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Bayesian online multi-task learning
of Gaussian processes

Gianluigi Pillonetto, Francesco Dinuzzo and Giuseppe De Nicolao

Abstract—Standard single-task kernel methods have been re-
cently extended to the case of multi-task learning in the context of
regularization theory. There are experimental results, especially
in biomedicine, showing the benefit of the multi-task approach
compared to the single-task one. However, a possible drawback
is computational complexity. For instance, when regularization
networks are used, complexity scales as the cube of the overall
number of training data, which may be large when several
tasks are involved. The aim of this paper is to derive an
efficient computational scheme for an important class of multi-
task kernels. More precisely, a quadratic loss is assumed and each
task consists of the sum of a common term and a task-specific
one. Within a Bayesian setting, a recursive on-line algorithm is
obtained, that updates both estimates and confidence intervals
as new data become available. The algorithm is tested on two
simulated problems and a real dataset relative to xenobiotics
administration in human patients.

Index Terms—collaborative filtering; multi-task learning;
mixed effects model; kernel methods; regularization; Gaussian
processes; Kalman filtering; pharmacokinetic data

I. INTRODUCTION

Standard multidimensional regression deals with the recon-
struction of a scalar function from a finite set of noisy samples,
see e.g. [1], [2], [3]. When the simultaneous learning of several
functions (tasks) is considered the so-called multi-task learning
problem arises. The main point is that measurements taken on
a task may be informative with respect to the other ones.

A typical multi-task problem is found in the analysis of
biomedical data when experiments performed on several pa-
tients belonging to a population are analyzed. Usually, the
individual responses share some common features so that data
from a subject can help reconstructing also the responses of
other individuals. The so-called population analysis is widely
applied in pharmacokinetics (PK) and pharmacodynamics
(PD) [4]. In this field, a parametric modelling approach based
on compartmental models is mostly employed [5], [6]. The
widely used NONMEM software traces back to the seventies
[7], [8], whereas more sophisticated approaches include also
Bayesian MCMC algorithms [9], [10]. More recently, semi-
parametric and nonparametric approaches were developed for
the population analysis of PK/PD and genomic data [11], [12],
[13], [14], [15].

In the machine learning literature, the term multi-task
learning has been popularized by [16]. Further investigations
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demonstrated the potential advantage of multi-task approaches
against those that learn the single functions separately (single-
task approach) [17], [18]. Another research issue has to do
with the determination, within a Bayesian setting, of the
amount of information needed to learn a task when it is
simultaneously learned with several other ones [19]. Recently,
vector-valued Reproducing Kernel Hilbert Spaces (RKHS)
[20] were used to derive multi-task regularized kernel methods
[21].

Among the open research questions listed in [21], there are
the development of on-line multi-task learning schemes and
the reduction of computational complexity. On-line multi-task
learning concerns the recursive processing of examples that
are made available in real-time. As for the second question,
namely computational complexity, multi-task methods suffer
from the problem of requiring much more operations than
single-task ones. For instance, when using kernel methods with
quadratic loss function (regularization networks), complexity
scales with the cube of the overall number of examples,
whereas each single-task problem scales with the cube of its
examples. As observed in [21], a substantial improvement is
possible when all the k tasks share the same n inputs and
the multi-task kernel has a suitable structure, in which case
complexity can be reduced to O(kn3). Along this direction,
an O(kn3) algorithm for regularization networks in the lon-
gitudinal case has been recently developed [22].

A number of works on multi-task learning have addressed
the case of several single-task problems sharing the same ker-
nel. Then, the availability of multiple training sets is exploited
to learn a better kernel, e.g. using the EM algorithm [23], [24],
[25]. This kind of problems (learning several tasks with the
same kernel) arises also in multi-class classification [26] and
functional data analysis [27], [28]. The common feature of all
these methods is that, once the kernel has been determined,
the overall learning problem boils down to solving a set of
single-task problems. Conversely, along the line of [21], [14],
[29], [30], we adopt a more cooperative perspective in which,
also for a given kernel choice, all training sets contribute
to the reconstruction of each single task. This cooperative
scheme is obtained assuming a quadratic loss and kernels
which are the sum of a common term and a task-specific one.
In particular, we derive a recursive algorithm that updates the
estimates as new examples become available. On-line methods
developed in single-task contexts [31], [32] rely upon sparse
representations of Gaussian models, obtained, for example,
replacing the posterior distribution with a simpler parametric
description. In the present paper, conversely, computational
efficiency is achieved without neither introducing approxima-
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tions nor imposing constraints on the location of inputs but
just exploiting the possible presence of repeated locations. The
algorithm relies on a Bayesian reformulation of the problem
and efficient formulas for the confidence intervals are also
worked out. Part of the overall scheme can be viewed as a
Kalman filter for a system with growing state dimension.

The paper is organized as follows. In section II, the multi-
task learning problem is stated within a Bayesian framework.
In Section III, the algorithmic core of the recursive scheme is
derived. In Section IV and V, an efficient algorithm which
solves the on-line multi-task learning problem is worked
out, while in Section VI, simulated and real pharmacoki-
netic/biological data are used to test the computational scheme.
Conclusions then end the paper. The Appendix A contains
some technical results used in the paper while in Appendix B
an extension of the proposed algorithm is discussed.

II. PRELIMINARIES

In this section, kernel-based multi-task learning is briefly
reviewed. In particular, the problem is introduced according to
[21]. We take this deterministic approach as a starting point,
then showing that the problem can be given a probabilistic
Bayesian formulation. Further, the specific class of multi-
task problems addressed in the paper is introduced within
such Bayesian setting. Finally, some useful notation is given.
Throughout the paper, boldface letters will be used to denote
scalar or vector functions.

A. A brief review of kernel-based multi-task learning

Consider a set of k task functions f j : X 7→ R where X ,
a compact set in Rd, is an input space common to all tasks.
For the j-th task, the following nj examples are available

Dj :=
{
(x1j , y1j), . . . , (xnjj , ynjj)

}
.

The overall number of examples is nk =
∑k

j=1 nj . The aim
is to jointly estimate all the unknown functions fj starting from
the overall dataset

Dk :=
k⋃

j=1

Dj .

