π : G→ R. The spectral structure of P is very simple. To see this,
first notice that P can be interpreted as a linear function from CG to itself
simply by considering, for f ∈ CG, (Pf)(g) :=

∑
h Pghf(h). Notice that the

trivial character χ0 corresponds to the vector 1 having all components equal
to 1. For every χ ∈ Ĝ, it holds

(Pχ)(g) =
∑
h∈G

Pghχ(h) =
∑
h∈G

π(g − h)χ(h) =
∑
h∈G

π(h)χ(g − h) = π̂(χ)χ(g) .

Hence, χ is an eigenfunction of P with eigenvalue π̂(χ). Since the characters
form an orthonormal basis it follows that P is diagonalizable and its spectrum
is given by

σ(P ) = {π̂(χ) | χ ∈ Ĝ} .

We can interpret a character as a linear function from C to CG as follows

χ : C → CG : z 7→ zχ .

Its adjoint is the linear functional

χ∗ : CG → C : f 7→< f, χ > .
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With this notation, N−1χχ∗ is a linear function from CG to itself, projecting
CG on the eigenspace generated by χ. In this way, P can be represented as

P =
∑
χ∈Ĝ

π̂(χ)N−1χχ∗ .

Conversely, it can easily be shown that, given any θ̂ : Ĝ→ C, the matrix

P =
∑
χ∈Ĝ

θ̂(χ)N−1χχ∗ ,

is a Cayley matrix generated by the Fourier transform θ̂.

Suppose now that P is the matrix of the system (2.11). The displacement
from the ∆(t), defined in (2.15), can be represented as

∆(t) = (I −N−1χ0χ
∗
0)x(t) .

As we had already remarked, ∆ is governed by the dynamics ∆+ = P∆ and
the initial condition ∆(0) is characterized by < ∆(0), χ0 >= 0. Notice that

∆(t) = P t∆(0) =
1

N

∑
χ∈Ĝ

π̂(χ)tχ < ∆(0), χ >=
1

N

∑
χ 6=χ0

π̂(χ)tχ < ∆(0), χ > .

Hence,

||∆(t)||2 =
1

N

∑
χ 6=χ0

|π̂(χ)|2t| < ∆(0), χ > |2 .

This shows in a very simple way, in this case, the role of ρ(P ) = max
χ 6=χ0

|π̂(χ)|
in the rate of convergence.

3.3.2 The essential spectral radius of Cayley matrices.

The particular spectral structure of Cayley matrices allows to obtain asymp-
totic results on the behavior of the essential spectral radius ρ(P ) and there-
fore on the rate of convergence of the corresponding consensus algorithm.
In Section 3.2.1 we have proved the following fact for circulant graphs: if we
keep bounded the number of incoming arcs in a vertex, the essential spectral
radius for stochastic circulant matrices always converges to 1, for N → ∞.
The next result provides a bound which proves that this negative behavior
is a general feature also of the broader class of the Abelian stochastic Cay-
ley matrices. This slow convergence rate has already been noticed, for some
specific case, in the literature [19, 127, 97, 24].
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Theorem 3.7 Let G be any finite Abelian group of order N and let S ⊆ G
be a subset containing zero. Moreover let G be the Cayley graph associated
with G and S. If |S| = ν + 1, then

ρCayley
G ≥ 1− CN−2/ν , (3.2)

where C > 0 is a constant independent of G and S.

In order to prove Theorem 3.7 we need the following technical lemma.

Lemma 3.8 Let T = R/Z ∼= [−1/2, 1/2[. Let 0 ≤ δ < 1/2 and consider
the hypercube V = [−δ, δ]k ⊆ Tk. For every finite set Λ ⊆ Tk such that
|Λ| ≥ δ−k, there exist x̄1, x̄2 ∈ Λ with x̄1 6= x̄2 such that x̄1 − x̄2 ∈ V .

Proof: For any x ∈ T and δ > 0, define the following set

L(x, δ) = [x, x+ δ] + Z ⊆ T .

Observe that for all y ∈ T, L(x, δ) + y = L(x + y, δ). Now let x̄ =
(x̄1, . . . , x̄k) ∈ Tk and define

L(x̄, δ) =
k∏
i=1

L(x̄i, δ) .

Also in this case we observe that L(x̄, δ) + ȳ = L(x̄ + ȳ, δ) for every
ȳ ∈ Tk. Consider now the family of subsets

{L(x̄, δ), x̄ ∈ Λ} .

We claim that there exist x̄1 and x̄2 in Λ such that x̄1 6= x̄2 and such that
L(x̄1, δ) ∩ L(x̄2, δ) 6= ∅. Indeed, if not, we would have that

1 ≥ m

(⋃
x̄∈Λ

L(x̄, δ)

)
=
∑
x̄∈Λ

m (L(x̄, δ)) = |Λ|δk ≥ 1

where m(·) is the Lebesgue measure on Tk and where we used the hypothesis
|Λ| ≥ δ−k. However, since all L(x̄1, δ) are closed, it is not possible that
m
(⋃

x̄∈Λ L(x̄1, δ)
)

= 1. Notice finally that

L(x̄1, δ) ∩ L(x̄2, δ) 6= ∅ ⇔ L(0, δ) ∩ L(x̄2 − x̄1, δ) 6= ∅ ⇔ x̄2 − x̄1 ∈ V .
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We are able now to provide the proof of Theorem 3.7.
Proof: From Theorem A.9 stated in Appendix A, we can assume, with no
loss of generality, that

G = ZN1 ⊕ . . .⊕ ZNr .

Assume we have fixed a probability distribution π supported on S. Let
P be the corresponding stochastic Cayley matrix. It follows from previous
considerations that the spectrum of P is given by

σ(P ) =

{
N1−1∑
k1=0

N2−1∑
k2=0

. . .

Nr−1∑
kr=0

π(k1, . . . , kr)e
i 2π
N1

k1`1e
i 2π
N2

k2`2 · · · ei
2π
Nr

kr`r :

: `1 ∈ ZN1 , . . . , `r ∈ ZNr}

Denote by k̄j = (kj1, . . . , k
j
r), for j = 1, . . . , ν, the non-zero elements in S,

and consider the subset

Λ =

{(
r∑
i=1

k1
i `i
Ni

, . . . ,
r∑
i=1

kνi `i
Ni

)
+ Zν : `1 ∈ ZN1 , . . . , `r ∈ ZNr

}
⊆ Tν .

Let δ = (
∏

iNi)
−1/ν and let V be the corresponding hypercube in Tν defined

as in Lemma 3.8. We want to show that there exists ¯̀ = (`1, . . . `r) ∈
ZN1 × · · · × ZNr , ¯̀ 6= 0 such that(

r∑
i=1

k1
i `i
Ni

, . . . ,
r∑
i=1

kνi `i
Ni

)
+ Zν ∈ V .

We consider two cases.

(i) If there exists ¯̀= (`1, . . . `r) ∈ ZN1 × · · · × ZNr , ¯̀ 6= 0 such that(
r∑
i=1

k1
i `i
Ni

, . . . ,
r∑
i=1

kνi `i
Ni

)
+ Zν = 0 ∈ V (3.3)

then clearly we are done.

(ii) Assume now there are no ¯̀ = (`1, . . . `r) ∈ ZN1 × · · · × ZNr , ¯̀ 6= 0
satisfying condition (3.3). In this case it can be shown that two different
¯̀′, ¯̀′′ ∈ ZN1 × · · · × ZNr yield(

r∑
i=1

k1
i `
′
i

Ni

, . . . ,
r∑
i=1

kνi `
′
i

Ni

)
+ Zν 6=

(
r∑
i=1

k1
i `
′′
i

Ni

, . . . ,
r∑
i=1

kνi `
′′
i

Ni

)
+ Zν ,
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namely different elements in ZN1 × · · · × ZNr always lead do distinct
elements in Λ. This implies that |Λ| =

∏
iNi = δ−ν and so we are

in a position to apply Lemma 3.8 and conclude that there exist two
different ¯̀′, ¯̀′′ ∈ ZN1 × · · · × ZNr such that[(

r∑
i=1

k1
i `
′
i

Ni
, . . . ,

r∑
i=1

kνi `
′
i

Ni

)
+Zν

]
−

[(
r∑
i=1

k1
i `
′′
i

Ni
, . . . ,

r∑
i=1

kνi `
′′
i

Ni

)
+Zν

]
∈ V

and hence (
r∑
i=1

k1
i `i
Ni

, . . . ,
r∑
i=1

kνi `i
Ni

)
+ Zν ∈ V ,

where ¯̀= ¯̀′ − ¯̀′′ 6= 0 .

Consider now the eigenvalue

λ =

N1−1∑
k1=0

N2−1∑
k2=0

. . .
Nr−1∑
kr=0

π(k1, . . . , kr)e
i( 2π
N1

k1`1+ 2π
N2

k2`2+···+ 2π
Nr

kr`r)

= π(0, . . . 0) +
ν∑
j=1

π(kj1, . . . , k
j
r)e

i( 2π
N1

kj1`1+ 2π
N2

kj2`2+···+ 2π
Nr

kjr`r) .

Its norm can be estimated as follows

|λ| ≥ π(0, . . . 0) +
ν∑
j=1

π(kj1, . . . , k
j
r) cos

(
2π

N1

kj1`1 +
2π

N2

kj2`2 + · · ·+ 2π

Nr

kjr`r

)

≥ π(0, . . . 0) +
ν∑
j=1

π(kj1, . . . , k
j
r)

1− 2π2

(
kj1
N1

`1 +
kj2
N2

`2 + · · ·+ kjr
Nr

`r

)2


≥ π(0, . . . 0) +
ν∑
j=1

π(kj1, . . . , k
j
r) −

ν∑
j=1

π(kj1, . . . , k
j
r)2π

2 1

N2/ν

≥ 1− 2π2 1

N2/ν

and so we can conclude.

Theorem 3.7 in particular implies that, if we consider a sequence of
Abelian Cayley graphs G(GN , SN) such that |GN | = N and |SN | grows less
then logarithmically in N and we consider a sequence of Cayley stochastic
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matrices PN compatible with G(GN , SN), then, necessarily, ρ(PN) converges
to 1. This had already been shown, for adjacency matrices, in [4].

Notice that Example 3.5 shows that also the bound we have just found is
tight. However we provide now another interesting example confirming this.

Consider the group (ZrN ,+), with r ∈ N and r ≥ 1, and the Cayley graph
G(ZrN , S), where S = {0, e1, . . . , er}, where ej is the vector with all elements
equal to 0 except a 1 in position j. Consider the probability distribution π
on S described by

π(0) = k0 , π(ej) = kj , ∀j = 1, . . . , r

with kj ≥ 0 and
∑r

j=0 kj = 1. The Fourier transform of π is

π̂(χ`1 , . . . , χ`r) =
∑
g∈S

χ(−g)π(g) = k0 +
r∑
j=1

kje
−i 2π

N
`j

for `j = 0, 1, . . . , N − 1 , j = 1, . . . , r . We thus have

ρCayley
G = min

kj≥0P
kj=1

max
0≤`j≤N−1

(`1,...,`r)6=(0,...,0)

∣∣∣∣∣k0 +
r∑
j=1

kje
−i 2π

N
`j

∣∣∣∣∣ .
We have the following result.

Proposition 3.9 The above min-max is reached by (`1, . . . , `r) = (1, . . . , 1)
or by (`1, . . . , `r) = (0, . . . , 1, . . . , 0) and k0 = k1 = . . . = kr = 1/(r + 1),
which yield

ρCayley
G =

(
1− 2r

(r + 1)2

(
1− cos

2π

N

)) 1
2

' 1− 4π2r

(r + 1)2

1

N2

In order to prove the above proposition we need the following technical
Lemma.

Lemma 3.10 Suppose that k0, . . . , kr are fixed. Then

max
0≤`j≤N−1

(`1,...,`r)6=(0,...,0)

∣∣∣∣∣k0 +
r∑
j=1

kje
−i 2π

N
`j

∣∣∣∣∣ = max
`j∈{0,1}

(`1,...,`r)6=(0,...,0)

∣∣∣∣∣k0 +
r∑
j=1

kje
−i 2π

N
`j

∣∣∣∣∣
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Proof: Consider a r-tuple (`1, . . . , `r) 6= (0, . . . , 0) and let ` 6= 0 be a
value taken by some of the `j. Let J ⊆ {1, . . . , r} be the nonempty index set
such that `j = ` if and only if j ∈ J . Consider the new r-tuple (`′1, . . . , `

′
r)

defined as follows

`′j =

{
1 if j ∈ J
0 otherwise

We want to show that∣∣∣∣∣k0 +
r∑
j=1

kje
−i 2π

N
`j

∣∣∣∣∣ ≤
∣∣∣∣∣k0 +

r∑
j=1

kje
−i 2π

N
`′j

∣∣∣∣∣ (3.4)

Indeed, we have that∣∣∣∣∣k0 +
r∑
j=1

kje
−i

2π`j
N

∣∣∣∣∣
2

=

=

∣∣∣∣∣k0 +
r∑
j=1

kj cos
2π`j
N
− i

(
r∑
j=1

kj sin
2π`j
N

)∣∣∣∣∣
2

=

=

(
k0 +

r∑
j=1

kj cos
2π`j
N

)2

+

(
r∑
j=1

kj sin
2π`j
N

)2

=
r∑
j=0

k2
j + 2k0

r∑
j=1

kj cos

(
2π`i
N

)
+

+ 2
r−1∑
i=1

r∑
j=i+1

kikj cos

(
2π`i
N

)
cos

(
2π`j
N

)
+

+ 2
r−1∑
i=1

r∑
j=i+1

kikj sin

(
2π`i
N

)
sin

(
2π`j
N

)

=
r∑
j=0

k2
j + 2k0

r∑
j=1

kj cos

(
2π`i
N

)
+ 2

r−1∑
i=1

r∑
j=i+1

kikj cos

(
2π(`j − `i)

N

)
Observe now that

cos

(
2π`i
N

)
≤ cos

(
2π`′i
N

)
for all j, and that

cos

(
2π(`j − `i)

N

)
≤ cos

(
2π(`′j − `′i)

N

)
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for all i, j. This yields (3.4) and proves the lemma.

We can now prove Proposition 3.9.

Proof:

We start by observing that, if `j ∈ {0, 1}, then∣∣∣∣∣k0 +
r∑
j=1

kje
−i 2π

N
`j

∣∣∣∣∣
2

= 1− 2

(∑
j∈J

kj

)(
1−

∑
j∈J

kj

)(
1− cos

2π

N

)
where J ⊆ {1, . . . , r} is such that j ∈ J if and only if `j = 1. Maximizing
this quantity over the non identically zero vectors (`1, . . . , `r) ∈ {0, 1}r is
equivalent to maximize over all the possible nonempty sets J . From this it
is not difficult to see that

max
0≤`j≤N−1

(`1,...,`r)6=(0,...,0)

∣∣∣∣∣k0 +
r∑
j=1

kje
−i 2π

N
`j

∣∣∣∣∣
2

= 1− 2m(1−m)

(
1− cos

2π

N

)

wherem := min{k0, k1, . . . , kr}. Sincem ≤ 1/2, then in order to minimize 1−
2m(1−m)

(
1− cos 2π

N

)
over the possible k0, k1, . . . , kr, we need to maximize

m. This is obtained by choosing k0 = k1 = . . . = kr = 1/(r + 1), which yield
m = 1/(r + 1) and

ρCayley
G =

(
1− 2r

(r + 1)2

(
1− cos

2π

N

)) 1
2

' 1− 4π2r

(r + 1)2

1

N2
.

From previous result we see that, by keeping N fixed and by varying r
we obtain a sequence of matrices for which the rate of convergence tends to
1 logarithmically in the number of systems and for which the degree of the
associated graph grows logarithmically in the number of systems.

The previous example is based on a Cayley graph over the group ZrN .
The same behavior exhibited in this example can also be obtained starting
from a Cayley graph over the cyclic group ZN . Indeed if we take ZNr and
the subset

S := {0, 1, N,N2, . . . , N r−1} ,
we can construct a Cayley stochastic matrix with an essential spectral radius
that is asymptotically equivalent to the one obtained in the previous example.
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More in general, it can be proved that, if in the family of groups ZrN we
maintain N fixed (prime) and we vary r, there exists a constant c < 1 such
that for every r there exists Sr ⊆ ZrN such that |Sr| ' cr and such that

ρ(Pr) ≤ d < 1 .

where Pr = |Sr|−1Ar and where Ar is the adjacency matrices of the corre-
sponding Cayley graph. Such Cayley graphs are constructed using the theory
of channel codes over finite fields [4]. Extensions to non-prime N are likely
to be possible considering the theory of group codes.

The question at this point is the following: Is the Cayley structure on the
matrix or the Cayley structure on the graph that prevents to obtain good
performance? In other words, do there exist stochastic matrices supported by
Abelian Cayley graphs that exhibit better performance than what imposed
by the bound (3.2)? Notice that, in order to make fair comparisons, we
need to limit to doubly stochastic matrices. We conjecture that for doubly
stochastic matrices supported on Abelian Cayley graphs the bound (3.2)
continues to hold.

What about other graphs? An easy way to restrict to doubly stochas-
tic matrices is by imposing that they are symmetric and so that the corre-
sponding graphs are undirected. If A is the adjacency matrix of a ν-regular
undirected graph, then, P = ν−1A is doubly stochastic. For these graphs,
we recall a basic asymptotic lower bound by Alon and Boppana [3] on the
second eigenvalue

lim inf
N→+∞

ρ(P ) ≥ 2
√
ν − 1

ν
,

where the lim inf is intended to be performed along the family of all ν-regular
undirected graphs having N vertices.

Ramanujan graphs (see [89] and references therein) are those ν-regular
undirected graphs achieving the previous bound, namely such that ρ(P ) =
2ν−1
√
ν − 1. Hence, through these graphs, it would be possible to keep the

essential spectral radius bounded away from 1, while keeping the degree fixed.
In fact, there are plenty of Ramanujan graphs (for instance any complete
graph), but it is still an open problem if for any N and ν there exists a
Ramanujan graph with N vertices and degree ν. There are only partial
results in this direction. For example it is possible to prove that, if ν is such
that ν− 1 is the power of a prime, then there exist a sequence of Ramanujan
graphs with a growing number of vertices and of fixed degree ν. Moreover,
when available, these constructions are quite complicated and the fact that
they strictly depend on the choice of particular number of vertices makes
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them not so interesting from our point of view. However, it is interesting
to notice that graphs behaving similarly to the Ramanujan ones are not
so unlikely. Indeed Friedman [62] showed that, by averaging the essential
spectral radius of the adjacency matrices A of all undirected ν-regular Cayley
graphs having N vertices, we obtain for P = ν−1A

E(ρ(P )) ≤ 2
√
ν − 1

ν

(
1 +

ln ν/2√
ν

+O

(
1√
ν

))
+O

(
ν1/2 ln lnN

lnN

)
.

Of course the previous bound has to be interpreted in an asymptotic sense
for N → +∞ and ν → +∞. As a consequence we have in particular that,
if we fix ν sufficiently large, in the average, ρ(P ) will remain bounded away
from 1 as N → +∞.

3.4 Conclusions

We have derived bounds on the convergence rate to the average consensus
for a set of systems that exchange information over time-invariant commu-
nication networks with symmetries. We have showed that, in time-invariant
networks, symmetries yield rather slow convergence to the average consen-
sus. In particular for such networks we have computed a tight bound for the
convergence rate.





Chapter 4

Randomized Consensus
Algorithms

4.1 Introduction

In the previous chapter we have considered the time-invariant average con-
sensus algorithm (2.10). In this chapter we will focus on the more general
time-varying case by addressing, in particular, the analysis of the so-called
randomized consensus algorithms. Roughly speaking a randomized algorithm
works as follows. Assume we have a family P of quasi-stochastic matrices.
Then, at each iteration of the consensus algorithm, the consensus matrix
P (t) is chosen randomly inside this set of matrices, according to a certain
probability distribution probability. For a randomized algorithm, conver-
gence is considered in a probabilistic sense and performance are studied in
mean square sense.

The use of the random algorithms is quite appealing, since they take into
consideration some fundamental limitations arising in the realistic implemen-
tation of the consensus algorithms. Indeed, it should be pointed out that,
in many practical applications, a node can not simultaneously receive data
from two different neighbor nodes (for instance collision can delete messages
in wireless environment) and in some applications it cannot simultaneously
transmit to more than a node (this happens for instance for processors nets).

In this chapter, we consider three interesting examples of randomized
consensus algorithms. The first two emphasize a remarkable feature of the
randomized consensus algorithms, i.e., that they allow to achieve better per-
formance than the deterministic ones with comparable complexity. This com-
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parison is done by considering the consensus algorithms having as communi-
cation graphs the Abelian Cayley graphs presented in the previous chapter.
The last example reviews the symmetric gossip algorithms introduced in [22]
and [24] (other random linear schemes under the name of gossip algorithms
have been studied for instance in [51] and [76]). As underlined in [24], the
gossip algorithms are mainly motivated by applications to sensors, peer-to-
peer and ad hoc networks. In general, these networks are constrained by the
following operational characteristics: i) they may not have a centralized en-
tity for facilitating computation, communication, and time-synchronization,
ii) the network topology may not be completely known to the nodes of the
network, iii) nodes may join or leave the network (even expire), so that the
network topology itself may change, and iv) in the case of sensor networks,
the computational power and energy resources may be very limited. These
constraints have motivated the design of gossip algorithms: schemes which
distribute the computational burden and in which a node communicates with
a randomly chosen neighbor.

The Chapter is organized as follows. In Section 4.2, we will introduce the
randomized consensus algorithms and we will adopt, from [58], the concept
of probabilistic consensus. In Section 4.3, following [58], we will review some
algebraic conditions ensuring the achievement of the probabilistic consensus.
Moreover, we will introduce two particular randomized strategies: the time-
varying strategy with bounded in-degree and the time-varying Cayley graphs
strategy. In Section 4.4, we will provide some criteria in order to evaluate
the performance of randomized consensus algorithms. We will analyze, from
this point of view, the time-varying strategy with bounded in-degree and
the time-varying Cayley graphs strategy. In Section 4.5, we will introduce
the symmetric gossip algorithms, particularizing them for the class of Cayley
graphs. Finally, in Section 4.6, we will summarize the main conclusions.

4.2 Problem formulation

Consider the time varying consensus problem, as defined in Section 2.2.
Namely, we have N coupled linear dynamical systems

xi(t+ 1) =
N∑
j=1

Pij(t)xj(t) i = 1, . . . , N (4.1)
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where xi(t) ∈ R is the state of the i-th system at time t and Pij(t) ∈ R

coefficients which vary with the time t. More compactly, we can write

x(t+ 1) = P (t)x(t),

where x(t) ∈ RN and P (t) ∈ RN×N . We recall that the sequence P (t) is
said to achieve consensus if conditions (a) and (b) stated in Section 2.2 are
satisfied.

In this chapter, we will assume to have statistical information on the
matrices P (t) and we will adopt the probabilistic approach introduced in
[58], instead of a worst case analysis considered in [138, 74, 88, 112, 16].
More precisely, in this chapter we will assume that P (t) is a sequence of i.i.d.
matrix valued random variables and x(t) is the stochastic process which is
the solution of the equation (4.1). We say that the sequence P (t) achieves
the probabilistic consensus if condition (a) holds while (b) is replaced by

(b’) For any x(0) ∈ RN , there exists a scalar random variable α such that

lim
t→∞

x(t) = α1 almost surely. (4.2)

If α = N−11∗x(0) almost surely, we talk about probabilistic average consen-
sus.

In this chapter, we will restrict to cases in which P (t) are stochastic
matrices. Notice that condition (a) is then clearly automatically satisfied.
If, moreover, P (t) is doubly stochastic, then the average is invariant, namely
N−11∗x(t) = N−11∗x(0) for every t and hence in this case, consensus implies
average consensus. Let now

Q(t) = P (t− 1) · · ·P (0),

so that we can write x(t) = Q(t)x(0). The random variable α in (4.2) is a
linear function of the initial condition x(0) so that we can write α = ρ∗x(0)
for some random variable ρ taking values in RN and such that 1∗ρ = 1.
Therefore probabilistic consensus can be equivalently expressed by saying
that there exists a random variable ρ taking values in RN such that

lim
t→∞

Q(t) = 1ρ∗ (4.3)

almost surely. Moreover notice that 1ρ∗ is a matrix whose rows are all equal
to ρ∗. Notice that x(∞) = ρ∗x(0). We have probabilistic average consensus
exactly when ρ = N−11 almost surely.
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4.3 Conditions for the probabilistic consen-

sus

In this section we briefly review some conditions which ensures the probabilis-
tic consensus. In doing this, we follow the approach adopted in [58], where
the authors show that the probabilistic consensus turns out to be an easily
checkable property, namely as easily checkable as the deterministic consensus
in the time-invariant case.

We immediately state the following result which appears in [37].

Theorem 4.1 The algorithm P (t) achieves probabilistic consensus if and
only if for every pair of systems i, j we have that

P[Eij] = 1

where

Eij = {∃ k, ∃ t |Qik(t)Qjk(t) > 0} .

To obtain a more handy condition, the authors in [58] impose a hypothe-
sis which is however always satisfied in all the cases which are commonly
considered in literature. In the following proposition they assume that all
the diagonal elements of P (t) are nonzero with probability 1. The simple
condition, ensuring probabilistic consensus, that they have found is a direct
consequence of the above Theorem and is based on the expected value of
P (t) which is denoted as P̄ = E[P (t)]. We have the following result, whose
proof is in [58].

Proposition 4.2 Assume that for any i we have that P (t)ii > 0 almost
surely. If GP̄ is strongly connected, then P (t) achieves probabilistic consensus.

Remark 4.3 Notice, as remarked in [58], that there is a sort of weak con-
verse to previous result. Indeed, assume that the sequence P (t) achieves
probabilistic consensus. From the almost sure convergence Q(t) → 1ρ∗ and
Lebesgue dominated convergence theorem it follows that E[Q(t)] → 1E[ρ]∗

and so P̄ t → 1E[ρ]∗. In other words, P̄ achieves consensus. It can very well
happen that Eρ = 1. even if ρ is not equal to 1 almost surely. In other
terms, even if P̄ achieves average consensus, not necessarily P (t) will also
achieve average probabilistic consensus. This will appear in the two cases we
will consider in the next section.
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We proceed now by introducing two interesting examples of randomized
consensus algorithms. We will prove that in both these cases the probabilistic
consensus occurs.

4.3.1 Time-varying strategy with bounded in-degree

In this example we consider a time-varying consensus algorithm in which we
assume that each system receives the state of ν systems chosen randomly and
independently between all the other system. Because of this it can happen
that the resulting communication graph has multiple arcs connecting the
same pair of nodes.

Fix k0, k1, . . . , kν ≥ 0 such that
∑

j kj = 1. The consensus matrix is

P (t) = k0I +
ν∑
i=1

kiEi(t) (4.4)

where Ei(t), i = 1, . . . , ν, are ν independent sequences of independent ran-
dom variables taking values on the set of matrices

E := {E ∈ {0, 1}N×N : E1 = 1}

and uniformly distributed in such a set. Notice that the set E is constituted
by all matrices with entries 0 or 1 which have exactly one 1 in each row. The
state x(t) becomes a random variable which evolves according to

x(t) =
t∏

s=1

P (s)x(0) ,

where x(0) is a random variable independent of the processes Ei(t). We have
that

P̄ = E

[
k0I +

ν∑
i=1

kiEi(t)

]

= k0I +
ν∑
i=1

kiE [Ei(t)]

= k0I +

∑ν
i=1 ki
N

11∗,

where in the last equality we used the fact that E [Ei] = 1/N11∗. Note that
GP̄ is the complete graph and hence it is trivially strongly connected. More-
over in this case, if k0 > 0, all the diagonal elements of P (t) are nonzero with
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probability 1. Applying Proposition 4.2 we can conclude that this algorithm
yields the probabilistic consensus.

Finally notice that, in this example the matrices P (t) are in general not
doubly stochastic and so the average probabilistic consensus is not achieved.
This, even if P̄ is doubly stochastic.

4.3.2 Time-varying Cayley graphs strategy

In this example we consider a time-varying strategy similar to the one pre-
sented in the previous section. The difference is that here we impose the
time-varying matrices to be Cayley.

Fix an Abelian group G and a number ν < |G|. We consider a sequence
of subsets St ⊆ G that are randomly generated in the following way.

Let αi(t), i = 1, . . . , ν, be ν independent sequences of independent ran-
dom variables taking value on G and uniformly distributed in such a set. We
put

St = {α0(t) = 0, α1(t), . . . , αν(t)} .
Notice that in St there might be repetitions and so its cardinality may be
less than ν + 1.

Fix k0, k1, . . . , kν ≥ 0 such that
∑

j kj = 1, and consider the sequence of
probability distributions πt on G supported on the sequence of sets St defined
as

πt(g) =

{
kj if g = αj(t)
0 otherwise.

Let P (t) be the stochastic Cayley matrix associated with πt. The state x(t)
becomes a random variable that evolves according to

x(t) =
t∏

s=1

P (s)x(0) ,

where x(0) is a random variable independent of the processes αi(t). We know
from Section 3.3.1 that we can represent

P (t) =
∑
χ∈Ĝ

π̂t(χ)N−1χχ∗

where

π̂t(χ) = k0 +
ν∑
j=1

kjχ(−αj(t)) ,



4.4. The measures of the performance 59

It is immediate to verify that E[χ(αj(t))] = 0 when χ 6= χ0. Therefore we
have that

E [π̂t(χ)] =

{
k0 if χ 6= χ0∑ν
j=0 kj if χ = χ0

and hence that

P̄ = E

∑
χ∈Ĝ

π̂t(χ)N−1χχ∗


= E

[
π̂t(χ0)

1

N
χ0χ

∗
0

]
+ E

[∑
χ 6=χ0

π̂t(χ)
1

N
χχ∗

]

=

∑ν
j=0 kj

N
11∗ + k0

∑
χ 6=χ0

1

N
χχ∗

= k0

∑
χ

1

N
χχ∗ +

∑ν
j=1 kj

N
11∗

= k0I +

∑ν
j=1 kj

N
11∗

where in the last equality we have used the fact that
∑

χ
1
N
χχ∗ = I. Ob-

serve that P̄ is the same of the previous example. Therefore, if k0 > 0, from
Proposition 4.2 we can conclude that also this algorithm yields the proba-
bilistic consensus. Moreover, since each P (t) is a Cayley matrix and hence
it is doubly stochastic, we have that in this case the average probabilistic
consensus is achieved.

4.4 The measures of the performance

Assume now that we have a fixed random algorithm P (t) achieving proba-
bilistic consensus so that (4.3) is satisfied with a suitable ρ. The authors in
[58] proposes of measuring the performance of the algorithm P (t) by consid-
ering two figures. The first figure they consider is a normalized version of
the distance from the consensus

d(t) =
1

N
‖x(t)− 1xA(t)‖2 =

1

N

N∑
i=1

|xi(t)− xA(t)|2 (4.5)
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where xA(t) = N−11∗x(t) is the average of the components of x(t). The
second one is the average displacement from its initial value

β(t) = |xA(t)− xA(0)|2. (4.6)

Obviously in those situations where P (t) is always doubly stochastic, we have
that β(t) = 0 for every t. Notice moreover that

1

N
‖x(t)− 1xA(0)‖2 = d(t) + β(t)

which shows that the evolution of d(t) and β(t) determines the evolution of
1
N
‖x(t) − 1xA(0)‖2. This coincides with the average distance from xi(t) to

xA(0) and so it is the most important error parameter that typically one has
to minimize.

We know that d(t) converges to 0 almost surely. The main point is to
estimate the speed of this convergence. In what follows, in order to evaluate
the performance of the random strategies illustrated in the previous section,
we will study the expectations of the two variables d(t) and β(t), i.e. E[d(t)]
and E[β(t)], so providing a mean-square analysis of (4.1) in the case of time-
varying with bounded in-degree and time-varying Cayley graphs strategies.

4.4.1 Mean square performance for time-varying with
bounded in-degree strategy

We can prove the following result.

Theorem 4.4 The quantity E[d(t)] satisfies the following recursive equation

E[d(t+ 1)] = ρE[d(t)] (4.7)

where

ρ = k2
0 +

N − 1

N

ν∑
i=1

k2
i .

Proof: We start by introducing the following variable

y(t) = x(t)− 1

N
(1∗x(t))1 = Y x(t)

where Y = I− 1
N
11∗. A straightforward calculation shows that Y Ei = Y EiY .

Hence from (4.4) it is easy to see that y(t) satisfies the following recursive



4.4. The measures of the performance 61

equation

y(t+ 1) = koy(t) + Y

(
ν∑
i=1

kiEi(t)

)
y(t). (4.8)

Let now W (t) = E [y(t)y∗(t)]. Notice that E[d(t)] = tr {W (t)} . From (4.8)
it results that

W (t+ 1) =

= E

[(
k0y(t) + Y

(
ν∑
i=1

kiEi(t)

)
y(t)

) (
k0y(t) + Y

(
ν∑
i=1

kiEi(t)

)
y(t)z

)∗]

= k2
0W (t) + k0E

[
y(t)y∗(t)

(
ν∑
i=1

kiEi(t)

)∗]
Y+

+ k0E

[
Y

(
ν∑
i=1

kiEi(t)

)
y(t) y∗(t)

]
+

+ Y E

[(
ν∑
i=1

kiEi(t)

)
y(t)y∗(t)

(
ν∑
j=1

kjEj(t)

)∗]
Y

= k2
0W (t) + k0E

[
E

[
y(t)y∗(t)

(
ν∑
i=1

kiEi(t)

)∗ ∣∣E1, . . . , Eν

]]
Y+

+ k0E

[
E

[
Y

(
ν∑
i=1

kiEi(t)

)
y(t) y∗(t)

∣∣E1, . . . , Eν

]]
+

+ Y E

[
E

[(
ν∑
i=1

kiEi(t)

)
y(t)y∗(t)

(
ν∑
j=1

kjEj(t)

)∗ ∣∣E1, . . . , Eν

]]
Y

= k2
0W (t) + k0W (t)E

[(
ν∑
i=1

kiEi(t)

)∗]
Y + k0Y E

[
ν∑
i=1

kiEi(t)

]
W (t)+

+ Y E

[(
ν∑
i=1

kiEi(t)

)
W (t)

(
ν∑
j=1

kjEj(t)

)∗]
Y

Since E[Ei] = 11∗/N and since Y 11∗ = 11∗ Y = 0 we have that the first
two expectations in the previous equation are equal to zero. To compute the
last expectation we need to distinguish two cases:

i 6= j : then Ei(t), E
∗
j (t) and W (t) are all independent and thus the expecta-

tion factorizes. Recall now that E[Ei] = 1
N
11∗. Two terms of the type

Y 11∗ appear and thus for i 6= j the expectation is zero,
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i = j : then we have that

Y E [kiEi(t)W (t) kiE
∗
i (t)]Y = k2

i Y E [Ei(t)W (t)E∗i (t)]Y

By straightforward calculations, it is possible to see that, for any M ∈
RN×N it holds

E[ET
i MEi] =

1

N
tr {M}I +

1

N2
1∗M1(11∗ − I). (4.9)

Hence

k2
i Y E [Ei(t)W (t)E∗i (t)]Y =

k2
i

N
tr (W (t)) Y − k2

i

N2
Y 1∗W (t) 1Y.

We thus obtain that

W (t+ 1) = k2
0W (t) +

1

N

ν∑
i=1

k2
i tr (W (t))Y − 1

N2

ν∑
i=1

k2
i Y 1

∗W (t)1Y.

Let w(t) = tr (W (t)), then we have

w(t+ 1) = k2
0w(t) +

1

N

ν∑
i=1

k2
i tr
(
tr (W (t))Y

)
− 1

N2

ν∑
i=1

k2
i tr (1∗W (t)1Y ).

The term tr
(
tr (W (t))Y

)
= (N − 1) tr (W (t)) since tr (Y ) = N − 1 and the

last term is zero since

1∗W (t)1 =
N∑
i=1

N∑
j=1

(W (t))ij = 0 .

We thus have the following difference equation

w(t+ 1) =

(
k2

0 +
N − 1

N

ν∑
i=1

k2
i

)
w(t) . (4.10)

By observing that E[d(t)] = w(t) we have proved the claim of the theorem.

Notice that the strongest exponential rate of convergence in (4.10) is given
by

min

{
k2

0 +
N − 1
N

ν∑
i=1

k2
i

∣∣ k0, k1, . . . , kν ≥ 0, k0 +
ν∑
i=1

ki = 0

}
=

N − 1
N(ν + 1)− 1

,
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obtained by choosing

k0 =
N − 1

N(ν + 1)− 1
(4.11)

and

ki =
N

N(ν + 1)− 1
∀i = 1, . . . , ν. (4.12)

As outlined previously, this random strategy will not reach the consensus at
the average of the initial conditions. Therefore, in such case it is interesting
to study also the behavior of E[β(t)] in particular to evaluate limt→∞E[β(t)].
We have the following result.

Proposition 4.5

E[β(∞)] = αE||
(
I −N−111T

)
x(0)||2 ,

where

α =

∑ν
i=1 k

2
i

N [N(1− k2
0) + (1−N)

∑ν
i=1 k

2
i ]
.

Proof: Consider ∆(t) := x(t) − N−111Tx(0). One can show that the
dynamics of ∆(t) is described by the equation ∆(t + 1) = P (t)∆(t) where
P (t) is given in (4.4). By defining W (t) := E[∆(t)∆(t)∗], w(t) = tr (W (t)) =
E||∆(t)||2 and s(t) = N−11∗W (t)1, we obtain that

W (t+ 1) =

= E

[(
k0I +

ν∑
i=1

kiEi(t)

)
∆(t)∆∗(t)

(
k0I +

ν∑
i=1

kiEi(t)

)∗]

= k2
0W (t) + E

[
ν∑
i=1

kiEi(t)∆(t)∆∗(t)k0

]
+ E

[
k0∆(t)∆∗(t)

ν∑
i=1

kiE
∗
i (t)

]
+

+ E

[
ν∑
i=1

kiEi(t)∆(t)∆∗(t)
ν∑
j=1

kjE
∗
j (t)

]

= k2
0W (t) + k0

ν∑
i=1

ki

(
W (t)

1

N
11∗ +

1

N
11∗W (t)

)
+

ν∑
i=1

k2
i

(
1

N
(1∗W (t)1)

1

N
11∗ +

(
1

N
trW (t)− 1

N2
1∗W (t)1

)
I

)
+

+
ν∑
i=1

ν∑
j=1

i 6=j

kikj
1

N
(1∗W (t)1)

1

N
11∗
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where in the last equality we used again the fact that E[Ei] = 1
N
11∗ and the

property (4.9). Let us now define the following variables

w(t) = trW (t)

s(t) =
1

N
1∗W (t)1

then we have that

w(t+ 1) =

(
k2

0 +
ν∑
i=1

k2
i

)
w(t) +

2k0

ν∑
i=1

ki +
ν∑
i=1

ν∑
j=1

i 6=j

kikj

 s(t)

s(t+ 1) =

(k2
0 + 2k0

ν∑
i=1

ki +
N − 1
N

ν∑
i=1

k2
i +

ν∑
i=1

ν∑
j=1

i 6=j

kikj

 s(t) +
1
N

ν∑
i=1

k2
iw(t) .

Using the fact that 1 − k0 =
∑ν

i=1 ki we have the following discrete-time
system

(
w(t+ 1)
s(t+ 1)

)
=

 ∑ν
i=0 k

2
i 1−

∑ν
i=0 k

2
i

1

N

∑ν
i=1 k

2
i 1−

1

N

∑ν
i=1 k

2
i


︸ ︷︷ ︸

A

(
w(t)
s(t)

)
.

In order to prove the theorem we need to compute w(∞) := limt→∞w(t). For
t that tends to infinity, the state (w(t), s(t))∗ will be aligned to the dominant
eigenvector of A. The eigenvectors of A are

λ1 = 1

λ2 = k2
0 +

N − 1

N

ν∑
i=1

k2
i .

Corresponding to the eigenvalues λ1 and λ2 we have the eigenvectors

a1 =

(
1
1

)

a2 =

−
N (1−

∑ν
i=1 k

2
i )∑ν

i=1 k
2
i

1
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and thus we have that (
w(t)
s(t)

)
= c1λ

t
1a1 + c2λ

t
2a2

from which we have w(∞) ≈ c1a1. The constant c1 is computed from the
initial conditions (

w(0)
s(0)

)
= c1a1 + c2a2 .

Note that

w(0) = tr {W (0)} = E||
(
I −N−111T

)
x(0)||2

and

s(0) =
1

N
1∗W (0)1 =

1

N
E

[
N∑
i=1

(
xi(0)− 1

N
1∗x(0)1

)]2

= 0.

Simple calculations yields to

c1 =

∑ν
i=1 k

2
i

N [N(1− k2
0) + (1−N)

∑ν
i=1 k

2
i ]
w(0)

This concludes the proof.

If we use the control gains k0, k1, . . . , kν as in (4.11) and (4.12), which
yield the fastest convergence rate, then we have

E[β(t)] =
1

N(N(1 + ν)− 1)
E‖(I −N−111∗)x(0)‖2.

Notice that, if the initial states xi(0) of the systems are independent and
E[xi(0)2] is the same for all i, then as N → ∞ the mean square distance to
the average of the initial conditions tends to zero.

4.4.2 Mean square performance for time-varying Cay-
ley graphs strategy

Since in this case the matrix P (t) is doubly stochastic for every t ≥ 0, the
only quantity we want to study is E[d(t)]. In order to do so, we consider
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the displacement from the average of the initial conditions ∆(t) := x(t) −
1
N
11Tx(0) = (I − 1

N
χ0χ

∗
0)x(t), which is governed by

∆(t) =
t∏

s=1

P (s)∆(0) ,

where ∆(0) is now a random variable taking values on RG such that <
∆(0), χ0 >= 0 and independent of the set of variables {αi(t)}. Clearly
E[d(t)] = E||∆(t)||2. For the sake of the clarity, we recall that χ0 denotes
the trivial character, as explained in Subsection 3.3.1. We have the following
result.

Proposition 4.6

E||∆(t)||2 =

(
ν∑
j=0

k2
j

)t

E||∆(0)||2 .

Proof: We know we can represent

P (t) =
∑
χ∈Ĝ

π̂t(χ)N−1χχ∗ .

Hence,
t∏

s=1

P (s) =
∑
χ∈Ĝ

[
t∏

s=1

π̂s(χ)

]
N−1χχ∗ .

Let us study the average of the squared norm of the various eigenvalues.

