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Abstract

The issue of constructing periodic smoothing splines has been recently formulated as a controlled two point boundary value
problem which admits a state-space description. In the context of minimum norm problems in Hilbert spaces, it has been
shown that the solution is the sum of a finite number of basis functions and can be obtained with a number of operations which
scales with the cube of the sum of the number of measurements and boundary constraints. In this paper we consider a more
general class of variational problems subject to equality constraints which contains the periodic smoothing spline problem as
a special case. Using the theory of reproducing kernel Hilbert spaces we derive a solution to the problem which has the same
computational complexity as that recently proposed. Next, assuming that the problem admits a state-space representation,
we obtain an algorithm whose complexity is linear in the number of measurements. We also show that the solution of the
problem admits the structure of a particular regularization network whose weights can be computed in linear time. Closed
form expressions for the basis functions associated with the periodic cubic smoothing spline problem are finally derived.
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1 Introduction

Smoothing splines are widely used for nonparametric
estimation of functions starting from noisy data [1]. Ap-
plications can be found also in the context of optimal
control and state-feedback linearization, see e.g [2–4].
When the unknown signal has to satisfy periodic bound-
ary constraints, a periodic smoothing spline problem
arises. In this context, applications regard e.g. biomedi-
cal data analysis, differential geometry and robot path
planning where closed planar curves need to be gener-
ated, see e.g. [5–7].
In absence of constraints on the spline to reconstruct,
many algorithms whose complexity is linear in the
number of measurements are available in the literature,
see e.g. [8,9]. For what concerns the periodic case, it
admits a particularly simple solution when the data
points are uniformly sampled [1,7]. In a recent work, the
task of constructing periodic smoothing splines, using
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arbitrary sampling grids, has been faced in terms of a
constrained optimal control problem in state-space [10].
In the context of minimum norm problems in Hilbert
spaces and linear systems theory, an elegant expression
for the solution has been worked out. It has been shown
that the optimal control is the sum of a finite number of
basis functions (see eq. (6) in [10]), whose expansion co-
efficients can be computed with O((n + l)3) operations,
where n and l are the number of output values and
boundary constraints, respectively (see eq. (14) in [10]).
In this paper, we analyze a wider class of variational
problems, subject to equality constraints, under the
framework of regularization theory in Reproducing
kernel Hilbert spaces (RKHS) and Kalman smoothing
[11–14]. Our contribution is twofold. In the first part of
the paper we define a constrained function estimation
problem in an RKHS without resorting to state-space
formulations. It includes the optimal control problem
considered in [10] as a special case. Then, by resorting to
RKHS theory [15] we derive a solution for our more gen-
eral problem which has the same computational com-
plexity of that derived in [10]. In the second part of the
paper, we assume that the estimation problem admits
a state-space description and obtain an O(n) algorithm
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by the Bayesian interpretation of regularization. In
our framework, a more general class of boundary value
problems than that treated in [16] can be handled and
more compact derivations of the solutions are obtained.
The paper is organized as follows: in Section 2 basic
concepts on RKHS are recalled. In Section 3, we define
an equality constrained Tikhonov variational problem
in an RKHS and discuss its relationship with the op-
timal control problem of [10]. Next, we show that the
solution of the problem has the structure of a particular
regularization network (RN), which we call equality con-
strained RN. In Section 4 we assume that the problem
admits a state-space formulation and derive an O(n)
algorithm, able also to determine efficiently possibly un-
known hyperparameters present in the problem, e.g. the
regularization parameter. In addition, we show that the
weights of the equality constrained RN can be obtained
in linear time, also obtaining closed form expressions
for the periodic splines basis functions. In Section 6, a
numerical example involving periodic cubic smoothing
splines is reported. Some conclusions end the paper.

2 Preliminaries

Hereafter, vectors are column vectors and, given a
vector w, wi is its i-th component. In addition, X
is the interval [0, T ] on R, C(X) is the space of con-
tinuous functions on X while L2(X) is the classical
Lebesgue space with inner product < ·, · >2. Further,
E[·] is the expectation operator, given two random vec-
tors q, w, Σqw := V[q, w] = E[(q − E[q])(w − E[w])T ],
V[q] := E[(q − E[q])(q − E[q])T ] and N(µ, Σ) is a multi-
variate normal density of mean µ and covariance Σ.
According to [15], any continuous, symmetric and
positive-definite kernel K : X × X 7→ R can be asso-
ciated with one and only one Hilbert space H of con-
tinuous functions, named Reproducing Kernel Hilbert
Space (RKHS), having K as reproducing kernel. The
inner product on H is denoted by < ·, · >H. Define a
causal linear operator L[u] : L2(X) 7→ C(X) with im-
pulse response h : R2 7→ R, h(t, τ) = 0 for τ > t and h
essentially bounded on X ×X, i.e.

L[u](t) =
∫ t

0

h(t, τ)u(τ)dτ t ∈ X u ∈ L2(X) (1)

Define also the kernel

K1(t, s) =
∫

X

h(t, τ)h(s, τ)dτ (t, s) ∈ X ×X.

The following result characterizes one RKHS associated
with K1 and establishes an isometric isomorphism with
L2. The proof is omitted since it can be obtained by
using the same arguments reported in Section 1.2 of [1].