Following [21], let the vector-valued function f =
[f1, f2, . . . , fk] belong to an RKHS H with norm ‖ · ‖H,
associated with the multi-task kernel K((x1, p1), (x2, p2)),
with xi ∈ X , 1 ≤ pi ≤ k, i = 1, 2. According to the
regularization approach, f can be estimated by minimizing the
functional

J(f) =
k∑

j=1

nj∑
i=1

(yij − fj(xij))2 + γ‖f‖2
H.

In the above expression, the sum of squares penalizes solutions
which are not adherent to experimental evidence. Further, γ
is the so-called regularization parameter which controls the
balance between the training error and the solution regularity
measured by ‖f‖2

H. The so-called representer theorem pro-
vides the regularization network expression of the minimizer

of J (see e.g. [33], [34]):

f̂p(x) =
k∑

j=1

nj∑
i=1

cijK ((x, p), (xij , j)) , p = 1, . . . , k, (1)

where the weights {cij} of the network are the solution of the
following linear system of equations

k∑
j=1

nj∑
i=1

[K((xip, p), (xij , j)) + γδiqδjp] cij = yqp, (2)

where p = 1, . . . , k, q = 1, . . . , np and δij is the Kroenecker
delta.

B. Problem formulation in a Bayesian setting

For future developments, it will be useful to define the
following vectors

yj := [y1j . . . ynjj ]T yk := [yT
1 . . . yT

k ]T

cj := [c1j . . . cnjj ]T ck := [cT
1 . . . cT

k ]T .

According to the above notation, a variable with a subscript,
e.g. xj , indicates a vector associated with the j-th task,
whereas a variable with a superscript, e.g. xk, indicates the
vector obtained by stacking all the vectors xj of the first k
tasks. In addition, in the sequel E indicates the expectation
operator while I denotes the identity matrix of proper size.
Given two random column vectors u and v, let

cov[u, v] := E[(u− E[u])(v − E[v])T ],
V ar[u] := E[(u− E[u])(u− E[u])T ].

Moreover, N(µ, Σ) denotes the multinormal density with
mean µ and autocovariance Σ. We also recall the following
Lemma on the conditional distribution of Gaussian vectors,
see e.g. [35], or Section 3.1 in [36].

Lemma 1: Let u, v be two random vectors. If(
u
v

)
∼ N(0,Σ), Σ =

(
Σuu Σuv

Σvu Σvv

)
,

then
u|v ∼ N(ΣuvΣ−1

vv v,Σuu − ΣuvΣ−1
vv Σvu).

Hereafter, the following relation is assumed to hold

yij = fj(xij) + εij , (3)

where the variables {εij} are mutually independent and iden-
tically distributed, ∀i, j, with

εij ∼ N(0, σ2
ij).

A Bayesian paradigm is adopted and the tasks fp(x) will
be regarded as realizations of Gaussian random fields. Let

ξk
p(x) := E

[
fp(x)|Dk

]
, V k

p(x) := V ar
[
fp(x)|Dk

]
,

rk
p(x) := cov

[
fp(x), yk

]
.

Note that ξk
p is just the Bayes estimate of the p-th task

whereas V k
p is the associated posterior variance. The following

proposition exploits the correspondence between Gaussian
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processes and RKHS, see e.g. [37]. It provides a link between
regularization networks associated with a multi-task kernel and
Bayesian estimation of Gaussian random fields.

Assumption 2: Assume that {fj}k
j=1 are zero-mean Gaus-

sian random fields, independent of εij ,∀i, j, with covariances

cov [fp(x1), fq(x2)] = K((x1, p), (x2, q)), p, q = 1, . . . , k.

Proposition 3: Under Assumption 2 and assuming σ2
ij = γ,

the posterior mean ξk
p(x) is given by eqs. (1)-(2).

Proof: According to Lemma 1,

ξk
p(x) = rk

p(x)
(
V k

)−1
yk,

where, in view of eq. (3) and the given assumptions,

V k =

 V11 · · · V1k

...
. . .

...
Vk1 · · · Vkk

 + γI,

Vpq(i, j) := K((xip, p), (xjq, q)), Vpq ∈ Rnp×nq .

Moreover,

rk
p(x) = cov [fp(x), [f1(x11) · · · fk(xnkk)]]

= [K((x, p), (x11, 1)) · · ·K((x, p), (xnkk, k))]T .

Letting ck :=
(
V k

)−1
yk it easily follows that ξk

p(x)
coincides with f̂p given in eqs. (1)-(2).

In the following assumption, we introduce the specific class
of multi-task models which will be the focus of the paper.
The key feature is the decomposition of tasks into a global
component and a local one. The former accounts for similarity
among the tasks whereas the latter describes the individual
differences.

Assumption 4: For each j and x ∈ X ,

fj(x) = f(x) + f̃j(x),

where f and f̃j are zero-mean Gaussian random fields. In
addition, it is assumed that {εij}, f and f̃j are all mutually
independent.

Under Assumptions 2 and 4, it follows that there exist
kernels K and K̃j , j = 1, . . . , k, such that

K((x1, p), (x2, q)) = λ
2
K(x1, x2) + δpqλ̃

2K̃p(x1, x2),

where {
λ

2
K(x1, x2) = cov

[
f(x1), f(x2)

]
,

λ̃2K̃p(x1, x2) = cov
[
f̃p(x1), f̃p(x2)

]
,

(4)

with λ
2

and λ̃2 being scale factors that will be typically
estimated from data, see Section V.

Assumption 4 extends the model described in Section 3.1.1
of [21] to nonlinear multi-task kernels. If λ = 0, all the tasks
are learnt independently of each other. Conversely, λ̃ = 0,
implies that all the tasks are actually the same. In fact, we
are assuming that each task is given by the sum of an average

function f , hereafter named average task, and an individual
shift f̃j(x) specific for each task [14].

Assuming homoskedastic noise in eq. (3) so that σ2
ij = σ2,

it is not difficult to see that by rescaling the triple
(
σ2, λ, λ̃

)
with the same constant, the task estimates do not change so
that it would seem that there is some redundancy. However,
all three parameters are needed in a truly Bayesian setting,
because such a scaling affects both the computation of the
marginal likelihood and the derivation of confidence intervals.

When examples from k tasks are available and Proposition
3 is used, it would seem that the computational complexity
scales with the cube of the total number nk of examples, that
is the cost of solving (2). The rest of the paper is devoted
to derive a more efficient numerical scheme that exploits the
specific structure of the problem stemming from Assumption
4. Furthermore, the goal is to perform estimation in an online
manner, as formalized below.

