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Abstract

Population models are widely applied in biomedical data analysis since they characterize both the average and individual responses of a
population of subjects. In absence of a reliable mechanistic model, one can resort to the Bayesian nonparametric approach that models the
individual curves as Gaussian processes. This paper develops an efficient computational scheme for estimating the average and individual
curves from large data sets collected in standardized experiments, i.e. with a fixed sampling schedule. It is shown that the overall scheme
exhibits a “client-server” architecture. The server is in charge of handling and processing the collective data base of past experiments. The
clients ask the server for the information needed to reconstruct the individual curve in a single new experiment. This architecture allows
the clients to take advantage of the overall data set without violating possible privacy and confidentiality constraints and with negligible
computational effort.
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1 Introduction

One of the most interesting identification problems arising
in biomedical data analysis is the characterization of a pop-
ulation of subjects. Classical examples are found in pharma-
cokinetics (PK) and pharmacodynamics (PD), where multi-
ple subjects are sampled in order to obtain both the average
and individual response to the administered drug. If a suf-
ficiently large number of samples are collected in each in-
dividual, it is possible to identify a distinct model for each
subject. The typical response of the population could then
be obtained from the distribution of the individual models.
However, the specific nature of biomedical experiments of-
ten poses technological, cost or ethical constraints that per-
mits to collect only few data in each single subject. When the
separate identification of individual models is not viable, an
effective solution is provided by so-called population mod-
eling approaches [1], [2], [3]. Such methods process all the
data simultaneously in order to achieve both the typical and
individual models. Although originated in the PK/PD field,
population modeling is becoming more and more popular
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also in other scenarios as metabolic systems, medical imag-
ing and even genomics [4], [5], [6].
The standard population model is a continuous-time dy-
namical system containing a finite number of unknown pa-
rameters, typically a compartmental model [7]. This leads
to a nonlinear-in-parameter identification problem that can
be tackled resorting to various iterative algorithms. Among
them, one may mention the celebrated NONMEM software
[8], which relies on maximum likelihood estimation, but
also Bayesian algorithms that compute the posterior distri-
bution of parameters exploiting the Markov chain Monte
Carlo (MCMC) machinery [9], [10].
At the early stages of a study or when the mechanistic model
of a physiological phenomenon is not available, it may be
difficult to formulate a reliable parametric model. Hence the
need for flexible nonparametric population approaches that
reduce the structural assumptions to a minimum [11]. Along
this direction, an example is provided by so-called semipara-
metric methods that model the response curves as regres-
sion splines [12], [13]. A potential difficulty underlying the
use of these techniques is the optimization of the number
and location of the knots of regression splines, which could
suffer from the presence of local minima. More recently, in
order to develop a fully nonparametric approach, within a
Bayesian paradigm it has been proposed to model the indi-
vidual curves as realizations of discrete- or continuous-time
stochastic processes, e.g. random walks or integrated Wiener
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processes [14], [15]. In these works, each individual curve
is seen as the sum of an average curve (common to all sub-
jects) and an individual shift (varying from subject to sub-
ject). In particular, both the average curve and the individual
shifts are assumed to be Gaussian processes whose statis-
tics are specified by few hyper-parameters. For instance, if
the curve is an integrated Wiener process, the hyperparam-
eter is the corresponding intensity. Hyperparameter tuning
can be carried out via likelihood maximization. For a given
choice of the hyperparameters, the posterior expectations
of the processes given the data provide point estimates of
the average and individual curves. In particular, when the
prior is formulated in terms of integrated Wiener processes,
the estimated curves are cubic splines [15]. This Bayesian
nonparametric approach has strong connections with kernel
methods, Gaussian processes estimation, regularization net-
works [16],[17]. Recently, a Bayesian MCMC approach able
to return the full posterior of hyperparameters and unknown
functions has been also worked out, see [18].
In this paper, attention is focused on the nonparametric pop-
ulation analysis of standardized experiments which involve
a large number of subjects. Herein, the term standardized
is used to denote an experiment that is repeated in multi-
ple subjects adopting a standard sampling schedule. A no-
table example, treated later in the paper, is the intravenous
glucose tolerance test (IVGTT), where glucose plasma con-
centration is measured after intravenous administration of a
glucose bolus. This test is widely employed in the diagnosis
of metabolic disorders, see e.g. [19].
In the Bayesian nonparametric approach the computation of
the posterior expectations calls for the solution of an alge-
braic linear system of order nT , where nT is the total number
of observations. This is a potential drawback because the
complexity scales with the cube of nT . The burden may seem
even worse in the case of standardized experiments involv-
ing a large number of subjects. As a matter of fact, in the
present paper it is shown that the fixed sampling schedule
can be exploited to design an algorithm whose complexity
scales with the cube of the number of samples collected in
each individual. This holds for evaluation of both the pos-
terior expectations and confidence intervals.
The new algorithms pave the way to the implementation of a
client-server architecture for managing the identification of
population models for standardized experiments. The server
computes and stores the sufficient statistics abstracted from
a large historical data set. The client, whose aim is analyz-
ing a single new experiment (not necessarily standardized),
interrogates the server to get the information needed to com-
pute the posterior expectation of the individual curve given
all the historical data. The client can also send its data to
the server in order to update the centralized sufficient statis-
tics. As an example, the server could be managed by a ref-
erence research center, whereas the clients could be labo-
ratories collecting and processing clinical data. According
to this architecture, the local laboratories benefit from the
information contained in the collective database in a com-
putationally efficient way and without accessing individual
data subject to privacy and confidentiality constraints. To the
authors’ knowledge, the client-server architecture is a novel