Proposition 2.1 Consider L : L2(X) → C(X), with

inverse L−1 assumed to exist 2 . Then, the RKHS H1 on
X associated with K1 is H1 =

{
L[u]

∣∣ u ∈ L2(X)
}

with inner product < f, g >H1=< L−1[f ], L−1[g] >2

Let H2 be a finite-dimensional RKHS with kernel
K2(t, s) =

∑m
i=1 piφi(t)φi(s) where {φi}m

i=1 is a set
of linearly independent functions. For a proof of the
following result, see e.g. [15] or [18].

Proposition 2.2 Define

R = diag{p−1
1 , p−1

2 , . . . , p−1
m } (2)

where pi ∈ R+,∀i. Then, H2 = span{φ1, φ2, . . . , φm}
and, for g(t) =

∑m
i=1 wiφi(t), ‖g‖2H2

= wT Rw

Example 1 In the sequel, a combination of H1 and H2

will define the Hilbert space the unknown function is as-
sumed to belong to. As a notable example, we introduce
the hypothesis space associated with the spline regression
problem. Let f (i)(t) denote the i-th derivative of f eval-
uated at t and let also h in (1) be defined by

h(t, τ) = h(t− τ) =
(t− τ)m−1

+

(m− 1)!
(3)

where (t)+ = t for t ≥ 0 and 0 otherwise. With this
choice, H1 becomes the following particular type of one-
dimensional Sobolev space (see e.g. [19])

{f : f (i)(0) = 0 and f (i) absolutely continuous
for i = 0, . . . ,m− 1, f (m) ∈ L2}

It holds that ‖f‖2H1
=

∫ T

0
(f (m)(t))2dt, a typical example

of norm in RKHS used to penalize too complex/irregular
functions. However, the conditions f (i)(0) = 0 on the
unknown function are often too restrictive and one needs
to “enlarge” H1. To this aim, it is useful to set

φi+1(t) = ti, i = 0, 1, . . . , m− 1

so as to define an algebraic isomorphism betweenH2 and
the m-dimensional space of the unknown initial condi-
tions {f (i)(0)}m−1

i=0 . Finally, the spline hypothesis space
is defined by the sum of H1 and H2 (which turns out to
be direct in this case).

3 Variational problems subject to linear equal-
ity constraints

3.1 Formulation of the problem

Hereafter, H is the sum of H1 and H2, assumed direct,
i.e. H = H1 ⊕ H2. Furthermore, for f = f1 + f2, with

2 Such invertibility hypothesis could be removed by resort-
ing to the concept of generalized inverses in RKHS, see [17].

2



f1 ∈ H1 and f2 ∈ H2, and g = g1 + g2, with g1 ∈ H1

and g2 ∈ H2, the inner product is defined as follows

< f, g >H=< f1, g1 >H1 + < f2, g2 >H2

Hence
‖f‖2H = ‖f1‖2H1

+ ‖f2‖2H2

and H1 and H2 turn out to be perpendicular subspaces.
The relations between an unknown function f ∈ H and
the observable components of a vector y ∈ Rn are

yi = f(ti) + νi, i = 1, 2, . . . , n (4)

where {ti} are the ordered time samples (i.e. 0 ≤ t1 <
t2 < . . . < tn ≤ T ) and {νi} is white Gaussian noise of
variance σ2.
Now, we introduce a vector-valued linear operator which
will define equality constraints on the function to esti-
mate. In particular, let C : H 7→ Rl where

C[f ] := [C1[f ] C2[f ] . . . Cl[f ]]T

The unknown function is known to satisfy the following
condition

C[f ] = c

with c ∈ Rl. According to Tikhonov regularization the-
ory, the problem of estimating f subject to such con-
straint can be formulated in terms of the following con-
strained optimization problem

f̂ = arg min
f∈H

n∑

i=1

(yi − f(ti))2 + γ‖f‖2H s.t. C[f ] = c(5)

where the regularization parameter γ ∈ R+, which is
often unknown, has to correctly balance the relative im-
portance of the values assumed by the norm in H and
by the experimental evidence {yi}.
The next proposition points out that the estimation
problem (5) is a generalization of the controlled two-
point boundary value problem of Section 1 of [10]. In
particular, a perfect correspondence is obtained by set-
ting

Ci[f ] = f (i−1)(0)−f (i−1)(T ) = 0, ∀f ∈ H, i = 1, . . . , l
(6)

where H is the spline hypothesis space discussed in Ex-
ample 1. Its proof can be immediately deduced from def-
inition of H and by Propositions 2.1 and 2.2. Below, one
can now think of y as containing pre-specified output
values and the goal is to determine a control function u
with low norm amplitude able to drive the system rea-
sonably close to them while satisfying the constraints.

Proposition 3.1 Let

F [u,w](t) :=
∫ t

0

h(t, τ)u(τ)dτ +
m∑

i=1

wiφi(t)

Fi[u,w] := F [u,w](ti)

Then, the solution of Problem (5) is f̂ = F [û, ŵ] where

(û, ŵ) = arg min
u∈L2,w∈Rm

n∑

i=1

(yi − Fi[u,w])2 + γ

∫

X

u2(t)dt

+ γwT Rw subject to C[F [u,w]] = c (7)

3.2 Solution of the problem

We derive an algorithm which computes f̂ in (5) with
O((n + l)3) operations. In what follows, the notation
Ci [Cj [K(·, ·)]] means that first the functional Cj is ap-
plied to the kernel as a function of one of its two argu-
ments (no ambiguity is present due to the symmetry of
the kernel); this leads to a well defined function inH the
functional Ci is applied to.