Problem 5: Assume that the dataset Dk, associated with
the first k tasks, is given. In addition, suppose that a new set
of examples Dk+1, relative to the (k + 1)-th task, becomes
available. Then,

1) Compute efficiently ξk
j (x) and Vk

j (x), j = 1, . . . , k

2) By recursion, compute efficiently ξk+1
j (x) and

Vk+1
j (x), j = 1, . . . , k + 1

C. Additional notation

Let

xj := [x1j . . . xnjj ]T xk := [xT
1 . . . xT

k ]T

εj := [ε1j . . . εnjj ]T εk := [εT
1 . . . εT

k ]T

f j := [f1j · · · fnjj ]T f
k

:= [f
T

1 · · · f
T

k ]T

f̃j := [f̃1j · · · f̃njj ]T f̃k := [f̃T
1 · · · f̃T

k ]T .

where f ij := f(xij) and f̃ij := f̃j(xij). Let also

Sj := V ar [εj ] Sk := V ar
[
εk

]
V j := V ar

[
f j

]
V

k
:= V ar

[
f

k
]

Ṽj := V ar
[
f̃j

]
Ṽ k := V ar

[
f̃k

]
.

In the training set, there might be repeated input locations.
As it will be seen in the following, exploiting these repetitions
is essential in order to improve computational complexity of
the multi-task learning algorithm. For this purpose, it is useful
to introduce the condensed vector x̆k whose components are
the distinct elements (i.e. with no repetitions) of the set⋃k

j=1

⋃nj

i=1{xij}. For example, if x1 = [1, 2, 3]T , x2 =
[1, 3, 6]T , then x2 = [1, 2, 3, 1, 3, 6]T and x̆2 = [1, 2, 3, 6]T . It
is important to notice that xk has dimension nk =

∑k
j=1 nj ,

while the dimension of x̆k, denoted by n̆k, can be much
smaller. Let Ck and C̆k be the binary matrices such that

x̆k = Ckxk xk = C̆kx̆k.

The condensed vector of samples of the average task is defined
by

f̆k = Ckf
k
,
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and has the same dimension as x̆k. Viceversa, if the condensed
vector f̆k is given, its full version is obtained using C̆k, i.e.

f
k

= C̆kf̆k

Let C̆j be the sub-matrix of C̆k such that

f j = C̆j f̆
k,

where the dependence of C̆j on k is omitted to simplify the
notation. Finally, let f̆k be such that

f̆k =
(

f̆k−1

f̆k

)
.

In other words, f̆k is the sub-vector of f̆k associated with the
k-th task. Note that, if the k-th task does not bring any new
input location, then f̆k is an empty vector. Let also

V̆ k := V ar
[
f̆k

]
r̆k
p := cov

[
f̆p, f̆

k
]

ξ̆k1|k2 := E
[
f̆k1 |Dk2

]
V̆ k1|k2 := V ar

[
f̆k1 |Dk2

]
.

where k1, k2 ∈ N. Finally, using the above notation, the
following equations hold

yj = C̆j f̆
k + f̃j + εj , (5)

yk = C̆kf̆k + νk, (6)

where νk := f̃k + εk is independent of f .

III. RECURSIVE ESTIMATION OF THE SAMPLED AVERAGE
TASK

As it will become clear in the sequel, the posterior mean
ξ̆k|k and the posterior variance V̆ k|k represent the two key
quantities to be propagated in order to compute efficiently
ξk

j (x), that is to solve Problem 5. These two quantities rep-
resent the point estimate and the corresponding uncertainties
on the condensed input points. The aim of this section is to
derive the recursive update formulas for ξ̆k|k and V̆ k|k. Once
such posterior of the sampled average task f

k
is available,

the estimates of the functions {fj} will be computed as
discussed in Section IV. In other words, the first step consists
in learning the values of the average and individual tasks in
correspondence of the available inputs. It will be shown that
such estimates are sufficient to reconstruct the entire functions
all over the input space.

Proposition 6: ξ̆k|k and V̆ k|k can be recursively updated
according to the following three steps.

1) Initialization:

A1 = V̆ 1 + Ṽ 1 + S1,

ξ̆1|1 = V̆ 1A−1
1 y1,

V̆ 1|1 = V̆ 1 − V̆ 1A−1
1 V̆ 1.

2) Task update (predictor):

Hk = r̆k
k+1(V̆

k)−1,

ξ̆k+1|k =
(

I
Hk

)
ξ̆k|k, (7)

V̆ k+1|k = V̆ k+1 −
(

I
Hk

) (
V̆ k − V̆ k|k

) (
I HT

k

)
(8)

3) Measurement update (corrector):

Ak+1 = C̆k+1V̆
k+1|kC̆T

k+1 + Ṽk+1 + Sk+1, (9)

Bk+1 = V̆ k+1|kC̆T
k+1, (10)

ξ̆k+1|k+1 = ξ̆k+1|k + Bk+1A
−1
k+1

(
yk+1 − C̆k+1ξ̆

k+1|k
)

,

(11)
V̆ k+1|k+1 = V̆ k+1|k −Bk+1A

−1
k+1B

T
k+1. (12)

Proof: Exploiting Lemma 1, one has

ξ̆1|1 = cov
[
f̆1, y1

]
(V ar [y1])

−1
y1,

V̆ 1|1 = V̆ 1 − cov
[
f̆1, y1

]
(V ar [y1])

−1
cov

[
f̆1, y1

]T

.

Using the equation y1 = f̆1 + f̃1 + ε1 and the independence
assumptions, one immediately obtains

cov
[
f̆1, y1

]
= V̆ 1

V ar [y1] = V̆ 1 + Ṽ 1 + S1 = A1.

Passing now to the predictor step, to derive (7), we project
f̆k+1 first onto the space generated by f̆k and Dk and then
onto Dk, that is

ξ̆k+1|k = E
[
E

[
f̆k+1|f̆k, Dk

]
|Dk

]
. (13)

Using point (a) of Lemma 11, we obtain

E
[
f̆k+1|f̆k, Dk

]
= E

[
f̆k+1|f̆k

]
(14)

so that

E
[
f̆k+1|f̆k, Dk

]
= cov

[
f̆k+1, f̆k

] (
V̆ k

)−1

f̆k =
(

I
Hk

)
f̆k.