E

∣∣∣∣∣
t∏

s=1

π̂s(χ)

∣∣∣∣∣
2
 =

t∏
s=1

E
[
|π̂s(χ)|2

]
.

Since

π̂t(χ) = k0 +
ν∑
j=1

kjχ(−αj(t)) ,

we obtain

E
[
|π̂t(χ)|2

]
= k2

0 +
ν∑
j=1

k0kj [E [χ(αj(t))] + E [χ(αj(t))
∗]] +

+
ν∑
j=1

ν∑
`=1

kjk`E [χ(αj(t))χ(α`(t))
∗] . (4.13)
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It is immediate to verify that E[χ(αj(t))] = 0 when χ 6= χ0, that
E[χ(αj(t))χ(α`(t))

∗] = 0 when j 6= `, and that E[|χ(αj(t))|2] = 1. Substitut-
ing in (4.13) we then obtain

E
[
|π̂t(χ)|2

]
= k2

0 +
ν∑
j=1

k2
j =

ν∑
j=0

k2
j , ∀χ 6= 0 .

We finally have

E||∆(t)||2 =
∑
χ 6=χ0

E

∣∣∣∣∣
t∏

s=1

π̂(χ)

∣∣∣∣∣
2
 1

N
E| < ∆(0), χ > |2

=

(
ν∑
j=0

k2
j

)t
1

N

∑
χ 6=χ0

E| < ∆(0), χ > |2 =

(
ν∑
j=0

k2
j

)t

E||∆(0)||2 .

Notice that

min

{
ν∑
j=0

k2
j

∣∣∣∣∣ kj ≥ 0 ,
ν∑
j=1

kj = 1

}
=

1

ν + 1

which is obtained by choosing kj = 1/(ν + 1) for all j. With such a choice
we have thus obtained the following mean convergence result

E||∆(t)||2 =

(
1

1 + ν

)t
E||∆(0)||2 .

We noticed in the previous section that strategies with symmetries behave
quite poorly. As suggested in the last part of the previous section, a way to
overcome this difficulty is to resort to Ramanujan graphs or to undirected
regular graphs generated randomly.

The results found in this subsection show that an alternative way to
solve this problem while maintaining the symmetry of the matrices is by
a time-varying strategy in which at every time instant the communication
graph is chosen randomly in a set of Cayley graphs. Indeed such strategy
yields a mean square convergence rate that is higher and, more importantly,
independent of the number of systems.

Moreover notice that 1
1+ν
≥ N−1

N(ν+1)−1
, which is the rate obtained through

the time-varying strategy with bounded degree discussed before. However,
for N → +∞, the two strategies yield the same rate.
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Remark 4.7 From an implementation point of view this strategy has an
evident drawback: the same random choice done at every time instance has
to be done by all systems. This seems to require a supervised communication
of this information to every system. A possible way to overcome this limi-
tation is by imposing that each agent uses the same pseudorandom number
generator starting from the same seed.

Remark 4.8 As any average result, it is not immediately evident how the
average computation above reflects on the behavior of the system when we
consider a generic sequence St of subsets chosen at random. A simple stan-
dard probabilistic argument however allows us to show that such a conver-
gence rate is indeed achieved by almost every sequence St. Fix any c > 1
and notice that for every χ ∈ Ĝ,

P

(
t∏

s=1

|π̂s(χ)| ≥
(

c

ν + 1

)t)
= P

(
t∑

s=1

ln |π̂s(χ)| ≥ t ln
c

ν + 1

)
. (4.14)

Notice that Ys = ln |π̂s(χ)| is a sequence of independent identically dis-
tributed random variables taking values on [−∞, 0]. The idea is to apply
Chebyschev inequality. To overcome the problem of possible unboundedness
of Ys, we consider two different cases. Suppose that there exist a χ ∈ Ĝ such
that π̂s(χ) assumes the value 0 with probability p > 0. In this case we can
simply estimate

P

(
t∏

s=1

|π̂s(χ)| ≥
(

c

ν + 1

)t)
≤ (1− p)t . (4.15)

If instead the event {π̂s(χ) = 0} has probability zero, then the random
variable Ys is bounded and can be estimated as follows. First notice that,
using Jensen inequality, we have

E[Ys] = E[ln |π̂s(χ)|] ≤ lnE[|π̂s(χ)|] = ln
1

ν + 1
.

Let

δ := ln
c

ν + 1
− E[Ys] = ln c+ ln

1

ν + 1
− E[Ys] ≥ ln c > 0 .
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We can now estimate

P

(
t∑

s=1

ln |π̂s(χ)| ≥ t ln
c

ν + 1

)
= P

(
t∑

s=1

Ys ≥ t ln
c

ν + 1

)

= P

(
t∑

s=1

(Ys − E[Ys]) ≥ tδ

)

≤ Var[Ys]

δ2t2

(4.16)

A straightforward application of Borel-Cantelli lemma now allows to conclude
from relations (4.15) and (4.16) that, for almost every sequence St of subsets,

t∏
s=1

|π̂s(χ)| <
(

c

ν + 1

)t
for t sufficiently large and for every χ ∈ Ĝ .

From this we also obtain that, for almost every sequence St,

||∆(t)||2 ≤
(

c

ν + 1

)t
||∆(0)||2 for t sufficiently large .

Considering that c can be chosen arbitrarily close to 1, this proves our claim.
A similar performance result on generic random samples from the average
behavior can be proved also for the previous strategy. The probabilistic tools
needed become however a bit more refined: matrices are not simultaneously
diagonalizable and we have to use Oseledec ergodic theorem for products of
random matrices.

4.5 Symmetric Gossip algorithms

In this section we review the symmetric gossip algorithm as proposed in [24].

We start from an a priori fixed communication skeleton, namely a fixed
underlying undirected graph G = (V, E), establishing which are the feasible
communications among the agents. We assume that at every time instant a
node among the N possible is chosen randomly. This node then chooses also
randomly one of its neighbors, it establishes a bidirectional link with it and
they average their quantity. Precisely, consider the instant time t. Assume
i is the node chosen randomly and assume that j is the node chosen by the
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node i. Then the updating rule is given by

xi(t+ 1) =
1

2
xi(t) +

1

2
xj(t)

xj(t+ 1) =
1

2
xj(t) +

1

2
xi(t) (4.17)

and

xh(t+ 1) = xh(t), if h 6= i and h 6= j. (4.18)

Now, let, for every (i, j) ∈ E ,

E(i,j) = (ei − ej)(ei − ej)∗ (4.19)

where ei = [0, . . . , 0, 1, 0, . . . , 0]∗ is a N × 1 unit vector with the i-th compo-
nent equal to 1 and let

R(i,j) = I − 1

2
E(i,j). (4.20)

Then we can write the Equation (4.17) and Equation (4.18) in vector form
as

x(t+ 1) = P (t)x(t) (4.21)

where P (t) = R(i,j).

If we assume that the node i is chosen with probability 1/N and that
this node chooses randomly a node j among its νi neighbors with probability
1/νi, we have that

P
(
P (t) = R(i,j)

)
=

1

N

[
1

νi
+

1

νj

]
and hence that

P̄ =
∑

(i,j)∈E

1

N

[
1

νi
+

1

νj

] [
I − 1

2
(ei − ej)(ei − ej)∗

]
.

Notice that, if (h, k) ∈ E and h 6= k,

P̄hk =
1

2N

[
1

νh
+

1

νk

]
.

where P̄hk denotes the element in the h-th row and in the k-th column of
the matrix P̄ . Since each R(i,j) has all the diagonal terms different from 0
and since GP̄ = G we have, from Proposition 4.2, that the symmetric gossip
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consensus algorithm reaches, almost surely, the average consensus if and only
if the graph G is connected.

We proceed now by providing an alternative way of introducing the sym-
metric consensus gossip algorithm that generalizes the case above described.
Assume again that a graph G = (V, E) is given and assume that, at each time
instant an edge is selected inside the set E with a probability W (i,j). The
updating rule is again

x(t+ 1) = P (t)x(t)

where P
[
P (t) = R(i,j)

]
= W (i,j). Clearly

∑
(i,j)∈EW

(i,j) = 1. Observe that
this approach recovers the above case of the symmetric gossip algorithm by

letting W (i,j) = 1
N

[
1
νi

+ 1
νj

]
.

We have that

P̄ =
∑

(i,j)∈E

W (i,j)R(ij)

Clearly if G = (V, E) is connected and each edge (i, j) ∈ E can be selected
with a strictly positive probability W(i,j), then GP̄ is automatically connected.
Moreover in this case all the diagonal elements of P (t) are nonzero with
probability 1. Applying Proposition 4.2 we can conclude that this algorithm
yields the probabilistic consensus. Moreover, since the P (t) are all symmetric
we can conclude that in this case probabilistic average consensus is achieved.

It is worth noting that the fact that each R(i,j) has all the diagonal ele-
ments different from 0 implies also the following interesting property. Given
G = (V, E) let G̃ = (V, Ẽ) be the graph that we obtain from G where

Ẽ = {(i, j) : (i, j) ∈ E} \ {(i, i) : (i, i) ∈ E} ,

namely Ẽ is the set E without all the possible self-loops. Assume that each
edge (i, j) ∈ Ẽ can be selected with a strictly positive probability W̃ ij, where∑

(i,j)∈ Ẽ W̃
ij = 1. Let P̄ be the expected value of P (t) constructed on the

graph G and let P̃ be the expected value of P (t) constructed on the graph
G̃. Then GP̄ = GP̃ . Observe moreover that, if, at time instant t a self loop
is selected then P (t) = I and hence x(t + 1) = x(t), i.e. the state remains
inalterated. In other words the self-loops are useless in order to reach the
consensus. From now on, we will assume the following.

Assumption 4.9 The graph G = (V, E) is a undirected connected graph
without any self-loop and, at every time instant t, each edge (i, j) ∈ E can
be selected with a strictly positive probability W (i,j).
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We end this subsection by defining the matrix W ∈ RN×N as the matrix
having W ij as element in the i-th row and j-th column and in the j-th row
and i-th column, namely

W ij = W ji := W (i,j). (4.22)

Note that, since from Assumption 4.9 we are considering graphs without
self-loops, we have that Wii = 0.

4.5.1 Analysis of the Symmetric Gossip Algorithm

Assume that an undirected graph G satisfying Assumption 4.9 is given and
that W is the matrix defined in (4.22) at the end of Section 4.5. The objective
of this subsection is to provide a mean-square analysis of the symmetric gossip
algorithm as previously described, i.e.,

x(t+ 1) = P (t)x(t) (4.23)

where P
(
P (t) = R(i,j)

)
= W ij.

We start by assuming the following on the initial condition x(0).

Assumption 4.10 The initial condition x(0) is a random vector variable
such that E [x(0)] = 0 and E [x(0)x∗(0)] = σ2I for some σ2 > 0.

As first step, we introduce the following variable

y(t) :=

(
I − 1

N
11∗

)
x(t)

Notice that y(t) = x(t) − xave(t)1, where we recall that xave(t) denotes the
current average of the state x(t), i.e., xave(t) = 1/N1∗x(t). Since R(i,j) is a
doubly stochastic matrix for each pair (i, j), it follows that xave(t) = xave(0)
for all t and hence we can write also y(t) = x(t) − xave(0)1. Moreover, this
implies also that the variable β(t) = 0, defined in (4.6), is equal to 0 for all
t ≥ 0.

By observing that R(i,j)(I−1/N11∗) = (I−1/N11∗)R(i,j) for each R(i,j),
we obtain that the variable y(t) satisfies the same recursive equation of x(t),
i.e.,

y(t+ 1) = P (t)y(t). (4.24)

Let now
Σ(t) = E [y(t)y∗(t)] .
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From Assumption 4.10 we have that

Σ(0) = σ2

(
I − 1

N
11∗

)
.

Now note that the quantity d(t) defined in (4.5) is related to Σ and hence to
y by

d(t) =
1

N
tr {Σ(t)} .

We see now for a recursive expression for Σ(t). From (4.24) we have that

Σ(t+ 1) = E [y(t+ 1)y∗(t+ 1)]

= E [P (t)y(t)y∗(t)P (t)]

= E [E [P (t)y(t)y∗(t)P (t)|P (t)]]

= E [P (t)E [y(t)y∗(t)]P (t)]

= E [P (t)Σ(t)P (t)] (4.25)

The calculation of the expectation E [P (t)Σ(t)P (t)] is not immediate. The
next Theorem characterizes it. Before stating it, we provide some notational
definitions that will be useful throughout the subsection. Given X1, X2 ∈
RN×N , X1 � X2 denotes the component-wise product (Hadamard product)
between X1 and X2, i.e. (X1 �X2)hk = (X1)hk (X2)hk . Given a matrix
X ∈ RN×N we have that diag {X} means a diagonal matrix with the same
diagonal elements of the matrix X. Given a N -dimensional column vector
v = [v1, . . . , vN ]∗, either the symbol diag {v1, . . . , vN} or the symbol diag {v}
mean a diagonal matrix with

(
diag {v1, . . . , vN}

)
ii

= vi. Finally, given the
graph G, the matrix A denotes its adjacency matrix, i.e

Aij = Aji =

{
1 if (j, i) ∈ E
0 otherwise

Since in our work we are assuming that G is without self-loops, then Aii =
0, i = 1, . . . , N .

We can now state the following result.

Theorem 4.11 Let G = (V, E) be a given graph satisfying Assumption 4.9
and let W be the matrix defined as in (4.22). Consider the equation (4.25).
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Then we have that

Σ(t+ 1) = Σ(t)− 1

2
diag {W1}Σ(t) +

1

2
WΣ(t)− 1

2
Σ(t)diag {W1}

+
1

2
Σ(t)W +

1

4
diag {W1} diag {Σ(t)}+

1

2
W � Σ(t)+

+
1

4
diag {(Wdiag {Σ(t)})1} − 1

4
diag {Σ(t)}W

− 1

4
Wdiag {Σ(t)} − 1

2
diag {A(W � Σ(t))} (4.26)

In order to prove the above Theorem we need the following technical Lemma.

Lemma 4.12 Let G = (V, E) be a given graph satisfying Assumption 4.9 and
let W be the matrix defined as in (4.22). Let Q any symmetric matrix. Then

E
[
E(i,j)Q

]
= diag {W1}Q−WQ, (4.27)

and

E
[
E(i,j)QE(i,j)

]
= diag {W1} diag {Q}+ 2W �Q+ diag {(Wdiag {Q})1}
− [diag {Q}W +Wdiag {Q}]
− 2diag {A(W �Q)} (4.28)

Proof: We have that

E
[
E(i,j)Q

]
=
∑

(i,j)∈E

Wij(ei − ej)(ei − ej)∗Q

=
∑

(i,j)∈E

(eie
∗
i + eje

∗
j)Q−

∑
(i,j)∈E

(eie
∗
j + eje

∗
i )Q

= diag {W1}Q−WQ.

Then we have that

E
[
E(i,j)Q

]
=

=
∑

(i,j)∈E

Wij(ei − ej)(ei − ej)∗Q(ei − ej)(ei − ej)∗

=
∑

(i,j)∈E

Wij(eie
∗
i + eje

∗
j)Q(eie

∗
i + eje

∗
j)

−
∑

(i,j)∈E

Wij

{
(eie

∗
j + eje

∗
i )Q(eie

∗
i + eje

∗
j) + (eie

∗
i + eje

∗
j)Q(eie

∗
j + eje

∗
i )
}

+
∑

(i,j)∈E

Wij(eie
∗
j + eje

∗
i )Q(eie

∗
j + eje

∗
i )
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Consider now
∑

(i,j)∈EWij(eie
∗
i + eje

∗
j)Q(eie

∗
i + eje

∗
j). It follows that∑

(i,j)∈E

Wij(eie
∗
i + eje

∗
j)Q(eie

∗
i + eje

∗
j) =

=
∑

(i,j)∈E

Wij

(
eie
∗
iQeie

∗
i + eje

∗
jQeje

∗
j

)
+
∑

(i,j)∈E

Wij

(
eje
∗
jQeie

∗
i + eie

∗
iQeje

∗
j

)
=
∑

(i,j)∈E

(
WijQiieie

∗
i +WijQjjeje

∗
j

)
+
∑

(i,j)∈E

(
WijQjieje

∗
i +WijQijeie

∗
j

)
=
∑

(i,j)∈E

(
WijQiieie

∗
i +WijQjjeje

∗
j

)
+
∑

(i,j)∈E

(
WjiQjieje

∗
i +WijQijeie

∗
j

)
= diag {W1} diag {Q}+W �Q

In a similar way it can be shown that∑
(i,j)∈E

Wij

{
(eie

∗
j + eje

∗
i )Q(eie

∗
i + eje

∗
j) + (eie

∗
i + eje

∗
j)Q(eie

∗
j + eje

∗
i )
}

=

= [diag {Q}W +Wdiag {Q}] + 2diag {A(W �Q)}

and that∑
(i,j)∈E

Wij(eie
∗
j + eje

∗
i )Q(eie

∗
j + eje

∗
i ) = W �Q+ diag {(Wdiag {Q})1} .

Plugging together all the contributions we obtain (4.28).

We are able now to provide the proof of Theorem 4.11.
Proof: Consider the Equation (4.26). We have that

E [P (t)Σ(t)P (t)] = E

[(
I − 1

2
Eij

)
Σ(t)

(
I − 1

2
Eij

)]
= Σyy −

1

2
E [EijΣ(t)]− 1

2
E [Σ(t)Eij] +

1

4
E [EijΣ(t)Eij]

Substituting in the above expectations the expressions given in Lemma 4.12
we obtain the recursive equation given in the statement of the Theorem.

Since the graph G satisfies Assumption 4.9 which guarantees, as previ-
ously observed, that the symmetric gossip algorithm (4.23) converges almost
surely, we have that limt→∞Σ(t) = 0 and hence also limt→∞ d(t) = 0. Un-
fortunately providing further theoretical analysis on the symmetric gossip
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algorithms, for instance on the speed of convergence toward zero of d(t), is
quite hard in general. In [24] and in [58] the authors provide some bounds
on the rate of convergence of d(t) but these bound could be not tight.

However, further and interesting analytical developments in this direction
can be made if we restrict the graph G to possess some symmetries. In the
sequel we will work with the Cayley Graphs.

4.5.2 Mean-square Analysis for the Cayley Graphs

In this section we will show that when G is a Cayley graph, the analysis
proposed above simplifies considerably. Let G be a finite Abelian group of
order N and let S be a subset of G which does not contain zero. Let G(G,S)
be the Cayley graph associated to the group G and the subset S as described
in Section 3.3. Observe the fact that S does not contain zero implies that
the graph G does not contain self-loops. In the following we will assume that
|S| = ν, namely that the degree of G is ν. Moreover we will assume that
each edge of the edge set E of the Cayley graph G(G,S) can be selected with
probability 1/|E|, where it is easy to see that |E| = 2

νN
. Moreover observe

that it follows that W = 2
νN
A. We start our analysis with the following

simple result.

Lemma 4.13 Consider (4.26). Assume that Σ(0) = σ2 (I − 1/N 11∗). Then
Σ(t) is a Cayley matrix for all t ≥ 0.

Proof: We prove the statement of the theorem by induction on t. Let t = 0.
Σyy(0) is Cayley since (I − 1/N 11∗) is Cayley. Let now Σ(t) be Cayley for
a generic t. Consider t + 1. Since A and W are Cayley it follows that all
the matrices on the right-side of (4.26) are Cayley. Therefore also Σ(t + 1)
is Cayley.

By using the fact that W = 2
νN
A and the properties of the Cayley matrices

we have (4.26) can be rewritten in a simpler way as

Σ(t+ 1) =

(
1− 2

N

)
Σ(t) +

2

νN
AΣ(t) +

1

N
diag {Σ(t)}+

1

νN
A� Σ(t)

− 1

νN
[Adiag {Σ(t)}+ diag {AΣ(t)}] (4.29)

Note now that a Cayley matrix is completely determined by the values that
its generator π assume on the elements of the group G, equivalently by the
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values of one of its row or column. In order to simplify further the problem
we assume that the elements of G are ordered in some way, more precisely
we assume that G = {g0, g1, . . . , gN−1}, where by convention g0 = 0. Define
the column vector in RN as

Π(t) =


πΣ(t)(g0)
πΣ(t)(g1)

...
πΣ(t)(gN−1)

 (4.30)

In order to find a recursive relation for Π(t), it is useful to introduce the
N ×N matrices B,C,D defined as follows

(B)ij :=

{
1 if i = j and πA(gi) = 1
0 otherwise

(4.31)

(C)ij :=

{
1 if i = j = 1
0 otherwise

(4.32)

and

(D)ij :=


1 if i = 1 and πA(gj) = 1
1 if j = 1 and πA(gi) = 1
0 otherwise

(4.33)

Observe that B = diag {e∗1A} , C = e1e
∗
1 and D = e1e

∗
1A + Ae1e

∗
1 where

e1 = [1, 0, . . . , 0]∗. We have the following result.

Theorem 4.14 Let Π(t) be as above defined. Then we have

Π(t+ 1) =

[(
1− 2

N

)
I +

2

νN
A+

1

N
C +

1

νN
B − 1

νN
D

]
Π(t). (4.34)

Proof: We start by observing that from the definition of A,B,C,D we have
that 

πAΣ(t)(g0)
πAΣ(t)(g1)

...
πAΣ(t)(gN−1)

 = A


πΣ(t)(g0)
πΣ(t)(g1)

...
πΣ(t)(gN−1)

 , (4.35)


πdiag {Σ(t)}(g0)
πdiag {Σ(t)}(g1)

...
πdiag {Σ(t)}(gN−1)

 = C


πΣ(t)(g0)
πΣ(t)(g1)

...
πΣ(t)(gN−1)

 , (4.36)
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πA�Σ(t)(g0)
πA�Σ(t)(g1)

...
πA�Σ(t)(gN−1)

 = B


πΣ(t)(g0)
πΣ(t)(g1)

...
πΣ(t)(gN−1)

 , (4.37)

and


πAdiag {Σ(t)}+diag {AΣ(t)}(g0)
πAdiag {Σ(t)}+diag {AΣ(t)}(g1)

...
πAdiag {Σ(t)}+diag {AΣ(t)}(gN−1)

 = D


πΣ(t)(g0)
πΣ(t)(g1)

...
πΣ(t)(gN−1)

 . (4.38)

From (4.29) and from the above expressions we obtain (4.34).

For the sake of the notational convenience let

F :=

(
1− 2

N

)
I +

2

νN
A+

1

N
C +

1

νN
B − 1

νN
D. (4.39)

Notice that F is a doubly stochastic matrix and that 1∗Π(t) = 0 for all t.
Clearly, since limt→∞Σ(t) = 0 we have that also limt→∞Π(t) = 0 and the
speed of convergence of Π(t) toward zero is given by the essential spectral
radius of the matrix F that, accordingly to the definition provided in (2.12)
we denote by ρess(F ). Let now Π1(t) denote the first component of Π(t).
Observe that

d(t) = Π1(t).

which implies that also the speed of convergence of d(t) toward zero is de-
termined by ρess(F ). We have not been able to provide a theoretical char-
acterization of ρess(F ). However, supported by several numerical results, we
conjecture the following.

Conjecture 4.15 Let G be a graph satisfying Assumption 4.9, and let F be
defined as in (4.39). Moreover let ν denote the degree of G. Then

ρess(F ) = 1− C

N
4+ν
ν

+ o

(
1

N
4+ν
ν

)
.

as N →∞, where C is a constant independent of the graph G.
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A possible way of proving the above Conjecture, could be by considering the
matrix 1

N
C + 1

νN
B− 1

νN
D as a perturbation of the matrix

(
1− 2

N

)
I + 2

νN
A.

Indeed, we notice that the matrix 1
N
C+ 1

νN
B− 1

νN
D has only 3ν+1 elements

different from 0, which should become less and less significant as N → ∞.
Moreover note that, since

(
1− 2

N

)
I + 2

νN
A is a Cayley doubly stochastic

matrices, we could characterize precisely its essential spectral radius by the
arguments illustrated in Section 3.3.1.

4.6 Conclusions

In this Chapter we have introduced the randomized consensus algorithms.
We have reviewed the concept of probabilistic consensus and some algebraic
conditions ensuring the achievement of this probabilistic consensus. We have
then analyzed two particular random strategies, the time-varying strategy
with bounded in-degree and the time-varying Cayley graphs strategy, prov-
ing that they allow to achieve better performance than deterministic strate-
gies with comparable complexity. Finally we have considered the symmetric
gossip algorithm, whose study is motivated by applications to sensors, peer-
to-peer and ad hoc networks. In particular we have provided an interesting
characterization of the symmetric gossip algorithm over the Cayley graphs.

Some important questions remain open. In particular, a detailed analy-
sis of the convergence rate of the symmetric gossip algorithms needs to be
carried out. We believe that quite rich and complete results can be obtained
for the broad class of graphs possessing symmetries the Cayley graphs. An-
other interesting family of graphs to work on would be the random geometric
graphs.





Chapter 5

Quantized Consensus:
Time-Invariant case

5.1 Introduction

We have seen in the Introduction, in Chapter 2 and in Chapter 4 that dif-
ferent algorithms for average consensus have been proposed in the literature.
They can be distinguished on the basis of the amount of communication and
computation they require, of their scalability properties with respect to the
number of nodes, of their adaptability to time-varying graphs, and, finally,
on the basis of their deterministic or randomized operating protocol.

However there is a feature common to most of the literature on the con-
sensus problem: the assumption that the communication channel between
the nodes allows to transfer real numbers with no errors. In many practical
applications this is not a realistic assumption: if we think, for instance, of
sensor networks communicating in a wireless fashion, it is evident that en-
ergy and bandwidth limitation yield a finite capacity channel. This suggests
that in many situations the communication channel should be rather con-
sidered as digital, accepting messages taking values in some finite alphabet.
This clearly forces a quantization on the real numbers that agents have to
transmit.

The effects of quantization in feedback control problems have been widely
studied in the past [91], mainly in the stabilization problem. Moreover gran-
ularity effects different from quantization in the consensus problems have
been tackled in few papers especially in the load balancing applications [54].
Our setting is however different: this chapter studies the consensus problem
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under the assumption that transmissions are quantized, in particular we as-
sume here that the communications network is constituted of ideal noiseless
digital channels.

We review now the literature on the quantized consensus. The investiga-
tion of consensus under quantized communication started with [75]. In this
paper the authors study systems having (and transmitting) integer-valued
states and propose a class of gossip algorithms which preserve the average of
states and are guaranteed to converge up to one quantization bin. Besides
the fact there is not precise consensus, since the algorithm requires the use
of a single link per iteration, the convergence is slow.
The authors in [150] analyzed the impact of the quantization noise through
modification of the consensus algorithm proposed in [148], where the case
of noisy communication links is addressed. Precisely, the authors in [148]
consider the case in which the information transmitted by each node is noise-
corrupted, being the noise additive and zero-mean. In [150] it is noted that
the noise component can be considered as the quantization noise and by sim-
ulations, it is shown for small N that, if the increasing correlation among
the node states is taken into account, the variance of the quantization noise
diminishes and nodes converge to a consensus.
In [33] the authors propose a distributed algorithm that uses quantized values
and preserves the average at each iteration. They showed favorable conver-
gence properties using simulations on some static topologies, and provided
performance bounds for the limit points of the generated iterates. In [92]
the more general case of time-varying topologies is considered. A scheme
reaching the consensus is proposed even if not at the initial average. How-
ever polynomial bounds on both the convergence time and the discrepancy
from the initial average are provided in terms of the number of quantization
levels.
Of note is that all the paper mentioned above considered quantized strategy
based on deterministic uniform quantizers. Reference [8] proposes a sim-
ple distributed and iterative scheme to compute the average at each sensor
node utilizing only quantized information communication. The authors in [8]
adopt the probabilistic quantization (PQ) scheme (see [146]) to quantize the
information before transmitting to the neighboring sensors. They show that
the node states reach consensus to a quantized level; only in expectation do
they converge to the desired average. Moreover if the quantization step size
is large this approach will lead to large residual errors.

In this chapter and in the next two, the main goal is to provide an analysis
identifying what are the effects due to the presence of the digital transmission
and trying to overcome these effects. We will do this by following the analysis
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presented in [61] which extends the algorithm appeared in [33, 34].

The first problem we will address is to understand what happens when
in the equation (2.1), ruling the average consensus algorithm, in place of the
exact values of the states of the systems we substitute a quantized version of
these obtained through a deterministic uniform quantizer or a probabilistic
quantizer (we will define rigorously these quantizers in Section (5.2)). Two
questions mainly are in order:

(i) is it still possible to reach the average consensus, and

(ii) if not, how far is it the asymptotic behavior of the states of the systems
from the average consensus?

Answering the above questions is quite challenging. We will try to provide
some insights on the above issues in this and the next two chapters.

We postpone the explanation of the organization of this chapter inside the
next Section, where we will formulate precisely the problem we are dealing
with.

5.2 Problem formulation

In this chapter we consider the consensus algorithm (2.10) restricting to the
case in which the consensus matrix P is doubly stochastic. For the sake of
the clarity we briefly review it. Assume that we have a set V of systems and
a graph G on V describing the feasible communications among the systems.
For each system i ∈ V let xi(t) denote the estimate of the average of agent
i at time t. We assume that at every times t agent i updates its estimate
according to

xi(t+ 1) =
N∑
j=1

Pijxj(t). (5.1)

where Pij are the elements of a doubly stochastic P ∈ RN×N matrix com-
patible with G. More compactly we can write

x(t+ 1) = Px(t), (5.2)

where x(t) is the column vector entries xi(t) represent the agents states.
We have seen in Section 2.2.1 that, if P is a doubly stochastic matrix with
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positive diagonal entries and such that GP is strongly connected, then the
algorithm (5.2) solves asymptotically the average consensus problem, namely

lim
t→+∞

x(t) =

(
1

N

N∑
i=1

xi(0)

)
1, (5.3)

where 1 is the column vector of all ones. From now on we will assume the
following.

Assumption 5.1 P is a doubly stochastic stochastic matrix such that Pii >
0, for i ∈ {1, . . . , N}, and such that GP is strongly connected.

Note that the algorithm (5.2) relies upon a crucial assumption: each agent
transmits to its neighboring agents the precise value of its state. This implies
the exchange of perfect information through the communication network.
In what follows, we consider a more realistic case, i.e., we assume that the
communication network is constituted only of rate-constrained digital links.
This prevents the agents from having a precise knowledge about the state
of the other agents. In fact, through a digital channel, the i-th agent can
only send to its neighbors symbolic data in a finite alphabet; using only this
data, the neighbors of the i-th agent can build at most an estimate of the
i-th agent’s state. In the following we will denote this estimate by x̂i(t). Let

x̂(t) =

 x̂1(t)
...

x̂N(t)


By remarking that (7.1) and (7.2) can be written respectively as

xi(t+ 1) = xi(t) +
N∑
j=1

Pij (xj(t)− xi(t))

and
x(t+ 1) = x(t) + (P − I)x(t),

in this chapter we consider the following updating rule

xi(t+ 1) = xi(t) +
N∑
j=1

Pij (x̂j(t)− x̂i(t)) (5.4)

or more compactly

x(t+ 1) = x(t) + (P − I)x̂(t). (5.5)
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It is easy to see that this law has the remarkable property of maintaining
the initial state average, whatever x̂(t) is. This fact is stated in the following
proposition.

Proposition 5.2 Consider (5.5). Let

xave(t) =
1

N
1∗x(t).

Then
xave(t) = xave(0)

for all t ≥ 0.

Proof: We have that

1∗x(t+ 1) = 1∗x(t) + 1∗(P − I)x̂(t)

= 1∗x(t)

where the last inequality follows from the fact, since P is doubly stochastic,
it holds 1∗(P − I) = 0.

We proceed now by illustrating two types of quantizers which has been in-
troduced in literature in order to transmit information throughout a digital
channel. In [33], the authors analyze the case in which

x̂i(t) = qd(xi(t)), (5.6)

where, given a real number z, qd : R → Z is the mapping sending z to its
nearest integer, namely,

qd(z) = n ∈ Z ⇔ z ∈ [n− 1/2, n+ 1/2[, if z ≥ 0
z ∈ ]n− 1/2, n+ 1/2], if z < 0.

(5.7)

We will refer to this quantizer as deterministic quantizer1.
Instead in [8, 146], the so-called probabilistic quantizer is introduced. This
quantizer woks as follows. Let x ∈ R and let qp(·) denote the probabilistic
quantizer2. Assume, as for the deterministic quantizer above described, that
the set of quantization levels is composed by the integer numbers, then qp(x)
is the binary random variable defined as follows

qp(x) =

{
bxc with probability dxe − x
dxe with probability x− bxc (5.8)

1the subscript d means deterministic
2The subscript p means probabilistic
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The following lemma discusses two important properties of the probabilistic
quantizer (for the proof see [146]).

Lemma 5.3 Let qp(x) be a probabilistic quantization of x ∈ R. Then qp(x)
is an unbiased representation of x, i.e.,

E [qp(x)] = x. (5.9)

Moreover

E
[
(x− qp(x))2] ≤ 1

4
. (5.10)

From now on, given a vector x ∈ RN , with a slight abuse of notation,
we will use the notation qd(x) ∈ RN (respectively qp(x) ∈ RN) to de-
note the vector such that qd(x) = [qd(x1), . . . , qd(xN)]∗ (respectively qp(x) =
[qp(x1), . . . , qp(xN)]∗).
The main goal of this chapter will be to analyze the following systems

x(t+ 1) = x(t) + (P − I)qd(x(t)) (5.11)

and
x(t+ 1) = x(t) + (P − I)qp(x(t)). (5.12)

Some remarks are now in order.

Remark 5.4 In this paper we consider quantizers having quantization step
equal to 1. More general quantizers, with quantization step a generic positive
real number ε, can be obtained from qd and qp by defining q

(ε)
d (x) = εqd(x/ε)

and q
(ε)
p (x) = εqp(x/ε). Namely, the general case can be simply recovered by

a suitable scaling. For the sake of the completeness, it is worth noting that
in this case

E
[
(x− q(ε)

p (x))2
]
≤ ε2

4
.

Remark 5.5 We could define two different state update equations. By as-
suming that each node i uses the exact knowledge of its own state xi instead
of the estimate x̂i we could adopt

xi(t+ 1) = xi(t) +
N∑
j=1

Pij (x̂j(t)− xi(t)) ,

= Piixi(t) +
∑
j 6=i

Pijx̂j(t),

(5.13)
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instead of equation (5.4). Note that (7.9) can be written, in vector form, as

x(t+ 1) = diag {P}x(t) + (P − diag {P}) x̂(t),

where diag {P} means a diagonal matrix with the same diagonal elements
of the matrix P . Instead, by assuming that each node i uses only quantized
information also related to its own state, we could adopt

xi(t+ 1) = x̂i(t) +
N∑
j=1

Pij (x̂j(t)− x̂i(t)) ,

=
N∑
j=1

Pijx̂j(t),

(5.14)

or in vector form
x(t+ 1) = Px̂(t). (5.15)

The drawback of these choices is that, differently from (5.5), they do not
preserve the average of the initial condition. However, we will come back on
these laws at the end of this chapter.

Remark 5.6 The authors in [8] analyze the rule (5.14), when the estimates
are given by the probabilistic quantizer, namely the algorithm

x(t+ 1) = Pqp(x(t)). (5.16)

They prove that (5.16) reaches, almost surely, consensus on a quantization
level. However the distance of the consensus point from the initial average
depends heavily on the matrix P . We will review later the main features of
this strategy.

It is worth noting that both the algorithm (5.11) and the algorithm (5.12),
because of the quantization effects, are not expected to converge in the sense
(5.3). What we can hope is for the agents to reach states which are close
to each other and close to the average xa(0). To measure this asymptotic
disagreement, we introduce the following quantity ∆i(t) := xi(t) − xa(t) =
xi(t)− xa(0) which represents the distance, at time t, of the i-th agent from
the average of the initials conditions. Let now Y = I −N−111∗ and ∆(t) =
[∆1(t), . . . ,∆N(t)]∗. Then, ∆(t) = Y x(t). Finally we define the performance
index

d∞(P, x(0)) = lim sup
t→∞

1√
N
||∆(t)||. (5.17)
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Note that the factor 1√
N

is introduced in order to scale d∞(P, x(0)) with the
dimension of the network. Moreover we can get rid of the initial condition
by considering

d∞(P ) = sup
x(0)

d(P, x(0)). (5.18)

The problem we would like to address is, given a matrix P , to evaluate
how big d∞ is. In particular, we are interested in evaluating how, for se-
quences of graphs of increasing size, this quantity depends on the number of
the nodes N .

In order to obtain a first insight in the problem, we provide immediately
some simulative results regarding two particular communication topologies:
the random geometric graph and the hypercube graph.

The random geometric graph is commonly used to model wireless net-
works [67]. It is constructed by randomly placing N nodes in the unit square,
and joining them with edges whenever their distance is below a threshold
R = Θ(

√
logN/N) for N → ∞. Moreover we assume the weights of the

matrix P are chosen by using the Metropolis weights, illustrated in Example
2.14.

The n-dimensional hypercube graph is the graph obtained drawing the
edges of a n-dimensional hypercube. It has N = 2n nodes which can be
identified with the binary words of length n. Two nodes are neighbors if the
corresponding binary words differ in only one component. Thus every node
exchanges information with other n nodes. In this case a matrix P can be
constructed by setting equal every non-zero entry of P . We will be more
precise in Section 5.3.1.

The behavior of d∞(P ), which is obtained as the average over several
realizations on the initial conditions, for sequences of graphs of increasing
size of both topologies is depicted in Figures 5.1 and 5.2 for the strategy
using the deterministic quantizer, and Figures 5.3 and 5.5 for the strategy
using the probabilistic quantizer. It is worth noting that remarkably in all
the cases, d∞(P ) appears to be bounded on N , the size of the communication
graph. Moreover the two different quantizers behave quite similarly for both
the topologies.

We conclude this section with some considerations and explaining how
the rest of the chapter is organized.
Obviously we expect that d∞(P ) depend on the particular communication
topology we are considering and on the weights assigned to the matrix P . In
general, assigned the communication topology, what one would like to do is
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Figure 5.1: Performance of the random geometric graph when the determin-
istic quantizer is used. Since the graph itself is random, the plot of d∞(P )
comes from averaging over realizations of both the graph and the initial con-
dition.
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Figure 5.2: Performance of the n-dimensional hypercube graph (of order
N = 2n) when the deterministic quantizer is used.

finding the matrix of weights P minimizing d∞(P ). In order to do so, it is
important to provide some tools which permit to estimate d∞(P ).

In spite of the fact that the proposed algorithms are still intrinsically
linear, the quantization effects introduce nonlinearities which make the exact
asymptotic analysis of the algorithm, quite hard. Indeed, we are able to carry
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Figure 5.3: Performance of the random geometric graph when the proba-
bilistic quantizer is used. Since the graph itself is random, the plot of d∞(P )
comes from averaging over realizations of both the graph and the initial con-
dition.
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Figure 5.4: Performance of the n-dimensional hypercube graph when the
probabilistic quantizer is used.

on such an analysis only in very specific examples.

In Section 5.3 we undertake a twofold analysis of the algorithm using
deterministic quantizers: worst case and probabilistic. The basic idea is to
study the system considering the communication errors induced by quantiza-
tion as (unknown) bounded disturbances. The worst case analysis is obtained
by introducing a bounded error model and maximizing d∞(P ) with respect
to all possible realizations of the communication errors: of course in this
way we obtain an upper bound to the performance of our algorithm. This
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is done in in Section 5.3.1 where we prove in general the convergence to a
neighborhood of the average, obtaining bounds on its size. These bounds
are independent of the initial condition but depend on the diffusion matrix.
However the worst-case analysis is intrinsically conservative. In fact we will
show, for the hypercube example cited above, that the worst-case displace-
ment grows logarithmically in N , behavior which is in disagreement with the
experimental evidence displayed by Figure 5.2.

For this reason, in Section 5.3.2 we propose an alternative method and
develop a probabilistic analysis, modeling the quantization error as additive
random noise affecting the received data. A classical mean squared analysis
for the asymptotic error can be carried on in this case. A similar analysis is
done in [148]. It comes out that, under mild assumptions on the diffusion
matrix, the expected behavior depends only on the assumed distribution of
the errors and on the spectrum of the evolution matrix. Of course, this
probabilistic analysis, in principle, does not offer any rigorous bound on our
system. However, simulations clearly show that the probabilistic analysis is
very close to the experimental evidence, contrarily to the worst case analysis
which instead is quite conservative.

In spite to the fact that there is no theoretical reason explaining why
the probabilistic model should be a suitable model for analyzing the algo-
rithm (5.11), we will show in Section 5.4 that the probabilistic model, due to
structure of the probabilistic quantizer, represent the correct way to analyze
(5.12). In particular we will compare (5.12) with another scheme proposed in
literature based on the use of probabilistic quantizers, and we will show how
plugging together these two schemes it is possible to solve, almost surely, the
consensus problem, very close to the average of the initial conditions.

5.3 Time Invariant case- Deterministic quan-

tizers

Consider (5.11), i.e. the updating law using the deterministic quantizer. We
start with a remark about the best achievable performance. It is clear that,
when all states lie in the same quantization interval, namely q(xi(t)) = Q for
all i, differences are not perceivable and states do not evolve. Therefore the
best the algorithm can assure is that the system reaches such an equilibrium
in which q(xi(t)) = Q for all i and for all t ≥ T . In this case we would
obtain that |∆i(t)| ≤ 1 for all t ≥ T . This implies that the best we can
obtain is d∞ ≤ 1/2. Unfortunately simulations show that in many cases the
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error from the agreement can be bigger. However, it is worth noting that the
states of the agents subject to (5.11) are bounded. In particular one can see,
by convexity arguments, that for any node i ∈ V and for all t ≥ 0,

xi(t) ∈
[
min
j∈V
{q(xj(0))} − 1

2
, max
j∈V
{q(xj(0))}+

1

2

]
. (5.19)

Of course (5.19) is a very weak result since we can hope that in general
the disagreement will decrease as time goes on and that the asymptotic dis-
agreement will not depend on the initial conditions, but just possibly on P .
We consider now two examples in which the evolution of the system can be
studied explicitly, the complete graph and the directed circuit graph.