Proposition 3.2 Assume that C[·] is linear and
bounded in the topology of H. Define

y+ = [yT cT ]T , K(s, t) = K1(s, t) + K2(s, t) (8)

Let also δij denote the Kronecker delta, I1 = [1, . . . , n]
and I2 = [n + 1, . . . , n + l]. Then, f̂ in (5) is given by

f̂(t) =
n∑

i=1

aiK(ti, t) +
l∑

i=1

ai+n[Ci[K(·, t)]

where a ∈ Rn+l satisfies the linear system Σa = y+ with

Σij = K(ti, tj) + γδij i ∈ I1, j ∈ I1

Σij = Σji = Cj−n[K(·, ti)] i ∈ I1, j ∈ I2

Σij = Ci−n [Cj−n[K(·, ·)]] i ∈ I2, j ∈ I2

Remark 1 The proof hinges on the representer theorem
[20] and can be found in [21]. In view of Proposition
3.1, the result above provides a different but equivalent
representation of the solution to the constrained optimal
control problem in [10], namely Problem 1. Problem 2 in
[10] derives by setting all the entries of R to zero, i.e.
pi →∞∀i in (2). Under the framework of learning theory
[12], this limiting situation corresponds to interpreting
H2 as a bias space so that the projection of f onto it
is not assigned any penalty. The solution still belongs
to the same subspace reported above and the expansion
coefficients still solve a linear system, see e.g. subsection
1.1.2 in [20].
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Example 1 (continued) The hypothesis space associ-
ated with cubic splines is widely used in applications. It is
obtained by setting m = 2 in (3), thus making f two-fold
integration of u. Under these assumptions, one has

K(s, t) =

{
s2

2

(
t− s

3

)
+ p1 + p2ts s ≤ t

t2

2

(
s− t

3

)
+ p1 + p2ts s > t

(9)

The periodic cubic smoothing spline problem is then de-
fined by setting c = 0 and

C[f ] :=

[
f(0)− f(T )

f (1)(0)− f (1)(T )

]
(10)

It is useful to define

K̇(s, t) :=
∂K

∂s
(s, t) =

{
st− s2

2 + p2t s ≤ t

t2

2 + p2t s > t
(11)

K̈(s, t) :=
∂2K

∂s∂t
(s, t) = min(s, t) + p2 (12)

The vector C[K(·, t)]> has the expression

C[K(·, t)]> = [K(0, t)−K(T, t) K̇(0, t)− K̇(T, t)]

=
[

t2

2

(
t
3 − T

)− p2Tt − t2

2

] (13)

Using Proposition 3.2, the solution f̂ of the periodic cubic
smoothing spline problem belongs to the subspace spanned
by the following n + 2 basis functions

ϕi(t) =
t2i
2

(
t− ti

3

)
+ p1 + tp2ti, t ≥ ti (14)

ϕi(t) =
t2

2

(
ti − t

3

)
+ p1 + tp2ti, t < ti (15)

ϕn+1(t) =
t2

2

(
t

3
− T

)
− p2Tt (16)

ϕn+2(t) =− t2

2
(17)

where i = 1, . . . , n. In addition, one also obtains

Σij = K(ti, tj) + γδij i ∈ I1, j ∈ I1 (18)
Σn+1j = Σjn+1 = K(0, tj)−K(T, tj) j ∈ I1 (19)
Σn+2j = Σjn+2 = K̇(0, tj)− K̇(T, tj) j ∈ I1 (20)
Σn+1n+1 = K(0, 0)− 2K(T, 0) + K(T, T ) (21)
Σn+2n+2 = K̈(0, 0)− 2K̈(T, 0) + K̈(T, T ) (22)
Σn+2n+1 = Σn+1n+2 (23)

= K̇(0, 0)− K̇(T, 0)− K̇(0, T ) + K̇(T, T )

4 Variational problems admitting state-space
descriptions subject to linear equality con-
straints

4.1 State-space formulation of the problem

As in [10], now we assume that the linear operator L[·]
in (1) is time-invariant and finite-dimensional, i.e.

{
ẋ(t) = Fx(t) + Gu(t)

f(t) = Hx(t)
(24)

where x ∈ Rm and the system initial condition is denoted
by x0. From (24), one has

f(t) = HeFtx0 + H

∫ t

0

eF (t−τ)Gu(τ)dτ

Thus, notice that {φi} correspond to the “columns” of
HeFt, w equals x0 and h(t, τ) = h(t− τ) = HeF (t−τ)G.
Without loss of generality, we also assume that the sys-
tem is controllable and observable (considering different
descriptions would just increase the computational com-
plexity of the method described below) and that F and
G are in control canonical form with H = [1 0 . . . 0].
The following result relies upon the duality between
RKHS and Gaussian processes. It also exploits the corre-
spondence between Bayesian estimation problems char-
acterized by the fact that the prior for the unknown
function admits a state-space representation and fixed-
interval Kalman smoothing, see [8,22,13].