contribution of this paper. In fact, most population modeling
approaches cannot be decentralized because of their intrin-
sic nonlinear-in-parameter structure.
The paper is organized as follows. In Section 2 the prob-
lem is given its mathematical formulation. In Section 3 the
computational algorithms are derived. In Section 4 the pro-
posed methodology is tested on a large data set of IVGTT
experiments. Some conclusions end the paper.

2 Statement of the problem

In the sequel, E[.] is used to denote the expectation
operator and vectors are column vectors, unless oth-
erwise specified. Further, given two random vectors q
and w, let cov[q,w] = E[(q − E[q])(w − E[w])T ] and
Var[q] = E[(q−E[q])(q−E[q])T ].
We consider the problem of estimating realizations of
continuous-time stochastic processes x j(t), j = 1,2, . . . ,m+
1, from a finite number of noisy samples. The curves x j(t)
represent the responses of m + 1 subjects randomly drawn
from a population. It is assumed that number and location
of the sampling instants do not vary from subject to subject
except for what concerns the last one. To be more specific,
for j = 1, . . . ,m the curves are sampled at instants {tk},
k = 1,2, . . . ,n, while the (m + 1)-th curve is sampled at
instants {t∗k }, k = 1,2, . . . ,n∗. The measurement model is

y j
k = x j(tk)+ν j

k , k = 1, . . . ,n, j = 1, . . . ,m

ym+1
k = xm+1(t∗k )+νm+1

k , k = 1, . . . ,n∗

where {ν j} = [ν j
1 . . .ν j

n ]T , j = 1, . . . ,m, and {νm+1} =
[νm+1

1 . . .νm+1
n∗ ]T are Gaussian and independent random

vectors such that for every k and j

E[ν j
k ] = 0, Var[ν j] = Σ j

ν

We assume that the individual curves can be decomposed as

x j(t) = x̄(t)+ x̃ j(t), j = 1, . . . ,m+1

where x̄(t) and x̃ j(t) are zero-mean normal stochastic pro-
cesses that represent the average curve and the individual
shift from the average, respectively. We also assume that
processes {ν j

k}m+1
j=1 , x̄(t) and {x̃ j(t)}m+1

j=1 are all mutually
independent. For the sake of simplicity, it is assumed that
{x̃ j(t)}m+1

j=1 are identically distributed. Define now

y j = [y j
1 y j

2 . . . y j
n]

T , j = 1,2, . . . ,m

ym+1 = [ym+1
1 ym+1

2 . . . ym+1
n∗ ]T

y =
[
(y1)T . . .(ym)T ]T

y+ =
[
yT (ym+1)T ]T

The paper is concerned with the solution of the following
two estimation problems.
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• Given y, for any t compute efficiently the continuous-
time minimum variance estimate of the average curve
x̄(t), i.e. E[x̄(t)|y], as well as the variance of the recon-
struction error, i.e. Var[x̄(t)|y].

• Assuming that a new data set ym+1 is available, for any t
compute efficiently E[xm+1(t)|y+] and Var[xm+1(t)|y+].