Example 5.7 (Complete graph) If the communication graph is complete
and the communication is exact, i.e. not quantized, the average consensus
problem can be solved in one step taking P = 1

N
11∗. We now compute the

exact performance degradation due to quantization. The system is in this
case

x(t+ 1) = x(t)− q(x(t)) +N−111∗q(x(t)). (5.20)

We have that, for t ≥ 1,

|∆i(t)| =

∣∣∣∣∣xi(t)− 1

N

N∑
j=1

xj(0)

∣∣∣∣∣
=

∣∣∣∣∣xi(t)− 1

N

N∑
j=1

xj(t− 1)

∣∣∣∣∣
=

∣∣∣∣∣xi(t− 1)− q (xi(t− 1)) +
1

N

N∑
j=1

q (xj(t− 1)− 1

N

N∑
j=1

xj(t− 1)

∣∣∣∣∣
≤ |xi(t− 1)− q (xi(t− 1))|+ 1

N

N∑
j=1

|q (xj(t− 1)− xj(t− 1)|

=
1

2
+

1

N

N

2
= 1.

This implies that
d∞(N−111∗) ≤ 1. (5.21)

Example 5.8 (Directed circuit) Now we consider a more interesting ex-
ample, the directed circuit graph, which is described by the Cayley graph
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G(ZN , {0, 1}) (see Section 3.3). In this case each agent communicates with
only one neighbor and evolves following

xi(t+ 1) = xi(t) +
1

2
[q(xi+1(t))− q(xi(t))] i = 1, . . . , N, (5.22)

where summation of the indexes is to be intended modN . The evolution of
(5.22) can be studied exactly by means of a symbolic dynamics approach.
This analysis is definitively not trivial, but permits us to characterize pre-
cisely the evolution of (5.22) and to obtain a strong result.
To start, we need the following technical lemma. Let b·c and d·e denote the
floor and ceiling operators from R to Z.

Lemma 5.9 Given α, β ∈ N and x ∈ R, it holds

bxc =

⌊
bαxc
α

⌋
(5.23)

q(x) = bx+ 1/2c =

⌈
1

2

⌊
b2βxc
β

⌋⌉
. (5.24)

Proof: We first prove (5.23). Let m = bxc. So

m ≤ x < m+ 1

αm ≤ αx < αm+ α.

Hence, we can find s ∈ N, 0 ≤ s ≤ α−1 such that αm+s ≤ αx < αm+s+1.

This yields bαxc = αm+ s and
⌊
bαxc
α

⌋
= m.

Then we prove equation (5.24). The equality q(x) = bx + 1/2c is clear
from the definition of q(x). To prove the second equality, let h = b2xc. Then
h ≤ 2x < h+ 1, from which follows that

h

2
+

1

2
=
h+ 1

2
≤ x+ 1/2 <

h+ 2

2
=
h

2
+ 1.

From this inequality it follows that bx+1/2c = dh
2
e. This, with (5.23), implies

(5.24).

We define now ni(t) = b2xi(t)c. Simple properties of floor and ceiling
operators, together with the above lemma, allow us to remark that q(xi(t)) =⌈
ni(t)

2

⌉
and to derive from (5.22) that

b2xi(t+ 1)c = b2xi(t)c+ q(xi+1(t))− q(xi(t))
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and hence

ni(t+ 1) = ni(t) +

⌈
ni+1(t)

2

⌉
−
⌈
ni(t)

2

⌉
=

⌊
ni(t)

2

⌋
+

⌈
ni+1(t)

2

⌉
.

We have thus found an iterative system involving only the symbolic signals
ni(t):

ni(t+ 1) = g(ni(t), ni+1(t)) (5.25)

where

g(h, k) =

⌊
h

2

⌋
+

⌈
k

2

⌉
. (5.26)

The asymptotic analysis of (5.25) will then allow us to obtain information
about the asymptotics of xi(t) (since ni(t) = b2xi(t)c) up to quantization
errors equal to 1.

We now start the analysis of system (5.25). Define the following quan-
tities: m(t) = min1≤i≤N ni(t), M(t) = max1≤i≤N ni(t), D(t) = M(t) −m(t).
From the form of (5.25) one can easily remark that m(t) can not decrease
and M(t) can not increase. Hence D(t) is not increasing. A much stronger
result about the monotonicity of D(t) is the content of the following lemma.

Lemma 5.10 If D(t0) ≥ 2, there exists T ∈ N such that D(t0 +T ) < D(t0).

Proof: Let Im(t) = {j ∈ ZN s.t. nj(t) = m(t)}. The idea of the proof
will be to show that the set Im(t) eventually decreases if we are in the range
D(t) ≥ 2.

Notice first that, for h, k ∈ Z, g(h + 2, k + 2) = g(h, k) + 2. Hence, by
an appropriate translation of the initial condition, we can always restrict
ourselves to the case m(0) ∈ {0, 1}.

Case m(t0) = 0. Notice that

g(h, k) > 0 ∀h ≥ 0, k > 0, g(h, 0) > 0 ∀h ≥ 2 . (5.27)

This easily implies that Im(t) is not increasing. Now, since D(t0) ≥ 2, we
can find j0 ∈ Im(t0) and two integers U > 0 and W ≥ 0 such that

nj0−W−1(t0) > 1

nj0−v(t0) = 1 0 < v ≤ W

nj0+u(t0) = 0 0 ≤ u < U

nj0+U(t0) > 0.
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After W instants step, we then obtain,

nj0−W−1(t0 +W ) > 1

nj0−u(t0 +W ) = 0 W − U + 1 ≤ u ≤ W

nj0+W−U(t0 +W ) > 0.

The time after one 0 will then disappear

nj0−W−1(t0 +W + 1) > 0

nj0−u(t0 +W + 1) = 0 W − U + 2 ≤ u ≤ W

nj0+W−U−1(t0 +W + 1) > 0.

This implies that |Im(t0 +W + 1)| < |Im(t0)|.

Case m(t0) = 1 . Notice that

g(h, k) > 1 ∀h ≥ 2, k ≥ 1, g(1, k) > 1 ∀k ≥ 3 . (5.28)

This easily implies that Im(t) is again not increasing. Now, since D(t0) ≥ 2,
we can find j0 ∈ Im(t0) and an integer W ≥ 0 such that

nj0(t0) = 1

nj0+w(t0) = 2 1 ≤ w ≤ W

nj0+W+1(t0) > 2.

The evolution of the above configuration yields, after W instant steps

nj0(t0 +W ) = 1

nj0+1(t0 +W ) > 2.

The next step, we obtain nj0(t0 +W + 1) > 1. Therefore, |Im(t0 +W + 1)| <
|Im(t0)|.

In both cases we have proven that |Im(t)| strictly decreases in finite num-
ber of steps. A straightforward induction principle then implies that a finite
T ∈ N exists such that m(t0 + T ) > m(t0). This proves the result.

The interesting consequence of this lemma is the following result which
characterizes the asymptotic behavior of the variable ni.

Theorem 5.11 There exist T ∈ N and h ∈ Z such that, for all t > T ,
D(t) < 2 and, moreover, one of the following condition holds
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i) ni(t) = h, ∀i;

ii) {ni(t) i = 0, . . . N} = {h, h+ 1} and each ni(t) is constant in time;

iii) {ni(t) i = 0, . . . N} = {h, h + 1} and each ni(t) is periodic in time of
period N .

Proof: From Lemma 5.10, it follows that a finite T ∈ N can be found,
such that D(t) < 2 for all t > T . Once we reach his condition, there are
two possibilities: either the ni(t) are all equal or they differ by 1. In the first
case, the system remains constant (case i). In the second case, it follows from
the way g is defined that if the lowest state is odd, the evolution is constant
(case ii), while if the lowest one is even, the state evolution is a leftward shift
(case iii). This is periodic of period N (and possibly also of some divisor of
N).

We can now go back to the original system. The following result follows
directly from Theorem 5.11.

Corollary 5.12 For system (5.22), there exists T ∈ N such that

|xi(t)− xj(t)| ≤ 1 ∀ i, j ∀ t > T, (5.29)

and hence
d∞(P ) ≤ 1/2.

Proof: Immediate consequence of Theorem 5.11, considering the relation
ni(t) = b2xi(t)c.

Unfortunately an exact analysis of the dynamics of system (5.11), as we
did in the previous two examples, it is not feasible for general graphs. In the
following subsections we will try to introduce some auxiliary models in order
to provide some bounds on d∞ and some further considerations.

5.3.1 Bounded error model-Worst case analysis

In this section we undertake a worst case analysis which can be applied
general graphs. We start by observing that (5.11) can be rewritten in the
following way

x(t+ 1) = Px(t) + (P − I)(qd(x(t))− x(t)), (5.30)
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where qd(x(t))−x(t) is such that ‖qd(x(t))−x(t)‖∞ ≤ 1/2. In order to carry
out a worst-case analysis of (5.30), we introduce the following bounded error
model {

xw(t+ 1) = Pxw(t) + (I − P )e(t), xw(0) = x(0)
∆w(t) = Y xw(t)

(5.31)

where e(t) ∈ RN is such that ‖e(t)‖∞ ≤ 1/2 for all t ≥ 0 and where we
again Y = I − 1

N
11∗. Notice that in this case e(t) is no more a quantization

error, but instead represents an unknown bounded disturbance. Clearly,
when e(t) = q(x(t)) − x(t) it turns out that xw(t) = x(t) and ∆w(t) = ∆(t)
for all t ≥ 0.

We define now a performance index for (5.31), considering the worst
asymptotic disagreement, worst with respect to all the possible choices of
the time sequence of the vectors e(t). To be more precise, let us introduce
E∞ =

{
{e(·)}∞t=0 |‖e(t)‖∞ ≤

1
2
, ∀ t ≥ 0

}
, namely the set of all the sequences

of N -dimensional vectors having sup norm less than 1/2. Then, for the sys-
tem (5.31), we define

dw∞(P, xw(0)) = sup
E∞

lim sup
t→∞

1√
N
||∆w(t)||. (5.32)

Note that limt→∞ Y P
t = 0. This implies that the asymptotic behavior of

∆w(t) is independent of the initial condition xw(0) and hence this is the
case also for the quantity dw∞(P, xw(0)). Thus, from now on we will denote
dw∞(P, xw(0)) simply by dw∞(P ). As a preliminary remark, note that

d∞(P ) ≤ dw∞(P ). (5.33)

We start our analysis of dw∞(P ) by the following example.

Example 5.13 In this example we consider the hypercube graph. Precisely,
we consider the group Zn2 where 2n = N and the Cayley graph G (Zn2 , S),
where S = {e0, e1, . . . , en}, with e0 = [0, . . . , 0]∗ and ej the vector with all
elements equal to 0 except a 1 in position j if j 6= 0. Clearly |S| = n+ 1. We
assume that the matrix P has the following structure

Pij =

{
1

n+1
if i− j = eh ∃ h : 0 ≤ h ≤ n,

0 otherwise
(5.34)

for all i and j belonging to Zn2 . In other words we have that P = 1
n+1

A where
A is the adjacency matrix of the Cayley graph G (Zn2 , S). For the sake of the
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clarity we recall that, according to our convention, in the adjacency matrix
we consider also the presence of self-loops (see Appendix B). We have the
following result.

Theorem 5.14 Let P be as above. Then

dw∞(P ) =
n

2
=

log2N

2

where given a matrix M ∈ RN×N , ρ(M) denotes the spectral radius of M .

In order to prove the above Theorem we need of the following preliminary
result.

Lemma 5.15 Let P be as above. Then

∞∑
s=0

ρ(P s(I − P )) = n = log2N, (5.35)

where we recall that, according to definition (2.12), given a matrix M ∈
RN×N ρess(M) denotes the essential spectral radius of M .

Proof: The eigenvalues of P are λk = 1− 2k
n+1

k = 0 . . . n, with multiplicities

pk =
(
n
k

)
(see [43]). Then,

∞∑
s=0

ρ(P s(I − P )) =
∞∑
s=0

ρess(P
s)ρ(I − P ) =

∞∑
s=0

(1− 2

n+ 1
)s(2− 2

n+ 1
) = n,

We are able now to provide the proof of Theorem 5.14.

Proof: First we rewrite the expression of dw∞(P ). Since our P is sym-
metric, P is diagonalizable by an orthogonal matrix. We can write that
P =

∑N−1
h=0 λhqhq

∗
h where qh are orthonormal. These facts are true also for

P s(I − P ). Moreover we have that ρ (P s(I − P )) = ||P s(I − P )||.
Let

∆(f)
w (t) :=

t−1∑
s=0

P s(I − P )e(t− s− 1).
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Then

‖∆(f)
w (t)‖2 = ‖

t−1∑
s=0

P s(I − P )e(t− s− 1)‖2

= ‖
t−1∑
s=0

N−1∑
h=0

λsh(1− λh)qhq∗he(t− s− 1)‖2

= ‖
N−1∑
h=0

qh(1− λh)
t−1∑
s=0

λshq
∗
he(t− s− 1)‖2

=
N−1∑
h=0

[
(1− λh)

t−1∑
s=0

λshq
∗
he(t− s− 1)

]2

.

Hence, [dw∞(P )]2 = maxE∞ lim supt→∞
1
N
‖∆(f)

w (t)‖2. Now we start using com-
binatorial tools. Indeed the vertices of the hypercube, as well as the eigen-
values and eigenvectors of P , can be indexed by the subsets of {1 . . . , n} (see
[69]). With this indexing, for each I ⊆ {1 . . . n} the corresponding eigenvalue

is λI = 1 − 2|I|
n+1

and the eigenvector is the 2n−dimesional vector q(I), such

that its J−th component is equal to q
(I)
J = 2−n/2(−1)|I∩J |. Let T be any

positive integer and consider the sequence of vectors

e(0), e(1), . . . , e(t), . . .

such that J-th component of the vector e(t) is equal to 1
2
(−1)T−1−r(−1)|J |,

where r is the remainder in the euclidean division of t over T . Observe that
e(t+ T ) = e(t) for all t ≥ 0. Observe, moreover, that e(t) is an eigenvector
of P corresponding to the eigenvalue 1−n

1+n
for all t ≥ 0. Hence we have that

1

N
‖∆(f)

w (T )‖2 =

=
1

N

N−1∑
h=0

[
(1− λh)

T−1∑
s=0

λshq
∗
he(T − s− 1)

]2

=
1

2n

(1− 1− n
n+ 1

)
T−1∑
s=0

(
1− n
n+ 1

)s
2−

n
2

∑
J⊆{1,...,n}

(−1)|J |
1

2
(−1)s(−1)|J |

2
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=
1

4n

[
n

n+ 1

T−1∑
s=0

(
n− 1

n+ 1

)s
2n

]2

=
n2

(n+ 1)2

[
1−

(
n−1
n+1

)T
1− n−1

n+1

]2

=
n2

4

[
1−

(
n− 1

n+ 1

)T]2

.

Assume now that T is an even positive integer. By recalling that e(t+ T ) =
e(t) for all t ≥ 0, for t = kT where k ∈ N it turns out that

1

N
‖∆(f)

w (kT )‖2 =
n2

4

[
1−

(
n− 1

n+ 1

)T]2 k−1∑
u=0

(
1− n
n+ 1

)uT

=
n2

4

[
1−

(
n− 1

n+ 1

)T]2 [
1−

(
n−1
n+1

)kT
1−

(
n−1
n+1

)T
]2

==
n2

4

[
1−

(
n− 1

n+ 1

)kT]2

.

Letting k →∞ we obtain that, for the particular sequence considered

lim
k→∞

1

N
‖∆(f)

w (kT )‖2 =
n2

4
(5.36)

Therefore we have proved that

lim sup
t→∞

1

N
‖∆(f)

w (kT )‖2 ≥ n2

4

and hence [dw∞(P )]2 ≥ n2

4
. Now, Lemma 5.15 implies that [dw∞(P )]2 ≤ n2

4
, and

then the claim follows.

The above example shows immediately that there exists a discrepancy
between the simulative evidence on d∞ and the estimate dw∞. Indeed, while
d∞ seems to be uniformly bounded on N (see Figure 5.2), dw∞ → ∞ as
N →∞.
Nevertheless, in the literature of the quantized control, the bounded error
model is the only model which permits us to infer some theoretical analysis
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on (5.11) and thus to provide some bound on d∞. There is an another model,
the probabilistic model that we will propose in the next section, that seems
to be more in accordance with the experimental results. But the fact that
the probabilistic model seems to capture the main features of (5.11) comes
only from the experimental evidence: there is no theoretical justification
motivating this agreement. For this reason we proceed in the analysis of dw∞.
We start from the following result that provides a general bound for dw∞.

Proposition 5.16 Let P be a matrix satisfying Assumption 5.1. Then

‖PY ‖ < 1 (5.37)

and

dw∞(P ) ≤ 1

1− ‖PY ‖
. (5.38)

Proof: We have that

‖PY ‖ =
√
ρ ((PY )∗PY ).

Since PY = Y P and Y 2 = Y we can write that (PY )∗PY = P ∗PY . Notice
that the fact that P satisfies Assumption 5.1 implies both that (P ∗P )ii > 0
and GP ∗P is strongly connected. Therefore we can write that σ(P ∗P ) =
{1, λ1, . . . , λN−1}, where |λi| < 1, 1 ≤ i ≤ N−1. Observe that σ(P ∗PY ) =
{σ(P ∗P )− {1}} ∪ {0}. Hence ‖PY ‖ < 1.
Consider now ∆w(t). From standard algebraic tools we have that

∆w(t) = Y P tx(0) + Y
t−1∑
s=0

P s(I − P )e(t− s− 1)

= (PY )t∆(0) +
t−1∑
s=0

(PY )s(I − P )e(t− s− 1)

where in the last equality we have used again the facts that PY = Y P and
that Y k = Y for all k > 0. Now we have that

‖∆w(t)‖ = ‖(PY )t∆w(0) +
t−1∑
s=0

(PY )s(I − P )e(t− s− 1)‖

≤ ‖(PY )t‖ ‖∆w(0)‖+ ‖I − P‖
t−1∑
s=0

‖(PY )‖s‖e(t− s− 1)‖

= ‖(PY )t‖ ‖∆w(0)‖+
√
N

1− ‖PY ‖t

1− ‖PY ‖
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where in the last inequality we used the facts that ‖I−P‖ ≤ 2 and ‖e(t)‖ ≤√
N/2 for all t ≥ 0. By letting t→∞ we obtain (5.38).

Note that, if P is normal we have that ‖PY ‖ = ρess(P ) and hence (5.38)
becomes

dw∞(P ) ≤ 1

1− ρess(P )
.

However, when P is a normal matrix the bound on dw∞(P ) can be improved
as stated in the next proposition.

Proposition 5.17 If P is normal, then

dw∞(P ) ≤ 1

2

∞∑
s=0

ρ(P s(I − P )). (5.39)

Proof: Starting from the expression of ∆w(t) provided along the proof
of Proposition 5.16 we can write that

‖∆w(t)‖ ≤ ‖(PY )t∆w(0)‖+ ‖
t−1∑
s=0

(PY )s(I − P )e(t− s− 1)‖

≤ ‖(PY )t∆w(0)‖+

√
N

2
‖(PY )s(I − P )‖

Since P is normal we have that ‖(PY )s(I − P )‖ = ρ((PY )s(I − P )) =
ρ(P s(I − P )). By letting t→∞ in the last inequality, we obtain (5.39).

Remark 5.18 It is worth noting that, from the sub-multiplicative inequality
‖(PY )s(I−P )‖ ≤ ‖PY ‖s ‖I−P‖, it follows immediately that 1

2

∑∞
s=0 ρ(P s(I−

P )) ≤ 1
1−ρess(P )

which shows that the bound (5.38) is indeed an improvement

of the bound (5.39).

Example 5.19 (Complete graph) We recall that, in this case, P = 1
N
11∗.

Hence PY = 0. Thus we have that 1
1−‖PY ‖ = 1. This is an alternative way

to prove (5.21). However, since
(

1
N
11∗

)k
= 1

N
11∗ for all k > 0, it follows

immediately that 1
2

∑∞
s=0 ρ(P s(I − P )) = 1

2
and this represents a refinement

of (5.21).
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In general it is quite hard to evaluate (5.39). We provide two results which
permit us to approximate (5.39) under some mild assumptions. First a no-
tational definition. Given c ∈ C and r ∈ R such that r ≥ 0, we denote

Bc,r := {z ∈ C | ‖z − c‖ ≤ r} ,

namely the closed ball of complex numbers of radius r and centered in c.

Proposition 5.20 Let P be a normal matrix satisfying the Assumption 5.1.
Let R be such that 0 < R < 1 and σ(P ) ⊆ B1−R,R and let ρ̄ = ρess(P ) denote
the essential spectral radius of P . Then

∞∑
s=0

ρ(P s(I − P )) ≤ 1

1−R
+

√
8R

(1−R)(1− ρ̄)
. (5.40)

Proof: We want to upper bound ρ(P s(I − P )) = maxN−1
k=1 |λsk(1 − λk)|. In

order to do so we consider the function f : C→ R defined as f(z) = zs(1−z).
Let us consider the closed balls B1−R,R and B0,ρ̄. By Gershgorin’s Theorem
we have that σ(P ) ⊆ B1−R,R. By the definition of essential spectral radius
it holds that σ(P ) \ {1} ⊆ B0,ρ̄. Hence σ(P ) \ {1} ⊆ B0,ρ̄ ∩ B1−R,R. Let
A := B1−R,R ∩B0,ρ̄. Clearly

N−1
max
k=1
|λsk(1− λk)| ≤ max

z ∈A
|f(z)|.

Since f is an analytic function and A is a compact set, from the Maximum
Modulus Principle it follows that

N−1
max
k=1
|λsk(1− λk)| ≤ max

z ∈ ∂A
|f(z)|,

where ∂A denotes the boundary of A.
Consider now the curves γ : [0, 2π]→ C,

γ(t) = 1−R +Rejt,

and θ : [0, 2π]→ C,

θ(t) = ρ̄ejt,

which represent, respectively, the boundaries of B1−R,R and of B0,ρ̄. In the
following, since |f(z)| = |f(z∗)|, we will consider γ and θ only on the interval
[0, π].
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By calculating the intersection between γ and θ one can see that ∂A = γ̃ ∪ θ̃
where

γ̃ :=

{
z = zx + izy ∈ γ : zx ≤

1− 2R + ρ̄2

2(1−R)

}
and

θ̃ :=

{
z = zx + izy ∈ θ : zx ≥

1− 2R + ρ̄2

2(1−R)

}
We consider now |f(z)| on γ̃. By straightforward calculations one can show
that

|f(γ(t))|2 = 2R2(1− cos t) [1− 2R(1−R)(1− cos t)]s .

Now let x = R cos t + 1 − R. In order to analyze the behavior of |f(γ(t))|2
we introduce the following auxiliary function

F (x) = 2R(1− x) [1− 2(1−R)(1− x)]s .

A straightforward calculation shows that studying |f(z)|2 on γ̃ is equivalent

to study F on
[
1− 2R, 1−2R+ρ̄2

2(1−R)

]
. By taking the first derivative of F we

obtain

∂F

∂x
= 2R [1− 2(1−R)(1− x)]s−1 [−1 + 2(1−R)(s+ 1)(1− x)]

We have that ∂F
∂x

= 0 for x := x1 = 1− 1
2(1−R)

and x := x2 = 1− 1
2(1−R)(s+1)

.

Note that 1 − 1
2(1−R)

≤ 1 − 2R for all R > 0. Moreover note that F is

monotone increasing in [x1, x2] and monotone decreasing for [x2,+∞). Hence

F reached its maximum value inside the interval
[
1− 2R, 1−2R+ρ̄2

2(1−R)

]
on 1−2R

if x2 ≤ 1−2R, on x2 if 1−2R ≤ x2 ≤ 1−2R+ρ̄2

2(1−R)
, on 1−ρ̄2

2R(1−R)
if x2 ≥ 1−ρ̄2

2R(1−R)
. We

have that x2 ≤ 1− 2R ⇔ s ≤ (1−2R)2

4R(1−R)
, 1− 2R ≤ x2 ≤ 1−2R+ρ̄2

2(1−R)
⇔ (1−2R)2

4R(1−R)
<

s < ρ̄2

1−ρ̄2 , x2 ≥ 1−ρ̄2

2R(1−R)
⇔ s ≥ ρ̄2

1−ρ̄2 . Let s̄ = b (1−2R)2

4R(1−R)
c and s∗ = b ρ̄2

1−ρ̄2 c.
Therefore

max
1−2R≤x≤ 1−2R+ρ̄2

2(1−R)

F (x) =


4R2 (1− 2R)2s if s ≤ s̄
R

1−R
ss

(s+1)s+1 if s̄+ 1 ≤ s ≤ s∗

R
1−R ρ̄

2s (1− ρ̄2) if s ≥ s∗ + 1

Consider now |f(z)|2 on θ̃. By simple algebraic manipulations one can see
that

|f(θ(t))|2 = ρ̄2s
(
1 + ρ̄2 − 2ρ̄ cos t

)
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Note that |f(θ(t))|2 is monotone increasing for t ∈ [0, π] and hence it reaches

its maximum on θ̃ when cos t = 1−2R+ρ̄2

2(1−R)
Therefore we can conclude that

N−1
max
k=1
|λsk(1− λk)| ≤


2R |1− 2R|s if s ≤ s̄√

R
1−R

ss

(s+1)s+1 if s̄+ 1 ≤ s ≤ s∗√
R

1−R ρ̄
2s (1− ρ̄2) if s ≥ s∗ + 1.

Hence we can write

t−1∑
s=0

ρ(P s(I − P )) ≤
s̄∑
s=0

2R |1− 2R|s +
s∗∑

s=s̄+1

√
R

1−R
ss

(s+ 1)s+1
+

+
t−1∑

s=s∗+1

√
R

1−R
ρ̄2s (1− ρ̄2).

Notice now that
s̄∑
s=0

2R |1− 2R|s ≤ 2R

1− |1− 2R|

≤ 1

1−R
.

and that
t−1∑

s=s∗+1

√
R

1−R
ρ̄2s (1− ρ̄2) ≤

√
R

1−R
√

1− ρ̄2

∞∑
s=0

ρ̄s

=

√
R(1− ρ̄2)

(1−R)(1− ρ̄)2

≤

√
2R

(1−R)(1− ρ̄)
.

Notice finally that, since
∑m

i=1

√
1
i+1
≤ 2
√
m+ 1, we can argue that

s∗∑
s=s̄+1

√
R

1−R
ss

(s+ 1)s+1
≤
√

R

1−R

s∗∑
s=1

√
1

2

√
1

1 + s

≤

√
4R

2(1−R)(1− ρ̄2)

≤

√
2R

(1−R)(1− ρ̄)
.
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Putting together these three inequalities we obtain (5.40).

Example 5.21 (Direct circuit) Consider the direct circuit graph intro-
duced in Example 5.8 and consider the evolution law given by (5.22). Note
that in this case P is the circulant matrix

P =


1
2

1
2

0 0 · · · 0 0 0
0 1

2
1
2

0 · · · 0 0 0
0 0 1

2
1
2
· · · 0 0 0

...
...

...
... · · · ...

...
...

1
2

0 0 0 · · · 0 0 1
2

 .

We have theoretically proved (see Corollary 5.12) that d∞ ≤ 1
2
. Instead we

could not evaluate dw∞ in this case. Consider the bound introduced in Propo-
sition 5.16. Since ρess = 1− π2

2
1
N2 + o

(
1
N2

)
(see [35]) and since each circulant

matrix is a normal matrix we have that 1
1−‖PY ‖ = 1

1−ρess(P )
= Θ (N2). Ob-

serve now that all the eigenvalues of P are inside the ball B 1
2
, 1
2
. Hence we

obtain that 1
1−R +

√
8R

(1−R)(1−ρ̄)
= Θ(N). This means that the bound (5.40)

improves the bound proposed in (5.38). Moreover, by numerical experiments
one can see that 1

2

∑∞
s=0 ρ(P s(I − P )) = Θ(N) meaning, that for N → ∞,

(5.40) behaves as (5.39).

If P is symmetric we can provide a stronger result.

Proposition 5.22 Let P be a symmetric stochastic matrix satisfying As-
sumption 5.1. Let R be such that 0 < R < 1 and σ(P ) ⊆ B1−R,R and let
ρ̄ = ρess(P ) denote the essential spectral radius of P . Then,

+∞∑
s=0

ρ (P s(I − P )) ≤ 3

2
+

1

1−R
+

1

2
log

(
1

1− ρ̄

)
. (5.41)

Proof: Assume that σ(P ) = {λ0 = 1, λ1, . . . , λN−1}. Note that σ(P )\{1} ⊆
[1−2R, ρ̄]. We want to upper bound ρ(P s(I−P )) = maxN−1

k=1 |λsk(1−λk)|. To
do this, consider the function f(x) = |xs(1− x)|. It is continuous in [−1, 1],
positive and decreasing in [−1, 0], it vanishes in x = 0 and in x = 1 and has
a local maximum in x = xM = s

1+s
, with f(xM) = ( s

1+s
)s( 1

1+s
). We need to

evaluate maxx∈[1−2R,ρ̄] f(x).

First observe that there exists s̄, only depending on the value 1 − 2R,
such that for all s > s̄ we have f(1− 2R) < ( s

1+s
)s( 1

1+s
) and then the global
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maximum of f(x) is assumed at x = xM if xM ≤ ρ̄. Since xM tends to 1 as
s goes to infinity, it happens that, when s > ρ̄

1−ρ̄ , xM(s) > ρ̄. In conclusion
we have that

max
x∈[1−2R,ρ̄]

f(x) =


2R|1− 2R|s, if 0 ≤ s ≤ s̄;
( s

1+s
)s( 1

1+s
), if s̄ < s ≤ s∗;

ρ̄s(1− ρ̄), if s∗ < s <∞.

where s∗ := b ρ̄
1−ρ̄c. Hence we can write

t−1∑
s=0

ρ(P s(I − P )) ≤
s̄∑
s=0

2R|1− 2R|s +
s∗∑

s=s̄+1

(
s

1 + s

)s(
1

1 + s

)
+

+
t−1∑

s=s∗+1

ρ̄s(1− ρ̄).

Notice now that
s̄∑
s=0

2R|1− 2R|s ≤ 1

1−R
,

and that
t−1∑

s=s∗+1

ρ̄s(1− ρ̄) = ρ̄s
∗+1 − ρ̄t ≤ 1.

Notice finally that, since
∑m

i=1 1/i ≤ 1 + lnm we can argue that

s∗∑
s=s̄+1

(
s

1 + s

)s(
1

1 + s

)
≤

s∗∑
s=0

(
1

2

)(
1

1 + s

)
≤ 1

2
(1 + log(s∗ + 1))

≤ 1

2
+

1

2
log

(
ρ̄

1− ρ̄
+ 1

)
=

1

2
+

1

2
log

(
1

1− ρ̄

)
.

Putting together these three inequalities we obtain (5.41).
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Example 5.23 (Undirect circuit) In this example we consider the circu-
lant matrix

P =


1
3

1
3

0 0 · · · 0 0 1
3

1
3

1
3

1
3

0 · · · 0 0 0
0 1

3
1
3

1
3
· · · 0 0 0

...
...

...
... · · · ...

...
...

1
3

0 0 0 · · · 0 1
3

1
3

 .

By simulations one can see that d∞ seems to be uniformly bounded on N .
Also in this case we are not able to evaluate dw∞. By considering the bound
(5.38), since ρess(P ) ∼= 1 − 4

3
π2

N2 (see [35]) we obtain that 1
1−‖PY ‖ = 1

1−ρess =

Θ(N2). Observe that all the eigenvalues of P are greater than −1
3
. Hence it

results, letting R = 2/3, that 3
2

+ 1
1−R + 1

2
log
(

1
1−ρ̄

)
= Θ(logN). Moreover,

numerically it is possible to observe that also 1
2

∑∞
s=0 ρ(P s(I−P )) grows log-

arithmically, meaning that asymptotically in N , we have that (5.41) behaves
as (5.39).

Remark 5.24 It is worth noting that this improvement is more general.
Consider a sequence of symmetric Cayley matrices P , having the elements
on the diagonal uniformly lower bounded on N and supported on Cayley
graphs having in-degree uniformly upper bounded on N . Then the above
arguments can be applied to argue that, for this class of graphs, we can not
obtain from (5.39) a bound for dw(P ) stronger than a logarithmic dependence
on N . In the next example we will show that a logarithmic bound can be
proved to be tight, that is dw(P ) = Θ(logN).

Example 5.25 (Hypercube) Consider the hypercube graph and the ma-
trix P compatible with the hypercube graph as defined in Example 5.13.
We have already seen, that, by simulations, d∞(P ) seems to be a uniformly
bounded quantity on N , while we have analytically proved that dw∞ = log2 N

2

(see Example 5.13). It is possible to see that also 1
2

∑∞
s=0 ρ(P s(I − P )) =

log2 N
2

. This fact is stated in Lemma 5.15. Moreover, since the eigenval-
ues of P are 1 − 2k

n+1
for k = 0, . . . , n we have that all the eigenvalues

of P different from 1 are inside the interval
[

1−n
n+1

, n−1
n+1

]
. This implies that

3
2

+ 1
1−R + 1

2
log
(

1
1−ρ̄

)
= Θ(log2(N)).
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5.3.2 Probabilistic model

In the previous section we have shown that the bounded error model does
not seem to really capture the behavior of the quantized model. In par-
ticular, the upper bound to the performance we have found, seems to be
quite conservative. In this section we undertake a probabilistic approach,
modeling the quantization error as a random variable. We will carry on a
classical mean square analysis and we will show that it gets quite close to
simulations of the real quantized model. This suggests that the probabilistic
approach is more appropriate to describe quantization errors even though
we have no theoretical evidence of this fact. Therefore we have to point out
that the probabilistic model, differently from the worst case analysis, does
not provide any bound to the performance.

For i ∈ V and t ∈ N, let ni(t) be random variables of zero mean and
variance σ2, which have their supports inside [−1/2, 1/2] and are uncorrelated
and identically distributed in both i and t, i.e., E [ni(t)nj(τ)] = 0 if i 6= j
or t 6= τ . Define n(t) as the random vector whose components are ni(t) and
consider the stochastic model{

xr(t+ 1) = Pxr(t) + (I − P )n(t), xr(0) = x(0)
∆r(t) = Y xr(t)

(5.42)

where Y = I − 1
N
11∗. We define

dr∞(P, xr(0)) = lim sup
t→∞

√
1

N
E[‖∆r(t)‖2].

Since limt→∞ Y P
t = 0 also in this case, we have that dr∞(P, xr(0)) is inde-

pendent of the initial condition xr(0). Hence, in the sequel we will denote
dr∞(P, xr(0)) with the symbol dr∞(P ). It is worth to point out that this index,
as the previously defined dw(P ), captures the asymptotic error induced by
quantization, but no information about diverse issues like speed of conver-
gence or finite time behavior.
We start our analysis of the probabilistic model with the following result.

Theorem 5.26 Let P be a matrix satisfying Assumption 5.1. Then

[dr∞(P )]2 =
σ2

N
tr
[
(I − P )(I − P̃ P̃ ∗)−1(I − P )∗

]
. (5.43)

where P̃ = PY . In particular, if P is normal, and σ(P ) = {1, λ1, . . . , λN−1}
denotes the spectrum of P , we have that

[dr∞(P )]2 =
σ2

N

N−1∑
i=1

|1− λi|2

1− |λi|2
. (5.44)
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Proof: Define Q(t) = E[∆r(t)∆r(t)
∗], and remark that 1

N
E[||∆r(t)||2] =

1
N

trQ(t). Using the facts that Y k = Y for all positive integer k and Y (P −
I) = P − I, it is easy to see that ∆r satisfies the following recursive equation

∆r(t+ 1) = P̃∆r(t) + (P − I)n(t).

Now, thanks to the hypotheses on ni(t),

Q(t+ 1) = E[∆r(t+ 1)∆r(t+ 1)∗]

= E[P̃∆r(t)∆r(t)
∗P̃ ∗] + (I − P )E[n(t)n(t)∗](I − P )∗

= P̃ Q(t) P̃ ∗ + σ2(I − P )(I − P )∗,

and by a simple recursion

Q(t) = P̃ tQ(0) (P̃ ∗)t + σ2

t−1∑
s=0

P̃ s(I − P )(I − P )∗(P̃ ∗)s.

Recall now from the proof of Proposition 5.16 that, since P satisfies Assump-
tion 1, then ρess(P

∗P ) < 1. Moreover we have that ρ(P̃ ) = ρess(P ) < 1 and
ρ(P̃ ∗P̃ ) = ρess(P

∗P ) < 1. Using the linearity and properties of the trace,

trQ(t) = tr
[
P̃ tQ(0) (P̃ ∗)t

]
+ tr

[
σ2

t−1∑
s=0

(PP ∗ − (P + P ∗) + I)(P̃ P̃ ∗)s

]
= tr

[
P̃ tQ(0) (P̃ ∗)t

]
+

+ σ2tr
[
(PP ∗ − (P + P ∗) + I)(I − (P̃ P̃ ∗)t)(I − P̃ P̃ ∗)−1

]
and hence

lim
t→∞

trQ(t) = σ2tr
[
(PP ∗ − (P + P ∗) + I)(I − P̃ P̃ ∗)−1

]
.

If moreover P is normal, we can find a unitary matrix O of eigenvectors and
a diagonal matrix of eigenvalues Λ, such that P = OΛO∗. This implies

tr
[
(PP ∗ − (P + P ∗) + I)(1− P̃ P̃ ∗)−1

]
=

N−1∑
i=1

|1− λi|2

1− |λi|2
.



5.3. Time Invariant case- Deterministic quantizers 111

From now on we restrict to the case in which P is normal. Note that the
expression for the mean square error of formula (5.44) is the product of two
terms, [dr∞(P )]2 = σ2Φ(P ) where

Φ(P ) :=
1

N

N−1∑
i=1

|1− λi|2

1− |λi|2
,

is a functional3 of the matrix P , depending only on its spectral structure.

As in the previous section, we are mainly interested in sequences of ma-
trices of increasing size. We will see that the above functional scales well
with N in the following examples.

Example 5.27 (Complete graph) In this case it is easy to compute Φ(P ).
We have that Φ(P ) = N−1

N
.

Example 5.28 (Direct graph) Consider the matrix P defines in Example
5.21. In this case Φ(P ) can be exactly computed. We have

Φ(PN) =
1

N

N−1∑
h=1

(1− λh)(1− λ∗h)
1− λhλ∗h

=
1

N

N−1∑
h=1

(1− (1/2 + 1/2 ei
2π
N
h))(1− (1/2 + 1/2 e−i

2π
N
h))

1− (1/2 + 1/2 ei
2π
N
h)(1/2 + 1/2 e−i

2π
N
h)

=
1

N

N−1∑
h=1

1/2(1− cos(2π
N
h))

1/2(1− cos(2π
N
h))

=
N − 1

N
.

Example 5.29 (Undirected graph) Consider the undirected undirected
circuit graph and the matrix P introduced in Example 5.23. The eigenvalues
of P are

λh =
1

3
+

2

3
cos (

2π

N
h) h = 0, . . . , N − 1,

and we have

Φ(PN) =
1

N

N−1∑
h=1

1− λh
1 + λh

=
1

N

N−1∑
h=1

(1− cos (2π
N
h))

2 + cos (2π
N
h)

.

3Remarkably, the functional Φ(P ) also arises, with a rather different meaning, in [47],
as a cost functional describing the transient of the diffusion methods for average consensus
over graphs with ideal communication.



112 5. Quantized Consensus: Time-Invariant case

In this case it is difficult to work out the computation explicitly. However,
it is possible to compute the limit for N →∞, since the summation can be

interpreted as Riemann sum relative to the function f(x) =
1− cos(x)

2 + cos(x)
. We

thus obtain

lim
N→∞

Φ(PN) =
1

2π

∫ 2π

0

1− cos(x)

2 + cos(x)
dx =

√
3− 1. (5.45)

Example 5.30 (Hypercube) Consider the hypercube graph and the ma-
trix P defined in (5.34). We have that

Φ(P ) =
1

N

N−1∑
i=1

|1− λi|2

1− |λi|2

=
1

2n

n∑
k=1

(
2k
n+1

)2

1−
(
n+1−2k
n+1

)2

(
n

k

)

=
1

2n

n∑
k=1

k

n+ 1− k

(
n

k

)
=

1

2n

n∑
k=1

(
n

k − 1

)
=

2n − 1

2n

=
N − 1

N
.

Then

Φ(P ) =
N − 1

N
.

While in the previous section the hypercube provided the negative ex-
ample for the worst case behavior, the probabilistic analysis is in agreement
with the evidence showed in the simulations. This highlights the differences
between the bounded error model and the probabilistic model: with the same
assumptions on P the two worst-case analysis and the mean-square analysis
give different results.

Example 5.31 (Random geometric graph) For the random geometric
graph, as defined in the introduction, we have no explicit formula for the
eigenvalues. However, dr∞ can be numerically evaluated, and compared with
d∞. The results are shown in Figure 5.5 where dr∞ seems to describe well the
behavior of d∞.
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Figure 5.5: Comparison of dr∞ and d∞ for random geometric graphs, averaged
over 25 realizations both of the initial condition and of the graphs, for each
N . The plot assumes σ2 = 1/12.

In all the above examples we have that Φ(P ) scales well with N . We pro-
vide now some general conditions ensuring that the functional P for a given
sequence of matrices of increasing size is uniformly bounded on N .
We start by observing that, if ρess(P ) ≤ B < 1 then Φ(P ) ≤ N−1

N
4

1−B2 . This
implies that, given a sequence of matrices of increasing size, if the essen-
tial spectral radius of the sequence is uniformly bounded away from 1 then
the functional cost Φ is uniformly bounded in N . This fact is true also for
dw∞ as can be easily seen by recalling the expression of the bound provided
by Proposition 5.16. The interesting fact is that the performance index dr∞
can exhibit the same behavior even when the essential spectral radius is not
bounded away from 1 as the following proposition shows.

Proposition 5.32 Let Bc,r ⊂ C denote the closed ball of complex numbers
with center the point c and radius r. If there exists 0 < R < 1 such that
σ(P ) ⊆ B1−R,R then

Φ(P ) ≤ R

1−R
. (5.46)

Proof: The inequality 0 < R < 1 is clear from Assumption 5.1. It means
that the spectrum is contained in a disc of radius R internally tangent in 1
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to the unit disc of the complex plane. Then, we need to prove (5.46). For all
i, the eigenvalue λi ∈ B1−R,R, so

λi = (1− r) + r eiθ

with θ ∈ [0, 2π[ and 0 ≤ r ≤ R. Moreover, if i ≥ 1, then θ > 0. Hence,

|1− λi|2

1− |λi|2
=

|r − reiθ|2

1− |1− r + r eiθ|2

=
r2|1− eiθ|2

1− (1− r)2 − 2r(1− r) cos θ − r2

=
r22(1− cos θ)

2r(1− r)(1− cos θ)

=
r

1− r

≤ R

1−R
∀ i.