Finally,

ξ̆k+1|k = E

[(
I

Hk

)
f̆k|Dk

]
=

(
I

Hk

)
ξ̆k|k,

which proves eq. (7). To obtain eq. (8), recall from eq. (6) that

yk = C̆kf̆k + νk,

with νk independent of f̆k+1. Then, eq. (8) follows from
Lemma 13, with

z = f̆k+1, η = f̆k, v = νk,

y = yk, F = C̆k, U = V̆ k+1,

V = V̆ k, Γ =
(

V̆ k

r̆k
k+1

)
, Σv = V ar

[
νk

]
.

Finally, let us consider the measurement update. Notice that,
by Lemma 12,

E
[
yk+1|Dk

]
= C̆k+1ξ̆

k+1|k.

Then, letting

Ak+1 := V ar
[
yk+1|Dk

]
, Bk+1 := cov

[
f̆k+1, yk+1|Dk

]
,
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by Lemma 1 we obtain equations (11) and (12). Expressions
(9) and (10) for Ak+1 and Bk+1 follow by applying Lemma
12.

The major difference between Proposition 6 and a Kalman
filter is that the dimension of the state f̆k (i.e. the number of
distinct input locations up to the first k tasks) can increase.
This nontrivial issue is handled by means of the projection
Lemma 13 in the derivation of the predictor step.

IV. SOLUTION OF THE ONLINE MULTI-TASK LEARNING
PROBLEM

In the previous section, efficient recursive formulas have
been derived for the estimation of the task functions sampled
in correspondence of the input locations xk. In this section,
the estimate of fj(x) is extended to the whole input space.
In addition, confidence intervals are provided. In Appendix B
the proposed numerical scheme is also extended in order to
process new measurements associated with an existing task.

A. Task estimation

The next proposition shows that ξk
j (x) admits a represen-

tation in terms of a multi-task regularization network whose
weight vector can be efficiently updated online as the number
of tasks, and associated examples, increase. In particular, given
k tasks, the complexity of the proposed algorithm scales as
O(k(n̆k)3), where n̆k is the number of distinct inputs. Recall
that n̆k may well be much smaller than the overall number of
examples nk.

Proposition 7: Under assumption 4, the posterior mean
coincides with eq.(1)-(2) and is given by the multi-task regu-
larization network

ξk
j (x) = λ

2
n̆k∑
i=1

aiK(x, x̆k
i ) + λ̃2

nj∑
i=1

bijK̃(x, xij),

where K and K̃ are defined in eq. (4) and the weights are

a =
(
V̆ k

)−1

ξ̆k|k,

bj =
(
Ṽj + Sj

)−1 (
yj − C̆j ξ̆

k|k
)

.

Proof: Let

ξ
k
(x) := E

[
f(x)|Dk

]
, ξ̃

k

j (x) := E
[
f̃j(x)|Dk

]
.

Then,
ξk

j (x) = ξ
k
(x) + ξ̃

k

j (x).

Following the same reasonings as in the second part of the
proof of Proposition 6, in particular using eqs. (13,14) with
f̆k+1 replaced by f(x), one obtains

ξ
k
(x) = cov

[
f(x), f̆k

] (
V̆ k

)−1

ξ̆k|k,

so that, recalling the definition of K, the expression for a is
obtained. To compute ξ̃

k

j (x), we first project f̃j(x) onto the
space spanned by f j and Dk, and then onto Dk. We have

ξ̃
k

j (x) = E
[
E

[
f̃j(x)|f j , D

k
]
|Dk

]
.

Exploiting point (b) of Lemma 11, and recalling (5), one
obtains

E
[
f̃j(x)|f j , D

k
]

= E
[
f̃j(x)|f j , Dj

]
= E

[
f̃j(x)|f̃j + εj

]
= cov

[
f̃j(x), f̃j

] (
Ṽj + Sj

)−1 (
yj − f j

)
,

where the last equality follows from Lemma 1. Finally, by
projecting

(
yj − f j

)
onto Dk, we have

ξ̃
k

j (x) = cov
[
f̃j(x), f̃j

] (
Ṽj + Sj

)−1 (
yj − C̆j ξ̆

k|k
)

,

which, recalling the definition of K̃, completes the proof.

B. Computation of confidence intervals

Assume that data relative to the first k tasks have been
already processed and that V̆ k|k has been computed by means
of Proposition 6. Given an arbitrary input location x, obtaining
confidence intervals for fj(x) calls for the computation of the
posterior variances Vk

j (x). To this aim, define

φj :=
[

fj

fj(x)

]
φj :=

[
f j

f j(x)

]
φ̃j :=

[
f̃j

f̃j(x)

]
,

so that φj = φj + φ̃j . Letting P =
(

Inj
0

)
, one has

yj = Pφj + εj .

Define the following unconditional moments

V φj
= V ar

[
φj

]
Ṽφj

= V ar
[
φ̃j

]
rk

φj
= cov

[
φj , f̆

k
]

as well as the following conditional ones

M j = V ar
[
φj |Dk

]
M−j = V ar

[
φj |Dk

−j

]
Mj = V ar

[
φj |Dk

]
where Dk

−j is the training set containing all collected data but
those regarding Dj , i.e. Dk

−j = Dk \Dj . Notice that

Vk
j (x) = [Mj ]nj+1,nj+1

where [·]i,j denotes the (i, j) entry of a matrix. Since the
random vector φj conditional on Dk is correlated with
φ̃j , it is convenient to first calculate M−j , as described
in the next lemma whose proof is reported in Appendix.
In fact, this permits to obtain immediately cov

[
φj , yj |Dk

−j

]
and V ar

[
yj |Dk

−j

]
, thus simplifying the computation of the

confidence interval, as described in Proposition 9.
Lemma 8: It holds that

M−j =
(

M
−1

j − PT
(
Ṽj + Sj

)−1

P

)−1

+ Ṽφj (15)

where

M j = V φj
−rk

φj

(
(V̆ k)−1V̆ k|k(V̆ k)−1 − (V̆ k)−1

)
rkT

φj
(16)

Confidence intervals are finally provided by the following
proposition.