Proposition 4.1 Assume that f is a continuous-time
Gaussian process on X independent of {νi} with autoco-
variance λ2K(s, t). Then, if γ = σ2/λ2, the solution f̂
of (5) is the minimum variance estimate of f conditional
on y and the constraint C[f ] = c. In addition, let

• the prior for f admits the state-space description (24)
• u be white Gaussian noise of variance λ2 and indepen-

dent of {νi}
• x0 ∼ N(0, λ2R−1) independent of u and {νi}

Then, it holds that f̂(t) = HE[x(t)|y, C[f ]], i.e. f̂ can be
obtained by computing the smoothed estimate of the state
vector conditional on y and the constraint C[Hx] = c.

4.2 O(n) algorithm via Kalman smoothing

Let the conditions on system (24) stated in Proposi-
tion 4.1 hold. Hereafter, {xk} denotes the state sequence
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given by x(t) sampled at instants {tk} which satisfies

xk+1 = eF (tk+1−tk)xk + λ

∫ tk+1

tk

eF (tk+1−t)Gdβ(t) (25)

E[xk+1|xk] = eF (tk+1−tk)x(tk) (26)

V[xk+1|xk] = λ2

∫ tk+1

tk

eF (tk+1−t)GGT eF T (tk+1−t)dt

(27)

where β(t) is Brownian motion. In addition, in the rest
of this subsection we assume that the constraints on
the unknown function involve a finite number of state
vectors. To be more specific, let Ω ⊂ X be a finite set of
cardinality q, where Ω ⊆ {tk} without loss of general-
ity. Define xΩ ∈ Rqm as the column vector obtained by
stacking the state vectors at the time instants contained
in Ω. Then, it is assumed that C[f ] = c ↔ CxΩ = c
where, with some abuse of notation, C ∈ Rl×qm.

Example 1 (continued) A state-space formulation of
the smoothing spline problem is obtained by setting

F =




0 1 0 0
...

. . . . . .
...

0 . . . 0 1

0 . . . 0 0




G =




0

0
...

1




HT =




1

0
...

0




(28)

Further, by following Section 4 in [23] we have

{
xk+1 = F kxk + ωk

ωk ∼ N(0, Qk)
(29)

where {ωk} are mutually independent, F k is an m ×m
lower-triangular Toeplitz matrix whose (i, 1) entry is

F k(i, 1) =
∆i−1

k

(i− 1)!
, ∆k = tk+1 − tk (30)

while Qk is an m×m matrix whose (i, l)-entry is given by

Qk(i, l) = λ2 ∆i+l−1
k

(i− 1)!(l − 1)!(i + l − 1)
(31)

The periodic smoothing spline problem involves the
boundary constraint x0 − xT = 0, where xT := x(T ).
Notice that it is obtained by setting q = 2, Ω = {0, T},
xΩ = [xT

0 xT
T ]T , c = 0 and C = [Im − Im], with Im

the m×m identity matrix.

Define {x̂k} := E[{xk}|y, C[f ]] and x̂Ω := E[xΩ|y, C[f ]].
In view of the Gaussian assumptions, it holds that

{x̂k} = E[{xk}|y, x̂Ω] (32)

Eq. (32) points out that, if xΩ were assumed “known”
and set to the estimate x̂Ω, the solution could be ob-
tained with O(n) operations by a classical discrete-time
Kalman smoothing filter including noiseless measure-
ments of some components of the state-sequence. For
any t, E[x(t)|y, x̂Ω] could also be obtained by means of a
continuous-time filter as e.g. described in [13]. Thus, the
overall problem reduces to efficiently computing x̂Ω. To
this aim, using standard results on estimation of jointly
Gaussian vectors, see e.g. [14], we obtain

x̂Ω = E[xΩ|y] + V(xΩ, C[f ]|y)V(C[f ]|y)−1

× (C[f ]− E[C[f ]|y])
= E[xΩ|y] + V(xΩ|y)CT (CV(xΩ|y)CT )−1

×C(xΩ − E[xΩ|y]) (33)

In (33), E[xΩ|y] can be obtained by a Kalman smooth-
ing filter while the elements outside the diagonal blocks
of V(xΩ|y) are not returned by the standard filter, see
e.g. [14,24]. The following result shows that also such
quantities can be computed with O(n) operations (see
the Appendix for the proof).

Lemma 1 For 0 ≤ k ≤ k + p ≤ q ≤ n, define

x̆k|q = E[xk|{yj}q
j=1] (34)

Σk,k+p|q =V(xk − x̆k|q, xk+p − x̆k+p|q) (35)

Kk = Σk,k|k(F k)T Σ−1
k+1,k+1|k (36)

Then, one has

V(xk, xk+p|y) = Σk,k+p|n =
k+p−1∏

i=k

KiΣk+p,k+p|n (37)

Below we summarize the entire numerical procedure for
estimation of stochastic functions which admit state-
space descriptions and satisfy the constraints CxΩ = c.

Algorithm for computing f̂
The input to this algorithm includes the ordered time
instants {tk}, the measurements {yk}, the state-space
model (24), the set Ω, the matrix C and the vector c.
The output of this algorithm is the estimate f̂ .