3 Computational algorithms

3.1 Computing E[x̄(t)|y] and Var[x̄(t)|y]

The aim is to derive efficient algorithms to compute the
estimates E[x̄(τ)|y], E[xm+1(τ)|y+], where τ is a generic
temporal instant, together with their confidence intervals.
We start by introducing the following notation

x̄ = [x̄(t1) . . . x̄(tn)]T x̄τ = [x̄(τ) x̄(t1) . . . x̄(tn)]T (1)
x̃ j = [x̃ j(t1) . . . x̃ j(tn)]T , j = 1,2, . . . ,m

and

R̄ = Var[x̄] R̄τ = cov[x̄τ , x̄]
R̄ττ = Var[x̄τ ] r̄τ = cov[x̄(τ), x̄]

R̂ττ = Var[x̄τ |y] R̃ = Var[x̃ j], j = 1,2, . . . ,m
(2)

Notice that in (2), due to the standardized sampling as-
sumption, R̃ = Var[x̃ j] is independent of j. In the sequel,
bd{A1, . . . ,Ap} denotes the square block matrix whose di-
agonal elements are the square matrices A1, . . . ,Ap and the
off-diagonal elements are zero. We also use Id to denote the
d×d identity matrix.
The following proposition exploits well known formulas re-
garding joint Gaussian vectors, see e.g. [20], [21].

Proposition 1 Assuming that the autocovariances of x̄(t)
and {x̃ j(t)}m+1

j=1 are perfectly known, under the independence
assumptions stated in Section 2, it holds that

E[x̄(τ)|y] = cov[x̄(τ),y]Var[y]−1y

R̂ττ = R̄ττ − cov[x̄τ ,y]Var[y]−1cov[x̄τ ,y]T (3)

Var[y] =




R̄ R̄ . . . R̄
...

...
...

...

R̄ R̄ . . . R̄


+bd{R̃+Σ1

ν , . . . , R̃+Σm
ν } (4)

In view of the above formulas, it would seem that the com-
putation of E[x̄(τ)|y] and R̂ττ calls for the inversion of an
nm-th order matrix. The next proposition exploits the spe-
cial structure of the problem to demonstrate that only n-th
order inverses are required.

Proposition 2 Let

R̃i
ν = R̃+Σi

ν , F =
m

∑
i=1

(R̃i
ν)−1, f =

m

∑
i=1

(R̃i
ν)−1yi (5)

Then,

R̂ττ = R̄ττ − R̄τ FR̄T
τ + R̄τ F

[
R̄−1 +F

]−1
FR̄T

τ
E[x̄(τ)|y] = r̄τ c

where c ∈ℜn is given by c =
[
In−F(R̄−1 +F)−1

]
f .

Proof: In view of (4) and (5), we can rewrite Var[y] as
follows

Var[y] =
[
R̄

1
2 . . . R̄

1
2

]T [
R̄

1
2 . . . R̄

1
2

]
+bd{R̃1

ν , . . . , R̃m
ν }

The matrix inversion lemma (e.g., see page 138 in [20])

(A+BCBT )−1 = A−1−A−1B(C−1 +BT A−1B)−1BT A−1

can now be used with the following assignments

A = bd{R̃1
ν , . . . , R̃m

ν } B =
[

R̄
1
2 . . . R̄

1
2

]T
C = In

We obtain

Var[y]−1 = bd{ (R̃1
ν)−1, . . . , (R̃m

ν )−1 }−




(R̃1
ν)−1R̄

1
2

...

(R̃m
ν )−1R̄

1
2




×[In +
m

∑
i=1

R̄
1
2 (R̃i

ν)−1R̄
1
2 ]−1

[
R̄

1
2 (R̃1

ν)−1 . . . R̄
1
2 (R̃m

ν )−1
]

which, using (5), can be rewritten as

Var[y]−1 = bd{ (R̃1
ν)−1, . . . , (R̃m

ν )−1 } (6)

−




(R̃1
ν)−1

...