This yields the result.

Note that the above bound depends only on R and does not depend on
the essential spectral radius of the matrix P , while the worst case bounds
provided in Proposition 5.40 and in Proposition 5.22 did. This is why (5.46)
is bounded in all the cases we considered.

Many of them are covered by the following corollary.

Corollary 5.33 Let p = mini Pii and R as above. Then, R ≤ 1− p, and

Φ(P ) ≤ 1− p
p

. (5.47)

Proof: By Gershgorin theorem, σ(P ) ⊆
⋃
iBPii,1−Pii ⊆ Bp,1−p.

The above result has the following interpretation. If in a family of ma-
trices PN we have that mini (PN)ii is lower bounded uniformly in N , then
(5.47) gives a finite bound, uniform in N , on the asymptotic displacement.
This is a useful hint to construct sequences of matrices whose performance
scales well with N . It would be enough to prescribe that the agents assign a
minimum weight to their own values.
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5.4 Time Invariant case- Probabilistic quan-

tizers

Consider (5.12), i.e., the updating rule using the probabilistic quantizer. In
this section we will show that a probabilistic model, similar to the one used in
Section 5.3.2 for the deterministic quantizer-model, is a theoretically based
way to analyze (5.12).

We start our analysis from the following assumption on the initial condi-
tion x(0).

Assumption 5.34 The initial condition x(0) is a random variable such that
E[x(0)] = 0 and E [x(0)x∗(0)] = σ2

0I for some σ2
0 > 0.

Observe now that (5.12) can be rewritten in the following way

x(t+ 1) = Px(t) + (P − I) (qp(x(t))− x(t)) . (5.48)

We introduce the variables

y(t) :=

(
I − 1

N
11∗

)
x(t) = x(t)−

(
1

N
1∗x(t)

)
1 = x(t)−

(
1

N
1∗x(0)

)
1

and
w(t) = q(x(t))− x(t).

Note that the variable y(t) = [y1(t), . . . , yN(t)]∗ represents the distance from
the initial average and the variable w(t) = [w1(t), . . . , wN(t)]∗ represents the
quantization error. Moreover note that 1∗y(t) = 0 for all t ≥ 0. From (5.48)
have that(
I − 1

N
11∗

)
x(t+ 1) =

=

(
I − 1

N
11∗

)
Px(t) +

(
I − 1

N
11∗

)
(P − I) (qp(x(t))− x(t)) .

Since
(
I − 1

N
11∗

)
P = P

(
I − 1

N
11∗

)
and

(
I − 1

N
11∗

)
(P − I) = P − I we

obtain the following recursive equation

y(t+ 1) = Py(t) + (P − I)w(t). (5.49)

In order to perform an asymptotic analysis of (5.49) we introduce the follow-
ing matrices. Let

Σyy(t) := E [y(t)y∗(t)] ,
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Σww(t) := E [w(t)w∗(t)] ,

and
Σyw(t) := E [y(t)w∗(t)] .

Equation (5.49) leads to the following recursive equation in terms of the
above matrices

Σyy(t+ 1) = PΣyy(t)P
∗ + PΣyw(t)(P − I)∗ + (P − I)Σ∗ywP

∗+

+ (P − I) Σww(t) (P − I)∗ . (5.50)

Notice that, since x(0) is a random variable satisfying Assumption 5.34, one
can show that

Σyy(0) = σ2
0 (I − 1/N 11∗) . (5.51)

The following proposition states some remarkable properties of the variables
y and w.

Proposition 5.35 Consider the variables y(t) and w(t) above defined. Then

E [w(t)] = 0 and E [w(t)w∗(t)] = diag
{
σ2

1(t), . . . , σ2
N(t)

}
(5.52)

where σ2
i (t) := E [w2

i (t)] is such that σ2
i (t) ≤ 1/4 for all 1 ≤ i ≤ N and for

all t ≥ 0.
Moreover

Σyw(t) = 0, (5.53)

for all t ≥ 0.

Proof: Observe that

E [wi(t)] = E [E [qp(xi(t))− xi(t)|xi(t)]]
= E [E [qp(xi(t))|xi(t)]− xi(t)]
= E [xi(t)− xi(t)]
= 0, (5.54)

and that, for i 6= j,

E [wi(t)wj(t)] = E [wi(t)(q(xj(t))− xj(t))]
= E [wi(t)E [q(xj(t))− xj(t)|xi(t), xj(t)]]
= E [wi(t)E [q(xj(t))− xj(t)|xj(t)]]
= E [wi(t) (E [q(xj(t))|xj(t)]− xj(t))]
= E [wi(t) (xj(t)− xj(t))]
= 0 (5.55)
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where, both in (5.54) and in (5.55), we have used the fact that by Lemma
5.3, E [q(xj(t))|xj(t)] = xj(t). If i = j we have that

E
[
w2
i (t)
]

= E
[
(q(xi(t))− xi(t))2]

= E
[
E
[
(q(xi(t))− xi(t))2 |xi(t)

]]
≤ E

[
1

4

]
=

1

4
(5.56)

where again by Lemma 5.3, we used the fact E
[
(q(xi(t))− xi(t))2 |xi(t)

]
≤

1/4. (5.54), (5.55) and (5.56) establish the validity of (5.52).
Observe now that, given any pair of indexes i, j it holds also that

E [xi(t)wj(t)] = E [xi(t)(q(xj(t))− xj(t))]
= E [xi(t)E [q(xj(t))− xj(t)|xi(t), xj(t)]]
= E [xi(t)E [q(xj(t))− xj(t)|xj(t)]]
= E [xi(t) (E [q(xj(t))|xj(t)]− xj(t))]
= E [xi(t) (xj(t)− xj(t))]
= 0

It is easy to see that the fact that E [xi(t)wj(t)] = 0 implies also that
E [yi(t)wj(t)] = 0 and hence that Σyw(t) = 0 for all t ≥ 0.

From (5.53), it follows that (5.50) can be rewritten as

Σyy(t+ 1) = PΣyy(t)P
∗ + (P − I) Σww(t) (P − I)∗ . (5.57)

In order to evaluate the asymptotic distance from the initial average, a suit-
able functional cost is

dp∞(P ) := lim sup
t→∞

√
1

N
tr {Σyy(t)}. (5.58)

Note that dp∞(P ) has a similar meaning to dr∞(P ) defined in the previous
Section, when we introduced the probabilistic model to study the evolution
of (5.11). By straightforward calculations one can show that,

dp∞(P ) = lim
t→∞

(
P tΣyy(0) (P ∗)t +

t−1∑
i=0

P t−1−iΣww(i) (P ∗)t−1−i

)

= lim
t→∞

(
t−1∑
i=0

P t−1−iΣww(i) (P ∗)t−1−i

)
, (5.59)
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where the last equality derives from the fact that

lim
t→∞

(
P tΣyy(0) (P ∗)t

)
=

1

N
11∗Σyy(0)11∗

=
1

N
11∗

(
I − 1

N
11∗

)
11∗

= 0.

In general, inferring some theoretical analysis on (5.59) is quite hard. We try
now to simplify the problem. Let us introduce the matrix

W̄ =
1

4
I,

and the auxiliary system

Σ̄yy(t+ 1) = P Σ̄yy(t)P
∗ + (P − I)W̄ (P − I)∗

= P Σ̄yy(t)P
∗ +

1

4
(P − I)(P − I)∗. (5.60)

where Σ̄yy(0) = Σyy(0). Moreover let

d̄p∞(P ) := lim sup
t→∞

√
1

N
tr
{

Σ̄yy(t)
}
.

We have the following proposition.

Proposition 5.36 Let dp∞(P ) and d̄p∞(P ) be as previously defined. Then

dp∞(P ) ≤ d̄p∞(P ).

Proof: In order to prove the statement of the Theorem we prove that

Σ̄(t) ≥ Σ(t) (5.61)

for all t ≥ 0, where the inequality is meant in the matricial sense, namely
Σ̄(t)− Σ(t) ≥ 0. We prove (5.61) by induction on t.
Let t = 0, then (5.61) is trivially true since Σ̄yy(0) = Σyy(0). Assume now
that (5.61) is verified for a generic t and consider t+ 1. We have that

Σ̄(t+ 1)− Σ(t+ 1) =

= P Σ̄(t)P ∗ + (P − I)W̄ (P − I)∗ − (PΣ(t)P ∗ + (P − I)W (t)(P − I)∗)

= P
(
Σ̄(t)− Σ(t)

)
P ∗ + (P − I)

(
W̄ −W (t)

)
(P − I)∗ (5.62)
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Since, by inductive hypothesis we have that Σ̄(t) − Σ(t) ≥ 0 and since
W̄ −W (t) ≥ 0 for all t, it follows from (5.62) that also Σ̄(t+1)−Σ(t+1) ≥ 0
holds true.

Now note that, from (5.60), by simple algebraic tools one can show that

[
d̄p∞(P )

]2
=

1

4N
tr

{
lim
t→∞

t−1∑
i=0

P i(P − I)(P − I)∗(P ∗)i

}
=

1

4N
tr
{

(P − I)(I − P̃ P̃ )(−1)(P − I)∗
}

where P̃ = PY with Y = I − 1
N
11∗. Note that, if in (5.43) σ2 = 1

4
then

d̄p∞(P ) = dr∞(P ). Moreover, if P is normal, also d̄p∞ can be expressed by
(5.44). These observations imply that all the considerations and the results
stated in Example 5.28, in Example 5.29, in Example 5.30, in Example 5.31,
in Lemma 5.32 and in Corollary 5.33 hold true also for the Equation (5.60).
In particular this shows that d̄p∞ is uniformly bounded on N for many inter-
esting families of graphs of increasing size and that asymptotically reaches a
value less than 1

4
.

Remark 5.37 As pointed out in Remark 5.6, the authors in [8] proposed
the following updating scheme

x(t+ 1) = Pqp(x(t)). (5.63)

They proved the following theorem

Theorem 5.38 Consider (5.63). Then, almost surely, it holds that

lim
t→∞

x(t) = c1

for some integer c.

Note that the scheme (5.63) in general do not preserve the initial average.
In order to quantify the displacement from the initial average, the authors
in [9] introduced the following variable ỹ(t) := qp(x(t))− (1/N1∗x(0))1 and
the following functional cost

J̃ := lim sup
t→∞

√
1

N
tr {E [ỹ(t)ỹ(t)∗]}.

Note that the meaning of the variables ỹ(t) and J̃ is very close to the meaning
of the variable y(t) and J , respectively. The following result, stated in [9],
characterizes J̃ .
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Theorem 5.39 Let ỹ(t) and J̃ as above defined. Then

lim
N→∞

J̃ ≤ 1

2

1

1− ρess(P )
. (5.64)

Consider now the sequence of circulant matrices PN ∈ RN×N defined by

PN =


1
3

1
3

0 0 · · · 0 0 1
3

1
3

1
3

1
3

0 · · · 0 0 0
0 1

3
1
3

1
3
· · · 0 0 0

...
...

...
... · · · ...

...
...

1
3

0 0 0 · · · 0 1
3

1
3

 . (5.65)

For this sequence of symmetric stochastic matrices we have that (see Section
3.3.1)

ρess(PN) =
1

3
+

2

3
cos

(
2π

N

)
.

Hence, for N →∞ we have that

ρess(PN) = 1− 4

3

π2

N2
+ o

(
1

N2

)
implying that

lim
N→∞

1

2

1

1− ρess(PN)
= +∞.

Hence, even if this strategy ensures, that, almost surely, the consensus is
reached, the distance from the average of the initial conditions could increase
drastically for those consensus matrices P , whose essential spectral radius
tends to 1.

Remark 5.40 For the sake of the completeness we briefly consider again
the laws

x(t+ 1) = Pqd(x(t)) (5.66)

and
x(t+ 1) = diag {P}x(t) + (P − diag {P}) x̂(t) (5.67)

introduced in Remark 5.5. Besides the fact that these strategies do not
preserve the average of the state, the authors in [33], supported by several
simulations, stated that (5.66) and (5.67) exhibit also poor performance in
terms of reaching a consensus. In particular for matrices possessing symme-
tries, as (5.65), they asymptotically lead the overall system to periodic orbits
whose amplitude seems to be increasing as N →∞.
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5.4.1 An alternative solution to the consensus problem

Consider (5.12), i.e.,

x(t+ 1) = x(t) + (P − I)qp(x(t)), (5.68)

and (5.63), i.e.,
x(t+ 1) = Pqp(x(t)). (5.69)

Since (5.69) uses only quantized information we refer to it as globally quan-
tized, while since in (5.68) the systems use also perfect information related
their own state we refer to it as partially quantized.

We have seen in Remark 5.37 that the distance from the average of the
initial condition of the consensus point toward which the globally quantized
strategy leads the systems could be not negligible. On the other hand the
partially quantized strategy does not assure a consensus in a strict sense. If,
depending on the application, one can not relax the convergence requirement
we could suggest the following heuristic solution to the consensus problem,
which combines the positive features of both strategies

x(t+ 1) = Pqp(x(t)) + ε(t)(x(t)− qp(x(t))),

where ε(t), t ≥ 0, is a nonnegative sequence such that ε(t) ≤ 1, ∀ t ≥ 0 and
limt→∞ ε(t) = 0.

An example, could be the case in which, given T ∈ N, ε(t) = 1 for t ≤ T
and ε(t) = 0 for t > T . In other words, the overall system uses as updating
rule (5.68), i.e., the partially quantized strategy, for t ≤ T , and (5.69), i.e.,
the globally quantized strategy, for t > T . It is clear that this combined
strategy reaches almost surely the consensus, and the deviation from the
initial average will be smaller than using only (5.69).

5.5 Conclusions

In this chapter we studied the effects of a uniform quantization (both deter-
ministic and probabilistic) on the average consensus problem, and, starting
from the standard average consensus algorithm, we proposed a simple and
effective adaptation which is able to preserve the average of states and to
drive the system reasonably near to the consensus.

An exact analysis of this adaptation is, in general, very hard and we have
been able to perform it only in one special case. The main features of this
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new law have been investigated by a worst case analysis and by a probabilistic
analysis. A special attention has been given to the scalability in N of the
performance, which is a crucial issue for applications in which the number of
agents is huge. In this direction we obtained several favorable results, which
we applied to sequences of graphs with symmetries.

A potential future development is be the extension to random geomet-
ric graphs of the analysis we performed on Cayley examples. Moreover an
interesting question remain open: why and in which sense the probabilistic
analysis seems to be closer to experimental results also when the information
is quantized by means of deterministic quantizers.



Chapter 6

Quantized Consensus: Gossip
Algorithms

6.1 Introduction

In the previous chapter we have studied the average consensus algorithm,
when the consensus matrix P is time-invariant, by assuming that the com-
munication network is constituted of only digital links and hence the infor-
mation exchanged between the systems is quantized. Also in this chapter,
we assume that the systems exchange information through digital channels
but, differently from the previous chapter, we consider the case in which the
consensus matrix is time-varying. Precisely, the main goal of this chapter is
to analyze the effects of the quantization on the symmetric gossip algorithm
described in Section 4.5.

Similarly to the previous chapter, we will introduce two particular strate-
gies, the partially quantized strategy and the globally quantized strategy, de-
pending on whether the systems use exact information regarding their own
state, or not, to update their states. We will analyze these strategies both
via the deterministic quantizer and via the probabilistic quantizer. We will
show that the globally quantized strategy, via both the deterministic quantizer
and the probabilistic quantizer, ensures that, almost surely, the consensus is
reached. The drawback of this strategy is that it does not preserve the av-
erage of the initial conditions. On the other hand, the partially quantized
strategy maintains the initial average at each iteration of the algorithm, but
does not guarantee that the consensus is reached in general. However, we
will see that the partially quantized drives asymptotically all the states very
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close to the initial average (we will quantify how close).

The chapter is organized as follows. In Section 6.2 we formulate the
problem. In particular we introduce the partially quantized strategy and the
globally quantized strategy. In section 6.3 and in Section 6.4, we analyze
these two strategies assuming, respectively, that the systems quantize the in-
formation by means of deterministic quantizers and by means of probabilistic
quantizers. Finally in Section 6.5 we gather out our conclusions.

6.2 Quantized Symmetric Gossip Algorithms

For the sake of the clarity, we start by briefly reviewing the symmetric gossip
consensus algorithm as described in Section 4.5, where the systems commu-
nicate each other the exact value of their states. Assume we are given an
undirected graph G = (V, E). At each time step, one edge (i, j) is randomly
selected in E with probability W (i,j) such that

∑
(i,j)∈EW

(i,j) = 1. The two
agents connected by that edge average their states according to

xi(t+ 1) =
1

2
xi(t) +

1

2
xj(t)

xj(t+ 1) =
1

2
xj(t) +

1

2
xi(t) (6.1)

and

xh(t+ 1) = xh(t) (6.2)

if h 6= i, j. Let

Eij = (ei − ej)(ei − ej)∗

and

P (t) = I − 1

2
Eij

where ei = [0, . . . , 0, 1, 0, . . . , 0]∗ is a N × 1 unit vector with the i-th compo-
nent equal to 1, then (6.1) and (6.2) can be written in a vector form as

x(t+ 1) = P (t)x(t) (6.3)

where x(t) = [x1(t), . . . , xN(t)]∗ denotes the state of the overall system. Note
that P (t) is a doubly stochastic matrix. We have seen in in Section 4.5 that,
if the graph G is connected and each edge (i, j) ∈ E can be selected with
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a probability W (i,j) strictly positive, then (6.3) reaches, almost surely, the
average consensus, namely

lim
t→∞

x(t) = xave1,

where xave = 1
N
1∗x(0). In the sequel, as in Section 4.5, we will make the

following assumption.

Assumption 6.1 The graph G = (V, E) is a undirected connected graph and,
at every time instant t ∈ N, each edge (i, j) ∈ E can be selected with a
strictly positive probability W (i,j).

As in the previous chapter, here we assume that the comunication network is
constituted only of digital channels through which the systems can exchange
only quantized information.We have already emphasized that this implies
that the systems can not have access to the exact value of the state x of
the systems with which they are communicating, but only to an estimate
x̂ of it. In this chapter we will introduce two updating rules of the state
which represent the gossip-version of the two updating rules (5.5) and (5.15),
considered in the previous chapter. Precisely, if (i, j) is the edge selected at
the t-th iteration, in the first strategy we assume that i and j, in order to
update its state, use only the estimates of their states, i.e.,

xi(t+ 1) =
1

2
x̂i(t) +

1

2
x̂j(t)

xj(t+ 1) =
1

2
x̂j(t) +

1

2
x̂i(t), (6.4)

or, equivalently in vector form, by recalling the definition of P (t),

x(t+ 1) = P (t)x̂(t), (6.5)

where x̂(t) = [x̂1(t), . . . , x̂N(t)]. In the second strategy, by remarking that
(6.1) can be written as

xi(t+ 1) = xi(t)−
1

2
xi(t) +

1

2
xj(t)

xj(t+ 1) = xj(t)−
1

2
xj(t) +

1

2
xi(t) (6.6)

we propose the following updating rule, where the systems use also perfect
information regarding their own state,

xi(t+ 1) = xi(t)−
1

2
x̂i(t) +

1

2
x̂j(t)

xj(t+ 1) = xj(t)−
1

2
x̂j(t) +

1

2
x̂i(t), (6.7)
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or, equivalently in vector form,

x(t+ 1) = x(t) + (P (t)− I)x̂(t). (6.8)

Accordingly to Section 5.4.1 of the previous chapter, we call the law (6.4)
globally quantized and the law (6.7) partially quantized. It is easy to see
that the partially quantized law (6.7), as the law (6.1) and the time-invariant
partially quantized rule (5.5), maintains the initial state average. This fact
is stated in the following proposition.

Proposition 6.2 Consider (6.7). Let

xave(t) =
1

N
1∗x(t).

Then
xave(t) = xave(0)

for all t ≥ 0.

Proof: We have that

1∗x(t+ 1) = 1∗x(t) + 1∗(P (t)− I)x̂(t)

= 1∗x(t)

where the last inequality follows from the fact that, since P (t) is doubly
stochastic for all t ≥ 0, it holds 1∗(P (t)− I) = 0 for all t ≥ 0.

We proceed our analysis of these two rules by assuming first the x̂i(t) =
qd(xi(t)), i.e., the information transmitted is quantized by means of deter-
ministic quantizer, and then by assuming that x̂i(t) = qp(xi(t)), i.e., the
information transmitted is quantized by means of probabilistic quantizer,
introduced in Section 5.2.

Remark 6.3 As in the previous chapter, we assume here that the set of
quantization levels is constituted of only integers numbers. As underlined in
Remark 5.4, the more general case can be treated by a suitable scaling.

6.3 Quantized symmetric gossip algorithms

via deterministic quantizers

In this section we assume that the information exchanged between the sys-
tems is quantized by means of the deterministic quantizer qd described in
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(5.7), namely x̂i(t) = qd(xi(t)). Hence (6.4) and (6.7) become

xi(t+ 1) =
1

2
qd[xi(t)] +

1

2
qd[xj(t)]

xj(t+ 1) =
1

2
qd[xj(t)] +

1

2
qd[xi(t)], (6.9)

and

xi(t+ 1) = xi(t)−
1

2
qd[xi(t)] +

1

2
qd[xj(t)]

xj(t+ 1) = xj(t)−
1

2
qd[xj(t)] +

1

2
qd[xi(t)], (6.10)

In the following we will analyze the two strategies separately, starting from
the latter.

6.3.1 Partially quantized strategy

Consider the partially quantized strategy (6.10). Let us define

d(t) =
1√
N
‖y(t)‖2, (6.11)

where

y(t) =

(
I − 1

N
11∗

)
x(t). (6.12)

Such quantity represents the distance of the state x(t) from the current aver-
age of the state. Since the partially quantized strategy is an average-preserving
law, y(t) coincides with the distance of the state from the initial average.

As an example we report in Figure 6.1 the result of simulations relative
to a connected random geometric graph. Such graph has been drawn placing
N = 50 nodes uniformly at random inside the unit square and connecting
two nodes whenever the distance between them is less that R = 0.3. The
initial condition xi(0) is randomly chosen inside the interval [−100, 100] for
all 1 ≤ i ≤ N . Note that d(t) does not converge to 0, meaning that the
average consensus is not reached, but the values get very close to the initial
average.

We now prove this fact in general, quantifying how close asymptotically
the systems get to the initial average of their states. To this aim, we will
take advantage again of the symbolic dynamics which lies under the real
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Figure 6.1: Behavior of d for a connected random graph with N = 50 in case
of deterministic quantizers and of partially quantized strategy.

states dynamics and that we have introduced in Example 5.8. To the idea of
this construction we will adapt the results presented in [75].

Let us start our analysis. We define ni(t) = b2xi(t)c for all i ∈ V . Simple
properties of floor and ceiling operators, together with the Lemma 5.9 stated

in Example 5.8, allow us to remark that q[xi(t)] =
⌈
ni(t)

2

⌉
and that

xi(t+ 1) = xi(t)−
1

2
q[xi(t)] +

1

2
q[xj(t)]

b2xi(t+ 1)c = b2xi(t)c − q[xi(t)] + q[xj(t)],

from which we can obtain that

ni(t+ 1) = ni(t)−
⌈
ni(t)

2

⌉
+

⌈
nj(t)

2

⌉
=

⌊
ni(t)

2

⌋
+

⌈
nj(t)

2

⌉
.

We have thus found an iterative system involving only the symbolic signals
ni(t). When the edge (i, j) is selected, i and j adjourn their states following
the pair dynamics

(ni(t+ 1), nj(t+ 1)) = g(ni(t), nj(t)) (6.13)



6.3. Quantized symmetric gossip algorithms via deterministic quantizers 129

where

g(h, k) =

(⌊
h

2

⌋
+

⌈
k

2

⌉
,

⌊
k

2

⌋
+

⌈
h

2

⌉)
.

It is clear that g is symmetric in the arguments, in the sense that if
g(h, k) = (η, χ), then g(k, h) = (χ, η).

The analysis of the evolution of (6.13) will then allow us to obtain infor-
mation about the asymptotics of xi(t), since ni(t) = b2xi(t)c.

Before stating the main result regarding the convergence properties of
(6.13), we define the following quantities

m(t) = min
1≤i≤N

ni(t) (6.14)

and
M(t) = max

1≤i≤N
ni(t), (6.15)

and, finally,
D(t) = M(t)−m(t).

Moreover we provide the following two notational definitions. Let

R =
{
r ∈ ZN : r − α1 ∈ {0, 1}N , ∃α ∈ Z

}
. (6.16)

and let n(t) = [n1(t), . . . , nN(t)]∗.

We have the following result.

Theorem 6.4 Almost surely there exists Tcon ∈ N such that n(t) ∈ R for
all t ≥ Tcon.

Proof: The proof is based on verifying the following three facts:

(i) the evolution of n(t) is a Markov process with a finite number of states;

(ii) the set R, defined in (6.16), is an invariant subset for the evolution
described by (6.13);

(iii) there is a positive probability of reaching a state belonging to the in-
variant subset R, starting from any initial condition.

Standard results in the Markov chains literature (see [93]), ensure that, if
the above three facts yield true, then any trajectory starting from a state
n̄ /∈ R, will reach with probability 1 in a finite time, a state belonging to R.

Let us now check them in order.
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(i) We start by observing that the Markov property of the process follows
from Assumption 6.1. We prove now that the states are finite. To this
aim let

(h′, k′) = g(h, k).

By the structure of g, it is easy to see that

max {h′, k′} ≤ max {h, k}

and
min {h, k} ≤ min {h′, k′} .

Therefore we have that m(n(t)) ≥ m(n(0)) and M(n(t)) ≤ M(n(0))
and hence that the cardinality of the set of the states is upper bounded
by (M(n(0))−m(n(0)) + 1)N .

(ii) Let h ∈ Z. Observe that

g (h, h+ 1) =

{
(h+ 1, h) if h is even
(h, h+ 1) if h is odd

This implies that R is an invariant subset for the dynamics described
by (6.13).

(iii) The proof of this fact is based on the following strong result about the
monotonicity of D(t): if D(t) ≥ 2, then there exists τ ∈ N such that

P[D(t+ τ) < D(t)] > 0. (6.17)

Now we prove (6.17).

Let I(t) = {j ∈ V s.t. nj(t) = m(t)} . We start by proving that |I(t)|,
i.e., the cardinality of I(t), does not increase and that, if D(t) ≥ 2, then
there is a positive probability that it decreases within a finite number of
time steps. Notice first that, for h, k ∈ Z, g(h+2, k+2) = g(h, k)+2.
Hence, by an appropriate translation of the initial condition, we can
always restrict ourselves to the case m(t) ∈ {0, 1} , which of course is
easier to handle.
Case m(t) = 0. In this case it is possible for a nonzero state to decrease
to 0, but only in the case of a swap between 0 and 1. This assures that
|I(t)| is nonincreasing. Let S(t) denote the set of nodes which have
value m(t) + 2 or more. Since D(t) ≥ 2 then S(t) is non empty at time
t. Now let (v1, v2, . . . , vp−1, vp) be a shortest path between I(t) and
S(t). Such a path exists since G is connected. Note that v1 ∈ I(t) and
vp ∈ S(t) and that {v2, . . . , vp−1} could be an empty set; in this case
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a shortest path between I(t) and S(t) has length 1. Moreover note
also that all the nodes in the path except v1 and vp have value 1 at
time t, otherwise (v1, v2, . . . , vp−1, vp) is not a shortest path. Since each
edge of the communication graph has a positive probability of being
selected in any time, there is also a positive probability that in the p−1
time units following t the edges of this path are selected sequentially,
starting with the edge (v1, v2). At the last step of this sequence we
have that the values of vp−1 and vp are updated. By observing again,
that the pair of value (0, 1) is transformed by (6.13) into the pair (1, 0)
we have that the value of vp−1, when the edge (vp−1, vp) is selected, is
equal to 0. This update, for the form of (6.13), will cause the value of
both nodes to be strictly greater than 0. Therefore, this proves that
|I(t+ p− 1)| < |I| with positive probability. Clearly, if |I(t)| = 1 then
we have also that D(t+ p− 1) < D(t) with positive probability.
Case m(t) = 1. In this case no state can decrease to 1, and then |I(t)| is
not increasing. Let I(t), S(t) and (v1, v2, . . . , vp−1, vp) be defined as in
the previous case. Obviously in this case all the nodes v2, . . . , vp−1 in the
path have value equal to 2. Moreover observe that also the sequence of
edges (vp−1, vp), (vp−2, vp−1),. . . ,(v2, v3), (v1, v2) has positive probability
of being selected in the p − 1 time units following t. At the last step
of this sequence of edges, the values of v1 and v2 are updated. Clearly
the value of v1 is equal to 1. Since the value of vp at time t is greater
or equal to 3, and since the pair (2, 3) is transformed by (6.13) into
(3, 2), we have that the value of v2 when the edge (v1, v2) is selected,
is greater or equal to 3. This update, for (6.13), will cause the value
of both nodes to be strictly greater than 1. Hence |I(t+ p− 1)| < |I|
with positive probability. Again, if |I(t)| = 1 then we have also that
D(t+ p− 1) < D(t) with positive probability.
Consider now the following sequence of times t0 = t, t1, t2, . . .. For each
i ≥ 0, if |I(t)| > 1, then we let ti+1 to be the first time for which there
is a positive probability that |I(ti+1)| < |I(ti)|. Let now k ∈ N be such
that |I(tk)| = 1. Then we have that D(tk+1) < D(tk). This ensures the
validity of (6.17).

The proof of the fact (iii) follows directly from (6.17). Indeed, let
n̄ /∈ R, then, from a repeated application of (6.17) it follows that,
there exists a path connecting n̄ to a state n̄′ = [n̄′1, . . . , n̄

′
N ], such that

max {n̄′1, . . . , n̄′N} −min {n̄′1, . . . , n̄′N} < 2,

i.e, n̄′ ∈ R.

This proves the thesis.
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We can go back to the original system, and prove the following result.

Corollary 6.5 Consider the algorithm (6.10). Then, almost surely, there
exists Tcon ∈ N such that

|xi(t)− xj(t)| ≤ 1 ∀ i, j ∀ t ≥ Tcon, (6.18)

and hence
‖x(t)− xave1‖∞ ≤ 1

where xave = 1
N
1∗x(0).

Proof: The proof is an immediate consequence of Theorem 6.4 and of the
relation ni(t) = b2xi(t)c.

Remark 6.6 It is worth noting that Theorem 6.4 is an extension of Lemma
3 and Theorem 1 in [75]. In [75] the authors introduced a class of quantized
gossip algorithms, satisfying the following assumptions. Assume that (i, j)
is the edge selected at time t and that ni(t) and nj(t) are respectively the
values of node i and of node j at time t. If ni(t) = nj(t) then ni(t+1) = ni(t)
and nj(t + 1) = nj(t). Otherwise, defined Dij = |ni(t) − nj(t)|, the method
used to update the values has to satisfy the following three properties:

(P1) ni(t+ 1) + nj(t+ 1) = ni(t) + nj(t),

(P2) if Dij(t) > 1 then Dij(t+ 1) < Dij(t), and

(P3) if Dij(t) = 1 and (without loss of generality) ni(t) < nj(t), then ni(t+
1) = nj(t) and nj(t+ 1) = ni(t). This update is called swap.

Now we substitute the property (P3) either with the property

(P3’) if Dij(t) = 1 and (without loss of generality) ni(t) < nj(t), then, if
ni(t) is odd, then ni(t + 1) = nj(t) and nj(t + 1) = ni(t), otherwise if
ni(t) is even then ni(t+ 1) = ni(t) and nj(t+ 1) = nj(t)

or with the property

(P3”) if Dij(t) = 1 and (without loss of generality) ni(t) < nj(t), then, if
ni(t) is even then ni(t + 1) = nj(t) and nj(t + 1) = ni(t), otherwise if
ni(t) is odd then ni(t+ 1) = ni(t) and nj(t+ 1) = nj(t).
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If we consider the class of algorithms satisfying (P1), (P2), (P3’) or satis-
fying (P1), (P2), (P3”), it is possible to prove that Lemma 3 and Theorem 1
stated in [75] hold true also for this class. The proofs are analogous to that
of Lemma ?? and Theorem 6.4 provided in this paper. Moreover it is easy to
see that the algorithm (6.13) satisfies the properties (P1), (P2), (P3’). This
represents an alternative way to prove Theorem 6.4.

6.3.2 Globally quantized strategy

In this subsection we consider the globally quantized strategy (6.9). We un-
derline immediately that the fact that (6.9) uses only quantized information
and not perfect information combined with quantized information as in (6.10)
makes the analysis of (6.10) slightly easier than the analysis of (6.9).
Remarkably, we will show in this subsection that the law (6.10) drives, almost
surely, the systems to exact consensus at an integer value. Unfortunately,
the initial average of states is not preserved in general. Again, the analysis
of this algorithm can be performed efficiently by means of the symbolic dy-
namics previously introduced.

Let again ni(t) = b2xi(t)c for all i ∈ V . By recalling that qd(xi(t)) =
⌈
ni(t)

2

⌉
and by observing that

b2xi(t+ 1)c = qd(xi(t)) + qd(xj(t)),

we obtain

ni(t+ 1) =

⌈
ni(t)

2

⌉
+

⌈
nj(t)

2

⌉
. (6.19)

Hence also for (6.9), we have found an iterative system involving only the
symbolic signals ni(t). When the edge (i, j) is selected, i and j adjourn their
states following the pair dynamics

(ni(t+ 1), nj(t+ 1)) =

(⌈
ni(t)

2

⌉
+

⌈
nj(t)

2

⌉
,

⌈
ni(t)

2

⌉
+

⌈
nj(t)

2

⌉)
. (6.20)

Let now n(t) = [n1(t), . . . , nN(t)]∗ and let g1 : Z× Z→ Z be defined as

g1(h, k) :=

⌈
h

2

⌉
+

⌈
k

2

⌉
.

Note that

(ni(t+ 1), nj(t+ 1)) = (g1(ni(t), nj(t)), g1(ni(t), nj(t))) . (6.21)

Then we have the following result.
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Theorem 6.7 Let n(t) be as defined above and consider (6.21). Then almost
surely there exists Tcon ∈ N and α ∈ Z such that n(t) = 2α1 for all t ≥ Tcon.

Proof: The proof is based on verifying the following three facts:

(i) the evolution process is a Markov process with a finite number of states;

(ii) the process (6.21) has absorbing states;

(iii) there is a positive probability of reaching an absorbing state in a finite
time, starting for any initial state.

These facts, similarly to Theorem 6.4, ensures the validity of the thesis.

Let us now check them in order. Given n(t) let m(t) and M(t) be defined
as in (6.14) and (6.15).

(i) The Markov property of the process follows from Assumption 6.1. We
show now that the states are finite. Let p, q ∈ Z, where, without loss
of generality, we assume that p ≤ q. Then, from the structure of g1 we
have that

• p ≤ g1(p, q);

• if q is even, g1(p, q) ≤ q;

• if q is odd, g1(p, q) ≤ q+ rq where rq denotes the remainder in the
euclidean division of q over 2.

It follows that m(0) ≤ ni(t) ≤ M(0) + rM(0) for all i ∈ V and for all
t ≥ 0, where rM(0) denotes the remainder in the euclidean division of
M(0) over 2. Hence the cardinality of the set of the states is upper
bounded by

(M(0) + rM(0) + 1−m(0))N .

(ii) We denote as A the set of absorbing states for (6.21). The form of
g1 implies that if ni(t) 6= nj(t), then ni(t + 1) = nj(t + 1), and if
ni(t) = nj(t) = a then ni(t + 1) = nj(t + 1) = a if and only if a is
even. Thus A = {y ∈ ZN : ∃α ∈ Z such that y = 2α1}. Thus the
absorbing states are consensus states.

(iii) Let us fix t = t0, and assume that n(t0) /∈ A. We will prove that there
exists τ ∈ N such that P [n(t0 + τ) ∈ A] > 0. We start by observing
that, from the assumption of having a connected graph, there exists
(i, j) ∈ E such that ni(t0) = m(t0), nj(t0) = q and g(m(t0), q) > m(t0).
Indeed, two cases are given when n(t0) /∈ A.
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• If m(t0) < M(t0), then it suffices to consider there an edge (i, j)
such that ni(t0) = m(t0) and nj(t0) = q > m(t0) which gives
g1(m(t0), p) > m(t0). Note that this edge there exists from the
hypothesis of having a connected graph;

• if m(t0) = M(t0), necessarily we have that m(t0) and M(t0) are
odd; then g(m(t0),m(t0)) > m(t0).

We define now Ia(t) = {i ∈ V : ni(t) = a}. The above discussion
implies that |Im(t0)(t0 + 1)| < |Im(t0)(t0)| with the positive probabil-
ity of choosing the edge (i, j) and hence that there is also a posi-
tive probability that at some finite time t′ > t0, |Im(t0)(t0)| = 0,
that is m(t′) > m(t0). Iterating this argument and, recalling that
M(t) ≤ M(t0) + rM(t0) for all t ≥ t0, show that there exists τ ∈ N

such that P [n(t0 + τ) ∈ A] > 0.

This proves the thesis.

We can go back to the original system. The following corollary follows im-
mediately form the definition of n(t).

Corollary 6.8 Let x(t) evolve according to (6.9). Then almost surely there
exists Tcon ∈ N and α ∈ Z such that xi(t) = α for all i ∈ V and for all
t ≥ Tcon.

Proof: It follows directly from the definition of ni(t) = b2xi(t)c.

We have already underlined the fact that this strategy does not preserve
the initial average, in general. Providing some probabilistic estimation of
the distance of the consensus point from the initial average is a challenging
problem. Unfortunately we have not been able to obtain any theoretical
result so far. We limits our analysis to the following simulation. In Figure 6.2
we plotted the variable z that is defined as follows. In the globally quantized
strategy we have that, almost surely limt→∞ = α1 for some random integer
α. Let z = |α−1/N1∗x(0)|. In other words z represents the distance from the
consensus point to which the globally quantized strategy leads the systems
and the average of the initial condition. We have depicted the value of z for
a family of random geometric graphs of increasing size from N = 10 up to
N = 80. The initial condition xi(0) is chosen randomly inside the interval
[−100, 100] for all 1 ≤ i ≤ N. Moreover for each N , z is computed as the
mean of 100 trials. We can see that the value of z is increasing in N and
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Figure 6.2: Behavior of z for a family of random geometric graphs in case of
deterministic quantizers and of globally quantized strategy.

assumes values that are not negligible with respect to the quantization step
size.

6.3.3 Some considerations on the speed of convergence
of the globally quantized strategy and of the par-
tially quantized strategy

Providing some insights on the speed of convergence of (6.10) and of (6.9) is
quite hard in general. In Figure 6.3 and Figure 6.4 we report, respectively,
a comparison between the partially quantized strategy (6.10) and the gossip
algorithm with exchange of perfect information (6.1) and between the glob-
ally quantized strategy (6.9) and again the gossip algorithm with exchange
of perfect information (6.1). The simulations are made on the same random
geometric graph considered in Figure 6.1.

For all strategies we plotted the behavior of the variable d(t) defined in
(6.11). For both the simulations the initial conditions are randomly chosen
inside the interval [−100, 100]. It is worth noting that the variable y(t), in-
troduced in (6.12) and whose normalized two-norm defines d(t), represents
the distance of the state x(t) from its current average, that, only for (6.10)
and (6.1), coincides also with the distance of the state x(t).

From the Figure 6.3 and Figure 6.4 we can infer that the speed of conver-
gence toward the steady state of the quantized strategies (6.9) and (6.10) is
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similar to the one of the gossip algorithm with perfect exchange of informa-
tion. Unfortunately we have not been able to prove this numerical evidence
so far.
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Partially quantized
Ideal

Figure 6.3: Behavior of d, when using the partially quantized strategy, for
a connected random geometric graph with N = 50. Note that since the
partially quantized strategy does not converge to a consensus, d(t) does not
go to 0.

Remark 6.9 We have observed in Figure 6.2, that the distance from the
average of the initial state of the consensus point toward which the globally
quantized strategy leads the systems is not negligible. On the other hand,
the partially quantized strategy does not assure a consensus in a strict sense.

If, depending on the application, one can not relax the convergence re-
quirement, inspired by the last subsection of the previous chapter, we could
suggest the following heuristic solution to the consensus problem, which com-
bines the positive features of both strategies,

x(t+ 1) = Pqd(x(t)) + ε(t)(x(t)− qd(x(t))),

where ε(t), t ≥ 0, is a nonnegative sequence such that ε(t) ≤ 1, ∀ t ≥ 0 and
limt→∞ ε(t) = 0.

Remark 6.10 Some more insights on the speed of convergence of the quan-
tized strategies and on the combined strategy presented in the above remark,
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Figure 6.4: Behavior of d, when using the globally quantized strategy, for a
connected random geometric graph with N = 50. In this case, accordingly
to the theoretical result stated in Corollary 6.8, d(t) tends to 0.

could be provided by introducing a probabilistic model in which the quanti-
zation error is regarded as a white noise uncorrelated with the state of the
system. As we have widely underlined in the previous chapter, there is no
theoretical reason justifying the validity of this model when using determinis-
tic quantizers. Instead the probabilistic model is a suitable model to explain
the quantized algorithms via probabilistic quantizers: we will see this in the
next Section.

6.4 Quantized symmetric gossip algorithms

via probabilistic quantizers

In this section we assume that the information exchanged between the sys-
tems is quantized by means of the probabilistic quantizer qp described in
(5.8), namely x̂i(t) = qp(xi(t)). Hence (6.4) and (6.7) become

xi(t+ 1) =
1

2
qp[xi(t)] +

1

2
qp[xj(t)]

xj(t+ 1) =
1

2
qp[xj(t)] +

1

2
qp[xi(t)], (6.22)
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and

xi(t+ 1) = xi(t)−
1

2
qp[xi(t)] +

1

2
qp[xj(t)]

xj(t+ 1) = xj(t)−
1

2
qp[xj(t)] +

1

2
qp[xi(t)], (6.23)

From now on we will assume that the initial condition x(0) satisfes the fol-
lowing.

Assumption 6.11 The initial condition x(0) is a random variable such that
E[x(0)] = 0 and E [x(0)x∗(0)] = σ2

0I for some σ2
0 > 0

In the remainder of the section we will analyze the two strategies separately
starting from the latter.

6.4.1 Partially quantized strategy

Consider the partially quantized strategy (6.23). Similarly to the partially
quantized strategy via deterministic quantizers (6.10), also (6.23) does not
reach the consensus in general. Again we report a simulation showing this
fact. In Figure 6.5 the behavior of the quantity d(t), defined in (6.11), is de-
picted for the same connected random geometric graph considered in Figure
6.1. Note that the quantity d(t) does not converge a 0, meaning that the
average consensus is not reached.