• Compute the sampled version of model (24) at {tk}
according to (26,27).

• Compute E[xΩ|y] by a Kalman smoothing filter and
V(xΩ|y) using (37) for suitable values of k and p which
depend on the grid Ω.

• Compute x̂Ω using (33).
• Compute {x̂k} using (32) while, for any t,E[x(t)|y, C[f ]]

is obtained by a continuous-time Kalman smoothing
filter with xΩ assumed known and set to x̂Ω.

• For any t, set f̂(t) = Hx̂(t).

5



Finally, we consider computation of confidence intervals
for the estimate of f at a generic time instant t. To this
aim, notice that

V[f(t)|y, C[f ]] = HV[x(t)|y, C[f ]]HT

where V[x(t)|y, C[f ]] is

V[x(t)|y]− V(x(t), C[f ]|y)V(C[f ]|y)−1V(x(t), C[f ]|y)T

= V[x(t)|y]− V(x(t), xΩ|y)CT (CV(xΩ|y)CT )−1C

×V(xΩ, x(t)|y)

We also notice that V(x(t), xΩ|y) can be obtained with
O(n) operations by applying a discrete-time Kalman
smoothing filter to the model (24) with “extended” sam-
pling instants {t∗k} = {tk} ∪ t and using (37). This thus
permits an efficient evaluation of V[x(t)|y, C[f ]], from
which any desired confidence interval can be achieved.

4.3 Estimating unknown hyper-parameters

So far, both the prior and measurement noise covari-
ances in the equations above have been assumed known.
In real applications, λ2 (see Proposition 4.1) and σ2 (see
(4)) need to be estimated from data. A possible solution
is the so called empirical Bayes approach [25]. First, hy-
perparameters are estimated via likelihood maximiza-
tion. Then, to determine f , the maximum likelihood es-
timates are plugged into the formulas derived in the pre-
vious subsections. Letting θ = [λ2 σ2], its estimate is

θML = arg min
θ

J(y+; θ), y+ = [yT cT ]T

J(y+; θ) := 0.5 log[det(Vθ[y+])] + y+T
(
Vθ[y+]

)−1
y+

where, apart from a constant term, J is equal to the neg-
ative of the logarithm of the marginal likelihood pθ(y+)
of y+, i.e. the total probability of y, C[f ], f where f is
integrated out. Such an objective function can be effi-
ciently evaluated for any value of θ with O(n) operations.
In fact, consider the factorization pθ(y+) = pθ(c|y)pθ(y).
Then, we start noticing that pθ(y) is a Gaussian density
which can be evaluated for any θ with O(n) operations
using a standard Kalman filter as e.g. described in [14]
or Section 4 of [23]. The conditional density pθ(c|y) is
also Gaussian with mean CEθ[xΩ|y] and autocovariance
CVθ[xΩ|y]CT . This latter has to be computed for any
θ with O(n) operations as described in Lemma 1. This
shows that J(y+; θ) may be evaluated for any θ in linear
time with respect to output measurements.

4.4 O(n) computation of the equality constrained RN
weights

In this subsection, we obtain a RN-type expression for
the solution, as in Proposition 3.2, and show that the

RN weights can be computed in linear time.
First of all, let us observe that the matrix Σ in Proposi-
tion 3.2 is the autocovariance matrix of the random vec-
tor [y> C[f ]>]> and hence can be partitioned as follows:

Σ =

[
Σyy ΣyC

ΣCy ΣCC

]

Using Proposition 4.1, it holds that

f̂(t) = E[f(t)|y, C[f ]] = E‖C[f ][f(t)|y] + E‖y[f(t)|C[f ]]
(38)

where E‖C[f ][·|y] denotes the oblique projection onto y
along C[f ] [26]. One has

E‖C[f ][f(t)|y] =V(f(t), y|C[f ])V(y|C[f ])−1y (39)
E‖y[f(t)|C[f ]] =V(f(t), C[f ]|y)V(C[f ]|y)−1C[f ] (40)

We shall show that the oblique projections can be ob-
tained with O(n) operations.
Given three Gaussian vectors a, b and c, the condi-
tional covariance matrix is Σab|c := V(a, b|c) = Σab −
ΣacΣ−1

cc Σcb. Let’s start considering (39). The term

V(f(t), yi|C[f ]) = K(t, ti)− C[K(·, t)]>Σ−1
CCC[K(·, ti)]

(41)
provides the basis functions for the first projection in
the sense that E‖C[f ][f(t)|y] can be written as

E‖C[f ][f(t)|y] =
n∑

i=1

ψi(t)āi (42)

where āi is the i− th component of the vector

ā := V(y|C[f ])−1y (43)

and ψi(t) := K(t, ti)−C[K(·, t)]>Σ−1
CCC[K(·, ti)]. Com-

putation of (41) requires inversion of ΣCC which has
complexity O(l3) while the multiplication have com-
plexity O(l2). This latter has to be computed n times
(i = 1, .., n) and hence has complexity O(nl2). We also
note that all the basis functions ψi(t) satisfy the con-
straint C[ψi] = 0. In fact

C[ψi] = C[K(·, ti)]− C[C[K(·, ·)]Σ−1
CCC[K(·, ti)]

= C[K(·, ti)]− ΣCCΣ−1
CCC[K(·, ti)] = 0 (44)