(R̃m
ν )−1




[
R̄−1 +F

]−1
[

(R̃1
ν)−1 . . . (R̃m

ν )−1
]

Further, since x̄(t), {x̃ j(t)} and {ν j} are mutually indepen-
dent, and the sampling schedule does not vary in the first m
subjects, we have that

cov[x̄τ ,y] =
[
cov[x̄τ ,y1] . . .cov[x̄τ ,ym]

]

= [cov[x̄τ , x̄] . . .cov[x̄τ , x̄]] = [R̄τ . . . R̄τ ]

3



Using (3), simple computations provide now the final ex-
pression for R̂ττ .
As regards E[x̄(τ)|y], we have that

E[x̄(τ)|y] =
[

cov[x̄(τ),y1] . . . cov[x̄(τ),ym]
]

Var[y]−1y

Using (6),
Var[y]−1y =

(
c1 . . .cm)T

(7)
where

ci =

[
(R̃i

ν)−1yi− (R̃i
ν)−1 (

R̄−1 +F
)−1 m

∑
j=1

(R̃ j
ν)−1y j

]

Moreover, cov[x̄(τ),yi] = cov[x̄(τ), x̄], i = 1, . . . ,m, so that

E[x̄(τ)|y] =
m

∑
i=1

cov[x̄(τ), x̄]ci = cov[x̄(τ), x̄]
m

∑
i=1

ci

where, using (5), one can easily see that ∑m
i=1 ci corresponds

to vector c reported in the statement of the Proposition. This
completes the proof. 2

3.2 Computing E[xm+1(t)|y+] and Var[xm+1(t)|y+]

In the previous subsection, a method has been obtained to
efficiently compute the estimate of the average curve of the
population from data collected in m subjects on a standard-
ized grid {tk}. Assume now that such data are already avail-
able and that a new (m+1)-th subject is sampled on an ar-
bitrary sampling grid {t∗k }. In this subsection, we show how
to estimate the individual curve of the new subject taking
into account all the available information on the previous
m subjects. We start by reporting a notation which refers to
the sampling grid {t∗k }. and which represents an extension
of that reported in (1) and (2). Let

x̄∗ = [x̄(t∗1 ) . . . x̄(t∗n∗)]
T

x̄∗τ = [x̄(τ) x̄(t∗1 ) . . . x̄(t∗n∗)]
T

x̃m+1 = [x̃m+1(t∗1 ) . . . x̃m+1(t∗n∗)]
T

R̄∗τ = cov[x̄∗τ , x̄], R̃∗ = Var[x̃m+1]
r̃∗τ = cov[x̃m+1(τ), x̃m+1], r̃τ = Var[x̃m+1(τ)]

R̄∗ττ = Var[x̄∗τ ], R̂∗ττ = Var[x̄∗τ |y]

The next proposition (whose proof is omitted) shows how
to calculate efficiently R̂∗ττ and E[x̄∗τ |y].

Proposition 3 Consider quantities R̃i
ν ,F and c as defined

in Proposition 2. Then,

R̂∗ττ = R̄∗ττ − R̄∗τ F(R̄∗τ)
T + R̄∗τ F

(
R̄−1 +F

)−1
F(R̄∗τ)

T

E[x̄∗τ |y] = R̄∗τ c

The last result allows one to compute the estimate of the
average curve on an arbitrary sampling grid as well as confi-
dence intervals thanks to the covariance matrix R̂∗ττ . Notice
that the formulas require only knowledge of the standard-
ized sampling grid {tk}, necessary in order to compute R̄∗τ
and R̄∗ττ , of matrix F and vector c. In some sense, F and c
can be thought of as a sufficient statistic for average curve
evaluation, given all the m subjects. In fact, once F and c are
known, the individual data {y j}m

j=1 are no more necessary.
It is now shown how to efficiently compute E[xm+1(τ)|y+]
as a function of E[x̄∗τ |y] and R̂∗ττ . To obtain this goal, it is use-
ful to partition R̂∗ττ and E[x̄∗τ |y] into submatrices as follows:

R̂∗ττ =

[
Var[x̄(τ)|y] cov[x̄(τ), x̄∗|y]

cov[x̄(τ), x̄∗|y]T Var[x̄∗|y]

]
.=

[
p p̄

p̄T P

]
(8)

E[x̄∗τ |y] =
[

E[x̄(τ)|y]
E[x̄∗|y]

]
.=

[
ξτ

ξ

]

A preliminary result is first needed.