We observe immediately that the analysis of (6.23) is more complicate
that the corresponding law (6.10). This is mainly due to the lack of some
convexity arguments which we used in the analysis of (6.10). We will be
more explicit in the following example.

Example 6.12 Consider (6.10) and assume that the edge (i, j) has been
selected at time t. Without loss of generality assume that xi(t) ≤ xj(t).
Then, by convexity arguments, we have that bxi(t)c ≤ xi(t+ 1), xj(t+ 1) ≤
dxj(t)e. This is not true for (6.23) anymore. As a numerical example assume
that xi(t) = 3.4 and xj(t) = 3.6 and that qp(xi(t)) = 4 and qp(xj(t)) = 3.
Then by (6.23) we have that xi(t+ 1) = 2.9 and that xj(t+ 1) = 4.1, namely
xi(t+ 1), xj(t+ 1) do not belong to the interval [bxi(t)c, dxj(t)e].

By simulations we can see that (6.23) does not drive the states of the systems
inside the same bin of quantization, as the corresponding strategy (6.10)
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Figure 6.5: Behavior of d for a connected random geometric graph with
N = 50.

using deterministic quantizers. In Figure 6.6, we depict the behavior of the
quantity

s(t) = max
1≤ i,j≤N

|xi(t)− xj(t)|.

for the same random geometric graph considered in Figure 6.5. In this sim-
ulation we assume that the initial condition xi(0) is randomly chosen inside
the interval [−10, 10]. Note that s asymptotically oscillates around 2. This
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Figure 6.6: Behavior of s for a connected random geometric graph with
N = 50.
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suggests that (6.23) seems to work a little bit worse than (6.10). However,
of note, is that also (6.23) behaves quite well.

Interesting results on (6.23), in terms of both the asymptotic distance
from the initial average and the speed of convergence, can be provided by a
mean-square analysis that we will carry out in the sequel of this subsection.
We start by observing that (6.23) can be rewritten as

x(t+ 1) := P (t)x(t) + (P (t)− I) (q(x(t))− x(t)) (6.24)

We consider again the variable

y(t) :=

(
I − 1

N
11∗

)
x(t) = x(t)−

(
1

N
1∗x(t)

)
1 = x(t)−

(
1

N
1∗x(0)

)
1

where the last equality follows from the fact that the partially quantized
strategy is an average-preserving law and we introduce the new variable

e(t) = q(x(t))− x(t).

which represents the quantization error. Note that 1∗y(t) = 0 for all t ≥ 0.

Now, from (6.24), we can write(
I − 1

N
11∗

)
x(t+ 1) =

(
I − 1

N
11∗

)
P (t)x(t)+

+

(
I − 1

N
11∗

)
(P (t)− I) (q(x(t))− x(t)) .

Since
(
I − 1

N
11∗

)
P (t) = P (t)

(
I − 1

N
11∗

)
and

(
I − 1

N
11∗

)
(P (t)− I) =

P (t)−I, from the above expression we obtain the following recursive equation
in terms of the variables y, e,

y(t+ 1) = P (t)y(t) + (P (t)− I)e(t). (6.25)

In order to perform an asymptotic analysis of (6.25) it is convenient to in-
troduce the following matrices. Let

Σyy(t) := E [y(t)y∗(t)] ,

Σee(t) := E [e(t)e(t)∗] ,

and

Σye(t) := E [y(t)e(t)∗] .
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Equation (6.25) leads to the following recursive equation in terms of the
above matrices

Σyy(t+ 1) = E [P (t)Σyy(t)P (t)] + E [P (t)Σye(t)(P (t)− I)] +

+ E
[
(P (t)− I)Σ∗yeP (t)

]
+ (P (t)− I) Σee(t) (P (t)− I) .

(6.26)

Notice that, since x(0) is a random variable satisfying Assumption 6.11, one
can show that

Σyy(0) = σ2
0 (I − 1/N 11∗) . (6.27)

We recall, from Proposition 5.35 stated in Section 5.4, that the variables y
and e satisfy the following remarkable properties

(i) E [e(t)] = 0 and E [e(t)e∗(t)] = diag {σ2
1(t), . . . , σ2

N(t)} where σ2
i (t) :=

E [e2
i (t)] is such that σ2

i (t) ≤ 1/4 for all 1 ≤ i ≤ N and for all t ≥ 0.

(ii) Σye(t) = 0, for all t ≥ 0.

From the above properties we have that (6.26) can be rewritten as

Σyy(t+ 1) = E [P (t)Σyy(t)P (t)] + E [(P (t)− I) Σee(t) (P (t)− I)] . (6.28)

To estimate the asymptotic distance from the initial average, we introduce
the following cost function

J(W ) := lim sup
t→∞

√
1

N
tr {Σyy(t)}. (6.29)

We can rewrite the above evolution law as

Σyy(t+ 1) = A(Σyy(t)) + B(Σee(t)),

where A and B are linear operators from RN×N to itself. Namely, given a ma-
trix M , A(M) = E [P (t)MP (t)] and B(M) = E [(P (t)− I)M (P (t)− I)] . It
is immediate to remark that A induces the natural evolution of the dynami-
cal system, in the absence of quantization error, while B can be regarded as
a disturbance due to the quantization error.

From [58], we know that in the case of no quantization the systems con-
verge almost surely to consensus. This implies that A is an asymptotically
stable operator when restricted to the subspace S = {M ∈ RN×N : 1∗M1 =
0}. Since 1∗B(M)1 = 0 for any matrix M , we have that Σyy(t) ∈ S for all
t ≥ 0.
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It is interesting to remark that these observations show how, during the
transient, the symmetric gossip algorithm, with exchange of information
quantized by means of probabilistic quantizers, behaves like the symmetric
gossip algorithm with exchange of exact information.

Providing an expression for J(W ) is quite hard in general. We try now
to simplify the problem by introducing the following auxiliary system

Σ̄(t+ 1) = E
[
P (t)Σ̄(t)P (t)

]
+

1

4
E
[
(P (t)− I)2] , (6.30)

where Σ̄(0) = Σyy(0), and the following cost function

J̄(W ) := lim sup
t→∞

√
1

N
tr {Σ̄(t)}.

We have the following comparison result.

Proposition 6.13 Consider the functional costs J(W ) and J̄(W ). We have
that

J(W ) ≤ J̄(W ).

Proof: To prove the statement of the Proposition we will show, by induction
on t, that Σ̄(t) ≥ Σyy(t) for all t ≥ 0, where the inequality is meant in
matricial sense, that is, Σ̄(t)− Σyy(t) is a semidefinite positive matrix.

Since Σ̄(0) = Σyy(0) the assertion holds true for t = 0. Assume now that
Σ̄(t) ≥ Σyy(t) holds true for a generic t. We have that

Σ̄(t+ 1)− Σyy(t+ 1) =

= E
[
P (t)Σ̄(t)P (t)

]
+

1

4
E
[
(P (t)− I)2]

− (E [P (t)Σyy(t)P (t)] + E [(P (t)− I) Σee(t) (P (t)− I)])

= E
[
P (t)(Σ̄(t)− Σyy(t))P (t)

]
+ E

[
(P (t)− I)

(
1

4
I − Σee(t)

)
(P (t)− I)

]
.

Since by inductive hypothesis Σ̄(t) ≥ Σyy(t) and since by Proposition 5.35
we know that Σee(t) ≤ 1

4
I for all t ≥ 0, we have that Σ̄(t+1)−Σyy(t+1) ≥ 0.

Observe now that, since P (t)2 = P (t) we obtain that E[(I − P (t))2] =
I − E[P (t)]. From this fact we obtain the following result.
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Proposition 6.14 Given the above definitions,

lim
t→∞

Σ̄(t) =
1

4

(
I − 1

N
11∗

)
.

Proof: Since Σ̄yy(0) ∈ S, and A is asymptotically stable if restricted to the
subspace S, then

lim
t→∞

Σ̄yy(t) =
+∞∑
t=0

A(t)(B̄),

where B̄ := E[(I − P (t))2]. This is the only fixed point of the iteration law
(6.30). Thus we are left to prove that Σ∗ = 1

4

(
I − 1

N
11∗

)
is a fixed point,

that is Σ∗ = A(Σ∗) + B̄. Indeed observe that

A(Σ∗) + B̄ =
1

4
E

[
P (t)

(
I − 1

N
11∗

)
P (t)

]
+

1

4
(I − E[P (t)])

=
1

4

{
E
[
P (t)2

]
− 1

N
11∗ + I − E[P (t)]

}
=

1

4

{
I − 1

N
11∗

}

Corollary 6.15 For all probability matrix W we have that J(W ) ≤ 1
2
.

Proof: From the above theorem we can argue that J̄(W ) = 1
2

√
N−1
N

, and

since J(W ) ≤ J̄(W ), we can conclude.

From these theorems we draw a strong conclusion about the convergence
of the algorithm. In spite of missing a consensus in the strict sense, the
asymptotical mean squared error of the algorithm is smaller than the size of
the quantization bin, and has a bound which does not depend on the number
of the agents nor on the topology of the graph.

6.4.2 Globally quantized strategy

In this subsection we consider the globally quantized strategy (6.22). We will
prove that the law (6.22), as the law (6.9), drives almost surely the systems to
exact consensus at an integer value. Moreover, we will show by simulations,
that the consensus point, even if (6.22) does not preserve the average of the
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state, is rather close to the average of the initial condition. This represents
a significant improvement with respect to the strategy (6.9), that, as seen in
Figure 6.2, leads to a consensus point whose distance from the average of the
initial condition, is not negligible in general.

We observe immediately that, with the globally quantized strategy (6.22),
we have to deal with two sorts of randomness, since the interacting pair is
randomly selected, and the quantization map is itself random. This makes
the analysis of (6.22) more complicate than the analysis of (6.9). However,
again, we prove the convergence by a symbolic dynamics.

Let again ni(t) = b2xi(t)c for all i ∈ V and let n(t) = [n1(t), . . . , nN(t)]∗.
Before finding a recursive equation for n(t), we need to introduce the follow-
ing random variable. Let

Tall = inf {t : at time t every edge in E has been selected at least once}

Tall is an integer random variable which, since the edges are selected with
positive probability, is almost surely finite. Note that, from (6.22), xi(t) ∈
{a, a+ 1/2} for some integer number a, for all t ≥ Tall. This allows us to
disregard the evolution before Tall and to analyze, for t > Tall, the symbolic
dynamics as follows. For t ≥ Tall, by recalling how the probabilistic quantizer
works, we have that

qp[x(t)] =


ni(t)

2
if ni(t) is even

dni(t)
2
e with probability 1/2

bni(t)
2
c with probability 1/2

if ni(t) is odd

Let ξ1 and ξ2 be two independent Bernoulli random variables with parameter
1/2 and assume that, at time instant t, the edge (i, j) is selected. Then

ni(t+ 1) = nj(t+ 1) =

⌈
ni(t)

2

⌉
+

⌈
nj(t)

2

⌉
− ξ1rni(t) − ξ2rnj(t) (6.31)

where rni(t) and rnj(t) denote, respectively, the remainders of the euclidean
division of ni(t) over 2 and of nj(t) over 2. Let us define g2 : Z × Z → Z

such that

g2(h, k) =

⌈
h

2

⌉
+

⌈
k

2

⌉
− ξ1rh − ξ2rk,

then we have that

(ni(t+ 1), nj(t+ 1)) = (g2(ni(t), nj(t)), g2(ni(t), nj(t))) . (6.32)

The following result characterizes the convergence properties of (6.32).
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Theorem 6.16 Let n(t) be as above. Consider (6.32). Then almost surely
there exists Tcon ∈ N and α ∈ Z such that ni(t) = 2α for all i ∈ V and for
all t ≥ Tcon.

Proof: The proof is similar to the proof of Theorem 6.7 and Theorem 6.4,
and it is based again on proving the following three facts:

(i) The evolution process is a Markov process with a finite number of
states;

(ii) The process (6.32) has absorbing states;

(iii) There is a positive probability of reaching an absorbing state in a finite
time, starting for any initial state.

Let us now check them in order. Given n(t) let m(t) and M(t) be defined
as in (6.14) and (6.15).

(i) The Markov property of the process follows from Assumption 6.1 and
from (6.32). We show now that the states are finite. Let h ∈ Z. Then,
from the structure of g2 we have that

• g2(h, h) = h if h is even;

• h− 1 ≤ g2(h, h) ≤ h+ 1 if h is odd.

The above two properties imply that m(0) − rm(0) ≤ ni(t) ≤ M(0) +
rM(0) for all i ∈ V and for all t ≥ 0, where rM(0) and rm(0) denote,
respectively, the remainders in the euclidean division of M(0) over 2
and of m(0) over 2. Hence the cardinality of the set of the states is
upper bounded by

(M(0) + rM(0) + 1−m(0) + rm(0))
N .

(ii) We denote as A the set of absorbing states for (6.32). The form of
g2 implies that if ni(t) 6= nj(t), then ni(t + 1) = nj(t + 1), and if
ni(t) = nj(t) = a then ni(t + 1) = nj(t + 1) = a with probability 1, if
and only if a is even. Thus, as for (6.21), we have that A = {y ∈ ZN :
∃α ∈ Z such that y = 2α1 ∀ i}.

(iii) Observe that

g2(h, k) = g1(h, k)− ξ1rh − ξ2rk,
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where g1 is the map defining the evolution of (6.21). Hence

P [g2(h, k) = g1(h, k)] ≥ 1

4
.

This fact, combined with the fact (iii) proved along the proof of Theo-
rem 6.7, ensures that, also for (6.32), there is a positive probability of
reaching an absorbing state in a finite time, starting from any initial
state.

This proves the thesis.

The above theorem and the previous remarks about Tall lead to the fol-
lowing claim about the original system.

Corollary 6.17 Let x(t) evolve following (6.22). Then almost surely there
exists Tcon ∈ N and α ∈ Z such that xi(t) = α for all i ∈ V and for all
t ≥ Tcon.

Proof: It follows directly from the definition of ni(t) = b2xi(t)c.

As for (6.9) we have not been able so far to provide a theoretical esti-
mation of the consensus point to which (6.22) leads the systems from the
average of the initial condition.

We limit our analysis to the following simulations. In Figure 6.7 we
plot the variable z as previously defined for the globally quantized strategy
using deterministic quantizers, i.e., z = |c− 1/N1∗x(0)| where c is such that
limt→∞ x(t) = c1. z represents the distance from the consensus point to
which the globally quantized strategy leads the systems and the average of
the initial condition. We plot the value of z for a family of random geometric
graphs of increasing size from N = 10 up to N = 80. The initial condition
xi(0) is chosen randomly inside the interval [−100, 100] for all 1 ≤ i ≤ N.
Moreover for each N , z is calculated as the mean of 100 trials. In Figure
6.8 we provide a comparison between (6.9) and (6.22). Surprisingly, the
globally quantized strategy using probabilistic quantizers, differently from
the globally quantized strategy using deterministic quantizers, seems to reach
the consensus very close to the average of the initial condition.
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Figure 6.7: Behavior of z for a family of random geometric graphs when
considering the globally quantized strategy using probabilistic quantizers.
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Figure 6.8: Comparison in terms of z between the ”deterministic” and the
”probabilistic” strategy, for a family of random geometric graphs.

6.5 Conclusions

In this chapter we addressed the quantized consensus problem for the sym-
metric gossip algorithm. In order to face the effects due to the quantization
(both deterministic and probabilistic) we proposed here two updating rules:
the globally quantized strategy and the partially quantized strategy. In the
former the nodes use only quantized information in order to update their
state. In the latter they have access also to exact information regarding
their own state.

We have seen that the partially quantized strategy, with both the quantiz-
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ers, deterministic and probabilistic, does not reach the consensus in general,
but maintain the average of the state at each iteration and drive all the states
very close to the average of the initial condition.

On the other hand, we have shown that the globally strategy leads almost
surely to a consensus which, however, does not coincide with the average of
the initial condition. We have provided some simulations characterizing the
distance between the consensus point and the initial average. While using
the deterministic quantizer this distance turns out to be not negligible, with
the probabilistic quantizer the consensus is reached surprisingly very close to
the average of the initial condition.

Providing some theoretical insights on this fact will be the object of fu-
ture research. Moreover, an another interesting issue to address will be the
evaluation of the speed of convergence of the strategies considered in this
chapter.





Chapter 7

Quantized average consensus
via dynamic coding/decoding
schemes

7.1 Introduction

We have seen in Chapter 2 that the main features of the ideal1 average
consensus algorithm, both for time-varying version and the time-invariant
version, are

• preservation of the average of the state at each iteration

• asymptotic convergence to an agreement that, since the algorithm pre-
serves the average of the state at each iteration, coincides with the
initial average.

In a more realistic case, in which the systems can communicate only through
digital channels, i.e., they can exchange only symbolic data, the above con-
ditions are in general violated. In the previous two chapters, in presence of
quantized communications, we have elaborated strategies that:

• maintain the average of the state at each iteration, but do not converge
asymptotically to the average consensus, even if they drive the states
of all the systems quite close to it;

1with ideal average consensus algorithm is meant the algorithm in which the agents can
exchange perfect information between them
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• do not maintain the average of the state at each iteration, but reach
asymptotically a consensus which is, in general, different from the av-
erage of the initial condition.

The main contribution of this chapter is to introduce a novel quantized strat-
egy that permits both to maintain the initial average and to reach it asymp-
totically. More precisely, we adapt coding/decoding strategies, that were
proposed for the centralized quantized control problems, to the distributed
consensus problem. In particular, we present two coding/decoding strate-
gies, one based on the exchange of logarithmically quantized information,
the other on a zoom in - zoom out strategy (this latter involves the use of
uniform quantizers). We provide analytical and simulative results illustrating
the convergence properties of these strategies. In particular we show that the
convergence factors depend smoothly on the accuracy parameter of the quan-
tizers used and that, remarkably, the critical quantizer accuracy sufficient to
guarantee convergence is independent from the network dimension.

The paper is organized as follows. Section 7.2 briefly reviews the stan-
dard average consensus algorithm. In Section 7.3 we present two strategies of
coding/decoding of the data throughout reliable digital channels: one based
on logarithmic quantizers, the other on uniform quantizers. We analyze the
former from a theoretical point in Section 7.4 and Section 7.5. We provide
simulations results for the latter in Section 7.6. Finally, we gather our con-
clusions in Section 7.7.

7.2 Problem Formulation

For the sake of the clarity, we start this section by briefly describing the
standard discrete-time consensus algorithm. Assume that we have a set of
agents V and a graph G on V describing the feasible communications among
the agents. For each agent i ∈ V we denote by xi(t) the estimate of the
average of agent i at time t. We have seen in Chapter 2 that standard average
consensus algorithms are constructed by choosing a doubly stochastic matrix
P ∈ RN×N compatible with G and assuming that at every times t agent i
updates its estimate according to

xi(t+ 1) =
N∑
j=1

Pijxj(t). (7.1)

More compactly we can write

x(t+ 1) = Px(t), (7.2)
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where x(t) is the column vector whose entries xi(t) represent the agents
states.

In our treatment we will restrict to the case in which P is symmetric, i.e.,
P ∗ = P . Note that a stochastic symmetric matrix P is automatically doubly
stochastic.
We have seen in Chapter 2, that, if P is a symmetric stochastic matrix with
positive diagonal entries and such that GP is connected, then the algorithm
(7.2) solves the average consensus problem, namely

lim
t→+∞

x(t) = xave1,

where xave = 1/N1∗x(0). From now on we will make the following assump-
tion.

Assumption 7.1 P is a symmetric stochastic matrix such that Pii > 0, for
i ∈ {1, . . . , N}, and GP is connected.

Before proceeding we provide the following notational definition. Given the
symmetric stochastic matrix P , let σ(P ) denote the set of eigenvalues of P .
We will assume that

σ(P ) = {1, λ1(P ), . . . , λN−1(P )} ,

where 1, λ1(P ), . . . , λN−1(P ) denote the eigenvalues of P and are such that
λ1(P ) ≥ λ2(P ) ≥ . . . ≥ λN−1(P ). We define

λmax(P ) = λ1(P ),

and
λmin(P ) = λN−1(P ).

Note that max {|λ1(P )|, |λN−1(P )|} is the essential spectral radius of the
matrix P .

Note that the algorithm (7.2) relies upon a crucial assumption: each agent
transmits to its neighboring agents the precise value of its state. This implies
the exchange of perfect information through the communication network. As
in the previous two Chapters , we consider a more realistic case, i.e., we as-
sume that the communication network is constituted only of rate-constrained
digital links. As already emphasized, the presence of a rate constraint pre-
vents the agents from having a precise knowledge about the state of the other
agents. In fact, through a digital channel, the i-th agent can only send to
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the j-th agent symbolic data in a finite or countable alphabet; using only
this data, the j-th agent can build at most an estimate of the i-th agent’s
state.The main objectives of this Chapter are to understand if there exists
some smart way of coding/ decoding information through the digital channels
that permits to overcome the forced quantization effects due to the digital
channel and to modify the ideal standard average consensus algorithm into
a scheme which both preserves the average of the state at each iteration and
reaches asymptotically the average consensus.

To tackle this problem we take a two step approach. First, we intro-
duce a coding/decoding scheme; each agent uses this scheme to estimate the
positions of its neighbors. Second, we consider the standard consensus algo-
rithm where, in place of the exact knowledge of the states of the systems, we
substitute estimates calculated according to the proposed coding/decoding
scheme.

7.3 Coder/decoder pairs for digital channels

In this section we discuss a general and two specific coder/decoder models for
reliable digital channels; we follow the treatment in the survey [91]. We will
later adopt this coder/decoder structure to define communication protocols
in the robotic network.

Suppose a source wants to communicate to a receiver some time-varying
data x : N → R via repeated transmissions at time instants in N. Each
transmission takes place through a digital channel, i.e., messages can only be
symbols in a finite or countable set (to be designed). The channel is assumed
to be reliable, that is, each transmitted symbol is received without error. A
coder/decoder pair for a digital channel is defined by the sets:

(i) a set Ξ, serving as state space for the coder/decoder; a fixed ξ0 ∈ Ξ is
the initial coder/decoder state;

(ii) a finite or countable set A, serving as transmission alphabet ; elements
α ∈ A are called message;

and by the maps:

(i) a map F : Ξ×A → Ξ, called the coder/decoder dynamics ;

(ii) a map Q : Ξ×R → A, being the quantizer function;
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(iii) a map H : Ξ×A → R, called the decoder function.

The coder computes the symbols to be transmitted according to, for t ∈ N,

ξ(t+ 1) = F (ξ(t), α(t)), α(t) = Q(ξ(t), x(t)).

Correspondingly, the decoder implements, for t ∈ N,

ξ(t+ 1) = F (ξ(t), α(t)), x̂(t) = H(ξ(t), α(t)).

Coder and decoder are jointly initialized at ξ(0) = ξ0. Note that an equivalent
representation for the coder is ξ(t + 1) = F (ξ(t), Q(ξ(t), x(t))), and α(t) =
Q(ξ(t), x(t)). In summary, the coder/decoder dynamics is given by

ξ(t+ 1) = F (ξ(t), α(t)),

α(t) = Q(ξ(t), x(t)),

x̂(t) = H(ξ(t), α(t)).

(7.3)

In what follows we present two interesting coder/decoder pairs: the loga-
rithmic quantizer strategy and the “zoom in - zoom out” uniform quantizer
strategy.

7.3.1 Zoom in - zoom out uniform coder

In this strategy the information transmitted from source to receiver is quan-
tized by a scalar uniform quantizer which can be described as follows. For
L ∈ N, define the uniform set of quantization levels

SL =
{
− 1 +

2`− 1

L

∣∣ ` ∈ {1, . . . , L}} ∪ {−1} ∪ {1}

and the corresponding the uniform quantizer (see Figure 7.1) unqL : R →
SL by

unqL(x) = −1 +
2`− 1

L

if ` ∈ {1, . . . , L} satisfies −1 + 2(`−1)
L
≤ x ≤ −1 + 2`

L
, otherwise unqL(x) = 1

if x > 1 or unqL(x) = −1 if x < −1.
Note that larger values of the parameter L correspond to more accurate
uniform quantizers unqL. Moreover note that, if we define m to be the
number of quantization levels we have that m = L+ 2.
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For L ∈ N, kin ∈ ]0, 1[, and kout ∈ ]1,+∞[, the zoom in - zoom out
uniform coder/decoder has the state space Ξ = R × R>0, the initial state
ξ0 = (0, 1), and the alphabet A = SL. The coder/decoder state is written as
ξ = (x̂−1, f) and the coder/decoder dynamics are

x̂−1(t+ 1) = x̂−1(t) + f(t)α(t),

f(t+ 1) =

{
kin f(t), if |α(t)| < 1,

kout f(t), if |α(t)| = 1.

The quantizer and decoder functions are, respectively,

α(t) = unqL

(x(t)− x̂−1(t)

f(t)

)
,

x̂(t) = x̂−1(t) + f(t)α(t).

The coder/decoder pair is analyzed as follows. One can observe that
x̂−1(t+1) = x̂(t) for t ∈ Z≥0, that is, the first component of the coder/decoder
state contains the estimate of the data x. The transmitted messages contain
a quantized version of the estimate error x− x̂−1 scaled by factor f . Accord-
ingly, the second component of the coder/decoder state f is referred to as
the scaling factor : it grows when |x − x̂−1| ≥ f (“zoom out step”) and it
decreases when |x− x̂−1| < f (“zoom in step”).

Figure 7.1: The uniform quantizer (m = 6).
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Figure 7.2: The logarithmic quantizer.

7.3.2 Logarithmic coder

This strategy is presented for example in [53]. Given an accuracy parameter
δ ∈ ]0, 1[ , define the logarithmic set of quantization levels

Sδ =
{(1 + δ

1− δ

)`}
`∈Z
∪ {0} ∪

{
−
(1 + δ

1− δ

)`}
`∈Z

, (7.4)

and the corresponding logarithmic quantizer (see Figure 7.2) lgqδ : R → Sδ
by

lgqδ(x) =
(1 + δ

1− δ

)`
,

if ` ∈ Z satisfies (1+δ)`−1

(1−δ)` ≤ x ≤ (1+δ)`

(1−δ)`+1 , otherwise lgqδ(x) = 0 if x = 0 or

lgqδ(x) = − lgqδ(−x) if x < 0.
Note that smaller values of the parameter δ correspond to more accurate
logarithmic quantizers lgqδ. For δ ∈ ]0, 1[, the logarithmic coder/decoder is
defined by the state space Ξ = R, initial state ξ0 = 0, the alphabet A = Sδ,
and by the maps

ξ(t+ 1) = ξ(t) + α(t),

α(t) = lgqδ(x(t)− ξ(t)),
x̂(t) = ξ(t) + α(t).

(7.5)

The coder/decoder pair is analyzed as follows. One can observe that
ξ(t + 1) = x̂(t) for t ∈ N, that is, the coder/decoder state contains the
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estimate of the data x. The transmitted messages contain a quantized version
of the estimate error x− ξ. The estimate x̂ : N → R satisfies the recursive
relation

x̂(t+ 1) = x̂(t) + lgqδ (x(t+ 1)− x̂(t)) ,

with initial condition x̂(0) = lgqδ (x(0)) determined by ξ(0) = 0. Finally,

define the function r : R → R by r(y) = lgqδ(y)−y
y

for y 6= 0 and r(0) = 0.

Some elementary calculations show that |r(y)| ≤ δ for all y ∈ R. Accordingly,
if we define the trajectory ω : N → [−δ,+δ] by ω(t) = r(x(t + 1) − x̂(t)),
then we obtain that

x̂(t+ 1) = x̂(t) + (1 + ω(t))
(
x(t+ 1)− x̂(t)

)
. (7.6)

This is called the multiplicative noise model for the logarithmic quantizer.

Remark 7.2 Note that, when communicating through digital channels, the
use of the logarithmic quantizer described in the above Section, presents an
evident drawback with respect to the zoom in- zoom out strategy, due to the
fact that the logarithmic set of quantization levels Sδ is countable and not
finite as the uniform set of quantization levels. This implementation issue
could be overcome by truncating the map lgqδ as follows. Let a, b ∈ R be
such that 0 < a < b; if a ≤ |x| ≤ b then

lgqδ(x) = sgn(x)
(1 + δ

1− δ

)`
,

where ` ∈ Z is such that (1+δ)`−1

(1−δ)` ≤ |x| ≤
(1+δ)`

(1−δ)`+1 , otherwise

lgqδ(x) =

{
0 if |x| < a

sgn(x) lgqδ(b) if |x| > M

Again, if m denotes the number of quantization levels, it is possible to see
(see [55]) that, for the truncated logarithmic quantizer,

m =
2 logC

log 1+δ
1−δ

We will come back on this remark later on.

7.4 Consensus algorithm with exchange of quan-

tized information

We consider now the same algorithm previously illustrated with the assump-
tion that the agents can communicate only through digital channels. Pre-
cisely in this Section, we adopt the logarithmic coder/decoder scheme (7.3)
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described in Subsection 7.3.2; we analyze the zoom in - zoom out strategy
via simulations in Section 7.6.

Here is an informal description of our proposed scheme. We envision that
along each communication edge we implement a logarithmic coder/decoder;
in other words, each agent transmits through a dynamic encoding scheme to
all its neighbors the quantized information regarding its position. Once state
estimates of all node’s neighbors are available, each node will then implement
the average consensus algorithm.

Next, we provide a formal description of the proposed algorithm. Let P ∈
RN×N be a stochastic symmetric matrix with positive diagonal elements and
with connected induced graph GP . Assume there are digital communication
channels along all edges of GP capable of carrying a countable number of
symbols. Pick an accuracy parameter δ ∈ ]0, 1[ . The consensus algorithm
with dynamic coder/decoder is defined as follows:

Processor states: For each i ∈ {1, . . . , N}, node i has a state variable
xi ∈ R and state estimates x̂j ∈ R of the states of all neighbors j of i
in GP . Furthermore, node i maintains a copy of x̂i.

Initialization: The state x(0) = (x1(0), . . . , xN(0))∗ ∈ RN is given as part
of the problem. All estimates x̂j(0), for j ∈ {1, . . . , N}, are initialized
to 0.

State iteration: At time t ∈ N, for each i, node i performs three actions
in the following order:
(1) Node i updates its own state by

xi(t) = xi(t− 1) +
N∑
j=1

Pij (x̂j(t− 1)− x̂i(t− 1)) . (7.7)

(2) Node i transmits to all its neighbors the symbol

αi(t) = lgqδ(xi(t)− x̂i(t− 1)).

(3) Node i updates its estimates

x̂j(t) = x̂j(t− 1) + αj(t), (7.8)

for j being equal to all neighbors of i and to i itself.

Before the algorithm analysis, we clarify a few points.
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Remark 7.3 Robot i and all its neighbors j maintain in memory an estimate
x̂i of the state xi. We denote all these estimates by the same symbol because
they are all identical: they are initialized in the same manner and they are
updated through the same equation with the same information. On the other
hand, it would be possible to adopt distinct quantizer accuracies δij for each
communication channel (i, j). In such a case then we would have to introduce
variables x̂ij that node i and j would maintain for the estimate of xi.

Remark 7.4 We could define a different state update equation where each
node i uses the exact knowledge of its own state xi instead of the estimate
x̂i, that is, we could adopt

xi(t) = xi(t− 1) +
N∑
j=1

Pij (x̂j(t− 1)− xi(t− 1)) ,

= Piixi(t− 1) +
∑
j 6=i

Pijx̂j(t− 1),

(7.9)

instead of equation (7.7). We will discuss the drawback of this choice below.

We now analyze the algorithm. First, we write the closed-loop system in
matrix form. Equation (7.7) is written as

x(t+ 1) = x(t) + (P − I)x̂(t). (7.10)

The N -dimensional vector of state estimates x̂ = (x̂1, . . . , x̂N)∗ is updated
according to the multiplicative-noise model in equation (7.6). In other words,
there exist ωj : N→ [−δ,+δ], for j ∈ {1, . . . , N}, such that

x̂j(t+ 1) = x̂j(t) + (1 + ωj(t))
(
xj(t+ 1)− x̂j(t)

)
,

and, for Ω(t) := diag {ω1(t), . . . , ωN(t)},

x̂(t+ 1) = x̂(t) + (I + Ω(t))
(
x(t+ 1)− x̂(t)

)
. (7.11)

Equations (7.10) and (7.11) with multiplicative noise Ω determine the closed-
loop system.

Next, we define the estimate error e = x̂− x ∈ RN and rewrite the close-
loop system in terms of the quantities x and e. Straightforward calculations
show that, for t ∈ Z≥0,[

x(t+ 1)
e(t+ 1)

]
=

[
I 0
0 Ω(t)

] [
P P − I

P − I P − 2I

] [
x(t)
e(t)

]
. (7.12)
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Initial conditions are x(0) and e(0) = −x(0).

Finally, we are ready to state the main properties of our quantized con-
sensus algorithm.

Theorem 7.5 Assume P ∈ RN×N satisfies Assumption 7.1 and define δ̄ ∈
R by

δ̄ :=
1 + λmin(P )

3− λmin(P )
. (7.13)

The solution t 7→ (x(t), e(t)) of the consensus algorithm with dynamic coder-
decoder has the following two properties:

(i) the state average is maintained constant by the algorithm, that is, de-
fined xave(t) = 1/N1∗x(t),

xave(t) = xave(0)

for all t ∈ N;

(ii) if 0 < δ < δ̄, then the state variables converge to their average value
and the estimate error vanishes, that is,

lim
t→∞

x(t) = xave(0)1

and
lim
t→∞

e(t) = 0.

Proof: Observe that

1∗x(t+ 1) = 1∗Px(t) + 1∗(P − I)e(t)

= 1∗Px(t)

where the second equality holds since 1∗(P − I) = 0. This proves the first
part of the Theorem. The second part follows directly from Theorem 7.11
stated in Section 7.4.1, where we analyze the asymptotic properties of (7.5).

We here consider some remarks and examples.

Remark 7.6 Note that δ̄ is a increasing function on λmin(P ) and that δ̄ = 0,
if λmin(P ) = −1, and δ̄ = 1, if λmin(P ) = 1 (see Figure 7.3).
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Figure 7.3: Behavior of δ̄.

Remark 7.7 The state update in equation (7.9) does not maintain the av-
erage. This fact motivates the choice of state update equation (7.7).

Example 7.8 Consider the sequence of circulant matrices PN ∈ RN×N

defined by

PN =


1
3

1
3

0 0 · · · 0 0 1
3

1
3

1
3

1
3

0 · · · 0 0 0
0 1

3
1
3

1
3
· · · 0 0 0

...
...

...
... · · · ...

...
...

1
3

0 0 0 · · · 0 1
3

1
3

 . (7.14)

For this sequence of symmetric stochastic matrices we know, from Chapter
3, that λmin(PN) = 1

3
− 2

3
cos
(

2π
N

⌊
N
2

⌋)
. Hence λmin(PN) ≥ −1

3
, implying

therefore that δ̄ ≥ 1
5

for all N . This shows that δ̄ is uniformly bounded away
from 0. This is a remarkable property of scalability on the dimension of the
network.

Remark 7.9 The fact that the critical accuracy sufficient to guarantee con-
vergence is independent on the network dimension is more general than what
seen in the previous example. Indeed, assume that PN ∈ RN×N is a sequence
of matrices of increasing size, where each PN satisfies Assumption 7.1 and
where each PN has all the diagonal elements greater than a positive real num-
ber p̄. Then, by Gershgorin’s Theorem we have that λmin(PN) ≥ −1 + 2p̄
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and hence δ̄ ≥ p̄
2−p̄ for all N . It follows that the critical accuracy suffi-

cient to guarantee convergence is bounded away from zero uniformly on the
dimension of the network.

7.4.1 Convergence analysis

In this section we provide the analysis of the asymptotic properties of sys-
tem (7.12), by treating it as a LPV system. For the sake of the notational
convenience, let us define the matrix, belonging to R2N×2N ,

A(t) =

[
I 0
0 Ω(t)

] [
P P − I

P − I P − 2I

]
. (7.15)

Consider now the system

z(t+ 1) = A(t)z(t), (7.16)

where z(t) ∈ R2N for all t ≥ 0 and where z(0) is any vector in R2N . We
start our analysis by rewriting (7.15) in a more suitable way. Let

E =
{

diag {e1, . . . , eN} ∈ RN×N : ei ∈ {−1,+1}, i ∈ {1, . . . , N}
}
.

Notice that E contains 2N elements. Hence, we can write E = {E1, . . . , E2N},
where we are assuming that some suitable way to enumerate the matrices
inside E has been used. We assume that E1 = I. We define now Eδ =
{δE1, . . . , δE2N} . Observe that Ω(t) ∈ Co {Eδ} for all t ≥ 0, where Co {Eδ}
denotes that convex hull of the set Eδ. By means of the above definitions we
can introduce an another set of matrices

R =

{
Ri =

[
I 0
0 δEi

] [
P P − I

P − I P − 2I

]
: Ei ∈ E

}
. (7.17)

Accordingly to the definition of E1 we have that

R1 =

[
I 0
0 δI

] [
P P − I

P − I P − 2I

]
. (7.18)

The set R is useful because it is easy to see that the matrix A(t), belongs
to Co {R} for all t ≥ 0, where Co {R} denote the convex hull of the set R.
In other words, for all t ≥ 0, there exist ν1(t), . . . , ν2N (t) nonnegative real

numbers such that
∑2N

i=1 νi(t) = 1 and

A(t) =
2N∑
i=1

νi(t)Ri.
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We state the following result that will permit us to analyze the system (7.16)
by means of Theorem C.2 (see Appendix C).

Lemma 7.10 For v = [1∗ 0∗]∗, we have

Riv = v, and v∗Ri = v∗, for all i ∈ {1, . . . , 2N}.

Moreover, for δ̄ as in equation (7.13), the following facts are equivalent:

(i) 1 is the only eigenvalue of unit magnitude of the matrix R1, and all its
other eigenvalues are strictly inside the unit disc;

(ii) 0 ≤ δ < δ̄.

Proof: The first part of the lemma is easily proved by observing that[
I 0
0 δEi

] [
P P − I

P − I P − 2I

] [
1

0

]
=

[
I 0
0 δEi

] [
1

0

]
=

[
1

0

]
,

and

[1∗ 0∗]

[
I 0
0 δEi

] [
P P − I

P − I P − 2I

]
= [1∗ 0∗]

[
P P − I

P − I P − 2I

]
= [1∗ 0∗] .

Consider now R1; to compute its eigenvalues we calculate

det (sI −R1) = det

[
sI − P −(P − I)
−δ(P − I) sI − δ(P − 2I)

]
.

Since each block of the above matrix commute with each other block, we
have from [124] that

det (sI −R1) = det
[
(sI − P )(sI − δ(P − 2I))− δ(P − I)2

]
= det

[
s2I − s (δ(P − 2I) + P ) + δ

(
P 2 − 2P − P 2 − I + 2P

)]
=

N−1∏
i=0

[
s2 − (δ(λi − 2) + λi) s− δ

]
=
(
s2 − (1− δ)s− δ

)N−1∏
i=1

(
s2 − (δ(λi − 2) + λi)s− δ

)
.

Hence the eigenvalues of R1 are given by the solution of the following N
second order equations

s2 − (1− δ)s− δ = 0, (7.19)
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and

s2 − (δ(λi − 2) + λi)s− δ = 0, i ∈ {1, . . . , N − 1}. (7.20)

The solutions of (7.19) are 1 and −δ. Consider now (7.20). Given i, let s
(i)
1

and s
(i)
2 denote the two solutions of (7.20). We have that

s
(i)
1 =

δ(λi − 2) + λi −
√

(δ(λi − 2) + λi)2 + 4δ

2

and

s
(i)
2 =

δ(λi − 2) + λi +
√

(δ(λi − 2) + λi)2 + 4δ

2
.

Now we have to analyze the conditions |s(i)
1 | < 1 and |s(i)

2 | < 1, for all
i ∈ {1, . . . , N − 1}. To this purpose, we consider the bilinear transformation
of the equation (7.20), i.e., we substitute to s the term 1+s̃

1−s̃ . We obtain the
new equation

(1 + δ)(1− λi)s̃2 + 2(1 + δ)s̃+ 1 + λi + δ(λi − 3) = 0. (7.21)

Let s̃
(i)
1 and s̃

(i)
2 denote the two solutions of (7.21). From the property of

the bilinear transformation, we have that |s(i)
1 | < 1 and |s(i)

2 | < 1 if and

only if s̃
(i)
1 < 0 and s̃

(i)
2 < 0. Since 1 + δ > 0 and (1 + δ)(1 − λi) > 0

for i ∈ {1, . . . , N − 1}, we obtain, from the Cartesian rule, that s̃
(i)
1 < 0

and s̃
(i)
2 < 0 for all i ∈ {1, . . . , N − 1}, if and only if 1 + λi + δ(λi − 3) > 0

for all i ∈ {1, . . . , N−1}. This last condition is verified if and only if δ < δ̄.

We are able now to state the following theorem characterizing the asymptotic
stability of the system (7.16).

Theorem 7.11 Consider the system (7.16). The following facts are equiv-
alent:

(a) δ < δ̄;

(b) for each initial condition z(0) ∈ R2N and for any sequence {Ω(t)}+∞
t=0

with Ω(t) ∈ Co {Eδ} for all t ≥ 0, we have

lim
t→+∞

z(t) =

[
α1
0

]
, (7.22)

for α = 1
N

[1∗ 0∗] z(0).
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Proof: We start by proving that (b) implies (a). To this aim, we consider
the sequence A(0) = A(1) = A(2) = . . . = R1. In this case z(t) is the
evolution of an autonomous linear time invariant discrete-time systems with
updating matrix R1. Therefore, by Lemma 7.10, (7.22) holds true if and only
if and only if δ < δ̄.