This reflects the fact that the oblique projection
E‖C[f ][f(t)|y] removes the component which lies
in span{C[f ]}, and, in fact, C

[
E‖C[f ][f(t)|y]

]
=

E‖C[f ][C[f ]|y] = 0. Now, consider the term

Σ−1
yy|C := V(y|C[f ])−1 =

(
Σyy − ΣyCΣ−1

CCΣCy

)−1
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and let LL> = Σyy be the Cholesky factorization of Σyy

(which, actually, does not need to be computed as shown
later). Define α := L−1ΣyC . Using the matrix inversion
lemma [27] it follows that

Σ−1
yy|C = L−>

(
I − α

(
ΣCC − α>α

)−1
α>

)
L−1

Let us now define ȳ := L−1y so that we have

ā = Σ−1
yy|Cy = L−>

[
ȳ − α

(
ΣCC − α>α

)−1
α>ȳ

]

Computing α>α has complexity O(nl2) and the matrix
inversion

(
ΣCC − α>α

)−1 requires O(l3) operations.
Thus, the vector

¯̄y :=
[
ȳ − α

(
ΣCC − α>α

)−1
α>ȳ

]
(45)

can be computed, given α and ȳ, with O(nl2) compu-
tations. It now remains to compute ā = L−T ¯̄y. To this
purpose we borrow the algorithm described in [8], based
on the observation that L−1 is the matrix representa-
tion of the whitening filter of the vector y, whose co-
variance is Σyy. It thus follows that ȳ := L−1y, α :=
L−1ΣyC and ā := L−T ¯̄y (¯̄y in (45)) can be computed by
running, respectively, the forward iteration in equations
(11), (12) and (13) and the backward iteration in equa-
tions (14),(15) and (16) of Theorem 1 in [8] (see also
Lemma 4 and 5 in [8]). This requires O(nl) computations
(O(n) for each iteration of the filters, the matrix ΣyC has
l columns and hence l iterations have to be performed).
The parameters used in these recursions are computed
as in Lemma 4 of [8] where Fk, Gk and C (see eq. (10) in
[8]), are related to the quantities in this paper by, respec-
tively, Fk := eF (tk+1−tk) (see eq. (25)), Gk = [Qk]1/2 (see
eq. (27)) and C := H (see eq. (24)); V{ε} = σ2 and the
initial covariance matrix is P = V(x0) = λ2R−1. This
implies that, α, ȳ, ¯̄y, and hence, tracing back the cal-
culations above ā = Σ−1

yy|Cy = ÃL−T ¯̄y, can be computed
with O(nl2) operations. As for the computation of the
second oblique projection in (40), see [21].

Example 1 (continued) Let us now go back to the cu-
bic smoothing spline example, obtained by setting m = 2
in (3). Recall that the constraint C[f ] = 0 takes the form

C[f ] =

[
f(0)− f(T )

f (1)(0)− f (1)(T )

]
= 0

We have already derived the expression for the ele-
ments of the matrix Σ and, in particular, by exploiting
(21,22,23), we have

ΣCC =

[
T 3

3
T 2

2

T 2

2 T

]
, Σ−1

CC =

[
12
T 3 − 6

T 2

− 6
T 2

4
T

]
.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
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0
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2

3

4

5

6

x 10
−3

st

Fig. 1. Periodic cubic smoothing spline kernel (p1 = p2 = 0).

From the expression of C[K(·, t)]> in (13), we obtain
that ψi(t) (the i− th of the n basis functions in (42)) is

ψi(t) = ϕi(t)− 12
T 3 ϕn+1(t)ϕn+1(ti)− 4

T ϕn+2(t)ϕn+2(ti)

+ 6
T 2 [ϕn+1(t)ϕn+2(ti) + ϕn+1(ti)ϕn+2(t)]

(46)
where {ϕi}n+2

i=1 are defined in (14). From (42) one ob-
tains that (46) also defines the autocovariance of the cu-
bic splines conditional on C[f ], i.e. V[f |C[f ]]. It is dis-
played in Fig. 1 setting p1 = p2 = 0.

Finally, it is worth stressing that the procedure described
in this Section can also be employed, with a few modi-
fications which do not alter the complexity, for comput-
ing the conditional variance V(f(t)|y, C[f ]) = V(f(t))−
a>Σa, with a and Σ defined as in Proposition 3.2. Last,
also the marginal likelihood for estimation of the regu-
larization parameters (see subsection 4.3) can be com-
puted with O(n) operations, see [21].