Lemma 4 It holds that

E[ym+1|y] = E[x̄∗|y]
Var[ym+1|y] = Var[x̄∗|y]+ R̃∗+Σm+1

ν
E[xm+1(τ)|y] = E[x̄(τ)|y]

Var[xm+1(τ)|y] = Var[x̄(τ)|y]+Var[x̃m+1(τ)]
cov[xm+1(τ),ym+1|y] = cov[x̄(τ), x̄∗|y]+ cov[x̃m+1(τ), x̃m+1]

Proof To obtain the results, one can first replace ym+1 with
x̄∗+ x̃m+1 + νm+1 and xm+1(τ) with x̄(τ)+ x̃m+1(τ). After
that, one exploits the fact that x̄∗, x̃m+1 and νm+1 are inde-
pendent of each other and that x̃m+1 and νm+1 are indepen-
dent of y. 2

We are now in a position to compute E[xm+1(τ)|y+] and
the variance of the error affecting such estimate as a func-
tion of the submatrices of R̂∗ττ and E[x̄∗τ |y] given in (8). The
following proposition exploits well known results on joint
Gaussian vectors (e.g., see [20, Section 3.1]) and Lemma 4.

Proposition 5 It holds that

E[xm+1(τ)|y+] = ξτ +{p̄+ r̃∗τ}(P+ R̃∗+Σm+1
ν )−1

× (ym+1−ξ )
Var[xm+1(τ)|y+] = p+ r̃τ −{ p̄+ r̃∗τ}

× (P+ R̃∗+Σm+1
ν )−1{p̄+ r̃∗τ}T

The last result shows that the estimate of the (m+1)-th in-
dividual curve depends only on the corresponding data ym+1

and matrix R̂∗ττ and vector E[x̄∗τ |y] in (8), which summarize
all the information from the other m subjects. Recall that R̂∗ττ
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and E[x̄∗τ |y] depend only on F and c. Thus, one can imag-
ine a distributed estimation scheme based on the following
client-server architecture. The server processes m subjects
sampled on a standardized grid {tk} and calculates matrix F
and vector c. The client processes the data of the (m+1)-th
subject as follows: it asks the server for F and c and then
uses them to obtain the individual curve. In this way, the
client is able to exploit the whole data set made of m sub-
jects without having access to the data.
Finally, notice also that, if we suppose that the (m + 1)-th
subject has a standard sampling schedule, then its data can
be sent to the server in order to update F and c. This will
allow other clients to benefit from the information contained
in ym+1. It is worth stressing that such update operation can
be performed very efficiently. In fact, denote with Fu and
cu the updated versions of F and c, respectively. Then, ex-
ploiting the results reported in Proposition 2, the following
update formulas easily follow

Fu = F +(R̃m+1
ν )−1 cu =

[
In−Fu (

R̄−1 +Fu)−1
]

f u

f u = f +(R̃m+1
ν )−1ym+1

3.3 Computing unknown hyper-parameters

When dealing with real world problems, the autocovari-
ances of the signals of interest may contain unknown hyper-
parameters which have to be estimated from data. To tackle
this problem, we resort to the so-called Empirical Bayes
method where a Maximum Likelihood (ML) estimate of
hyper-parameters is first achieved. Next, parameters are set
to their ML estimates and the Bayes estimate is computed
using the formulas described in the previous sub-sections.
Within the client-server architecture outlined at the end of
the previous subsection, it is the server that is in charge of
estimating the hyperparameters and transmitting them to the
clients. In fact, the client needs the hyperparameters in or-
der to be able to evaluate the autocovariances which enter
the computational formulas. Now, assume that the unknown
hyper-parameters are contained in the parameter vector θ
that parametrizes Var[y]. To compute their estimates, the fol-
lowing optimization problem has to be solved

θ̂ = argmin
θ

J(y;θ)

where J(y;θ) = log[det(Var[y])] + yTVar[y]−1y is equal to
the opposite of the log-likelihood apart from a constant. In
the following two propositions, it is shown that evaluation
of the log-likelihood for a given θ requires only O(m×n3)
operations. The first result can be immediately deduced by
exploiting (7).

Proposition 6 It holds that

yTVar[y]−1y = yT c

In the sequel, we use chol[K] to denote the Cholesky fac-
torization of the matrix K [20]. Let also Akk = R̄ + R̃ + Σk

ν
indicate the k-th n×n block on the diagonal of Var[y]. The
second result (whose proof is omitted) is reported below.