Proposition 9:

Mj = M−j −M−jP
T

(
PM−jP

T + Sj

)−1
PM−j (17)
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Proof: It holds that

cov
[
φj , yj |Dk

−j

]
= M−jP

T (18)

V ar
[
yj |Dk

−j

]
= PM−jP

T + Sj (19)

In addition, by Lemma 1

V ar
[
φj |Dk

]
= M−j − cov

[
φj , yj |Dk

−j

] (
V ar

[
yj |Dk

−j

])−1

× cov
[
φj , yj |Dk

−j

]T
.

Using eqs. (18,19), eq. (17) is finally obtained.
Remark 10: The issue of confidence intervals is what makes

the real difference between the kernel-based machine learning
approach and the Bayesian one. A similar situation is found
in the literature on smoothing splines [37]: point estimates are
usually worked out as the solution to Tikhonov-type variational
problems without necessarily referring to prior distributions.
However, when coming to the computation of confidence
intervals, the established literature [37] resorts to Bayesian for-
mulas even though hyperparameters may be estimated by GCV
minimization. In fact, computation of confidence intervals that
propagates only the measurement error, without accounting
for prior uncertainty on the unknown function, neglects the
bias introduced by regularization. At present, the Bayesian
approach appears to be a simple yet effective way to account
for all type of uncertainties. Of course, care must be taken in
the choice of the prior distribution in order to obtain realistic
intervals.

V. ESTIMATION OF UNKNOWN HYPERPARAMETERS VIA
MAXIMUM MARGINAL LIKELIHOOD

Many learning problems involve a vector θ of unknown
hyperparameters which have to be estimated from data. For
example, assuming homoskedastic noise in eq. (3), that is
σ2

ij = σ2 and recalling eq. (4), in our model the unknown
hyperparameters can be grouped into the vector

θ =
(

σ2 λ
2

λ̃2
)

.

Moreover, θ may also include further hyperparameters char-
acterizing the kernels K and K̃. For instance, if K(x1, x2) =
e−‖x1−x2‖2/c, the positive scalar c may be regarded as a
further unknown.

Hyperparameter estimation is here addressed by exploiting
the developed Bayesian setting. In particular, we resort to the
so-called Empirical Bayes approach (see e.g. [38], [3]) where,
first, hyperparameters are estimated via marginal likelihood
maximization (for alternative deterministic approaches see
[39], [40] and see also [41] for a discussion about regular-
ization and Bayesian methods for hyperparameters tuning).
Then, in order to reconstruct the task functions, the maximum
likelihood estimates are plugged into the formulas derived in
the previous sections. Assuming that k tasks are available, θ
is estimated as

θML = arg min
θ

J(yk, θ),

J(yk, θ) := log[det(V ar[yk|θ])] + (yk)T V ar[yk|θ]−1yk,

0 20 40 60 80 100
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3
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0 20 40 60 80 100
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j=1
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-2
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-2
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j=100

Time units
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-2

0

2

4

Time units

j=100
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-2
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4
j=50

Fig. 1. Simulated data: comparison between single and multi-task learning.
Left True fj (thin line) and single-task estimates (thick line) with 95%
confidence intervals (dashed lines) Right True fj (thin line) and multi-task
estimates E

�
fj |y100

�
(thick line) with 95% confidence intervals (dashed

lines).

where, apart from a constant term, J is equal to the opposite
of the logarithm of the likelihood p

(
yk|θ

)
. Such objective

function can be efficiently evaluated for any value of θ. In
fact, the joint likelihood p

(
yk|θ

)
can be written in terms of

conditional normal densities p(·|·) as follows

p
(
yk|θ

)
= p (y1|θ)

k∏
i=2

p
(
yi|Di−1, θ

)
.

Recall that Ai(θ) := V ar
[
yi|Di−1, θ

]
. Then, it holds that

(− log p
(
yk|θ

)
) is equal to

α +
1
2

k∑
i=1

log det Ai(θ)

+
1
2

k∑
i=1

(
yi − C̆iξ

i|i−1(θ)
)T

A−1
i (θ)

(
yi − C̆iξ

i|i−1(θ)
)

where D0 := ∅ and α is a constant we are not concerned with.
For any value of θ, ξi|i−1 and Ai can be determined by the
recursive formulas in Proposition 6, see eqs. (7-9). Thus, an
efficient evaluation of J(yk, θ) is possible.

VI. NUMERICAL EXAMPLES

In this section, we apply the new multi-task algorithm to two
simulated benchmarks and a pharmacological experiment.

A. Simulated data

This example is constructed by generating multiple tasks fj
that are realizations of longitudinal Gaussian processes. More
precisely, fj(x) = f(x)+ f̃j(x), x ∈ [0, 100], where f(x) is the
average task and f̃j , j = 1, . . . , 100, are the individual shifts.
Gaussian-shaped auto-covariances are assumed:

cov
[
f(x1), f(x2)

]
= e−

(x1−x2)2

25

cov
[
f̃j(x1), f̃j(x2)

]
= 0.25e−

(x1−x2)2

25 j = 1, 2, ..., 100
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Fig. 2. Simulated data: comparison between single and multi-task learning.
Scatterplot of RMSEST

j and RMSEMT
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Fig. 3. Simulated data: comparison between single and multi-task estimation
of the average task. True f (thin line) and its estimate (thick line) for increasing
values of k with 95% confidence intervals (dashed lines).

The average task curve is generated by drawing a single
realization from the distribution of f , while 100 realizations
of the shifts are independently drawn from the distribution of
f̃j . As for the inputs xij , j = 1, . . . , 100, they are integers
randomly drawn from subsets Nj of N = {1, . . . , 100}. More
precisely, for each task index j, 30 inputs xij , i = 1, . . . , 30
are drawn from a discrete uniform distribution having support
Nj = {j, . . . , j⊕50} ⊂ N , where ⊕ denotes the mod-100 sum
operator. Note that for each task there exists an input region
N \Nj (a sampling “hole”) where no data are collected, thus
requiring nontrivial extrapolation. The outputs were generated
according to eq. (3) with σ2

ij = 0.4,∀i, j.
First, all tasks were estimated according to a single-task

learning procedure. In other words, each task fj was estimated
using all and only the pairs (xij , yij), i = 1, . . . , 30. Note that
the single-task estimate is obtained as a special case of the
multi-task one by forcing λ

2
= 0 in the formulas throughout

the paper. The left panels of Fig. 1 show the results obtained
in 5 tasks, together with their 95% confidence intervals. As
expected, the tasks are poorly estimated in correspondence
with the sampling holes due to the lack of information. Then,

all tasks were estimated according to the multi-task approach
presented in the paper: each task fj was estimated using
the complete dataset D100. The right panels of Fig. 1 show
the estimates and confidence intervals obtained in the same
5 tasks as in the left panels. By comparing left and right
panels one can appreciate the benefit brought by the multi-
task approach. In particular, the estimate uncertainty decreases
in correspondence with the sampling holes. The advantage of
multi-task learning can be also appreciated by looking at Fig.
2 that reports the RMSE (Root Mean Square Error) for both
single and multi-task estimates. The multi-task RMSEMT

j for
the j-th task was defined as

RMSEMT
j =

√
1

100

∫ 100

0

(
fj(x)− ξ100

j (x)
)2

dx,

and the single-task RMSEST
j was defined in a similar way.