5 Learning closed curves using a mobile agent
moving in an unknown environment

We consider the problem of learning the trajectory of a
mobile agent moving along closed curves in an unknown
environment. In particular, at the beginning of the ex-
periment the robot is placed at a crossing. Subsequently
it moves in order to get information about the environ-
ment. The agent will come back to the crossing two times
at unknown temporal instants, then proceeding towards
other directions to gain new information.
Let f1(t) and f2(t) denote the Cartesian coordinates of
the robot, as a function of time t. Let

f1(t) =





cos(t) 0 ≤ t ≤ 2π

1.5− 0.5 cos(t) 2π < t < 4π

1 4π ≤ t ≤ 4.2π

f2(t) =





0.5 sin(t) 0 ≤ t ≤ 2π

0.25 sin(t) 2π < t < 4π

0.5 sin(t) 4π ≤ t ≤ 4.2π

7



The true trajectory is displayed in Fig. 2 (thick line).
The starting point is (1, 0) and the agent initially moves
in counterclockwise direction. Then, it goes back to the
starting point and follows another circle in clockwise di-
rection. It comes back to the initial point again and then
follows a vertical path.
The robot path has to be reconstructed from n = 1300
noisy measurements of f1 and f2 collected at sampling
instants {tk} obtained by drawing (and ordering) real-
izations from a uniform distribution on [0, 4.2π]. Let y1

and y2 be the measurements vectors. Then, it holds that

yik = fi(tk) + νik k = 1, . . . , 1300 i = 1, 2

where {ν1k} and {ν2k} are mutually independent white
Gaussian noises with standard deviation equal to 0.1.
Data are displayed in Fig. 2 using points, circles and x-
marks for measurements collected at sampling instants
in the interval [0, 2π], (2π, 4π) and [4π, 4.2π], respec-
tively. They are abundant but somewhat noisy.
We model f1 and f2 as two-fold integration of two inde-
pendent white noises (m = 2 in (28)) of intensity λ2

1 and
λ2

2 under periodicity constraints. Thus, for s and t in the
interval [0, 4.2π] and i = 1, 2, our model is defined by

V(fi(s), fi(t)) =

{
λ2

i
s2

2

(
t− s

3

)
+ p1 + p2ts s ≤ t

λ2
i

t2

2

(
s− t

3

)
+ p1 + p2ts s > t

V(f1(s), f2(t)) = 0, fi(0) = fi(T1) = fi(T2), i = 1, 2

where p1 and p2 specify poorly informative priors on
the initial conditions. Notice that T1 and T2 represent
the unknown instants at which the robot goes back to
the starting point. Hence, the unknown hyperparame-
ter vector is θ = [T1, T2, λ

2
1, λ

2
2] and is determined via

marginal likelihood maximization. In view of the inde-
pendence assumptions, it holds that

θML = arg min
θ

J(y+
1 , y+

2 ; θ), y+
i = [yT

i 0]T , i = 1, 2

J({y+
i }; θ) :=

2∑

i=1

log[det(Vθ[y+
i ])] + y+T

i

(
Vθ[y+

i ]
)−1

y+
i

2

After obtaining the hyperparameters, the equality con-
strained RN-type estimate is computed (see subsec-
tion 4.4). It is shown in Fig. 2 (continuous line). One
can notice the effectiveness of the maximum likelihood
estimator of the regularization parameters, whose value
is known to have a major effect on the quality of the
final estimate. As a matter of fact, f̂ is close to truth.

6 Conclusions

We have faced the problem of estimating functions sub-
ject to linear equality constraints by exploiting regular-
ization and RKHS theory. The class of problems here
introduced contains the controlled two-point boundary

−2 −1 0 1 2 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

f
1
(t)

f 2(t
)

Fig. 2. Robot’s path reconstruction. True path f (thick line),
noisy measurements (points, circles and x-marks) and esti-
mate of f using periodic cubic smoothing splines (thin line)

value problem described in [10] as a special case. Such
connection has been exploited to obtain an algorithm
which returns the solution with the same O

(
(n + l)3

)
complexity of that reported in [10]. In addition, when
the problem admits a state-space representation, as in
[10], an O(n) algorithm has been derived.
It is worth stressing that an efficient computational
scheme could likely be obtained also by interpreting
smoothing as an equality constrained optimization prob-
lem. In particular, this could be achieved by exploiting
sparsity of the Hessian of the resulting objective, simi-
larly to what is done in the unconstrained scenario in
[28,9]. The merit of the present paper is to solve the
problem by resorting to geometric concepts, which also
permit to easily obtain efficient formulas for computa-
tion of confidence intervals and unknown hyperparam-
eters. Finally, we have shown that the solution of the
problem admits the structure of a particular RN whose
weights are computable in linear time. Results have
been specialized to obtain closed form expressions of the
basis functions relative to the periodic cubic smoothing
spline problem. Simulations illustrate benefits of the
new algorithms.
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Appendix

Proof of Lemma 1
We start noticing that all the quantities displayed in
(34,35,36) can be computed with O(n) operations via
a Kalman smoothing filter. Then, recall that x̆k+p|n ∈
span < y1, . . . , yn > and that the smoothing equation is

x̆k|n = x̆k|k + Kk(x̆k+1|n − x̆k+1|k)
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(see e.g. Section 2.C in [29]). Then, it holds that

V(xk − x̆k|n, xk+p − x̆k+p|n) = V(xk − x̆k|n, xk+p)
=V(xk − x̆k|k −Kk(x̆k+1|n − x̆k+1|k), xk+p) (47)

Adding and subtracting the quantity Kkxk+1, we obtain
that (47) equals

V(xk − x̆k|k + Kk(x̆k+1|k − xk+1), xk+p) (48)
+V(Kk(xk+1 − x̆k+1|n), xk+p)

For what concerns the first term in (48), consider state
vectors xk and xk+1 conditional on {y1, y2, . . . , yk} and
notice that

Kk = V(xk, xk+1|{yj}k
j=1)V(xk+1|{yj}k

j=1)
−1

Then, still using known results on estimation of jointly
Gaussian vectors, see e.g. [14], it emerges that z :=
x̆k|k + Kk(xk+1 − x̆k+1|k) is the projection of xk onto
{y1, y2, . . . , yk, xk+1}. Hence, xk − z is independent of
xk+1 and so also independent of xk+2, . . . , xk+p. This al-
lows us to conclude that the first term in (48) is equal
to zero. As for the second term in (48), we have

V(Kk(xk+1 − x̆k+1|n), xk+p)
= KkV(xk+1 − x̆k+1|n, xk+p − x̆k+p|n) = KkΣk+1,k+p|n

and this completes the proof. 2

References

[1] G. Wahba. Spline models for observational data. SIAM,
Philadelphia, 1990.