We prove now that (a) implies (b). We will show that, for δ < δ̄, there
exists a suitable symmetric matrix L ∈ R2N×2N satisfying the following
three properties

L [1∗ 0∗]∗ = 0, (7.23)

z∗Lz > 0, (7.24)

z∗
(

1

2

(
R∗iLRj +R∗jLRi

)
− L

)
z < 0, for all Ri, Rj ∈ R, (7.25)

∀ z ∈< [1∗ 0∗]∗ >⊥. This fact, together with Lemma 7.10 and Theo-
rem C.2, ensures that fact (a) implies (b). As candidate matrix L we select

L =

[
I − P 0

0 γI

]
, (7.26)

where γ is a suitable positive scalar to be determined. Observe that the
eigenvalues of I − P are 0 and 1 − λi for i ∈ {1, . . . , N − 1}, where it
is immediate to see that 1 − λi > 0 for i ∈ {1, . . . , N − 1}. Since σ(L) =
σ(I−P )∪σ(γI) it follows that also L has an eigenvalue equal to 0 and all other
eigenvalues positive. Moreover, since L [1∗ 0∗]∗ = [((I − P )1)∗ 0∗]∗ = 0,
we have that the eigenspace associated to the eigenvalue 0 is generated by
the vector [1∗ 0∗]∗. Hence L satisfies (7.23) and (7.24). Moreover, by the
structure of L, it is easy to check that R∗iLRj = R∗jLRi for all Ri, Rj ∈ R.
Thus, verifying (7.25) is equivalent to verify

z∗ (R∗iLRj − L) z < 0, for all Ri, Rj ∈ R, (7.27)

for any nonzero z ∈< [1∗ 0∗]∗ >⊥. We have that

R∗iLRj − L = R1LR1 − L+Q,

where

R∗1LR1 − L =

=

[
(I − P )2(γδ2I − I − P ) (I − P )(P (P − I)− γδ2(P − 2I))

(I − P )(P (P − I)− γδ2(P − 2I)) (I − P )3 + γδ2(P − 2I)2 − γI

]
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and

Q = −γδ2

[
(P − I)K2(P − I) (P − I)K2(P − 2I)

(P − 2I)(P − I) + (P − 2I)K2(P − I) (P − 2I)K2(P − 2I)

]
= −γδ2

[
(P − I)K
(P − 2I)K

]
[K(P − I) K(P − 2I)] ,

with K such that K2 = I −EiEj2. Clearly, Q = Q∗ ≤ 0 and Q [1∗ 0∗]∗ = 0.
If (7.27) is satisfied for i = j = 1, then (7.27) holds also for any pair Ri, Rj

belonging to R.
Observe that, by Lemma C.4 (see Appendix C), we immediately have that

z∗(R∗1LR1 − L)z < 0, ∀ z ∈< [1∗ 0∗]∗ >⊥ (7.28)

if we choose

γ =
1 + λmin + δ2 (λmin − 3)

2δ2
.

7.5 Exponential convergence

The objective of this section is to understand how much the quantization
affects the performance of the consensus algorithm. To this aim, by means
of a Lyapunov analysis, we will provide a characterization of the asymptotic
speed of the convergence toward the consensus of both the ideal algorithm
(7.2) and the algorithm (7.12).

We start by introducing some definitions. A function f : N → R con-
verges to 0 exponentially fast if there exist a constant C > 0 and another
constant ξ ∈ [0, 1[ such that |f(t)| ≤ Cξt, for all t; the infimum among all
numbers ξ ∈ [0, 1[ satisfying the exponential convergence property is called
the exponential convergence factor of f . In other words, the exponential
convergence factor of f is given by (see Section 2.2.2)

lim sup
t→∞

|f(t)|
1
t .

Consider first the system (7.2). To quantify the speed of convergence of (7.2)
toward consensus, we introduce the following variable

x̄(t) := x(t)− xave(0)1,

2Of note is that I − EiEj is a positive semidefinite matrix and hence the matrix K is
well-defined.
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where xave(0) = 1
N
1∗x(0). Note that the i-th component of x̄(t) represents

the distance of the state of the i-th system from the initial average. Clearly,
limt→∞ x(t) = xave(0)1 if and only if limt→∞ x̄(t) = 0. It is easy to see that
the variable x̄ satisfies the same recursive equation of the variable x, that is,

x̄(t+ 1) = Px̄(t). (7.29)

Moreover note that 1∗x̄(t) = 0, for all t ≥ 0. We define the exponential
convergence factor of x̄(t), for a given initial condition x̄0 ∈< 1 >⊥, to be

ρ(P, x̄0) := lim sup
t→∞

||x̄(t)||
1
t

We can get rid of the initial condition and define the exponential convergence
factor of the system (7.2) as follows

ρ(P ) := sup
x̄0∈<1>⊥

ρ(P, x̄0) (7.30)

Consider now the positive semidefinite matrix I − P . Notice that

ρ(P, x̄0) = lim sup
t→∞

(x̄(t)∗(I − P )x̄(t))
1
2t

and so we can characterize the speed of convergence to 0 of the variable x̄
by studying the exponential convergence factor of the Lyapunov function
x̄(t)∗(I − P )x̄(t).

Theorem 7.12 Consider (7.29) with P ∈ RN×N satisfing Assumption 7.1.
Then the function t 7→ (x̄(t)∗(I−P )x̄(t))1/2, defined along any trajectory t 7→
x̄(t), converges exponentially fast to 0. Moreover, the factor ρ(P ), defined in
equation (7.30), satisfies

ρ(P ) = max {λmax(P ),−λmin(P )} .

Proof: Let α := max {λ2
max(P ), λ2

min(P )} so that z∗P 2z ≤ αz∗z for all
z ∈< 1 >⊥ and, in turn,

z∗(P (I − P )P )z ≤ αz∗(I − P )z, (7.31)

for all z ∈< 1 >⊥. This shows that the map t 7→ x̄(t)∗(I−P )x̄(t) converges
exponentially fast to 0 along any trajectory t 7→ x̄(t) and that ρ(P ) ≤

√
α.

Moreover, observe that, if z is equal to the eigenvector corresponding to the
eigenvalue defining β, then (7.31) holds true as equality. Then, if x̄0 is equal
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to this eigenvector, we obtain a trajectory t 7→ x̄(t) along which the function
t 7→ x̄(t)∗(I − P )x̄(t) has exponential convergence factor equal to

√
α.

This concludes the analysis of the algorithm (7.2). In the sequel of this
section, we provide a similar analysis of the system (7.12). To this aim we
consider again the system (7.16), that is

z(t+ 1) = A(t)z(t), (7.32)

where z(0) = z0 is any vector in R2N . To perform a Lyapunov analysis of
(7.32), it is convenient to introduce the variable

z̄(t) =

[
I − 1

N
11∗ 0

0 I

]
z(t).

Clearly, condition (b) of Theorem 7.11 holds true if and only if limt→∞ z̄(t) =
0. It is straightforward to see that z̄ satisfies the same recursive equation of
z(t), i.e.,

z̄(t+ 1) = A(t)z̄(t) (7.33)

and that [1∗ 0∗]∗ z̄(t) = 0 for all t ≥ 0. Consider now the matrix L ∈
R2N×2N , introduced along the proof of Theorem 7.11 and defined as

L =

[
I − P 0

0 γI

]
.

For each γ > 0 define

ρ̃ (P, δ, γ; z̄0, {A(t)}∞t=0) := lim sup
t→∞

(z̄(t)∗Lz̄(t))
1
2t (7.34)

We can get rid of the initial conditions z̄0 and the sequences {A(t)}∞t=0 by
considering

ρ̃(P, δ, γ) := sup
z̄0{A(t)}∞t=0

ρ̃ (P, δ, γ; z̄0, {A(t)}∞t=0) (7.35)

where the initial conditions z̄0 belong to the set of vectors orthogonal to
[1∗ 0∗]∗ and the sequences {A(t)}∞t=0 are such that A(t) ∈ Co{R} for all
t ≥ 0. It can be shown that ρ̃(P, δ, γ) is independent of γ and for this reason
we denote it as ρ̃(P, δ).

We characterize now ρ̃(P, δ, γ). To this aim, consider the following semidef-
inite programming problem

β̄(P, δ, γ) :=
max β

such that R∗1LR1 − L ≤ −βL
(7.36)

We have the following result.
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Theorem 7.13 Consider (7.33) with the matrix P satisfing Assumption 7.1.
Let δ̄ be defined as in (7.13) and let δ ∈ R be such that 0 ≤ δ < δ̄.
Moreover let γ ∈ R be such that γ > 0, and let β̄(P, δ, γ) be defined as
in (7.36). Then, the function t → (z̄(t)∗Lz̄(t))1/2, defined along any trajec-
tory t→ z̄(t) converges exponentially fast to 0 and the factor ρ̃(P, δ), defined
in equation (7.35), satisfies

ρ̃(P, δ) ≤
√

1− β̄(P, δ, γ).

Proof: We start by recalling, that since A(t) belongs to Co (R), we can

write that A(t) =
∑2N

i=1 νi(t)Ri, where ν1(t), . . . , ν2N (t) are nonnegative real

numbers such that
∑2N

i=1 νi = 1. Along the proof of Theorem 7.11, we have
seen that

z∗(R∗iLRj − L)z ≤ z∗(R∗1LR1 − L)z < 0,

for all z ∈ R2N such that z ∈< [1∗ 0∗]∗ >⊥ and for any pair of matrices
Ri, Rj belonging to R. Hence we have that

z∗(A∗(t)LA(t)− L)z = z∗

 2N∑
i=1

νi(t)Ri

∗ L
 2N∑

j=1

νj(t)Rj

− L
 z

= z∗

(
N∑
i=1

N∑
j=1

(
νi(t)νj(t)R

∗
iLRj − νi(t)νj(t)L

))
z

≤ z∗

(
N∑
i=1

N∑
j=1

νi(t)νj(t)(R
∗
1LR1 − L)

)
z

= z∗(R∗1LR1 − L)z,

for all z ∈ R2N such that z ∈< [1∗ 0∗]∗ >⊥. Observe finally that z∗(R∗1LR1−
L)z ≤ β̄z∗Lz < 0, from which we can argue that z̄(t + 1)∗Lz̄(t + 1) ≤
(1− β̄)z̄(t)∗Lz̄(t) and so the theses follow.

It is worth noting that the above Theorem relates ρ̃(P, δ) to the resolu-
tion of a LMI [21]. It is well known that the computational effort required
by the resolution of a LMI strictly depends on its dimensionality. How-
ever, we can observe that Lemma C.3 (see Appendix C) provides an efficient
way of solving (7.36), that drastically reduces its computational complex-
ity. Indeed, we have that β̄(P, δ, γ) = min{β−min(δ, γ), β−max(δ, γ)}, where
β−min(δ, γ), β−max(δ, γ) are defined in Lemma C.3. This means that one has to
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calculate only the value of the two variables β−min(δ, γ), β−max(δ, γ) and evalu-
ate the minimum between them. Differently from the method based on the
LMI, the complexity of this method is independent of N .

Example 7.14 In this example we consider a connected random geometric
graph generated by choosing N = 30 points at random in the unit square,
and then placing an edge between each pair of pints at distance less than 0.4.
The matrix P is built using the Metropolis weights [149]. In this case we
have that λmin = −0.013 and δ̄ = 0.327. In figure 7.4, we plot the behavior
of β−min and β−max as functions of γ. The value of δ is assumed constant and
precisely equal to 0.25.
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Figure 7.4: Behavior of ρ̃ as function of γ for P and δ fixed.

In general, assigned the matrix P and the value of the accuracy parameter
δ, one could be interested in determining the maximum value of β̄, as function
of γ. Clearly, the best bound on ρ̃(P, δ) corresponds to to the maximum value
of β̄, namely

ρ̃(P, δ) ≤
√

1− β̄opt(P, δ)

where

β̄opt(P, δ) := max
γ>0

β̄(P, δ, γ).

We illustrate this discussion in the following example.
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Figure 7.5: Behavior of
√

1− β̄opt(P, δ).

Example 7.15 We consider the same matrix P generated in the previous
example. In Figure 7.5, we depict the behavior of

√
1− β̄opt(P, δ) as a func-

tion of δ. The dotted line represents the value of ρ(P ), that is, the conver-
gence factor of the ideal algorithm (7.29). Notice that the convergence factor√

1− β̄opt(P, δ) depends smoothly on the accuracy parameter δ and that

lim
δ→0

√
1− β̄opt(P, δ) = ρ(P ).

An interesting characterization of ρ̃ can be provided when considering a
family of matrices {PN} of increasing size whose maximum eigenvalue con-
verges to 1. It is worth noting that this situation is encountered in many
practical situations [86, 22, 35]. We formalize this situation as follows.

Assumption 7.16 (Vanishing spectral gap) Assume we have a sequence
of symmetric stochastic matrices {PN} ⊂ RN×N satisfying Assumption 7.1
and the following conditions

(i) λmin(PN) > c for some c ∈ ]−1, 1[ and for all N ∈ N;

(ii) λmax(PN) = 1 − ε(N) + o(ε(N)) as N → ∞, where ε : N → R is a
positive function such that limN→∞ ε(N) = 0.

According to Theorem 7.12, as N →∞, we have that ρ (PN) = 1−ε(N)+
o (ε(N)). In considering the quantized version of the consensus algorithm,
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together with the sequence {PN}, we have also to fix the sequence {δN}. For
simplicity, in the following we will assume that, {δN} is a constant sequence,
i.e., δN = δ with suitable δ such that δ < 1+c

3−c which ensures the stability for
all N .

Theorem 7.17 Let {PN} ⊂ RN×N be a family of matrices of increasing size
satisfying Assumptions 7.1 and 7.16. Let δ ∈ R be such that δ < 1+c

3−c . Then,
as N →∞, we have that

ρ̃(PN , δ) ≤ 1−
(

1− 1 + c+ δ2(c− 3)

4(1− δ2)

)
ε(N) + o (ε(N)) .

Proof: We choose

γ =
1 + c+ δ2 (c− 3)

2δ2
.

Consider the polynomial f defined in (C.8). Let β−min(δ, γ,N) and β−max(δ, γ,N)
be as defined in Lemma C.3 relatively to the matrix PN .
Notice that f(1, δ, γ, β) = γβ2+(γδ2 − γ) β. Then the equation f(1, δ, γ, β) =
0 has solutions β = 0 and β = 1−δ2. This implies that, since λmax(PN)→ 1,
then β−max(δ, γ,N) → 0 as N → ∞. This implies that for N big enough we
have that

min{β−min(δ, γ,N), β−max(δ, γ,N)} = β−max(δ, γ,N)

and hence, from Theorem 7.13 and Lemma C.3 (see Appendix C), it follows
that for N big enough we have that

ρ̃(PN , δ) ≤
√

1− β−max(δ, γ,N)

Let λN := λmax(PN) and βN := β−max(δ, γ,N) so the we have that λN → 1
and βN → 0. We know that f(λN , δ, γ, βN) = 0. As N → ∞, from the
implicit function theorem, we have that

βN =

[
∂
∂λ
f

∂
∂β
f

]
|λ=1,β=0

ε(N) + o(ε(N)).

Now notice that

∂f

∂λ
=
(
−3(1− λ)2 + 2γδ2(λ− 2)2 − γ2δ2 + 2γδ)

)
β + γ2δ2 + (1− λ)2+

− γ(1 + λ+ δ2(λ− 3)) + (1− λ)(γ − 2γδ2 + 2(1− λ))
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and that

∂f

∂β
= 2γβ + (1− λ)3 + γδ2(λ− 2)2 − γ + γ(1− λ)(γδ2 − 1− λ).

which lead to
∂f

∂λ |λ=1,β=0
= −(2γ − 2γ2δ2 − γδ2)

and
∂f

∂β |λ=1,β=0

= γδ2 − 1.

Then

βN =

(
2− γδ2

1− δ2

)
ε(N) + o(ε(N)).

The thesis follows by expanding in Taylor’s series the function
√

1− βN .

Notice that the coefficient in front of ε(N) is negative. Indeed, it can be
seen that that coefficient is negative if and only if

δ2 <
3− c
1 + c

and this is true since we have chosen δ < 1+c
3−c and since δ < 1.

7.6 Numerical simulations

In this section we consider two examples providing some numerical results
illustrating the performance respectively of the Zoom in -Zoom out strategy
and of the truncated version of the logarithmic quantizer discussed in Remark
7.2.

Example 7.18 In this example we consider a connected random geometric
graph generated by choosing N points at random in the unit square, and
then placing an edge between each pair of points at distance less than 0.25.
We assume that N = 30 and that the initial conditions has been generated
randomly inside the interval [−100, 100]. Again, the matrix P is built using
the Metropolis weights (see Section 2.2.1). For all the experiments, we set
the parameters kin and kout to the values 1/2 and 2 respectively, and ini-
tialized the scaling factor f of each agent to the value 50. Moreover we run
simulations for two different values of m, m = 5 and m = 10. The results
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obtained are reported in Figure 7.6. The variable plotted is the normalized
Euclidean norm of the vector x̄(t) := x(t)− xave(0)1, that is,

s(t) =

√√√√ 1

N

N∑
i=1

x̄2
i (t).

Note that, as depicted in Figure 7.6, also the zoom in- zoom out uniform
coder- decoder strategy seems to be very efficient in achieving the consen-
sus. In particular it is remarkable that this strategy works well even if the
uniform quantizer has a low number of quantization levels (m = 5). Finally
it is worth observing, that as theoretically proved in the logarithmic coder-
decoder strategy, also in this case the performance degrades smoothly as the
quantization becomes coarser.
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Figure 7.6: Zoom in- zoom out strategy

It is worth noting that some preliminary results regarding the convergence
of the zoom in- zoom out strategy are present in [11].

Example 7.19 In this example we consider the same matrix P of the pre-
vious example. Moreover we assume again that the initial conditions have
been generated randomly inside the interval [−100, 100]. The information
exchanged between the systems is quantized by the truncated logarithmic
quantizer discussed in Remark 7.2. More precisely, we assume that the real
numbers a, b introduced in Remark 7.2 are equal respectively to 0.5 and 100.
The result obtained is reported in Figure 7.7.
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Figure 7.7: Truncated logarithmic quantizer

The variable plotted is
d(t) := ‖x̄(t)‖∞.

One can see that d(t) does not converge asymptotically to 0. However, at the
steady state, d(t) oscillates inside an interval whose amplitude is comparable
to 0.5, that is, the lower value at which we have truncated the logarithmic
quantizer.

This numerical observations leads to the following consideration. Assume
that our goal is to have convergence of the initial states xi(0) ∈ [−M,M ] to
a target configuration xi(∞) ∈ [α−ε, α+ε], where α is a constant depending
only on the initial condition x(0) and ε describes the desired agreement preci-
sion. This is a “practical stability” requirement. In this case the contraction
rate is C := M/ε. Assume that, as in [75], the exact data transmission are
substituted by transmissions of precision ε uniformly quantized data. In this
framework it is well known [56] that each uniform quantizer needs C different
levels and so the transmission of its data needs an alphabet of C different
symbols. Assume now that the information is encoded by truncated loga-
rithmic quantizers where a = ε and b = M . We have seen in Remark 7.2
that in such case each logarithmic quantizer needs

2 logC

log 1+δ
1−δ

different symbols. Note that for C sufficiently large, with the logarithmic
communications we obtain a significantly improvement in terms of the com-
munication effort required. It will be the subject of future research to analyze
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the tradeoff between the steady state of d(t) and the values of the parameters
a, b at which we truncate the logarithmic quantizers.

7.7 Conclusions

In this chapter we presented a new approach solving the average consensus
problem in presence of only quantized exchanges of information. In par-
ticular we considered two strategies, one based on logarithmic quantizers,
and the other one based on a zooming in-zooming out strategy. We stud-
ied them with theoretical and experimental results proving that using these
schemes the average consensus problem can be efficiently solved even if the
agents can share only quantized information. Additionally, we show that the
convergence factors depend smoothly on the accuracy parameter of the quan-
tized and that, remarkably, that the critical quantizer accuracy sufficient to
guarantee convergence is independent from the network dimension. A field
of future research will be to look for encoding and decoding methods which
are able to solve the average problem also with noisy digital channels.





Chapter 8

Distributed Kalman filtering

8.1 Introduction

The main objective of this chapter deals with a possible application of the
consensus ideas to the wide field of the distributed estimation. It is worth
mentioning that, since eighties, the problems related to the distributed esti-
mation have attracted intensively the attention of the scientific community
producing, along the years, a very rich literature. Nevertheless in the last
period, the interest toward this kind of problems is renewing. This is mainly
due to the recent technological advances in wireless communication that,
combined to the decreasing in cost and size of electronic devices, are promot-
ing the appearance of large inexpensive interconnected systems, each with
computational and sensing capabilities. These complex systems of agents, for
instance, can be used for monitoring very large scale areas with fine resolu-
tion. However, in this application, collecting measurements from distributed
wireless sensors nodes at a single location for on-line data processing may not
be feasible due to several reasons among which long packet delay (e.g. due to
multi-hop transmission) and/or limited bandwidth of the wireless network,
due e.g. to energy consumption requirements.

This problem is particularly relevant in wireless ad-hoc sensor networks
where information needs to be multi-hopped from one node to another us-
ing closer neighbors. Therefore there is a growing need for in-network data
processing tools and algorithms that provide high performance in terms of
on-line estimation while

(i) reducing the communication load among all sensor nodes,
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(ii) being very robust to sensor node failures or replacements and packet
losses, and

(iii) being suitable for distributed control applications.

As previously said, the literature is very rich of contributions addressing
several aspects of distributed estimation. We can classify these works into
few large classes based on the modeling adopted: static vs dynamic esti-
mation, distributed vs hierarchical estimation, and all-to-all vs multi-hop
communication networks. The distinction between static and dynamic es-
timation depends on whether the quantities to be estimated are constant or
time-varying. The second distinction between hierarchical and distributed
depends on whether the global estimate is required to be computed at a
specific location on the network or at many sensing locations. The last dis-
tinction between all-to-all vs multi-hop depends on whether one node can
directly send a message to any other node, or it has to route it through in-
termediate nodes. The work of this chapter belongs to the class of dynamic
distributed estimation under multi-hop communication, while most of the
works in the literature focus on different combinations of the three classes
mentioned above.

For example, [142] derives conditions under which one can reconstruct
the global sufficient statistics from local sufficient statistics; [85] investigates
how much information two sensors (say S1 and S2) have to transmit regarding
their measurements (say y1 and y2) in order for a fusion center to be able to
evaluate certain functions of the measured data y1 and y2; this latter paper
and [64] introduce the concept of communication complexity since compu-
tation efficiency depends also on the underlying communication graph, thus
shedding some new light on well-known data fusion formulas. These works
however, are limited to static hierarchical estimation in rooted-tree communi-
cation networks which is a scenario where communication delay is irrelevant.
There is also a vast literature dealing with dynamic estimation with all-to-all
communication where the main goal is to find the minimal representation of
sufficient statistics to reduce either computation load in the central node [78]
[144] or to reduce bandwidth requirements [132, 116]. However delay due to
multi-hop topologies is not considered in these works.

An interesting approach dealing with distributed estimation and control
in a multi-hop setting can be found in [82] where the authors propose to de-
sign linear distributed estimators and controllers which use only local infor-
mation. However, this approach leads to a nonlinear optimization problem af-
fected by well known problems of multiple local minima. Nonetheless, this is
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very similar, in spirit, to the approach followed in this paper. In fact, we will
focus on distributed estimation of dynamical systems for which sensor nodes
are not physically co-located and exchange information only with their neigh-
bors. For example, suppose that we want to track a dynamic quantity that
changes according to a random walk, i.e x(t+1) = x(t)+w(t), where w(t) is a
zero mean white noise process with covariance q, and we have N sensors that
can measure this quantity corrupted by some noise, i.e. yi(t) = x(t) + ni(t),
where ni(t) are uncorrelated zero mean white noise processes with same co-
variance r. If all measurements were instantaneously available to a single
location, it is well known from the centralized Kalman filter that the suffi-
cient statistics necessary to reconstruct the optimal estimate would be given
by the mean of all measurements, i.e. mean(y(t)) := 1

N

∑N
i=1 yi(t). In a

multi-hop setting, it is not possible to assume that all measurements are in-
stantaneously available at a specific location, since data from distant nodes,
at best, arrives with some delay which depends on the specific network topol-
ogy. Moreover, in a distributed setting where each sensor node is required to
compute a global state estimate, the number of messages from every node to
every other node can congest the network.

However, if it was possible to provide an algorithm that computes the
mean of a set of numbers only through local communication, then the optimal
estimate could be computed at each sensor node as follows:

x̂i(t+ 1) = (1− `0)mean(x̂(t)) + `0mean(y(t))
= mean

(
(1− `0)x̂(t) + `0y(t)

)
where x̂i is the local estimate of i−th sensor. Algorithms able to compute the
average of a set of numbers in a distributed way are known as average consen-
sus algorithms, whose one popular class, based on linear iterations z+ = Pz,
where z is the vector whose entries are the quantities to be averaged and P
is a quasi-doubly stochastic matrix, has been illustrated in Chapter 2. It is
worth recalling that, under some weak connectivity properties, see Section
2.2.1, these algorithms guarantee that limm→∞[Pmz]i = mean(z), i.e. all
elements of vector Pmz converge to their initial mean mean(z). Therefore,
provided that it is possible to communicate sufficiently fast within two sub-
sequent sensor measurements, i.e. m � 1, then intuitively we can assume
that the following distributed estimation strategy yields the optimal global
state estimate:

z = (1− `0)x̂i(t) + `0yi(t) measur. & predict.
x̂i(t+ 1) = [Pmz]i consensus

To our’s knowledge Olfati-Saber [102] and Spanos et al. [129] were the first
ones to propose this two-stage strategy based on computing first the mean of
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the sensor measurements via consensus algorithms, and then to update and
predict the local estimates using the centralized Kalman optimal gains. This
approach has been extended to static multivariable systems in [149] and to
dynamic multivariable systems in [130][96]. In this context of fast communi-
cation, i.e. m� 1, it is natural to optimize P for fastest convergence rate of
Pm, which corresponds to the second largest singular value of P , for which
there are already very efficient optimization tools available [147] [148]. The
assumption m� 1 is reasonable in applications for which communication is
inexpensive as compared to sensing. This is the case, for example, in ren-
dezvous control or coordination of mobile sensors where moving and sensing is
energetically more expensive than communicating. However, there are many
other important applications in which the number m of messages exchanged
per sampling time per node needs to be small, as required in battery-powered
wireless sensor networks. Therefore the assumption that [Pmz]i ≈ mean(z)
is not valid. In this context, for example, it is not clear whether maximiz-
ing the rate of convergence of P is the best strategy. Moreover, also the
optimal gain ` becomes a function of the matrix P and the number of ex-
changed messages m; this will unlikely coincide with the optimal centralized
Kalman gain, which is the strategy proposed in all the aforementioned papers
[102][129][130][96][149].

Recently, Alriksson at al. [5] and Speranzon et al. [131], considered the
case m = 1, i.e. sensors are allowed to communicate only once between sam-
pling instants. In particular, in [5], the authors consider a general MIMO
scenario where the matrix P = P (t) and the gain ` = `i(t) (W and K, re-
spectively, in their terminology) are selected at each time step in order to
minimize the estimation error covariance of each sensor for the next time
step, with the only constraint to maintain the estimate unbiased. In [131]
the authors consider a single update equation x̂(t+ 1) = Kx̂(t) +Hy(t), and
similarly to [5], they minimize the sum of all covariance errors at each time
step, but differently they simultaneous optimize the gains K and H by en-
forcing stability of the matrix K. Both these iterative estimation algorithms
seem to converge in numerical simulations and provide good performance,
but no proof of stability and global optimality nor insights about the ef-
fect of connectivity of the underlying graph on the overall performance were
given.

It is worth noting that the algorithms based on stochastic matrices repre-
sent just one class among all the average consensus algorithms [52] [134]. For
example, there has been recent work (see e.g. [40, 143]) on finite-time consen-
sus algorithms. These approaches guarantee that consensus can be reached
in finite time; however these schemes are nonlinear and hence more difficult
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to analyze. Moreover, they are limited to the continuous time framework,
making them less attractive in the presence of communication constraints.
Another class of average consensus algorithms includes iterative distributed
gradient descent algorithms based on Lagrange multipliers [15], which have
been recently proposed by Skizas et al. [121] in the context of static dis-
tributed estimation. The authors proved that these algorithms converge to
the centralized optimal estimator in the ideal scenario of fast communication
and that they maintain good performance even under quantization, non-
gaussian noise and small number of consensus iterations.

In this chapter, we want to study the interaction between the consensus
matrix Q, the number of messages per sampling time m, and the gain `.
With respect with the aforementioned works, we consider a simpler scenario
with a scalar state which can be measured by N identical and independent
sensors, a setup which still captures some of the most important features of
the problem. In fact, also in this simple setup the joint optimization of Q
and ` is not convex, as discussed in Section 8.5. Our goal is to provide better
insights about the problem of distributed estimation using consensus matri-
ces, rather then posing it as a black-box optimization algorithm. Therefore,
we explore some important regimes, namely fast communication m → ∞,
“small” measurement noise (r/q → 0) and “small” process noise (q/r → 0).

This analysis provides useful guidelines for choosing the local filter gain
` and the consensus matrix Q also for more general scenarios. As a side
result of our analysis, we also see that the standard recipe of choosing Q
optimizing the second largest eigenvalue is not necessarily the best thing to
do; similarly choosing the centralized optimal gain `c is not necessarily the
optimal strategy.

Finally we provide some numerical examples to clarify the proposed an-
alytical results.

8.2 Problem formulation

Consider a set V of N sensor nodes which are labeled i = 1, 2, . . . , N. These
sensors can communicate over a network modeled as a direct graph G =
(V,E), where the edge (i, j) is in E if and only if the node i can transmit its
information to the node j. We assume that the graph G is time-invariant. A
physical process with state x ∈ R evolves according to the continuous-time
system

ẋ(t) = v(t) (8.1)
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where v(t) is a continuous-time white noise1 of zero mean and intensity q ≥ 0,
that is E[q(t)q(s)] = qδts, where δhk is the Kronecker delta. The initial con-
dition is also assumed to be a random variable with mean x0 and variance σ.
Each sensor take measurements of the physical process according to the equa-
tion

yi(kT ) = x(kT ) + ni(kT ), k ∈ Z, (8.2)

where T is the sampling time. Note that yi ∈ R, ∀ i. We denote y(kT ) =
[y1(kT ), . . . , yN(kT )]∗ and n(kT ) = [n1(kT ), . . . , nN(kT )]∗. Moreover the
noise processes ni(kT ) ∈ R are such that E[n(kT )] = 0, E[n(kT )n(hT )] =
rIδhk. Note also that (8.2) can be rewritten in the following vector form

y(kT ) = x(kT )1+ n(kT ). (8.3)

From now on, without loss of generality, we shall assume that T = 1. Suppose
also that, between each pair of subsequent measurement update indexes k and
k+ 1, each node exchanges m messages; we assume that these transmissions
take place at the following times k+δ, k+2δ, . . . , k+(m−1)δ, k+mδ, where
δ = 1

m
. Note that k +mδ = k + 1.

We shall denote with x̂i(k + hδ|k) the estimate, at node i, of the state x
at time k + hδ given measurements up to time k. In compact form we shall
also denote with x̂ := [x̂1, . . . , x̂N ]∗ the vector of estimates throughout the
network; more precisely, making the dependence upon time explicit:

x̂ (k + hδ|k) :=

 x̂1 (k + hδ|k)
...

x̂N (k + hδ|k)

 .
We assume that these estimates are updated, for k ≥ 0, according to the
following rule{

x̂ (k|k) = (1− `(k)) x̂(k|k − 1) + `(k)y(k)
x̂ (k + hδ|k) = P (k, h)x̂ (k + (h− 1)δ|k) ,

(8.4)

where h = 1, . . . ,m and where P (k, h) is a suitable matrix compatible with
the communication graph and where 0 < `(k) < 1, ∀ k ≥ 0. From now on we
shall use constant “gains” `(k) and P (k, h), i.e. `(k) = ` and P (k, h) = P ;
furthermore, we shall also assume the the recursions (8.4) are initialized by

x̂(0| − 1) := x0. (8.5)

1We recall that what is commonly referred to as “continuous time white noise” can
be thought of as the “derivative” of a Wiener process which, unfortunately, is nowhere
differentiable. More rigorously x(t) is a Wiener process.
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A natural request is also that x̂i be an unbiased estimator for all i’s and for
all times, i.e. E [x̂i(k + hδ|k)] = x0, ∀ i, ∀ k ≥ 0, ∀h ∈ [1,m]. This leads to
the condition

P1 = 1. (8.6)

In fact, from the update rule (8.4) it follows that

x01 = E [x̂ (k + (h+ 1)δ|k)] = E [Px̂ (k + hδ|k)] = x0P1.

For x0 6= 0, the equality x0P1 = x01 implies (8.6). Hence it turns out that
P has to be a quasi-stochastic matrix, which we shall assume from now on.
Now we define the new variable x̃ (k + hδ|k) = x (k + hδ)1 − x̂ (k + hδ|k)
which represents the estimation error. In order to analyze the structure of the
recursive equations that x̃ (k + hδ|k) satisfies, it is convenient to discretize
(8.1) in the following way

x (k + (h+ 1)δ) = x (k + hδ) + w (k + hδ)

where

w (k + hδ) =

∫ k+(h+1)δ

k+hδ

v(τ)dτ.

Note that w is a discrete time white noise with mean zero and variance
q/m, i.e. E [w (k + hδ)] = 0 and E [w2 (k + hδ)] = q

m
. By straightforward

calculations, for h = 0, we get

x̃(k|k) = (1− `) x̃(k|k − 1)− ` n(k)

and, for 1 ≤ h ≤ m,

x̃ (k + hδ|k) = P hx̃ (k|k) +

(
h−1∑
i=0

w (k + iδ)

)
1

We shall be concerned with the second order properties of the error, repre-
sented by the covariance matrices

Σ (k + hδ|k) = E [x̃ (k + hδ|k) x̃ (k + hδ|k)∗] ,

defined for 0 ≤ h ≤ m. One can show that Σ (k + hδ|k) satisfies, for h = 0,

Σ(k|k) = (1− `)2 Σ(k|k − 1) + `2rI (8.7)

and, for h = m,

Σ(k + 1|k) = PmΣ(k|k)(Pm)∗ + q11∗. (8.8)
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Plugging (8.7) into (8.8) we obtain the recursive equation

Σ(k + 1|k) = (1− `)2PmΣ(k|k − 1) (P ∗)m + `2rPm (P ∗)m + q11∗ (8.9)

while, inserting (8.8) into (8.7) evaluated at the index k + 1 we get:

Σ(k + 1|k + 1) = (1− `)2 PmΣ(k|k) (P ∗)m + (1− `)2 q11∗ + `2rI. (8.10)

From (8.5) it follows that the error covariance Σ(0| − 1) satisfies Σ(0| − 1) =
σ11∗; similarly Σ(0|0) is given by Σ(0|0) = (1 − `)2σ11∗ + `2rI. Iterating
the update rule (8.9), starting from the initial condition Σ(0|− 1), we obtain

Σ(k|k − 1) = (1− `)2kP kmΣ(0| − 1) (P ∗)km +

+ `2r
k−1∑
i=0

(1− `)2iP (i+1)m (P ∗)(i+1)m + q
k−1∑
i=0

(1− `)2i11∗ ;

similarly, iterating (8.10) with initial condition Σ(0|0), we get

Σ(k|k) = (1− `)2kP kmΣ(0|0) (P ∗)km + q
k−1∑
i=0

(1− `)2i+211∗+

+ `2r
k−1∑
i=0

(1− `)2iP im (P ∗)im

In this chapter we shall be concerned with the asymptotic (k → ∞)
behavior of the error covariance. Hence we consider the limits

lim
k→∞

Σ(k|k − 1) = r`2

∞∑
i=0

(1− `)2iP (i+1)m (P ∗)(i+1)m + q
1

1− (1− `)2
11∗

and

lim
k→∞

Σ(k|k) = q
(1− `)2

1− (1− `)2
11∗ + r`2

∞∑
i=0

(1− `)2iP im (P ∗)im

and define the cost functions2

J1(P, `;m, r, q) = tr
{

lim
k→∞

Σ(k + 1|k)
}

2In the remainder of the paper, when there is no risk of confusion, we might drop some
arguments of the cost (e.g. denote J1(P, `) rather than J1(P, `;m, r, q)).
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and
J2(P, `;m, r, q) = tr

{
lim
k→∞

Σ(k|k)
}

Note that some restrictions on P need to be imposed to ensure that the
limits converge. From now given a quasi-stochastic matrix, we will denote
its essential spectral by ρ(P )3 If ρ(P ) ≤ 1 and 0 < ` < 1, then convergence
is guaranteed. In the following of the chapter we will restrict to parameters
which satisfy these constraints.

The costs defined above lead to the formulation of the following mini-
mization problem:

Problem 8.1 Given a graph G and a nonnegative integer m, find a real
` ∈ (0, 1) and a matrix P ∈ P, where P is the set of the quasi-stochastic
matrices compatible with the graph G, minimizing J1 or J2.

In the sequel the set P may be further restricted while always being
compatible with the topology of the communication network.

Remark 8.2 In the sequel we will consider only J1. The reason will be
clear in the next sections where the minimization on J1 will permit us to
retrieve, for some particular cases, the results already known in the literature
regarding Kalman filtering. For the sake of simplicity, we will denote this
cost function simply by J in place of J1. Hence

J = r`2tr

{
∞∑
i=0

(1− `)2iP (i+1)m (P ∗)(i+1)m

}
+ q

1

1− (1− `)2
N (8.11)

Remark 8.3 Let us denote with λi, i = 0, .., N − 1 the eigenvalues4 of P ;
since P is quasi-stochastic, we can set, without loss of generality, λ0 = 1,
i.e. σ(P ) = {1, λ1, λ2, . . . , λN−1}. Note that, if P is a normal matrix, i.e.
PP ∗ = P ∗P , then tr{P im(P ∗)im} =

∑n−1
h=0 |λh|2im; it is hence easy to see that

formula (8.11) can be rewritten as follows:

J =
r`2 + qN

1− (1− `)2 + r`2

N−1∑
i=1

|λi|2m

1− (1− `)2|λi|2m
(8.12)

3In Chapter 3 we denote the essential spectral by ρess. Since there is no risk of confusion
we use here the simpler notation ρ.

4Multiple eigenvalues are counted as many times as their algebraic multiplicity.
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Also note that, if P is normal and quasi-stochastic, then it is also quasi-
doubly stochastic. Relevant subclasses of normal matrices are, for instance,
Abelian Cayley matrices [10], circulant matrices and symmetric matrices.

The previous remark suggests that the following assumption is both useful
and reasonable.

Assumption 8.4 The set P in problem 8.1 is the subset of normal quasi-
stochastic matrices with ρ(P ) ≤ 1 which are compatible with the graph G.

Example 8.5 Assume that P is the set of the circulant stochastic matrices
of the form

Pk =


1− k k 0 0 · · · 0 0

0 1− k k 0 · · · 0 0
...

...
...

... · · · ...
...

k 0 0 0 · · · 0 1− k


where k ∈ [0, 1] and assume that m = 1. Let

P opt, `opt ∈ arg min
`∈ (0,1);P ∈P

J(P, `;m, r, q) (8.13)

It is well known in the literature [46] that the eigenvalues of P can be ex-

pressed in the following form λh = 1 − k + kej
2π
N
h, 0 ≤ h ≤ N − 1. Notice

that
∣∣∣1− k + kej

2π
N
h
∣∣∣ ≥ ∣∣∣1/2 + 1/2ej

2π
N
h
∣∣∣ , ∀h : 0 ≤ h ≤ N − 1. Hence it

follows that

P 1
2

= arg min
P∈P

J(P, `; 1, r, q)

for all ` ∈ (0, 1), i.e. P opt = P 1
2
. In order to calculate the optimal gain we

have to solve

arg min
`∈(0,1)

qN

1− (1− `)2 + r`2

N−1∑
h=0

|λh|2

1− (1− `)2|λh|2
(8.14)

where λh = 1
2

+ 1
2
ej

2π
N
h. Unfortunately it is not possible to give, in general,

a closed form expression for the optimizing gain `opt, which has to be found
using numerical search techniques.

However a simple expression for (8.14) can be obtained when the number
of sensorsN goes to infinity, which allows to study the behavior of the optimal
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` for large networks. To this purpose it is convenient to define the normalized
cost

J̄N : =
J

N
=

q

1− (1− `)2 +
r`2

N

N−1∑
h=0

|λh|2

1− (1− `)2|λh|2

=
q

1− (1− `)2 +
r`2

N
J̃N

where the last equation defines J̃N . Define also the function f : C→ C

f(z) =
1

2
+

1

2
z.

and note that λh = f
(
ej

2π
N
h
)

. As N →∞, J̃N converges to

lim
N→∞

J̃N = J̃∞ =
1

2π

∫ 2π

0

|f(ejφ)|
1− (1− `)2|f(ejφ)|2

dφ

=
1

2πj

∮
γ

z−1(2 + z + z−1)

4− (1− `)2(2 + z + z−1)
dz

where γ is the unit circle. It is straightforward to see that the poles of

z−1(2+z+z−1)
4−(1−`)2(2+z+z−1)

inside γ are z1 = 2−(1−`)2

(1−`)2 −
√(

2−(1−`)2

(1−`)2

)2

− 1, and z2 = 0;

the integral can be computed explicitly using the residue theorem yielding:

J̃∞ =
1

(1− `)2

(
1√

1− (1− `)2
− 1

)
Hence

lim
N→∞

J̄N

(
P 1

2
, `; 1, r, q

)
=

q

1− (1− `)2
+

r`2

(1− `)2

(
1√

1− (1− `)2
− 1

)
.

value of `opt can be found by minimizing the above limiting expression for
J̄N .

8.3 Optimal consensus matrix P for fixed gain

`

In this section we assume that the estimation gain ` is fixed, and thus consider
the optimization problem:

P opt(`;m) = arg min
P∈P

J(P, `;m). (8.15)
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Although the analysis of this problem is quite hard in general, a detailed
study can be carried out in some interesting situations. In particular in the
following we will restrict to the three special cases:

• the communication graph G is undirected

• the sensors can communicate arbitrarily fast within two subsequent
measurements, i.e., m→∞

• the estimation gain ` is sufficiently large, i.e. ` → 1; this intuitively
corresponds to the situation in which the variance of the measurement
noise is negligible with respect to the variance of the process, i.e r

q
≈ 0.