Finally, letting Rj := RMSEMT
j

RMSEST
j

measure the RMSE reduc-
tion when passing from single-task to multi-task estimation,
the average Rj value over the 100 tasks was equal to 0.67.

Next, we consider iterative online multi-task learning for
what concerns the average task f . More precisely, the estimates
E[f(x)|Dk] for k = 1, . . . , 100 were computed using the
recursions derived in Section III. In Fig. 3 we display the true
function f(x) and its estimate, together with 95% confidence
intervals, for some increasing values of k. For small values
of k, no measurements are available in the rightmost part of
X , which explains the shape of confidence intervals that get
larger on the right. As k increases, incoming information is ef-
ficiently exploited in order to improve the estimate and reduce
the size of confidence bounds. Not surprisingly, for k = 50,
the estimate is already satisfactory since the whole domain
X has been sampled. Finally, notice that, in this example,
n100 = 3000, while n̆100 = 100. Thus, without the method
of the present paper, the multi-task learning problem would
call for the solution of a system of 3000 linear equations.
Conversely, by the new method, the solution is obtained by
solving a sequence of linear systems whose order are always
less than 100.

B. Real pharmacokinetic data

Multi-task learning was applied to a data set related to
xenobiotics administration in 27 human subjects, see [42] and
Section 5.2 in [14]. In the fully sampled dataset, 8 samples
were collected in each subject at 0.5, 1, 1.5, 2, 4, 8, 12, 24
hours after a bolus administration. Data are known to have
a 10% coefficient of variation, i.e. σ2

ij = (0.1yij)2. The
27 experimental concentration profiles are displayed in Fig.
4, together with the average profile. Given the number of
subjects, such average profile can be regarded as a reasonable
estimate of the average task f . The whole dataset, consisting
of 216 pairs (xij , yij), i = 1, . . . , 8, j = 1, . . . , 27, was split in
a training and a test set. In particular, for training we consider
a sparse sampling schedule with only 3 measurements per
subject, randomly chosen within the 8 available data. Let

W (t1, t2) =
t1t2 min{t1, t2}

2
− (min{t1, t2})3

6
.
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Fig. 4. Real pharmacokinetic data: xenobiotics concentrations after a bolus
administration in 27 human subjects obtained by linearly interpolating noisy
samples: average (thick) and individual profiles.
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Fig. 5. Real pharmacokinetic data: single task (left) and multi-task (right)
estimates (thick line) of 4 representative subjects with 95% confidence
intervals (dashed lines) using only three data (circles) for each of the 27
subjects. The other five ”unobserved” data (asterisks) are also plotted. Dotted
lines denote the estimates obtained by using the full sampling grid.
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Fig. 6. Real pharmacokinetic data: comparison between single and multi-task
learning. Scatterplot of RMSEST

j and RMSEMT
j .

denote the autocovariance of an integrated Wiener process
having zero initial conditions at t = 0 and unitary intensity.
With reference to (4), it is assumed that

K(x1, x2) = K̃j(x1, x2) = W (h(x1), h(x2)), (20)

h(x) =
1

1 + x/β
. (21)

The aim of the transformation h(x), originally introduced in
[14], is to account for the non-stationary nature of pharma-
cological responses. In fact, in these experiments there is
a greater variability for small values of t, followed by an
asymptotic decay to zero. Due to the structure of h(x), it
follows that the prior variances of both f and f̃j tend to zero
as t goes to infinity. In particular, recalling that f and f̃j are
assumed to be zero-mean, this implies f(+∞) = f̃j(+∞) = 0.
Following [14], the parameter β was set equal to 3.0. To
account for the fact that the initial plasma concentration is
zero, a zero variance virtual measurement in t = 0 was added
for all tasks.

According to the Empirical Bayes approach described in
Section V, the hyperparameters, i.e. λ

2
and λ̃2, were estimated

via likelihood maximization. The left and right panels of Fig.
5, display results obtained by using the single-task and the
multi-task approach, respectively. In particular, we display
the data and the estimated curves with their 95% confidence
intervals. In addition, each panel shows the estimates obtained
by employing full sampling: it is apparent that the multi-task
estimates are closer to these reference curves. One can also
notice a good predictive capability with respect to the other
five “unobserved” data. In this respect, let If and Ir

j denote
the full and reduced sampling grid in the j-th subject. Define
also the set Ij = If�Ir

j , whose cardinality is 5. For each
subject we computed the quantity

RMSEMT
j =

√∑
i∈Ij

(yij − ξ27
j (xij))2

5

as well as the single-task RMSEMT
j defined in a similar way.

Fig. 6 compares the RMSE of single-task and multi-task
estimates. The average RMSE ratio defined as in the previous
subsection was equal to 0.54.

Notice that the number of training inputs n̆27 = 8 is
about ten times smaller than the number of training examples
n27 = 81. Therefore, the algorithm proposed in this paper
enjoys about a 1000-fold reduction of computational effort
with respect to formulas in [14].

In this experiment, single and multi-task learning provide
similar results when full sampling is used. However, it is worth
stressing that in real pharmacokinetic experiments such full
sampling is quite an exception, i.e. very few data per subject
are typically available. Thus, the experiment shows that multi-
task learning proves effective in these realistic situations.