[2] M. Egerstedt and C. Martin. Optimal trajectory planning
and smoothing splines. Automatica, 37:1057–1064, 2001.

[3] A. De Luca, L. Lanari, and G. Oriolo. A sensitivity approach
to optimal spline robot trajectories. Automatica, 27:535–539,
1991.

[4] S.A. Bortoff. Approximate state-feedback linearization using
spline functions. Automatica, 33:1449–1458, 1997.

[5] C. Martin and J. Smith. Approximation, interpolation and
sampling. In Differential Geometry: The Interface between
Pure and Applied Mathematics (Contemporary Mathematics
Series), pages 227–251, Providence, USA, Amer. Math. Soc.,
1987.

[6] C.G. Kaufman, V. Ventura, and R.E. Kass. Spline-based
non-parametric regression for periodic functions and its
application to directional tuning of neurons. Statistical
medicine, 24:2255–2265, 2005.

[7] R. Cogburn and H.T. Davis. Periodic splines and spectral
estimation. The Annals of Statistics, 2:1108–1126, 1974.

[8] G. De Nicolao and G. Ferrari Trecate. Regularization
networks: fast weight calculation via Kalman filtering. IEEE
Transactions on Neural Networks, 12:228–235, 2001.

[9] M.F. Hutchinson and F.R. de Hoog. Smoothing noisy data
with spline functions. Numerische Mathematik, 47:99–106,
1985.

[10] H. Kano, M.B. Egerstedt, H. Fujioka, S. Takahashi, and C.F.
Martin. Periodic smoothing splines. Automatica, 44:185–192,
2008.

[11] A.N. Tikhonov and V.Y. Arsenin. Solutions of Ill-Posed
Problems. Washington, D.C.: Winston/Wiley, 1977.

[12] T. Poggio and F. Girosi. Networks for approximation and
learning. Proceedings of the IEEE, 78:1481–1497, 1990.

[13] G.J. Bierman. Fixed interval smoothing with discrete
measurements. Int. J. Control, 18:65–75, 1973.

[14] B. D. O. Anderson and J. B. Moore. Optimal Filtering.
Prentice-Hall, Englewood Cliffs, N.J., USA, 1979.

[15] N. Aronszajn. Theory of reproducing kernels. Transactions
of the American Mathematical Society, 68:337–404, 1950.

[16] H.L. Weinert. Fixed-interval smoothing for state space
models. Kluwer, 2001.

[17] M.Z. Nashed and G. Wahba. Generalized inverses in
reproducing kernel spaces. SIAM J. Math. Anal., 5:974–987,
1974.

[18] T. Evgeniou, M. Pontil, and T. Poggio. Regularization
networks and support vector machines. Advances in
Computational Mathematics, 13:1–50, 2000.

[19] R.A. Adams and J. Fournier. Sobolev Spaces. Academic
Press, 2003.

[20] G. Wahba. Support vector machines, reproducing kernel
Hilbert spaces and randomized GACV. Technical Report
984, Department of Statistics, University of Wisconsin, 1998.

[21] G. Pillonetto and A. Chiuso. Fast computation of
smoothing splines subject to equality constraints. Technical
report, University of Padova, 2009. Available at
www.dei.unipd.it/∼chiuso/DOWNLOAD/Fastpersplines.pdf.

[22] G. De Nicolao and G. Ferrari Trecate. Regularization
networks for inverse problems: a state space approach.
Automatica, 39:669–676, 2003.

[23] G. Pillonetto and M.P. Saccomani. Input estimation
in nonlinear dynamic systems using differential algebra
concepts. Automatica, 42:2117–2129, 2006.

[24] P. Maybeck. Stochastic Models, Estimation and Control,
volume 1. Academic Press, 1979.

[25] J. S. Maritz and T. Lwin. Empirical Bayes Method. Chapman
and Hall, 1989.

[26] A. Chiuso and G. Picci. On the ill-conditioning of subspace
identification with inputs. Automatica, 40(4):575–589, 2004.

[27] A. H. Jazwinski. Stochastic Processes and Filtering Theory.
Academic Press, New York, 1970.

[28] B.M. Bell. The marginal likelihood for parameters in a
discrete Gauss-Markov process. IEEE Trans. on Signal
Processing, 48:870–873, 2000.

[29] G. Kitagawa and W. Gersch. A smoothness priors-time
varying AR coefficient modeling of nonstationary covariance
time series. IEEE Transactions on Automatic Control, 30:48–
56, 1985.

9