Before proceeding, we observe that

min
P ∈P

J =
r`2 + qN

1− (1− `)2 + min
P ∈P

r`2

N−1∑
j=1

|λj|2m

1− (1− `)2|λj|2m

and hence only the second term on the right hand side play a role in the
optimization. We can therefore restrict to consider only this latter quantity
which, for convenience of notation, we denote as

S(P, `;m) =
N−1∑
j=1

|λj|2m

1− (1− `)2|λj|2m
(8.16)

8.3.1 Undirected communication graph G

We start by observing that, imposing that a matrix P is compatible with
a graph is a convex constraint. Observe moreover that, since we assume
that P is a subset of the normal matrices, for all P ∈ P we have that
‖P‖2 = maxi |λi| and so also the condition ρ(Q) ≤ 1 is a convex constraint
as well.
Unfortunately, matrix normality is not a convex constraint in general. This
difficult can be overcome when the graph is undirected as the lemma below
shows. Indeed note that, if the communication graph G is undirected, P ∈ P
implies that also P ∗ ∈ P . For any P ∈ P , consider its symmetric part
Psym := (P + P ∗)/2. Clearly, Psym is normal and it is compatible with G,
therefore Psym ∈ P . The following lemma provides an interesting compari-
son between J(P, `;m) and J(Psym, `;m) showing that the former is always
greater or at most equal to the latter.
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Lemma 8.6 Let P be any matrix in P and let Psym be defined as above.
Then

J(Psym, `;m) ≤ J(P, `;m).

Proof: Let λi be any eigenvalue of P . Then Re {λi} is an eigenvalue of
Psym, where Re {λi} denotes the real part of λi. Clearly |Re {λi}| ≤ |λi|
which implies that

|Re {λi} |2m

1− (1− `)2|Re {λi} |2m
≤ |λi|2m

1− (1− `)2|λi|2m
.

Therefore, from (8.16), it follows that S(Psym, `;m) ≤ S(P, `;m); hence also
J(Psym, `;m) ≤ J(P, `;m) holds true.

Remark 8.7 It is important to note that normality plays a fundamental
role in the previous lemma which cannot be generalized to quasi-stochastic
matrices P . In fact, one can find a non-normal P for which the symmetric
part Psym gives a larger cost index.

An immediate consequence of Lemma 8.6 is that, when the communication
graph is undirected, the minimum of the cost function J is reached by sym-
metric matrices. Thus, if Psym is the subset of P containing the symmetric
matrices, i.e. Psym = {P ∈ P : P = P ∗}, solving (8.15) is equivalent to
solve

arg min
P∈Psym

J(P, `;m). (8.17)

The following result provides a powerful characterization of (8.17) which has
important implications when it comes to performing optimization.

Theorem 8.8 Let Psym be as above. Then the cost function J(P, `;m) de-
fined on Psym is a convex function.

Proof: Consider the function f : B ⊆ Rn → R defined as

f(x) =
n∑
i=1

x2m
i

1− αx2m
i

,

wherem ∈ N, 0 < α < 1, x = [x1, x2, . . . , xn]T and where B = {x ∈ Rn : |xi| ≤ 1}.
It is easy to verify that the function f is convex and symmetric, i.e. it is
invariant to any permutation of the vector entries xi. Hence, it follows from
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the theory of convex spectral functions that also J is a convex function [18].

Theorem 8.8 states that (8.17) is a convex problem thus implying that the
solution of (8.17) can be performed efficiently by suitable numerical algo-
rithms. In fact, Xiao et al. [148] adopted this strategy to optimize similar
performance costs over symmetric stochastic matrices.

8.3.2 Fast communication (m→∞)

We have seen in Chapter 2 that the speed of consensus algorithms is governed
by the essential spectral radius of the consensus matrix.

Indeed, the essential spectral radius plays also an important role in dis-
tributed estimation provided communication is “sufficiently fast”. In fact
the following theorem shows that optimizing the essential spectral radius im-
proves the performance provided that the number of message exchanges is
larger than a specified bound. However, when comparing the performance
of two consensus matrices P1 and P2, this bound is a function of ρ(P1) and
ρ(P2) as explained in the following theorem.

Theorem 8.9 Let P1 and P2 be two matrices such that ρ(P1) > ρ(P2). Then
there exists m̄ (depending only on ρ(P1)− ρ(P2)) such that

J(P1, `;m) > J(P2, `;m), ∀m > m̄.

Proof: Let ρ1 = ρ(P1), ρ2 = ρ(P2) and ε = ρ(P1)−ρ(P2) = ρ1−ρ2. Observe
that

S(P1, `;m) ≥ ρ2m
1

1− (1− `)2ρ2m
1

>
(ρ2 + ε)2m

1− (1− `)2ρ2m
2

and that

S(P2, `;m) ≤ N
ρ2m

2

1− (1− `)2ρ2m
2

.

Hence, if (ρ2 + ε)2m > Nρ2m
2 , we have that S(P1, `;m) > S(P2, `;m). Straight-

forward calculations show that this last condition is satisfied if and only
if m > logN

2 log
“

1+ ε
ρ2

” . Note that logN
2 log(1+ε)

≥ logN

2 log
“

1+ ε
ρ2

” . Therefore by letting
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m̄ =
⌈

logN
2 log(1+ε)

⌉
the statement of the theorem follows. Note that m̄ depends

only on ε.

8.3.3 Large gain (`→ 1)

In this section we shall instead consider the number of message exchanges m
as fixed and assume the gain ` is “large”; this, as we shall also see in Section
8.5.2, is what happens when the measurement noise is small as compared to
process noise, a situation frequently encountered in practice. It is remarkable
that in this case the Frobenius norm is instead the “right” way to compare
consensus matrices. This is made precise by the following theorem.

Theorem 8.10 Let P1, P2 be two matrices such that ‖Pm
1 ‖F > ‖Pm

2 ‖F .
Then there exists ¯̀ (depending only on ‖Pm

1 ‖F − ‖Pm
2 ‖F ) such that

J(P1, `;m) > J(P2, `;m), ∀ ` > ¯̀. (8.18)

Proof: Let f(`,m) = S(P1, `;m) − S(P2, `;m) and ε = ‖Pm
1 ‖F − ‖Pm

2 ‖F .
We have that f(`,m) can be written in the following way

f(`,m) =
∞∑
i=0

(
‖P (i+1)m

1 ‖2
F − ‖P

(i+1)m
2 ‖2

F

)
(1− `)2i =

∞∑
i=0

αi(1− `)2i

where αi = ‖P (i+1)m
1 ‖2

F−‖P
(i+1)m
2 ‖2

F . It is straightforward to see that α0 > ε2

and that, for i ≥ 1, αi ≥ −(N−1)ρ2m(i+1), where ρ = ρ(P2). Hence, it follows
that

f(`,m) > ε2 − (N − 1)
∞∑
i=1

ρ2m(i+1)(1− `)2i

> ε2 − (1− `)2(N − 1)

1− (1− `)2

Clearly, if the last term is positive, then also f(`,m) > 0,∀m. This condition
is satisfied if and only if

` ≥ 1−
√

ε2

N − 1 + ε2
= ¯̀.

Therefore, S(P1, `;m)−S(P2, `;m) > 0, ∀ ` > ¯̀and consequently J(P1, `;m) >
J(P2, `;m), thus proving the claim of the theorem.
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Remark 8.11 At first sight, Theorem 8.9 and Theorem 8.10 seem in con-
tradiction. However, this can be explained by observing that ‖Pm‖2

F =
1 + αρ2m(P ) + o(ρ2m(P )), where α is the algebraic multiplicity of the essen-
tial spectral radius of P . Therefore, for large m, minimizing the Frobenius
norm of Pm or the essential spectral radius of P is almost equivalent.

8.4 Optimal gain ` for fixed consensus matrix

P

In this section we assume that the consensus matrix P is fixed. Hence the
problem we want to solve is the following

`opt arg min
`∈(0,1)

J(P, `;m) (8.19)

The previous optimization problem is convex in `. This fact can be easily
checked by observing that the cost functional J can be written as sum of
functions of the form:

g(`) =
x`2

1− x(1− `)2
, h(`) =

x

1− x(1− `)2
, x ∈ [0, 1]

which are convex in ` ∈ (0, 1).

Given any P ∈ P we define

Jopt(m, r, q|P )
4
= min

`
J(P, `;m, r, q) (8.20)

`opt(m, r, q|P ) ∈ arg min `J(P, `;m, r, q) (8.21)

Note that Jopt(m, r, q|P ) = J(P, `opt(m, r, q|P );m, r, q) and that
P opt(m, r, q) ∈ arg min PJ

opt(m, r, q|P ). In the sequel, without risk of confu-
sion, we shall omit arguments which are kept fixed.

Convexity of J allows easy computations of `opt(m|P ). In the remaining
of this section we shall see that the sequence {`opt(m|P )}∞m=0 is monotonically
non-decreasing in m. Moreover, it is bounded below and above by `optd and
`optc , which are the optimal gains minimizing J respectively when P = I and
when P = 1

N
11∗, namely

`optd = arg min
`∈(0,1)

J(I, `;m, r, q), `optc = arg min
`∈(0,1)

J

(
1

N
11∗, `;m, r, q

)
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Note that P = I and P = 1
N
11∗ represent the two extreme cases in modeling

the flow of information between the sensors. Indeed, P = I corresponds to
the situation in which the sensors do not communicate; in such a case there
are N Kalman filters running separately (the subscript “d” in `optd means
decentralized, i.e. no communication). In the other case, instead, we have
that the underlying communication graph is complete and this means that
each sensor has full knowledge about the estimates of all the other sensors
(the subscript “c” in `optc means centralized, i.e. full communication). Since
Im = I and (1/N11∗)m = 1/N11∗ for all m ≥ 1, we have that `optc and `optd

are independent on m. The following proposition characterizes precisely `optd

and `optc .

Proposition 8.12 Let `optd and `optc be as above. Then

`optd =
−q +

√
q2 + 4qr

2r
, `optc =

−q +
√
q2 + 4qr̄

2r̄

where r̄ = r
N
.

Proof: The proof follows from standard results known in Kalman filtering.

The following theorem shows also that `optd and `optc play the role of, re-
spectively, lower and upper bounds for `opt(m|P ). Indeed, a stronger result
can be obtained, which characterizes the sequence {`opt(m|P )}∞m=0.

Theorem 8.13 Let P ∈ P. Let `opt(m|P ) be defined as above. Then the
following chain of inequalities holds true

`optd = `opt(0|P ) ≤ `opt(1|P ) ≤ . . . ≤ `opt(m|P ) ≤
≤ `opt(m+ 1|P ) ≤ . . . ≤ `opt(∞|P ) ≤ `optc .

The achieved (optimal) cost satisfies the reversed chain of inequalities:

J
(
P, `optd ; 0

)
≥ J

(
P, `opt(1|P ); 1

)
≥ . . . ≥ J

(
P, `opt(m|P );m

)
≥

> J
(
P, `opt(m+ 1|P );m+ 1

)
. . . ≥ J

(
P, `optc ;∞

)
Moreover `opt(∞|P ) = `optc if and only if ρ(P ) < 1.

Proof: Note that the equality `opt(0|P ) = `optd follows directly from the
fact that P 0 = I. We prove now that `opt(m|P ) ≤ `opt(m + 1|P ). We start
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by calculating the partial derivative

∂J(P, `;m)

∂`
= 2

N−1∑
i=1

r`|λi|2m − r`(1− `)|λi|4m

[1− (1− `)2|λi|2m]2
− 2

Nq(1− `)− r`2

[1− (1− `)2]2

Consider now the functions p : [0, 1]× [0,∞)→ R defined as

p(x,m) =
x2m − (1− `)x4m

(1− (1− `)2x2m)2 .

We have that
∂p

∂m
= 2x2m 1− (1− `2)x2m

[1− (1− `)2x2m]3
log x.

It is easy to check that ∂p
∂m

< 0 ∀` ∈ (0, 1) and ∀x ∈ [0, 1]. This implies that

∂J(P, `;m)

∂`
− ∂J(P, `;m+ 1)

∂`
=

= 2r`
N−1∑
i=0

|λi|2m − (1− `)|λi|4m

[1− (1− `)2|λi|2m]2
− 2r`

N−1∑
i=0

|λi|2(m+1) − (1− `)|λi|4(m+1)

[1− (1− `)2|λi|2(m+1)]
2

≥ 0.

Since we already know that for all m the function J(P, `;m) is convex in
` ∈ (0, 1), it follows that `opt(m + 1|P ) > `opt(m|P ). In order to show that
`opt(m|P ) ≤ `optc , we remark that the matrix 1

N
11∗ has an eigenvalue equal

to 1 and N − 1 eigenvalues equal to 0. This implies that, for all m,

∂J
(

1
N
11∗, `;m

)
∂`

= −2
Nq(1− `)− r`2

[1− (1− `)2]2
.

Thus we have that

∂J(P, `;m)

∂`
−
∂J
(

1
N
11∗, `;m+ 1

)
∂`

= 2r`
N−1∑
i=1

|λi|2m − (1− `)|λi|4m

[1− (1− `)2|λi|2m]2
> 0

where the last inequality follows from the fact that x−αx2 > 0, ∀x ∈ (0, 1)
and ∀α ∈ (0, 1). From this last inequality `opt(m|P ) < `optc follows.

We prove now `opt(m|P ) = `optc if and only if ρ(P ) < 1. If ρ(P ) < 1, then
limk→∞ P

k = 1
N
11∗. Conversely, if ρ(P ) = 1, then there exists λi, 1 ≤ i ≤

N − 1 such that |λi| = 1 implying that

∂J(P, `;m)

∂`
−
∂J
(

1
N
11∗, `;m

)
∂`

≥ 2r`2

[1− (1− `)2]2
> 0.
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Thus `opt(∞|P ) < `optc .

The chain of inequalities on the cost functionals follows from the fact that
J(P, `;m) is a decreasing function on m.

The following two lemmas provide some interesting properties of Jopt(m, r, q|P )
as a function of m and as a function of r, q. They will be useful in the next
Section.

Lemma 8.14 Let P, P̄ ∈ P be such that ρ(P̄ ) + ε ≤ ρ(P ), where ε > 0.
Then there exists m̄ε, depending only on ε, such that the cost function (8.20)
satisfies

Jopt(m|P ) > Jopt(m|P̄ ), ∀m > m̄ε. (8.22)

Proof: Let ρ = ρ(P ), ρ̄ = ρ(P̄ ) and λi and λ̄i be the eigenvalues of P and
P̄ , respectively. Observe that

N−1∑
j=1

|λj|2m

1− (1− `)2|λj|2m
≥ ρ2m

1− (1− `)2ρ2m

≥ (ρ̄+ ε)2m

1− (1− `)2ρ̄2m

and that
N−1∑
j=1

|λ̄j|2m

1− (1− `)2|λ̄j|2m
≤ N

ρ̄2m

1− (1− `)2ρ̄2m
.

Hence, if (ρ̄+ ε)2m > Nρ̄2m, we have that

N−1∑
j=1

|λj|2m

1− (1− `)2|λj|2m
>

N−1∑
j=1

|λ̄j|2m

1− (1− `)2|λ̄j|2m
(8.23)

Straightforward calculations show there exists m̄ε depending only on ε such
that (ρ̄+ ε)2m > Nρ̄2m for all m ≥ m̄ε so ensuring that Eqn. (8.23) holds.
This implies that J(P, `;m) > J(P̄ , `;m) for all m > m̄ε. The lemma follows
from the fact that

Jopt(m|P̄ ) = J(P̄ , `opt(m|P̄ );m) ≤ J(P̄ , `opt(m|P );m) <

< J(P, `opt(m|P );m) = Jopt(m|P )
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Lemma 8.15 Let P, P̄ ∈ P and assume that ‖P̄m‖F + ε ≤ ‖Pm‖F , where
ε > 0. Then there exists δε depending only on ε such that the cost function
(8.20) satisfies

Jopt (r, q|P ) > Jopt
(
r, q|P̄

)
, ∀ r/q < δε.

Proof: Let

f(`,m) :=
N−1∑
j=1

|λj|2m

1− (1− `)2|λj|2m
−

N−1∑
j=1

|λ̄j|2m

1− (1− `)2|λ̄j|2m

where λi and λ̄i are the eigenvalues of P and P̄ , respectively. We have that
f(`,m) can be written in the following way

f(`,m) =
∞∑
i=0

(
‖P (i+1)m‖2

F − ‖P̄ (i+1)m‖2
F

)
(1− `)2i

=
∞∑
i=0

αi(1− `)2i

where αi = ‖P (i+1)m‖2
F−‖P̄ (i+1)m‖2

F . It is straightforward to see that α0 > ε2.
Also since all eigenvalues of P k and P̄ k are inside the unit circle for all k then
||P (i+1)m||F ≥ 1 and ||P̄ (i+1)m||F ≤ N for i ≥ 1, therefore αi ≥ −(N − 1).
Hence, it follows that

f(`,m) > ε2 − (N − 1)
∞∑
i=1

(1− `)2i = ε2 − (1− `)2(N − 1)

1− (1− `)2

Clearly, if the last term is non-negative, then also f(`,m) > 0,∀m. This
condition is satisfied if and only if

` ≥ 1−
√

ε2

N − 1 + ε2
=: `ε.

Therefore, we have that J(P, `; r, q) > J(P̄ , `; r, q) for all ` ≥ `ε. Now observe
that if r

q
→ 0 then `optd → 1. Since `ε < 1, then there exists δε > 0 such that

if r/q < δε then `optd > `ε and so, by Theorem 8.13, `opt(r, q|P ) > `ε. By the
previous arguments this implies that

Jopt (r, q|P ) = J(P, `opt(r, q|P ); r, q)

> J
(
P̄ , `opt(r, q|P ); r, q

)
≥ J

(
P̄ , `opt(r, q|P̄ ); r, q

)
= Jopt(r, q|P̄ )

which completes the proof.
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8.5 Joint optimization of P and `: special

cases

We have shown in the previous two sections that the cost functional J is a
convex function, both in P ∈ Psym for ` fixed and in ` ∈ (0, 1) for P fixed.
Unfortunately, as simple examples demonstrate, J is not a convex function
jointly in ` and P ∈ Psym. Therefore, the joint minimization of J

(P opt(m, r, q), `opt(m, r, q)) ∈ arg min
`∈ (0,1);P ∈Psym

J(P, `;m, r, q) (8.24)

results to be quite hard in general. Nevertheless, an analytical characteriza-
tion is possible when restricting to some “asymptotic cases” on the values of
m, r and q. In particular we will consider the following situations:

• the sensors can communicate arbitrarily fast within two subsequent
measurements, i.e., m→∞

• r
q
≈ 0, i.e. the variance of the measurement noise is negligible with

respect to the variance of the process

• q
r
≈ 0, i.e. the variance of the process is negligible with respect to the

variance of the measurement noise

First note that P opt(m, r, q) and `opt(m, r, q) are indeed only functions of m
and r/q. In the sequel, without risk of confusion, we shall omit arguments
which are kept fixed.

8.5.1 Fast communication (m→∞)

The results of this section parallel those of section 8.3.2. Indeed it will be
shown that when m → ∞, optimizing P for “fast convergence”, i.e. mini-
mizing the essential spectral radius is the “right” thing to do. Moreover, as
expected, the optimal gain converges to the centralized gain `optc .

Theorem 8.16 Let P opt(m), `opt(m) be a solution of (8.24). Then

lim
m→∞

ρ(P opt(m)) = min
P∈P

ρ(P ).

and
lim
m→∞

`opt(m) = `optc .
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Moreover, if arg minP∈P ρ(P ) is a singleton, then also

lim
m→∞

P opt(m) = arg min
P∈P

ρ(P ).

Proof: Consider a sequence {ρ(P opt(m))}∞m=0. Let P̄ be any matrix mini-
mizing the essential spectral radius inside P . We shall now prove that

lim
m→∞

ρ
(
P opt(m)

)
= ρ(P̄ ) (8.25)

For notational convenience, we denote along the proof ρ (P opt(m)) by ρm and
ρ(P̄ ) by ρ̄. Assume by contradiction that limm→∞ ρm 6= ρ̄. This means that
there exists ε > 0 and a sequence of integers m1 < m2 < m3 < . . ., such
that ρmi ≥ ρ̄ + ε, ∀ i ∈ N and consequently that inf {ρmi} ≥ ρ̄ + ε. This
implies, by Lemma 8.14, that there exist m̄ε, depending only on ε, such that
Jopt(m|P opt(mi)) > Jopt(m|P̄ ), ∀ i ∈ N and ∀m > m̄ε. Therefore, if ī is such
that mī > m̄ε, we get

Jopt(mi|P opt(mi)) > Jopt(mi|P̄ ), ∀ i ≥ ī,

contradicting the fact that P opt(mi) ∈ arg min PJ
opt(mi|P ) and thus proving

Equation (8.25).

Consider now any sequence of integers m̃1 < m̃2 < m̃3 < m̃4 . . . such that
limi→∞ P

opt(m̃i) = P̃ where P̃ is a suitable matrix inside P . It follows, by the
continuity of ρ that limi→∞ ρ(P opt(m̃i)) = ρ(P̃ ). Clearly ρ(P̃ ) = ρ̄. Suppose
now that arg min P ∈Pρ(P ) is a singleton and call P̄ the unique element in
this set. It follows that P̃ = P̄ , thus implying, from the compactness of P ,
that

lim
m→∞

P opt(m) = arg min
P∈P

ρ(P ).

Consider now a sequence {`opt(m)}∞m=0 and let ρ̃ be such that ρ̄ < ρ̃ < 1. Let
us introduce a matrix P̃ such that σ(P̃ ) = {1, ρ̃, . . . , ρ̃}, that is P̃ has N − 1
eigenvalues equal to ρ̃. It follows that

J
(
P̃ , `;m

)
=

r`2 + qN

1− (1− `)2 + (N − 1)
r`2ρ̃2m

1− (1− `)2ρ̃2m
,

and, by recalling the expression of ∂J(P,`;m)
∂`

, that

∂J
(
P̃ , `;m

)
∂`

= 2r`(N − 1)
ρ̃2m
m − (1− `)ρ̃4m

m

[1− (1− `)2ρ̃2m
m ]
−2

Nq(1− `)− r`2

[1− (1− `)2]2
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Let now ε be any real such that 0 < ε < ρ̃−ρ̄. We have just proved that there
exists a positive integer m̄ε such that ∀m > m̄ε we have that ρm < ρ̃ − ε.
Consider now the function f : [0, 1]× (0, 1)→ R defined as

f(x, α) =
x2m − αx4m

(1− α2x2m)2 ,

where m ∈ N. By straightforward calculations we have that

∂f(x, α)

∂x
=

2mx2m (1 + α2x2m − 2αx2m)

x (1− α2x2m)3 .

It is possible to show that ∂f(x,α)
∂x

> 0, ∀x ∈ (0, 1],∀α ∈ (0, 1). Since, by
the definition of essential spectral radius, we have that all the eigenvalues of
P opt(m) different from 1, are, in absolute value, smaller than ρm and therefore
of ρ̃, it follows that

∂J (P (m), `;m)

∂`
≤
∂J
(
P̃ , `;m

)
∂`

, ∀ ` ∈ (0, 1). (8.26)

Let now ˜̀opt(m) = arg min `∈(0,1)J
(
P̃ , `;m

)
. From Theorem 8.13 we have

that limm→∞ ˜̀opt(m) = `optc . On the other hand, by the convexity of J on
` and by (8.26) it follows that ˜̀opt(m) ≤ `opt(m), ∀m > m̄ε. Therefore
limm→∞ `

opt(m) = `optc .

8.5.2 Small measurement noise (r/q → 0)

In this subsection we treat the case in which the variance of the measurement
noise is negligible with respect of the variance of the process, that is r/q → 0.
This parallels the case analyzed in Section 8.3.3. Also here, as in Section
8.3.3, it is the Frobenius norm of P which plays a crucial role.
Indeed, while in Section 8.3.3 the gain was assumed to be large, here ` is
shown to converge to 1 as r/q goes to zero.

Theorem 8.17 Let P opt(r, q), `opt(r, q) be a solution of Equation (8.24) and
let

P̄ ∈ arg min
P∈P

‖Pm‖F .

Then
lim
r/q→0

‖P opt(r, q)m‖F = ‖P̄m‖F .
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Moreover

`opt(r, q) = 1− ‖P̄‖
2
F

N

r

q
+ o (r/q) .

In addition, if arg minP∈P ‖Pm‖F is a singleton also

lim
r/q→0

P opt(r, q) = arg min
P∈P

‖Pm‖F

holds.

Proof: Let Jopt(r, q|P ) and `opt(r, q|P ) be quantities defined in (8.20) and
(8.21). We shall first prove that

lim
r/q→0

‖(P opt(r, q))m‖F = ‖P̄m‖F . (8.27)

Assume by contradiction that limr/q→0 ‖ (P opt(r, q))
m ‖F 6= ‖P̄m‖F . This

means that there exists ε > 0 and a sequence r1
q1
> r2

q2
> r3

q3
> . . ., such that

‖ (P opt(ri, qi))
m ‖F ≥ ‖P̄m‖F + ε, ∀i ∈ N. By Lemma 8.15 this implies that

there exists δε, depending only on ε, such that

Jopt(r, q|P opt(ri/qi)) > Jopt(r, q|P̄ ),

for each pair r, q such that r
q
< δε and ∀ i ∈ N. Therefore, if ī is such that

rī
qī
< δε, we get

Jopt(ri, qi|P opt(ri, qi)) > Jopt(ri, qi|P̄ ), ∀ i ≥ ī,

which yields a contradiction and hence proves (8.27).

Consider now any sequence
ri1
qi1

>
ri2
qi2

>
ri3
qi3

> . . . , such that

lim
h→∞

P opt(rih , qih) = P̃ ,

where P̃ is a suitable matrix inside P . It follows that

lim
h→∞
‖
(
P opt(rih , qih)

)m ‖F = ‖P̃m‖F .

Clearly ‖P̃m‖F = ‖P̄m‖F . Suppose now that arg min P ∈P‖Pm‖F is a single-
ton and call P̄ the unique element in this set. It follows that P̃ = P̄ , thus
implying, for the compactness of P , that

lim
r/q→0

P opt(r, q) = P̄ = arg min
P∈P

‖Pm‖F
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Consider now `opt(r, q). Preliminarily we observe that limr/q→0 `
opt
d = 1. Since

by Theorem 8.13 we have that `opt(r, q|P ) ≥ `optd , it follows that also
limr/q→0 `

opt(r, q|P ) = 1 and limr/q→0 `
opt(r, q) = 1. Using the implicit func-

tion theorem it follows that `opt(r, q|P ) is differentiable around r/q = 0, i.e.

`opt(r, q|P ) = 1 + α(P )
r

q
+ o

(
r

q

)
where the coefficient α(P ) is given by

α(P ) = −

[(
∂2J

∂`2

)−1
∂2J

∂`∂r/q

]
`=1,P,r/q=0

= −‖P
m‖2

F

N

Since `opt(r, q) = `opt(r, q|P opt(r, q)), then `opt(r, q) = 1 + α(P opt(r, q))r/q +
o(r/q). Using the fact that limr/q→0 ‖P opt(r, q)‖F = ‖P̄‖F , then

`opt(r, q) = 1 + α(P̄ )r/q + o(r/q).

Remark 8.18 It is interesting to observe that the communication graph G
determines the coefficient of the first order expansion of ` in r/q. Note that, in
the extreme cases P opt = I (no communication, decentralized estimation) and
P opt = 11∗

N
(communication graph fully connected, centralized estimation)

one recovers, respectively, `optd = 1− r
q

+o( r
q
) and `optc = 1− 1

N
r
q

+o( r
q
), which

can also be easily obtained from the standard expressions of `optd and `optc .

Remark 8.19 Observe that ‖Pm‖2
F = 1 + µρ2m(P ) + o(ρ2m(P )), where µ

is the algebraic multiplicity5 of the second largest eigenvalue. Therefore, for
large m, minimizing the Frobenius norm of Pm is equivalent to minimizing
the essential spectral radius of P (up to o(ρ2m(P )) terms).

Remark 8.20 It is interesting to observe that the communication graph G
determines the coefficient of the first order expansion of ` in r/q. Note that, in
the extreme cases P opt = I (no communication, decentralized estimation) and
P opt = 11∗

N
(communication graph fully connected, centralized estimation)

one recovers, respectively, `optd = 1− r
q

+o( r
q
) and `optc = 1− 1

N
r
q

+o( r
q
), which

can also be easily obtained from the standard expressions of `optd and `optc .

5We assume here ρ(P ) < 1.
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8.5.3 High measurement noise (q/r → 0)

Similarly to the previous section, we now consider the other limiting case for
q/r ≈ 0. The following result holds.

Theorem 8.21 Let P opt(r, q), `opt(r, q) be defined as above and denote with
p(P ) the number of eigenvalues of P on the unit circle. Then

lim
q/r→0

p(P opt(r, q)) = min
P∈P

p(P ) =: popt.

Moreover

`opt(r, q) =

√
N

popt

√
q

r
+ o

(√
q/r
)
.

Proof: We start by observing that limq/r→0 `
opt
d = 0 and limq/r→0 `

opt
c = 0.

More precisely it is possible to see `optd =
√

q
r
+o
(
q
r

)
and `optc =

√
N
√

q
r
+o
(
q
r

)
.

From the previous observation and from Theorem 8.13 it follows that

lim
q/r→0

`opt(r, q|P ) = 0. (8.28)

Assume now by contradiction that limq/r→0 p (P opt(r, q)) 6= popt. This means
that there exists a sequence q1

r1
> q2

r2
> q3

r3
> . . . , such that p (P opt(ri, qi)) ≥

popt + 1, ∀ i ∈ N. Let us rewrite J in the following way

J(P, `; r, q) =
qN + r`2p(P )

1− (1− `)2
+ r`2

∑
i:|λi|6=1

|λi|2m

1− (1− `)2|λi|2m

=
qN + r`2p(P )

1− (1− `)2
+

r`2

1− (1− `)2
f(`)

where

f(`) =
(
1− (1− `)2

) ∑
i:|λi|6=1

|λi|2m

1− (1− `)2|λi|2m
.

Note that lim`→0 f(`) = 0. Hence

J(P, `; r, q) =
qN + r`2p(P )

1− (1− `)2
+ o

(
r`2

1− (1− `)2

)
(8.29)

Let now P̄ be such that p(P̄ ) = popt. From (8.29) it follows that

J(P, `; r, q)− J(P̄ , `; r, q) = (p(P )− popt) r`2

1− (1− `)2
+o

(
r`2

1− (1− `)2

)
.
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Equation (8.28) implies that also limi→∞`
opt(ri, qi|P ) = 0 so that for i large

enough

J(P opt(qi, ri), `
opt(qi, ri); ri, qi) > J(P̄ , `opt(qi/ri); ri, qi)

which yields a contradiction.
Consider now `opt(r, q). Let us first compute the partial derivative

∂J(P opt(r, q), `; r, q)

∂`
=
r (2p(P opt(r, q))`2 − 2γ2N + 2γ2N`)

(1− (1− `)2)
+

+
r
(

+2`2f(`) + 2`3ḟ(`)− `4ḟ(`)
)

(1− (1− `)2)

where γ =
√

q
r
. Let now F (γ, `) = 2p(P opt(r, q))`2−2γ2N+2γ2Nl+2`2f(`)+

2`3ḟ(`) − `4ḟ(`) and consider the equation F (γ, `) = 0. We adopt an argu-
ment similar to the proof of the implicit function theorem. By applying the
Taylor’s expansion around (0, 0) we get

F (γ, `) = −4Nγ2 + 4p(P opt(r, q))`2 + o
(
‖γ2‖+ ‖`2‖

)
.

and equating this expression to 0 we obtain that `opt(r, q) = `opt(r, q|P opt(r, q))
satisfies

`opt(r, q) = γ

√
N

p(P opt(r, q))
+ o(γ)

=

√
N

p(P opt(r, q))

√
q

r
+ o

(√
q

r

)
Therefore, using an argument similar to the one adopted in the proof of
Theorem 8.17, it follows that

`opt(r, q) =

√
N

popt

√
q

r
+ o

(√
q

r

)
,

which concludes the proof.

Remark 8.22 Also in this case the constant in the first order expansion
of the optimal gain as a function of q/r depends on the communication
graph; the extreme cases are, respectively, `optc (r, q) =

√
N
√
q/r + o(

√
q/r)

and `optd (r, q) =
√
q/r + o(

√
q/r). In fact, if sensors cannot communi-

cate, then necessarily P opt = I, therefore `opt(r, q) = `optd (r, q), while if
the communication graph is fully connected, then P opt = 1

N
11∗, therefore

`opt(r, q) = `optc (q/r).
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The previous theorem shows also that for q << r the optimizing P , while
being consistent with the communication graph, has to minimize the number
of unitary eigenvalues.

8.6 Illustrative examples

In this section we provide some examples illustrating the approach proposed
in this paper. In particular in Example 8.23 we solve analytically the mini-
mization problem formulated in Section 8.3. In Example 8.24 and in Exam-
ple 8.25 we provide a numerical comparison between the approach presented
here and the method proposed in [5]. In Example 8.27, inspired by [90], we
propose a new scheme for updating the estimates which seems to be very
promising in order to improve the performance. In particular we allow the
sensors to keep in memory also the previously received estimates, and not
only the current one, and to use them to build an updated estimate. More
precisely the estimate x̂(t+(h+1)δ) will be a suitable weighted combination
of the current estimate x̂(t+hδ) and of the previous estimate x̂(t+(h−1)δ).
It has been shown by Muthukrihnan et al. [90] in the context of load balanc-
ing, and by Cao et al.[28] in the context of gossip algorithms, that the use
of memory permits to speed up convergence and to improve performance.
We show here, by means of simulative results, that for the set of matrices
considered in Example 8.23 and 8.24 the presence of one level of memory
permits to reach better performance in terms of the cost function J .

Example 8.23 Assume that Q is the set of the circulant stochastic matrices
of the form

Pk =


1− 2k k 0 0 · · · 0 k
k 1− 2k k 0 · · · 0 0
0 k 1− 2k k · · · 0 0
...

...
...

... · · ·
...

...
k 0 0 0 · · · k 1− 2k

 (8.30)

where k is a real in
[
0, 1

2

]
and assume that m = 1. We want to solve the

minimization problem considered in Section 8.3, i.e.

P opt = arg min
P∈P

J = arg min
P∈P

N−1∑
i=1

|λi|2m

1− (1− `)2|λi|2m
. (8.31)

Unfortunately, even if P exhibits a particular structure, it is not possible
to give, in general, a closed form expression for the optimizing matrix P opt,
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which has to be found using numerical search techniques.
However, similarly to Example 8.5, a more detailed study of (8.31) can be
provided when the number of sensors N goes to infinity. To this purpose it
is convenient to consider the normalized cost:

J̄N :=
1

N

N−1∑
i=0

|λi|2

1− (1− `)2|λi|2

and the function f : C→ C

f(z) = 1− 2k + kz + kz−1.

The eigenvalues of Pk can be expressed as λh = 1 − 2k + kej
2π
N
h + ke−j

2π
N
h

(see e.g. [46]). Note that λh = f
(
ej

2π
N
h
)

. As the number of agents grows,

the normalized cost JN converges to:

lim
N→∞

JN = J̄∞ =
1

2π

∫ 2π

0

|f(ejφ)|2

1− (1− `)2|f(ejφ)|2
dφ =

1

2πj

∮
γ

z−1f 2(z)

1− (1− `)2f 2(z)
dz

where γ is the unit circle. It is straightforward to see that the poles of
z−1f2(z)

1−(1−`)2f2(z)
inside γ are

z1 =
`+ 2(1− `)k −

√
`2 + 4`(1− `)k

2(1− `)k
,

z2 =
`− 2− 2(1− `)k +

√
(2− `)2 + 4(1− `)(2− `)k

2(1− `)k
and

z3 = 0.

The integral can be computed explicitly using the residue theorem yielding:

J̄∞ = − 1

(1− `)2
+

1

2(1− `)2

(
1√

`2 + 4`(1− `)k
− 1√

(2− `)2 − 4(1− `)(2− `)k

)

By equating the first derivative of J̄∞ to zero, we get that P opt tends to the
matrix Pkopt for N →∞, where

kopt =
2− 2`+ 3

√
(2− `)`2 − 3

√
`(2− `)2

4(1− `)
.
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Example 8.24 In [5] the authors analyze a general MIMO scenario where
the gain ` = `(t) (K in their terminology) and the consensus matrix P = P (t)
are time varying matrices which are chosen recursively at each time step. In
order to compare the results in [5] with our approach we assume that the
averaging matrix W in [5] corresponds to performing m consensus iterations
using the matrix P , i.e. W = Pm. In [5] the gain ` is chosen to minimize
the estimation error covariance of the local estimators (i.e. in a decentralized
fashion) and it is different for each sensor. Moreover the consensus matrix
P is chosen so that the estimation error covariance of the local estimators is
minimized after consensus (weighted averaging in [5])6.
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Figure 8.1: Comparison between J1(P opt
1 (m), `opt1 (m),m),and Jr1 (m) (left).

Comparison between J2(P opt
2 (m), `opt2 (m),m), and Jr2 (m) (right).

In the simulation reported in this example, we assume that N = 100, q =
1 and r = 1. Moreover we assume that P is the same set of circulant
matrices defined in the previous example. We consider the minimization
of both J1 and J2, with J1, J2 defined as in the Section II. We use the
following notational conventions: P opt

1 (m), `opt1 (m) and P opt
2 (m), `opt2 (m) are

the optimal consensus matrices and the optimal gains respectively for J1 and
J2 obtained by solving numerically the problem formulated at the end of
Section II, given by:(

P opt
1 (m), `opt1 (m)

)
∈ arg min `∈(0,1), P∈P J1(P, `;m, r, q)(

P opt
2 (m), `opt2 (m)

)
∈ arg min `∈(0,1), P∈P J2(P, `;m, r, q)

As mentioned earlier, in [5] the optimal gain and the optimal consensus ma-
trix are found recursively at each time step t. The fact that the consensus
matrix is of the form (8.30) implies that the gain is the same for all the

6Technically, the approach proposed in [5] was applied only for the case m = 1.
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sensors: we denote it by `r(t,m). Moreover P r(t,m) represents the optimal
consensus matrix (the superscript ”r” means recursively). The asymptotic
values (in t) of `r(t,m) and P r(t,m) are denoted respectively by `r(m) and
P r(m), i.e. limt→∞ `

r(t,m) = `r(m) and limt→∞ P
r(t,m) = P r(m). Simi-

larly, we indicate by Jr1 (m) and Jr2 (m) the asymptotic cost values7 to which
J1 and J2 converge using the method proposed in [5]. Finally, since the set P
is parameterized by k, we shall identify a matrix Pk with the corresponding
value of the parameter k. Hence, we use kopt1 (m), kopt2 (m) and kr(m) in lieu
of P opt

1 (m), P opt
2 (m) and P r(m). Simulations for m ranging in the interval

[1, 15] are shown in Figures 8.1 and 8.2.
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Figure 8.2: Optimal gains (left) and consensus matrices (right) as a func-
tion of number of exchanged messages m. Optimal consensus matrices P
are parameterized by k. In the right panel we also report the values k(ρopt),
which minimizes the spectral radius ρ(P ) and k(||P ||optF which minimizes the
Frobenius norm ||P ||F .

From left panel of Figure 8.2 we can see that the iterative (local) opti-
mization proposed in [5] converges to values of the parameters `r(m) which
are different from the optimal values obtained minimizing the asymptotic
cost proposed in this paper. Indeed, the recursive approach seems to give a
worse performance than the approach proposed in this paper both in terms
of the performance costs J1 and J2, as shown in Figure8.1. Moreover, for
large m, the gain `opt1 (m) converges to the optimal centralized gain `optc , as
shown in Section 8.4.

Note also from right panel of Figure 8.2 that the optimal consensus pa-
rameter k of the matrix Pk for small m is close to the value that minimizes
the Frobenius norm ||P ||F , while for large m it converges to the value that
minimizes the spectral radius ρ(P ), as shown in Section 8.3.

7There is no proof of convergence in [5]; however this is observed experimentally.
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Example 8.25 In this simulation we consider a strongly connected ran-
dom geometric graph generated by choosing N points at random in the unit
square, and then placing an edge between each pair of points at distance less
than 0.3. We assume that N = 30, q = 1 and r = 1. It is worth noticing
that in this case differently from the previous one, the gains, calculated by
the method proposed in [5] recursively at each instant time t , are in general
different for each sensor. Hence we report here only the comparison between
the cost functions. We run simulations for m ranging in the interval [1, 10].
The results obtained are depicted in Figure 8.3. The notation is the same
used previously. Note that `opt1 (m), P opt

1 (m) and `opt2 (m), P opt
2 (m) yield again
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Figure 8.3: Comparison between J1(P opt
1 (m), `opt1 (m),m),

J1(P opt
2 (m), `opt2 (m),m) and Jr1 (m) (left). Comparison between

J2(P opt
2 (m), `opt2 (m),m), J2(P opt

1 (m), `opt1 (m),m) and Jr2 (m) (right).

values of J1 and J2 which are better respectively than Jr1 and Jr2 .

Remark 8.26 It is worth remarking that the optimization strategy pro-
posed in [5] gives worse performance in terms of the asymptotic values for
both costs J1 and J2 in both the previous examples. This is somewhat to
be expected since the former approach recursively optimize the cost at the
next time step, not the steady state cost. This recursive strategy gives the
optimal steady state performance only for the centralized scenario, i.e. when
the communication graph is fully connected, as well known from any stan-
dard textbook on optimal estimation and Kalman filtering [36]. When the
graph is not fully connected, this strategy is not guaranteed to converge to
the optimal value, as indeed shown in the previous numerical examples.