Proposition 7 The determinant of the nm × nm matrix
Var[y] can be computed as

det(Var[y]) =

(
m

∏
i=1

det(Cii)

)2

where Cii are n×n matrices such that

Cii = chol[Aii−Di], C(i+1)i = (R̄−Di)(CT
ii )
−1

Cki = C(i+1)i for k > i+1, Di+1 = Di +C(i+1)iC
T
(i+1)i

with the initial positions D1 = 0 and C21 = R̄(CT
11)

−1.

4 Example

In this Section, the proposed computational scheme is tested
on a database that consists of 224 healthy subjects, on which
an intravenous glucose tolerance test (IVGTT) was per-
formed. The first 204 subjects represent our training set. It
consists of standardized experiments where the same sam-
pling schedule was adopted for all subjects and plasma glu-
cose samples were collected non-uniformly between 0 and
240 min [22]. To be specific, n = 20 and the set Ω1, ex-
pressed in minutes, corresponds to the sampling instants {tk}
given by {2, 4, 6, 8, 10, 15, 20, 22, 25, 26, 28, 31, 35, 45,
60, 75, 90, 120, 180, 240}. Data regarding the remaining
20 subjects are selected from IVGTT studies described in
[5,23,24], in which a glucose dose, identical to that admin-
istered in the first 204 subjects, was injected at time zero. In
particular, in the first 13 subjects n = 30 and the sampling
grid, denoted by Ω1 and expressed in minutes, is {2, 3, 4,
5, 6, 8, 10, 12, 15, 20, 22, 24, 26, 28, 30, 35, 40, 45, 50, 55,
60, 70, 80, 100, 120, 140, 160, 180, 210, 240}. In the last 7
subjects n = 29 and the sampling grid, denoted by Ω2, is {2,
3, 4, 5, 8, 10, 12, 14, 16, 18, 20, 24, 28, 32, 40, 45, 50, 60,
70, 80, 90, 100, 110, 120, 140, 160, 180, 210, 240}. In all
the 224 subjects, measurements are known to be corrupted
by a white normal noise with a 2% coefficient of variation.
Glucose data were pre-processed by first subtracting the
basal value from each profile. To take into account the fact
that processed glucose data tend to zero, a time transforma-
tion of t was performed so that the new time t̃ ranges from
0 to 1, according to the formula t̃ = 1/(1+ t/γ), as in [15].
We set parameter γ to 30, a value that maximizes the min-
imum distance between each pair of transformed sampling
instants given by the union of the sampling grids associated
with the 224 subjects. Both the typical curve and the indi-
vidual shifts were modelled as integrated Wiener processes.

5



0 60 120 180 240
−50

0

50

100

150

Population (full sampling)

min

m
g 

dl
−

1

0 60 120 180 240
−50

0

50

100

150

Population (reduced sampling)

min

m
g 

dl
−

1

0 60 120 180 240
−50

0

50

100

150

Single−subject (full sampling)

min

m
g 

dl
−

1

0 60 120 180 240

−100

−50

0

50

100

150

Single−subject (reduced sampling)

min

m
g 

dl
−

1

(a) Subject #209

0 60 120 180 240

−40

−20

0

20

40

60

80

100

120

140
Population (full sampling)

min

m
g 

dl
−

1

0 60 120 180 240

−40

−20

0

20

40

60

80

100

120

140
Population (reduced sampling)

min

m
g 

dl
−

1

0 60 120 180 240

−50

0

50

100

Single−subject (full sampling)

min

m
g 

dl
−

1

0 60 120 180 240
−200

−150

−100

−50

0

50

100

Single−subject (reduced sampling)

min

m
g 

dl
−

1

(b) Subject #214
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(c) Subject #215
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(d) Subject #219

Fig. 2. Estimation of individual IVGTT responses. Comparison between Population approach and Single-subject approach in 4 representative
subjects. The Population approach exploits information from other 204 IVGTT experiments.
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Fig. 1. Estimated average curve obtained by Population approach
applied to 204 IVGTT responses