C. Simulated glucose data

Multi-task learning was finally applied to reconstruct glu-
cose profiles in plasma during an intravenous glucose tolerance
test (IVGTT) in which a glucose dose is injected in plasma at
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the beginning of the experiment [43]. Simulated data were
generated by using the minimal model of glucose kinetics
(MM) [44] which, since its inception in the late seventies,
has been used in hundreds of papers to describe glucose
and insulin dynamics after a glucose perturbation [43]. In
particular, during an IVGTT, MM equations are: Ġ(t) = − [SG + X(t)]G(t) + GbSG + u(t)

V

Ẋ(t) = −p2 [X(t)− SI(I(t)− Ib)]
G(0) = Gb, X(0) = 0

(22)

In (22), G(t) (mgdl−1) and I(t) (µUml−1) are glucose
and insulin concentration in plasma, respectively, Gb and Ib

are glucose and insulin baseline values before glucose pertur-
bation, respectively, SI , SG, p2 and V are the MM parameters.
Finally, u(t) is ideally a Dirac delta centered in 0 with area
equal to the injected glucose dose.

A log-normal probability density function for MM parame-
ters was derived by exploiting the estimates reported in Table
1 of [45] obtained by 16 IVGTT experiments of length 240
minutes performed in normal subjects (see [45] for details).
A continuous-time Gaussian prior for I(t) was derived by
first estimating via cubic smoothing splines the 16 insulin
profiles using insulin plasma samples collected during the
same experiments. Then, the sample mean and autocovariance
of I(t) was computed from the estimated time-courses. One
thousand synthetic subjects were randomly generated from the
prior distribution of model parameters and insulin profile. In
particular, Gb was fixed to 120 (mgdl−1). Furthermore, to
account for the fact that in real experiments the injected dose
is not an ideal Dirac delta, u was assigned a Gaussian profile,
with support only on the positive axis, SD randomly drawn
from a uniform distribution on the interval [0, 1] min and area
equal to 300 (mg).

Let Ω, expressed in minutes, be the set containing 30
sampling instants {tk} given by

Ω =

 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25
30, 35, 40, 45, 50, 60, 70, 80, 90, 100
120, 140, 160, 180, 200, 220, 240


We assume that in any of the 1000 subjects only 5 glucose
measurements are available, being collected at different input
locations extracted from Ω. To be more specific, we divided Ω
in 5 subgrids, given by {1, 2, 3, 4, 6, 8}, {10, 12, 14, 16, 18, 20}
and so on. Then, the sampling grid relative to a subject is
defined by randomly drawing one input location from each
of the 5 subgrids. Measurements were then corrupted by a
white normal noise with a 5% coefficient of variation, a value
which is assumed known during the learning process. Glucose
data were pre-processed by first subtracting the basal value
from each profile. In addition, to account for the fact that the
initial plasma concentration is zero, as in Section VI-B a zero
variance virtual measurement in t = 0 was added for all tasks.

The proposed multi-task learning algorithm was tested on
the 1000 synthetic subjects. The kernels reported in eq. (20)-
(21) were adopted with β in eq. (21) set to 30. The Empirical
Bayes approach described in Section V was used to estimate
hyperparameters λ

2
and λ̃2 via marginal likelihood maxi-

mization. Fig. 7 plots the estimated average glucose profile
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Fig. 7. Simulated glucose data: estimated average curve obtained by multi-
task approach applied to 1000 IVGTT responses

TABLE I
SIMULATED GLUCOSE DATA: AVERAGE RMSE RATIO AS A FUNCTION OF

THE NUMBER OF MEASUREMENTS COLLECTED IN EACH SUBJECT

# of measurements per subject 5 10 15 30
Average Rj 0.23 0.33 0.46 0.49

in plasma. The left and right panels of Fig. 8 show results
obtained in 4 representative subjects by using the single-task
and the multi-task approach, respectively. They display the
data, the estimated curves with their 95% confidence intervals
and the true glucose profile. One can notice that the multi-task
estimates are closer to truth, with confidence intervals being
much narrower and more informative than those obtained by
the single-task approach.

The multi-task RMSEMT
j for the j-th task was defined as

RMSEMT
j =

√
1

240

∫ 240

0

(
fj(x)− ξ1000

j (x)
)2

dx,

and the single-task RMSEST
j was defined in a similar way.

Fig. 9 compares the RMSE of the 1000 single-task and multi-
task estimates. Remarkably, the average RMSE ratio was
equal to 0.23.

In Table 1 we also report the average RMSE ratios
obtained by increasing the number of measurements collected
in any subject by means of subgrids of Ω defined by using
the same rationale previously adopted, e.g. when 10 samples
are taken, the 10 subgrids are given by {1, 2, 3}, {4, 6, 8} and
so on. It is interesting to notice that in this case, even when
30 measurements per subject are used, multi-task estimator
performs much better than the single-task one.

Finally, notice that, without the method of the present paper,
this problem would call for inverting matrices whose size
is 30000 × 30000 when dealing with 30 measurements per
subject, while the algorithm proposed in this paper returns the
solution by solving a sequence of linear systems whose order
never exceeds 30.

VII. CONCLUSIONS

The simultaneous learning of multiple tasks may signif-
icantly improve learning performances when limitations are
imposed on the number and/or locations of samples collected
in each single task. However, a potential drawback is the
computational complexity involved by the joint processing
of the whole dataset. To make an example, when using



JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 8, DECEMBER 2007 10

0 50 100 150 200

0

200

400
j=36

0 50 100 150 200

0

200

400
j=36

0 50 100 150 200
-100

0

100

200

j=189

0 50 100 150 200
-100

0

100

200

j=189

0 50 100 150 200

0

100

200

j=650

0 50 100 150 200

0

100

200

j=650

0 50 100 150 200

0

200

400

Time (min)

j=910

0 50 100 150 200

0

200

400

Time (min)

Single-task Multi-task

j=910
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Fig. 9. Simulated glucose data: comparison between single and multi-task
learning. Scatterplot of RMSEST

j and RMSEMT
j .

regularized kernel methods with quadratic loss functions, the
number of operations scales with the cube of the overall
number of examples. In the present paper, this computational
problem has been addressed for a class of multi-task learning
problems, in which each single task is modeled as the sum
of an average function common to all tasks and an individual
shift specific for each task. The problem has been given a
Bayesian formulation under the assumption that the unknown
tasks are Gaussian random fields.

The main contribution of the paper is a recursive learning
scheme that efficiently updates estimates and variances ex-
ploiting the possible presence of repeated input samples. In
addition to being interesting in its own, the on-line algorithm
has the potential to greatly reduce the computational effort and
memory occupation, especially when the number of distinct in-
puts is much smaller than the overall number of examples. The
new algorithm has been tested on two simulated benchmarks
and a set of real pharmacokinetic data.