Example 8.27 Inspired by the work of Muthukrihnan et al. [90], in this
example we propose the following scheme of updating the estimate x̂(k+hδ|k)
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which adds a memory buffer,

x̂(k + (h+ 1)δ|k) = Px̂(k + hδ|k) if h = 0,

and

x̂(k+(h+1)δ|k) = νP x̂(k+hδ|k)+(1−ν)x̂(k+(h−1)δ|k) if h = 1, . . . ,m−1
(8.32)

where ν is a weighting parameter. It has been proved in [90], that, when
we are dealing with a consensus algorithm, if ν /∈ [0, 2] then (8.32) does not
yield the convergence. Let x̃ (k + hδ|k) = x(k + hδ)1 − x̂(k + hδ|k) denote
again the estimation error and let us introduce, for 1 ≤ h ≤ m, the following
quantities

z(k + hδ|k) =

[
x̃(k + hδ|k)

x̃(k + (h− 1)δ|k)

]
and

Σ(k+hδ|k) = E [z(k + hδ|k)z∗(k + hδ|k)] =

[
Σ11(k + hδ|k) Σ12(k + hδ|k)
Σ21(k + hδ|k) Σ22(k + hδ|k)

]
.

where

Σ11(k + hδ|k) = E[x̃ (k + hδ|k) x̃∗ (k + hδ|k)]

Σ12(k + hδ|k) = E[x̃ (k + hδ|k) x̃∗ (k + (h− 1)δ|k)]

Σ21(k + hδ|k) = E[x̃ (k + (h− 1)δ|k) x̃∗ (k + hδ|k)]

Σ22(k + hδ|k) = E[x̃ (k + (h− 1)δ|k) x̃∗ (k + (h− 1)δ|k)]

Note that Σ12(k+ hδ|k) = Σ∗21(k+ hδ|k). It is possible to see that the above
quantities satisfy the following recursive equations

Σ11 (k + (h+ 1)δ) = ν2PΣ11 (k + hδ)P ∗ + 2ν(1− ν)
q

m
11∗ +

q

m
11∗+

+ ν(1− ν) [PΣ12 (k + hδ) + Σ21 (k + hδ)P ∗] +

+ (1− ν)2Σ22 (k + hδ) + (1− ν)2 q

m
11∗

Σ12 (k + (h+ 1)δ) = νPΣ11 (k + hδ) + (1− ν)Σ21 (k + hδ) + (1− ν)
q

m
11∗

Σ22(k + (h+ 1)δ|k) = Σ11 (k + hδ)

In our simulation we assume that N = 50, m = 5, q = 1, r = 1 and that
P = P 1

3
where P 1

3
is as the matrix introduced in Example 8.23. Moreover

` = `opt where

`opt = arg min
`∈ (0,1)

J
(
P 1

3
, `; 5, 1, 1

)
≈ 0.879.
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Section 8.3 undirected graph m→∞ `→ 1

Fixed `
P opt ∈ symmetric

Section 8.3.1

P opt ∈ arg min
P∈P

ρ(P )

Section 8.3.2

P opt ∈ arg min
P∈P

‖Pm‖F

Section 8.3.3

Section 8.4 m = 0 0 < m <∞ m→ +∞
P primitive

Fixed P
`opt(P, 0) = `optd
Theorem 8.13

`optd < `opt(P,m) ≤ `opt(P,m+ 1) < `optc

Theorem 8.13
`opt(P,∞) = `optc

Theorem 8.13

Section 8.5 m→∞ r/q → 0 r/q →∞

Optimal
` and P

P opt ∈ arg min
P∈P

ρ(P )

`opt → `optc

Section 8.5.1

P opt ∈ arg min
P∈P

‖Pm‖F ,

`opt = 1− ‖P̄
m‖2F
N

r
q

+ o
“
r
q

”
Section 8.5.2

P opt ∈ arg min
P∈P

p(P ),

`opt =
q

N
popt

q
q
r

+ o
“q

q
r

”
Section 8.5.3

Table 8.1: Summary of the results

Clearly, if ν = 1, then limk→+∞ tr (Σ11(k+ 1|k)) = J
(
P 1

3
, `opt; 5, 1, 1

)
, which

is the cost function introduced in Equation (8.12) for which no memory is
added. In Figure 8.4 we depict the behavior of limk→+∞ tr (Σ11(k+1|k)) for ν
ranging in [0, 2]. It is remarkable to note that the minimum is reached when
ν ≈ 1.44, meaning that the presence of memory can improve the performance.
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Figure 8.4: Steady state error tr (Σ11(k + 1|k)) of distributed optimal esti-
mation with memory as a function of weighting parameter ν. Figure also
indicates optimal cost in the absence of memory which corresponds to ν = 1.
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8.7 Conclusions

In this chapter we have studied a prototypical problem of distributed estima-
tion for sensor networks; the state of a scalar linear system is estimated via
a two stage procedure which consists in (i) a standard (and decentralized)
Kalman-like update and (ii) information propagation using consensus strate-
gies. To this purpose two design parameters, i.e. the Kalman gain ` and the
consensus matrix P have to be designed. This choice is made by optimizing
the steady state prediction (or estimation) error. We have discussed, under
specific circumstances, the behavior of the “optimal” parameters. This is
summarized in table of Figure 8.6.

Although these results have been obtained for simple scenarios where the
state is scalar and all sensors are equal, they provide useful guidelines for
choosing the local filter gain ` and the consensus matrix P also for more
general scenarios. In particular, we showed that the common practise of
finding algorithms that minimize the spectral radius for the consensus matrix
P is not necessarily the optimal strategy in the context of optimal estimation
of time-varying signals. In fact, we showed that depending on some specific
regimes, it is more convenient to optimize the Frobenius norm ||Pm||F or the
sum of the unitary eigenvalues p(P ). Moreover, as discussed in Section V,
we showed that the joint optimization of P and ` is not convex even in our
simple setup. We also compared our approach with the recursive optimization
proposed by Alriksson et al. [5], showing also that their strategy based on
minimization of the estimation error at the next time step, fails to minimize
the steady state cost (see Figures 8.1 and 8.3).

Many research avenues still deserve to be explored. The most promising
one is the use of memory to improve performance. As shown in Example 8.27
in the previous section, memory can considerably improve estimation perfor-
mance. However, the impact of memory length on performance and opti-
mization algorithms for the weighting parameters are still open problems.
Another important aspect is the extension of the results in this paper to the
multivariable case where the gains for the sensors can be different. Finally,
it is fundamental to find provably optimal strategies to simultaneously opti-
mize the consensus matrix P and the update gains `, since the steady state
cost function is non-convex in these parameters.





Chapter 9

Conclusions

The consensus problem and the more specific average consensus problem rep-
resent the first step toward a comprehensive understanding of how, in com-
plex networked systems, the dynamics of the individual systems can give rise
to a group behavior. This is mainly motivated by two reasons. The first is
that these problems are the simplest problems we can formulate in the new
emerging area of the cooperative control, the second is related to the wide
range of applications of the consensus algorithms in information processing in
sensor networks, in load balancing and in Multi-Vehicle Cooperative Control.

In this dissertation we focused on the average consensus problem by pro-
viding some theoretical developments that, now, we briefly summarize.

In Chapter 3, we provided a mathematical characterization of the in-
tuitive idea that the amount of information exchanged by the systems in
the consensus algorithm has to influence the rate of convergence towards the
asymptotic agreement. We did this for a class of graphs exhibiting particular
symmetries: the Cayley graphs defined on Abelian groups. We showed that,
if we impose symmetries in the communication network, and thus also in the
consensus matrix, and we keep the number of incoming arcs in each node
bounded, the convergence rate degrades as the number of systems increases.

In Chapter 4 we focused on randomized consensus algorithms. We re-
viewed the concepts of probabilistic consensus and average probabilistic con-
sensus. In the first part of the chapter we introduced two random strategies,
that illustrate a remarkable property of the randomized consensus algorithms,
i.e., they allow to achieve better performance than deterministic ones with
comparable complexity. In the second part of the chapter we considered
the symmetric gossip algorithm, which is particularly suitable to model the
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communication network in applications to sensors, peer-to-peer and ad hoc
networks. We provided an interesting characterization of this algorithm when
considering the Cayley graphs.

In Chapters 5, 6, 7, we analyzed the more realistic and practical situation
in which the communication network between the systems is constituted of
only rate-constrained digital links. We assumed that the nodes quantize their
information before transmitting it. In particular, we considered two types of
quantizers, well-known in the literature: the deterministic uniform quantizer
and the probabilistic uniform quantizer.
In Chapter 5 we focused on the time-invariant situation by providing a simple
and effective adaptation of the standard average consensus algorithm which
does not converge to an asymptotic agreement but is able to preserve the
average of states and to drive the systems reasonably near to the consensus.
We studied this scheme by means of a worst-case model and a probabilistic
model showing favorable convergence properties and providing performance
bounds for the limit points of the iterates generated.
In Chapter 6 we analyzed the effects of the quantization on the symmetric
gossip algorithm. In order to overcome these effects, we introduced two up-
dating rule, the globally quantized strategy and the partially quantized strat-
egy. In the former the nodes use only quantized information to update their
state, instead in the latter they have access also to exact information regard-
ing their own state. We saw that the partially quantized strategy, with both
the quantizers, deterministic and probabilistic, do not reach the consensus
in general, but maintain the average of the state at each iteration and drive
all the states very close to the average of the initial condition. On the other
hand, we showed that the globally strategy leads almost surely to a consen-
sus which, however, do not coincide with the average of the initial condition.
We provided some simulations characterizing the distance between the con-
sensus point and the initial average. While using the deterministic quantizer
this distance turns out to be not negligible, with the probabilistic quantizer
the consensus is surprisingly reached very close to the average of the initial
condition.
In Chapter 7 we introduced coding/decoding schemes that leads to a quan-
tized strategy that permits both to maintain the initial average and to reach
it asymptotically. More precisely we adapted coding/decoding stchemes, that
have been proposed for centralized quantized control problems, to the dis-
tributed consensus problem. In particular, we presented two coding/decoding
strategies, one based on the exchange of logarithmically quantized informa-
tion, the other on a zoom in- zoom out strategy which involves the use of
uniform quantizers. We provided analytical and numerical results illustrat-
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ing the convergence properties of these strategies. In particular we showed
that the convergence factors depend smoothly on the accuracy parameter
of the quantizers used and that, remarkably, that the critical quantizer ac-
curacy sufficient to guarantee convergence is independent from the network
dimension.

Finally in Chapter 8 we considered a possible application of the consensus
ideas to a prototypical problem of distributed estimation for sensor networks.
More precisely we analyzed a two-stage procedure, estimating the state of
a scalar linear system, which consists in (i) a standard (and decentralized)
Kalman-like update and (ii) information propagation using consensus strate-
gies. In this procedure two design parameters, i.e. the Kalman gain ` and
the consensus matrix P have to be designed. This choice is made by optimiz-
ing the steady state prediction (or estimation) error. We discussed, under
specific circumstances, the behavior of the “optimal” parameters.

Many research avenues still deserve to be explored. In particular, regard-
ing the randomized consensus algorithms,

• to provide an analysis of randomized consensus algorithms for wide
classes of graphs;

• to provide a detailed studied of the rate of convergence for the sym-
metric gossip algorithms for the Cayley graphs and for the random
geometric graphs;

regarding the quantized consensus,

• to explain why and in which sense the probabilistic analysis seems to
capture the main features of the quantized strategies also when the
information is quantized by means of deterministic quantizers;

• to evaluate the speed of convergence of the partially quantized strategy
and of the globally quantized strategy;

• to carry out a deeper analysis on the globally quantized strategy using
probabilistic quantizers; in particular, to estimate, in some probabilistic
way, the distance of the consensus point to which this strategy leads
the systems from the average of the initial condition;

• to extend the analysis, carried out in Chapter 7, to the case of a general
quasi-doubly stochastic matrix P ;



218 9. Conclusions

• to analyze, from a theoretical point of view, the zoom-in/ zoom-out
strategy;

• to look for encoding and decoding methods which are able to solve the
average consensus problem also with noisy digital channel;

finally, regarding the distributed Kalman filtering,

• to explore the use of memory to improve the performance of the two-
step procedure introduced in Chapter 8;

• to find provably optimal strategies to simultaneously optimize the con-
sensus matrix P and the update gains `, since the state cost function
is non-convex in these parameter.



Appendix A

Harmonic analysis on finite
group

A.1 Introduction

The main objective of this appendix is that of reviewing some concepts on
harmonic analysis on finite groups. The presentation is mainly based on [14].

A.2 Finite Abelian groups

We start by recalling the definition of a finite Abelian group.

Definition A.1 A finite Abelian group G of order N , is a set G of cardi-
nality |G| = N , closed under a binary operation +, such that the following
axioms are satisfied1

(i) (Associativity) For all g, h, ` ∈ G, we have that

(g + h) + ` = g + (h+ `).

(ii) (Commutativity) The binary operation + is commutative, i.e. for any
g, h ∈ G we have that

g + h = h+ g.

1In the following we will use |.| to denote both the cardinality of a set and the absolute
value operator.
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(iii) (Neutral element) There exists a neutral element e ∈ G such that for
all g ∈ G

g + e = g.

In the following, by convention, we will indicate with 0 such element.

(iv) (Inverse element) Corresponding to each g ∈ G there is an element
g
′ ∈ G such that

g + g
′
= 0.

In the following we will indicate such element with −g.

From now on when we refer to a group we will implicitly consider finite
Abelian groups. We will assume the operation to be addition if not otherwise
stated.

Example A.2 Let us consider ZN = {0, 1, . . . , N − 1} . If we consider as
binary operation the addition modulo N , all the previous axioms are satisfied,
and thus it represents a finite Abelian group.

Let G and H be two Abelian groups. The two groups, in general, need not
to be finite. An homomorphism is a map φ : G→ H satisfying

φ(g + h) = φ(g) + φ(h)

with g ∈ G and h ∈ H. An homomorphism that is bijective is called
isomorphism. Two Abelian groups are isomorphic if there is an homomor-
phism between them. Isomorphic groups are regarded as “equal” from a
structural or group-theoretic point of view, even though their elements might
be quite different kinds of objects. In the following we will write G ∼= H to
denote that G is isomorphic to H.

Example A.3 Let us consider the finite additive group Z4 = {0, 1, 2, 3} and
the binary group B = {00, 01, 10, 11} with operation the 2-bits binary sum.
If we consider the map

φ : G→ H : g 7→ φ(g) = binary2(g)

where binary2(g) is the binary representation in two bits of the integer g, then
we see immediately that it is an isomorphism. Thus G ∼= H.

Given a finite group G, a subgroup H of G is a subset of G that also forms
a group under the same binary operation +.
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Example A.4 Let us consider Z8, and let H = {0, 4} ⊂ Z8. It is easy to
see that H is also a group with respect to the addition modulo eight.

Given a finite group G let us consider a subset S of a group. Then < S >,
the subgroup generated by S, is the smallest subgroup of G containing every
element of S. Equivalently, < S > is the subgroup of all elements of G that
can be expressed as the finite product of elements in S and their inverses.

Example A.5 Let us consider the group

Z3 × Z3 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)} .

Let us consider S = {(0, 0)}. It is clear that < S >= S is a subgroup
of G. Let us consider S = {(0, 0), (0, 1)} then we see that S ⊂< S >=
{(0, 0), (0, 1), (0, 2)} is the smallest subgroup of G containing S.

If G =< S >, then we say S generates G; and the elements in S are called
generators or group generators.

Example A.6 Let us consider again group Z3×Z3. Then we see that if we
choose S = {(0, 0), (0, 1), (1, 0)} then < S >= G.

Definition A.7 A finite Abelian group G is called a cyclic group if its ele-
ments are all of the form kg for k ∈ Z for some fixed g ∈ G. The element
g is called the generator of the group G, and we will write that < g >= G.

It turns out that a finite cyclic group is a group generated by a single element.
In a finite cyclic group of order N , the generator satisfies Ng = 0, and N is
the smallest positive integer with this property, and N is called the order of
the generator. Thus the order of the generator is equal to the order of the
group (even if the sense of the word “order” is different). It is then easy to
see that any two finite cyclic groups of the same order are isomorphic.

Example A.8 Let us consider the group Z4. Then we have that

< 1 >=< 3 >= Z4.

Notice that < 2 >= {0, 2} which, clearly, is not Z4. The group Z4 is called
the cyclic group of the integers modulo four.
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The direct sum G ⊕ H of two Abelian groups G and H is the set of all
ordered pairs (g, h), with g ∈ G and h ∈ H. If we define the following
addition operation

(g1, h1) + (g2, h2) = (g1 + g2, h1 + h2)

then it is easy to see that G⊕H is an Abelian group whose neutral element
is (0, 0) and the inverse of (g, h) is (−g,−h). The definition of direct sum is
easily extended to more than two Abelian groups.
We have the following fundamental result.

Theorem A.9 [Fundamental theorem of finite Abelian groups] Let G be a fi-
nite Abelian group. Then there exists cyclic groups Zq1 ,Zq2 , . . . ,Zqr of orders
q1, q2, . . . , qr > 1, respectively, where the qi are prime powers, for 1 ≤ i ≤ r,
such that

G ∼= Zq1 ⊕ Zq2 ⊕ · · · ⊕ Zqr .
Thus G is isomorphic to the direct sum of cyclic groups.

Example A.10 Let us consider the group Z6 = {0, 1, 2, 3, 4, 5} . Using the
previous theorem we have that

Z6 = Z2 ⊕ Z3.

Indeed, let us consider the following map

φ : Z2 ⊕ Z3 →: (g, h) 7→ (3g + 2h) mod 6,

with g ∈ Z2 and h ∈ Z3. It is easy to see that φ is an isomorphism, and
thus Z6

∼= Z2 ⊕ Z3.

A.3 Group characters

Let G a finite Abelian group of order N . We can define the character of the
group G as follows.

Definition A.11 A character of G is a homomorphism χ : G→ C∗ = C−
{0}, which maps G to the non-zero multiplicative group of complex numbers.

Since χ is a homomorphism then we have that

χ(g + h) = χ(g)χ(h), g, h ∈ G.
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In particular, we have that

χ(g)N = χ(Ng) = χ(0) = 1, g ∈ G,

and so the values of χ are the N th roots of the unity. Notice moreover that

χ(−g) = χ(g)−1 = ¯χ(g)

where the bar indicates the complex conjugate. The character defined by

χ(g) = 1, ∀ g ∈ G,

is called the trivial (or principal) character of the group G. All the others
are called non-trivial characters.

Example A.12 Consider the group ZN . We have that the characters of ZN
are

χ` : g 7→ exp

(
i2π

`

N
g

)
,

with ` = 0, 1, . . . , N−1 and g ∈ ZN . It is easy to see that the trivial character
of group ZN is χ0(g).

The characters of a finite Abelian group have many properties. We summa-
rize here some important facts.

Proposition A.13 For any nontrivial character χ of G,∑
g ∈G

χ(g) = 0.

Proof: Let χ be a non-trivial character of G and let h ∈ G be such that
χ(h) 6= 1. Let L =

∑
g ∈G χ(g), then we have

χ(h)L =
∑
g ∈G

χ(h)χ(g) =
∑
g ∈G

χ(h+ g) = L.

We then have

L(χ(h)− 1) = 0

which implies L = 0 since χ(h) 6= 0. This concludes the proof.
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Let us now denote Ĝ the set of all characters. Let us define the following
operation between two characters, χ and φ, of a group G

(χφ)(g) = χ(g)φ(g). (A.1)

It is easy to see that this set forms an Abelian group under the operation
defined by (A.1). The conjugation represent the inversion in the group Ĝ.
The group of the characters Ĝ is called the dual group of G.

Proposition A.14 Let χ and φ be two characters of the group G. Then we
have ∑

g ∈G

χ(g)φ̄(g) =

{
N if χ = φ
0 otherwise

Proof: If χ = φ then this follows from the fact that χ̄(g) = χ(g)−1. If χ 6= φ,
then χφ̄ is a nontrivial character of G and using Proposition A.13 the result
follows.

Example A.15 Consider the group ZN . The characters of the group are

χ` = exp

(
i2π

`

N
g

)
` = 0, . . . , N − 1 and g ∈ ZN . Then the dual group of ZN is

ẐN = {χ0, . . . , χN−1} .

Lemma A.16 ẐN ∼= ZN .

Proof: Since ZN is a cyclic group then < 1 >= ZN . For the characters of
ZN we have the form

χ`(k) = exp

(
i2π

`

N
k

)
where k ∈ Z, ` = 0, . . . , N − 1. But this shows that χ1 is a generator of
ẐN . Since two cyclic groups of the same order are isomorphic then we can
conclude.
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Lemma A.17 If the group G is expressed as direct sum, namely G = G1⊕G2

and φi : Gi → Cx is a character of Gi, i = 1, 2, then χ = φ1 ⊕ χ2, defined as

χ(g1, g2) = φ1(g1)φ2(g2), (A.2)

is a character of G. Moreover, all characters of G are of this form. Thus we
have that

Ĝ ∼= Ĝ1 ⊕ Ĝ2.

Proof: It is easy to show that χ is a character of G since it defines an
homomorphism between G and Cx × Cx and

χ(g + h) = χ((g1, g2) + (h1, h2))

= χ(g1 + h1, g2 + h2)

= φ(g1 + h1)φ(g2 + h2)

= φ(g1)φ(h1)φ(g2)φ(h2)

= φ(g1 + g2)φ(h1 + h2)

= φ(g)φ(h)

where we used the fact that φi is a character of Gi. It is clear that Ĝ1⊕Ĝ2 →
Ĝ defined by (A.2) is injective. We need to show then that if we consider
χ(g̃1, g2) = χ(g1, g2) then φ1(g̃1) = φ1(g1). It follows that

0 = χ(g̃1, g2)−χ(g1, g2) = φ1(g̃1)φ2(g2)−φ1(g1)φ2(g2) = φ2(g2)
(
φ1(g̃1)−φ1(g1)

)
.

Since φ2(g2) = 0 then it follows that φ1(g̃1) = φ1(g1) as we wanted. Let us
now consider χ ∈ Ĝ. Then the restriction φi = χ|Gi is a character of Gi, and
it is easy to verify that χ = φ1 ⊕ φ2.

Theorem A.18 For arbitrary finite Abelian groups Ĝ ∼= G.

Proof: From Theorem A.9 we have that G ∼= Zq1⊕· · ·⊕Zqr . We know that

Ẑqi
∼= Zqi by Lemma A.16. From Lemma A.17 follows that the direct sum

Ĝ ∼= ẐN1 ⊕ · · · ⊕ ẐNk ∼= G.

Let CG denote the space of functions f : G → C. This represents an N -
dimensional linear space over C. We introduce an inner product over this
space

< f1, f2 >=
1

N

∑
g ∈G

f1(g) ¯f2(g), f1, f2 ∈ CG.

We then have the following result.
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Theorem A.19 The elements of the set Ĝ forms an orthonormal basis in
CG.

Proof: Orthogonality follows directly from Lemma A.17. Completeness fol-
lows from the fact the G ∼= Ĝ, which implies |Ĝ| = N = dimCG.

Let χ0, . . . , χN−1 be the characters of G = {g0, . . . , gN−1} . We can then
consider the following matrix

[C]ij = χi(gj)

which is called the character table of G.

A.4 Fourier transform on groups

We now introduce the Fourier transform of functions defined on Abelian
group G.

Definition A.20 Let f : G → C be any function. We define the Fourier
transform f̂ : Ĝ→ C of f by

f̂(χ) =
∑
g ∈G

f(g)χ̄g, χ ∈ Ĝ. (A.3)

Example A.21 Let us consider again the group ZN . The characters, as we
have seen before, are given by

χ`(g) = ei
2π
N
`g, g ∈ ZN , ` = 0, . . . , N − 1.

The correspondence ` → χ` yields an explicit isomorphism between ZN and
ẐN . Given any function f : ZN → C, its Fourier transform is given by

f̂(χ`) =
N−1∑
g=0

f(g)e−i
2π
N
`g.

This transformation is easily inverted, and we define the inverse Fourier trans-
form as follows

f =
1

N

∑
χ∈ Ĝ

f̂(χ)χ(g), g ∈ G. (A.4)

An important fact about the Fourier transform is that it is an isometry with
respect to a (suitably normalized) L2-norm. Indeed we have the following
result.
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Theorem A.22 (Plancherel’s formula) For any f1, f2 ∈ CG,

< f̂1, f̂2 >= N < f1, f2 > .

Proof: Let us define the following vectors

f1 = (f1(g0), . . . , f1(gN−1))

f2 = (f2(g0), . . . , f2(gN−1))

and

f̂1 = (f̂1(χ0), . . . , f̂1(χN−1))

f̂2 = (f̂2(χ0), . . . , f̂2(χN−1)).

Let C be the character table of G. Then we have that f̂1 = f1C and f̂2 = f2C,
and thus

< f̂1, f̂2 >=
1

N
f1CC

∗f ∗2 = f1f
∗
2 = N < f1, f2 >,

where we used the fact that CC∗ = NI, and where the star indicates the
transpose and complex conjugation operator.

Corollary A.23 (Parceval’s formula) For any f ∈ CG,

< f̂, f̂ >= N < f, f > .





Appendix B

Graph Theory

B.1 Graph Theory

In this appendix we recall some notation and concepts on directed and undi-
rected graphs (the reader can further refer to textbooks on graph theory such
as [65] or [49]).

A directed graph is a pair (V, E) where V = {1, . . . , N} is a finite nonempty
node set and E ⊆ V×V is an edge set of ordered pairs of nodes, called edges.
The notation (i, j) means an edge getting out from the node i and getting in
the node j. For the edge (i, j) i is the parent node and j is the child node.
The self-loops are denoted by (i, i).

The adjacency matrix A is a {0, 1}-valued square matrix indexed by the
elements in V defined by letting Aij = 1 if and only (i, j) ∈ E . It is worth
noting that, in this thesis we admit the presence of self-loops in the graph G
and hence if (i, i) ∈ E then Aii = 1; often in the literature the self-loops are
not encountered in the adjacency matrix.

In contrast to a direct graph, the pairs of nodes in an undirected graph are
unordered; an undirected graph can be viewed as a special case of a directed
graph, where an edge (i, j) in the undirected graph corresponds to edges (i, j)
and (j, i). Clearly in the case of an undirected graph the adjacency matrix
is symmetric.

Define the in-degree of a vertex j as indeg(j) :=
∑

iAij and the out-
degree of a vertex i as outdeg(i) :=

∑
j Aij. A graph is called in-regular

(out-regular) of degree k if each vertex has in-degree (out-degree) equal to k.

Given a direct graph G, a directed graph consists of a sequence of vertices
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i1i2 . . . . . . ir such that (i`, i`+1) ∈ E for every ` = 1, . . . , r − 1; i1 (resp. ir)
is said to be the initial (resp. terminal) vertex of the path. An undirected
graph in an undirected graph is defined analogously.

In a directed graph, a cycle is a directed path in which the initial and the
terminal vertices coincide. A vertex i is said to be connected to a vertex j if
there exists a path with initial vertex i and terminal vertex j.

A directed graph is said to be connected if, given any pair of vertices i and
j, either i is connected to j or j is connected to i. A directed graph is said to
be strongly connected if, given any pair of vertices i and j, i is connected to
j. An undirected graph is connected if there is an undirected path between
every pair of distinct nodes. Note that, for an undirected graph, the notions
of to be connected or strongly connected coincide.

A direct tree is a directed graph in which every node has exactly one
parent except for one node, called the root, which has no parent and which
has a direct path to every other node. Note that a directed tree has no cycle
because every edge is oriented away from the root. In undirected graphs,
a tree is a graph in which every pair of nodes is connected by exactly one
undirected path.

A subgraph (Vs, Es) of (V, E) is a graph such that Vs ⊆ V and Es ⊆
∩(Vs × Vs). A directed spanning tree (Vs, Es) of the directed graph (V, E) is
a subgraph of (V, E) such that (Vs, Es) is a directed tree and Vs = V . An
undirected spanning tree of an undirected graph is defined analogously. Note
that in undirected graphs, the existence of an undirected spanning tree is
equivalent to being connected, while in directed graphs is a weaker condition
than being strongly connected.

Given a direct graph G = (V,E), a node k ∈ V is said to be connected
to a node ` ∈ V {k} if there is a path from k to ` in the graph with respects
the orientation of the arcs. Note that the directed graph G(V, E) has a direct
spanning tree if and only if (V, E) has at least one node connected to all the
other nodes. Finally, given a sequence of direct graphs G(t) (V,E(t)), t ∈ N,
a node k ∈ V is said to be connected to a node ` ∈ V {k} across an interval
I ⊆ N if k is connected to ` for the directed graph (V,∪t∈IE(t)) .

Finally, given the graphs G1 = (V, E1) and G2 = (V, E2), the union of G1

and G2 is defined by
G1 ∪ G2 = (V, E1 ∪ E2) .
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Some useful algebraic results

C.1 Stability of discrete time linear parame-

ter varying (LPV) systems

Given A1, . . . , Ak ∈ Rn×n, we let {A(t)}+∞
t=0 ⊂ Co{A1, . . . , Ak} denote a se-

quence of matrices taking values in the convex hull of {A1, . . . , Ak}. We
consider the dynamical system

x(t+ 1) = A(t)x(t). (C.1)

The following result is an extension to the discrete-time system (C.1) of
the classical result stated in [21], establishing a sufficient condition for the
stability of continuous-time LPV systems.

Theorem C.1 (Common Lyapunov function) For A1, . . . , Ak ∈ Rn×n,
if there exists a symmetric matrix P ∈ Rn×n such that

A∗iPAj + A∗jPAi

2
− P < 0, for all i, j ∈ {1, . . . , k},

then, for all initial conditions x(0) ∈ Rn and sequences

{A(t)}+∞
t=0 ⊂ Co{A1, . . . , Ak},

the solution to (C.1) satisfies

lim
t→+∞

x(t) = 0.
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The objective of this Subsection is to generalize this classic result as
follows.

Theorem C.2 (Common Lyapunov function for convergence to eigenspace)
Assume that 1 is a simple eigenvalue with left and right eigenvector v ∈ Rn

for each matrix A1, . . . , Ak ∈ Rn×n. If there exists a symmetric matrix
P ∈ Rn×n satisfying, for all nonzero z /∈ span{v},

Pv = 0, (C.2)

z∗Pz > 0, (C.3)

and

z∗
(
A∗iPAj + A∗jPAi

2
− P

)
z < 0, for all i, j ∈ {1, . . . , k}, (C.4)

then, for all initial conditions x(0) ∈ Rn and sequences

{A(t)}+∞
t=0 ⊂ Co{A1, . . . , Ak},

the solution to (C.1) satisfies

lim
t→+∞

x(t) = αv, α =
1

‖v‖2
v∗x(0).

Proof: Because v is a left and right eigenvector with eigenvalue 1, we have

Aiv = v, and v∗Ai = v∗, for i ∈ {1, . . . , k}. (C.5)

Consider the following decomposition

x(t) = xave(t) v + x⊥(t),

where x⊥⊥ v and where xave(t) = 1
‖v‖2v

∗ x(t) ∈ R. Straightforward calcula-
tions show that xave satisfies the recursive relation

xave(t+ 1) = xave(t) +
1

‖v‖2
v∗A(t)x⊥(t) = xave(t),

where in the last equality we have used the facts that v∗A(t) = v∗ and
v∗x⊥ = 0. Hence, xave(t) = xave(0) = (1/‖v‖2)v∗x(0), for all t. Now, let
v1 = v and consider a basis {v1, v2, . . . , vn} of Rn with the orthogonality
property v1⊥vi for all i ∈ {2, . . . , n}. Let T = [v1, . . . , vn] ∈ Rn×n. Let x̄ =
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T−1x = [x̃1, . . . , x̃n]∗ and let x̃ = [x̃2, . . . , x̃n]∗ ∈ Rn−1. By the hypothesis
(C.2) and the assumption (C.5) we have that

T−1PT =

[
0 0

0 P̃

]
,

T−1AiT =

[
1 0

0 Ãi

]
,

and

T−1AjT =

[
1 0

0 Ãj

]
,

where P̃ , Ãi, Ãj ∈ R(n−1)×(n−1) and, by hypothesis (C.3) P̃ > 0. It follows
that

1

2

([
1 0

0 Ã∗i

] [
0 0

0 P̃

] [
1 0

0 Ãj

]
+

[
1 0

0 Ã∗j

] [
0 0

0 P̃

] [
1 0

0 Ãi

])
−
[

0 0

0 P̃

]
=

[
0 0

0 1
2

(
Ã∗i P̃ Ãj + Ã∗j P̃ Ãi

)
− P̃

]
,

where, by hypothesis (C.4), 1
2

(
Ã∗i P̃ Ãj + Ã∗j P̃ Ãi

)
− P̃ < 0, for all i, j ∈

{1, . . . , k}. Hence, Theorem C.1 implies limt→+∞ x̃(t) = 0 and, in turn,
limt→+∞ xave(t) = (1/‖v‖2)v∗x(0).

C.2 Solvability of a Lyapunov equation

The proof of some results contained in Chapter 7 are based on the solvability
of the following Lyapunov equation

z∗(R∗1LR1 − (1− β)L)z < 0, ∀ z ∈< [1∗ 0∗]∗ >⊥ (C.6)

where

L =

[
I − P 0

0 γI

]
, R1 =

[
I 0
0 δI

] [
P P − I

P − I P − 2I

]
, (C.7)

P ∈ RN×N satisfies Assumption 7.1 (pag. 153), 0 < δ < 1 and γ > 0.

The following lemma helps to determine for what parameters γ, β, δ the
Lyapunov inequality (C.6) holds.
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Lemma C.3 Let λmin and λmax be the minimum and the maximum eigen-
value in σ(P ) \ {1}, respectively. Define the polynomial

f(λ, δ, γ, β) := γβ2 +
(
(1− λ)3 + γδ2(λ− 2)2 − γ + γ(1− λ)(γδ2 − 1− λ)

)
β

+ (1− λ)
(
−γ2δ2 + γ(1 + λ+ δ2(λ− 3))− (1− λ)2

)
.

(C.8)

Then (C.6) holds true if and only if

β < min
{
β−min(δ, γ), β−max(δ, γ)

}
, (C.9)

where β−min(δ, γ) and β−max(δ, γ) are the minimum real roots of f(λmin, δ, γ, β)
and of f(λmax, δ, γ, β) as polynomials in β.

Proof: We start by observing that

R∗1LR1 − (1− β)L =[
(I − P )2(γδ2I − I − P ) + β(I − P ) (I − P )(P (P − I)− γδ2(P − 2I))
(I − P )(P (P − I)− γδ2(P − 2I)) (I − P )3 + γδ2(P − 2I)2 − γI + γβI

]
.

Note that

(R∗1LR1 − (1− β)L)

[
1

0

]
= 0

and hence showing (C.6) is equivalent to show that the symmetric matrix
−R∗1LR1 + (1 − β)L has all positive eigenvalues except one, which is zero
and has multiplicity one. If we define the polynomials q11(λ), q22(λ), q12(λ)
as follows

q11(λ) := (1− λ)2(γδ2 − 1− λ) + β(1− λ)

q22(λ) := (1− λ)3 + γδ2(λ− 2)2 − γ + γβ

q12(λ) := (1− λ)(λ(λ− 1)− γδ2(λ− 2))

we can write

R∗1LR1 − (1− β)L =

[
q11(P ) q12(P )
q12(P ) q22(P )

]
,

To compute the eigenvalues of −R∗1LR1 + (1 − β)L we consider its charac-
teristic polynomial. Using the same arguments used in the proof of Lemma
7.10 we can argue that

det(sI +R∗1LR1 − (1− β)L) =

=
N−1∏
i=0

[
s2 + (q11(λi) + q22(λi))s+ (q11(λi)q22(λi)− q12(λi)

2)
]
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where λ0 = 1, λ1, . . . , λN−1 denote the eigenvalues of P . Observe now that,
for i = 0 the polynomial in the previous product is

s(s− γδ2 + γ − γβ)

which gives one zero eigevalue and another eigenvalue equal to γ(1− δ2−β).
We can argue that, since this must positive, then we have this first constraint

β < 1− δ2 (C.10)

Moreover all the roots of the other polynomials for i = 1, . . . , N − 1 must be
all positive. Observe that s2 + (q11(λi) + q22(λi))s+ (q11(λi)q22(λi)− q12(λi)

2)
can be seen as the characteristic polynomial of the 2× 2 matrix[

−q11(λi) −q12(λi)
−q12(λi) −q22(λi)

]
and, to impose that the roots of this polynomial are positive is equivalent to
impose that such a matrix is positive definite and so that

−q11(λi) > 0 q11(λi)q22(λi)− q2
12(λi) > 0.

Therefore, together with condition (C.10), we have other 2N − 2 conditions.
Some of these conditions are superfluous. We start from condition −q11(λi) >
0. Observe that, since 1−λi > 0 for all i ∈ {1, . . . , N − 1}, then q11(λi) < 0
for all i ∈ {1, . . . , N − 1} if and only if β + γδ2(1− λi)− 1 + λ2

i < 0 for all
i ∈ {1, . . . , N − 1} and this happens if and only if

β < 1− λ2
min − γδ2(1− λmin) (C.11)

β < 1− λ2
max − γδ2(1− λmax) (C.12)

Notice now that

q11(λ)q22(λ)− q2
12(λ) = (1− λ)f(λ)

where f(λ) = f(λ, δ, γ, β) is defined in (C.8). Notice that

∂2f

∂λ2
= (1− β)(6λ− 6− 2γ(1 + δ2))

which is negative for λ < 1. This implies that f(λ), is a concave function in
λ, for λ ∈ [−1, 1] and so q11(λi)q22(λi)− q2

12(λi) > 0 for all i = 1, . . . , N − 1
if and only if

f(λmin, δ, γ, β) > 0 (C.13)
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f(λmax, δ, γ, β) > 0. (C.14)

At this point we have that (C.6) holds true if and only if conditions
(C.10), (C.11), (C.12), (C.13) and (C.14) hold true. Consider the condition
f(λmin, δ, γ, β) > 0. Observe that, if β = 1 − λ2

min − γδ2(1 − λmin), then
q11 = 0 and so

f(λmin, δ, γ, β)|β=1−λ2
min−γδ2(1−λmin) =

−q2
12

1− λ
< 0.

We can argue that f(λmin, δ, γ, β) is a convex parabola in β which has always
two real roots β−min(δ, γ) and β+

min(δ, γ) which satisfy

β−min(δ, γ) < 1− λ2
min − γδ2(1− λmin) < β+

min(δ, γ) (C.15)

and morever f(λmin, δ, γ, β) > 0 if and only if

β < β−min(δ, γ) or β > β+
min(δ, γ). (C.16)

This implies that conditions (C.11) and (C.13) hold if and only if β <
β−min(δ, γ). Reasoning similarly for the condition f(λmax, δ, γ, β) > 0 we ob-
tain that conditions (C.12) and (C.14) hold if and only if β < β−max(δ, γ).

We prove finally that condition (C.10) is superfluous which would give
the thesis. To prove this observe that

f(λmin, δ, γ, β)|β=0 =

= (1− λmin)[−λ2
min + (2 + γδ2 + γ)λmin − (1 + 3γδ2 + γ2δ2 − γ)]

and

f(λmin, δ, γ, β)|β=1−δ2 =

= δ2(1− λmin)[−λ2
min + (2 + γδ2 + γ)λmin − (1 + 3γδ2 + γ2δ2 − γ)]

This implies that we can have three cases

1. We have f(λmin, δ, γ, β)|β=0 = 0. In this case we have that β−min(δ, γ) =
0 and β+

min(δ, γ) = 1− δ2.

2. We have f(λmin, δ, γ, β)|β=0 < 0. In this case we have that β−min(δ, γ) <
0 < 1− δ2 < β+

min(δ, γ);

3. We have f(λmin, δ, γ, β)|β=0 > 0. In this case we may have three situa-
tions:
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1a. 0 < β−min(δ, γ) ≤ β+
min(δ, γ) < 1− δ2;

2b. 0 < 1− δ2 < β−min(γ) ≤ β+
min(δ, γ);

3c. β−min(δ, γ) ≤ β+
min(δ, γ) < 0 < 1− δ2.

However the cases 2b and 2c cannot occur since the β−min(δ, γ) is a continuous
function of γ, while in these two cases the value of this function would pass
from 0 to 1 − δ2 in a neighbor of the γ’s such that f(λmin, δ, γ, β)|β=0 = 0
Notice finally that in all the cases which can occur we have that β−min(δ, γ) ≤
1− δ2.

We provide now a consequence of the previous result.

Lemma C.4 Assume the same assumptions of the previous lemma hold. Let
δ̄ be defined as in (7.13) and δ ∈ R be such that 0 ≤ δ < δ̄. If we let

γ̄ :=
1 + λmin + δ2(λmin − 3)

2δ2

Then γ̄ > 0 satisfies

z∗(R∗1LR1 − L)z < 0, ∀ z ∈< [1∗ 0∗]∗ >⊥, (C.17)

Proof: Notice first that 0 ≤ δ < δ̄ implies that γ̄ > 0. By the previous
lemma, (C.17) holds true if and only if β = 0 is an admissible solution of
(C.9) and this happens if and only if both β−min(δ, γ̄) > 0 and β−max(δ, γ̄) > 0.
Notice now that f(λ, δ, γ, β) can be written as follows

f(λ, δ, γ, β) = γβ2 + [(1− λ)p(λ, δ, γ)− γ(1− δ2)]β − (1− λ)p(λ, δ, γ)

where
p(λ, δ, γ) = δ2γ2 − [1 + λ+ δ2(λ− 3)]γ + (1− λ)2

Notice moreover that, β−min(δ, γ̄) > 0 if and only if (1 − λmin)p(λmin, δ, γ̄) −
γ̄(1− δ2) < 0 and (1−λmin)p(λmin, δ, γ̄) < 0 and these two conditions occurs
if and only if p(λmin, δ, γ̄) < 0. Similarly we can see that β−max(δ, γ̄) > 0 if
and only if p(λmax, δ, γ̄) < 0. Notice now that, since

∂p

∂λ
= −γ − γδ2 − 2(1− λ),

is negative for λ < 1, then p(λmax, δ, γ̄) < 0 is implies by p(λmin, δ, γ̄) < 0
which is the only condition we need to prove. Notice now that γ̄ is the
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minimizer of p(λmin, δ, γ) as a function of γ. Therefore p(λmax, δ, γ̄) < 0 if
and only if the discriminant is positive, namely if and only if (1 + λmin +
δ2(λmin − 3))2 − 4δ2(1− λmin)2 > 0. Observe that this last inequality holds
true if and only if

(3− λmin)2δ4 − 2(5− 2λmin + λ2
min)δ2 + (1 + λmin)2 > 0. (C.18)

Consider the equation (3−λmin)2x2− 2(5−λmin +λ2
min)x+ (1 +λmin)2 = 0.

The solutions of this equation are x1 = 1 and x2 =
(

1+λmin
3−λmin

)2

. Since λmin < 1

we have that x2 < 1. Hence, since (3−λmin)2x2− 2(5−λmin +λ2
min)x+ (1 +

λmin)2 > 0 is a convex parabola, we have that (3− λmin)2x2 − 2(5− λmin +
λ2
min)x+ (1 + λmin)2 > 0 if and only if x < x2 and x > x1. It follows that, if

δ2 <
(

1+λmin
3−λmin

)2

, i.e., if δ < δ̄, then (C.18) is satisfied.
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gium, February 2008.

[72] B. Hohlt, L. Doverty, and E. Brewer. Flexible power scheduling for
sensor networks. In In IEEE and ACM International Symposium on
Information Processing in Sensor Networks (IPSN’04), April 2004.



BIBLIOGRAPHY 245

[73] Y. Igarashi, T. Hatanaka, M. Fujita, and M. W. Spong. Passivity-
based 3D attitude coordination: Convergence and connectivity. In
IEEE Conf. on Decision and Control, pages 2558–2565, New Orleans,
LA, December 2007.

[74] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of mobile
autonomous agents using nearest neighbor rules. IEEE Transactions
on Automatic Control, 48(6):988–1001, 2003.
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