Thus, it holds that (see also [15])

cov(x̄(s), x̄(τ)) = λ̄ 2

{
s2

2

(
τ− s

3

)
s≤ τ

τ2

2

(
s− τ

3

)
s > τ

cov(x̃ j(s), x̃ j(τ)) = λ̃ 2

{
s2

2

(
τ− s

3

)
s≤ τ

τ2

2

(
s− τ

3

)
s > τ

∀ j

As previously observed, hyperparameters λ̄ and λ̃ have to
be estimated from data.
Data relative to the first m = 204 subjects were exploited
to estimate hyper-parameters via maximum likelihood. One
can think of the computations related to such data base as
e.g. performed by a reference research center which has ac-
cess to a large data set. Obtained values for λ̄ and λ̃ turned
out to be around 13700 and 4440, respectively. After that,
each of the remaining 20 “(m+1)-th” curves, was estimated
by applying the method discussed in Section 3, hereby called
“population approach”. For comparison, the “(m + 1)-th”
profiles were also estimated without exploiting information
regarding the first 204 subjects. In particular, curves were
modeled as integrated Wiener processes with regularization
parameter estimated via maximum likelihood and adopting
the same time transformation t̃. Note that, under the inte-
grated Wiener prior, the estimated curves are cubic smooth-
ing splines [25]. This approach will be hereby called “single-
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Fig. 3. Results obtained in subject #211. Dashed lines denote
±1SD confidence bands

subject approach”. As concerns measurements related to the
“(m+1)-th” subject, we employed both a full and reduced
sampling schedule. In the latter, when dealing with the sam-
pling grid Ω1, n∗ is fixed to 15, and the set {t∗k } corresponds
to {2, 4, 6, 10, 15, 22, 26, 30, 35, 45, 55, 80, 120, 160, 240}.
When dealing with the sampling grid Ω2, n∗ is still 15 but
the set {t∗k } now corresponds to {2, 4, 5, 10, 14, 18, 24, 32,
40, 50, 60, 80, 120, 160, 240}. One can think of compu-
tations related to the “(m + 1)-th” curves as performed by
clients such as laboratories collecting clinical data.
Fig. 1 plots the estimated average curve. The results regard-
ing 4 representative subjects (#209,#214,#215 and #219) are
instead visible in Fig.2 where t is used as time axis. In each
of the sub-figures, fully sampled data vs. estimated curves
are plotted for the population approach (top-left) and the
single-subject one (bottom-left). The remaining two panels
in each sub-figure show reduced data vs estimated curves
for the population approach (top-right) and single-subject
one (bottom-right). Rather interestingly, the curves recon-
structed via the single-subject approach suffer from oscil-
lations in the final part of the experiment (t > 120 min),
where data are sampled less frequently. On the other hand,
the population approach is less influenced by the sampling
schedule. In fact, good results are obtained with both full
and reduced sampling. In Fig. 3 we show results regarding
subject #211 reporting estimated curves and ±1SD confi-
dence bands (dashed lines). It is apparent that confidence
intervals obtained by the population approach are narrower
than those obtained by the single-subject approach. To ob-
tain a global comparison of the two approaches, given the
full and reduced sampling grids I f and Ir, respectively, define
I = I f�Ir. Then, for every “(m+1)-th” subject we compute
the quantity

RMSE =

√
∑t∈I(ym+1(t)− x̂(t))2

n−n∗

where x̂(t) = E[xm+1(t)|y+]. Notice that the smaller RMSE,
the larger the predictive capability at times falling in the full

Population Single−subject
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Fig. 4. Estimation of individual IVGTT responses. Comparison
of RMSE obtained by Population approach and Single-subject
approach in 20 subjects

sampling grid but not used in the estimation process. Fig. 4
plots boxplots of the 20 computed values of RMSE using
the population and single subject approach. It is apparent
that the population approach outperforms the single-subject
one in terms of predictive capability on new glucose data.

5 Conclusions

In this paper, efficient formulas have been developed for the
nonparametric estimation of population models from large
data sets collected in experiments adopting a standardized
sampling schedule. In particular, the structure of the prob-
lem has been exploited to design algorithms whose com-
plexity scales with the cube of the number of data collected
in a single subject, while previous algorithms [15,18] scaled
with the cube of the total number of observations. The over-
all identification scheme presents a “client-server” architec-
ture. The server takes care of managing historical informa-
tion on past experiments. The client deals with a single new
experiment and interrogates the server to obtain the informa-
tion needed to reconstruct the individual curve. In this way,
clients exploit the global data set without having access to
the historical data and with negligible computational effort.
A data base of 224 IVGTT experiments has been employed
to successfully validate the approach. Obtained results show
that the individual estimates provided by the population ap-
proach are much more satisfactory than those achievable
from the single experiment. In addition, when the sampling
schedule of a subject is reduced, the individual estimate
obtained by the population approach remains satisfactory
whereas the quality of the single-subject estimate shows a
further degradation.
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