It would be interesting to investigate the existence of
efficient numerical implementations also for other classes

of multi-task kernels. We conjecture that substantial com-
putational gains can be obtained only for classes of kernels
exhibiting rather particular structures. The one considered in
this paper, albeit specific, has practical relevance. In fact, the
decomposition of individual tasks as the sum of an average and
an individual shift has already been successfully employed in
biomedical data analysis [12], [15], [14].
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APPENDIX A: TECHNICAL LEMMAS

Lemma 11: We have:
(a)

E
[
f(x)|f̆k, Dk

]
= E

[
f(x)|f̆k

]
,∀x ∈ X.

In particular,

E
[
f̆k+1|f̆k, Dk

]
= E

[
f̆k+1|f̆k

]
.

(b)
E

[
f̃j(x)|f j , D

k
]

= E
[
f̃j(x)|f j , Dj

]
.

Proof:
Point (a) follows by showing that

p
(
f(·)|f̆k, Dk

)
= p

(
f(·)|f̆k

)
.

In fact,

p
(
f(·)|f̆k, Dk

)
= p

(
f(·)|f̆k, ek

)
=

p
(
f(·), f̆k, ek

)
p

(
f̆k, ek

)
=

p
(
f(·), f̆k

)
p

(
ek

)
p

(
f̆k

)
p (ek)

= p
(
f(·)|f̆k

)
.

As for point (b), it follows by showing that

p
(
f̃j(·)|f j , D

k
)

= p
(
f̃j(·)|f j , Dj

)
.

In fact,

p
(
f̃j(·)|f j , D

k
)

=
p

(
f̃j(·), yk, f j

)
p

(
yk, f j

)
=

p
(
yk |̃fj(·), f j

)
p

(
f̃j(·), f j

)
p

(
yk, f j

)
Now, let yk

−j denote the vector containing all collected data
but those regarding yj , i.e. yk

−j = yk \ yj , and let Dk
−j be

defined in a similar way. Then,

p
(
yk |̃fj(·), f j

)
= p

(
yj |̃fj(·), f j , D

k
−j

)
p

(
yk
−j |̃fj(·), f j

)
= p

(
yj |̃fj(·), f j

)
p

(
yk
−j |f j

)
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(where the last equality exploits the independence assump-
tions) so that we obtain

p
(
f̃j(·)|f j , D

k
)

= p
(
yk
−j |f j

) p
(
yj |̃fj(·), f j

)
p

(
f̃j(·), f j

)
p

(
yk, f j

)
= p

(
yk
−j |f j

) p
(
f̃j(·), yj , f j

)
p

(
yk|f j

)
p

(
f j

)
=

p
(
yk
−j |f j

)
p

(
yk
−j |f j

)
p

(
yj |f j

) p
(
f̃j(·), yj , f j

)
p

(
f j

)
=

p
(
f̃j(·), yj , f j

)
p

(
yi|f j

)
p

(
f j

) = p
(
f̃j(·)|f j , Dj

)
.

Lemma 12: We have

V ar
[
yk+1|Dk

]
= C̆k+1V̆

k+1|kC̆T
k+1 + Ṽk+1 + Sk+1,

cov
[
f̆k+1, yk+1|Dk

]
= V ar

[
f̆k+1|Dk

]
C̆T

k+1,

E
[
yk+1|Dk

]
= C̆k+1ξ̆

k+1|k.

Proof: It suffices to exploit eq. (5), replacing yk+1

with C̆k+1f̆
k+1 + f̃k+1 + εk+1, and recall the independence

assumptions.

The following lemma is an extension of Lemma 1 in the
Appendix of [14]. It can also be seen as a special case of
Lemma 1 in [31]. It is worth remarking that, differently from
the statement in [14], here the symbol z denotes a vector (in
place of a scalar) and the weaker condition V > 0, Σv > 0
(in place of Σ > 0) is invoked. Nevertheless, the proof is
completely analogous and is therefore omitted.

Lemma 13: Let y, v and η be random vectors and F be a
matrix such that

y = Fη + v,

Let also V > 0,Σv > 0, z
η
v

 ∼ N (0,Σ) , Σ =

 U Γ 0
ΓT V 0
0 0 Σv

 .

Then,

V ar [z|y] = V ar [z|η] + V ar [E[z|η]|y] ,

where

V ar [z|η] = U − ΓV −1ΓT ,

V ar [E[z|η]|y] = ΓV −1V ar [η|y]V −1ΓT ,

V ar [η|y] =
(
FT Σ−1

v F + V −1
)−1

.

Proof of Lemma 8:
It holds that

cov
[
φj , yj |Dk

−j

]
= V ar

[
φj |Dk

−j

]
PT , (23)

V ar
[
yj |Dk

−j

]
= PV ar

[
φj |Dk

−j

]
PT + Ṽj + Sj(24)

V ar
[
φj |Dk

−j

]
= V ar

[
φj |Dk

−j

]
+ V ar

[
φ̃j

]
. (25)

Then, the following relation holds

V ar
[
φj |Dk

]
= V ar

[
φj |Dk

−j

]
− cov

[
φj , yj |Dk

−j

]
×

(
V ar

[
yj |Dk

−j

])−1
cov

[
φj , yj |Dk

−j

]T

= V ar
[
φj |Dk

−j

]
− V ar

[
φj |Dk

−j

]
PT

×
(
PV ar

[
φj |Dk

−j

]
PT + Ṽj + Sj

)−1

PV ar
[
φj |Dk

−j

]
=

((
V ar

[
φj |Dk

−j

])−1
+ PT

(
Ṽj + Sj

)−1

P

)−1

,

where the second equality makes use of eqs. (23,24) while the
last one exploits the matrix inversion lemma, see e.g. [36].
Then, eq. (15) is obtained using eq. (25). Finally, to obtain
eq. (16), consider eq. (6) and notice that V ar

[
φj |Dk

]
can

be obtained by resorting to Lemma 13 with the following
assignments:

y = yk, z = φj , η = f̆k, v = νk, F = C̆k.

APPENDIX B: PROCESSING NEW MEASUREMENTS
ASSOCIATED WITH A PREVIOUS TASK

We consider now a situation where data from k distinct tasks
have been already processed and additional examples relative
to the j-th task, j ≤ k, become available. In order to extend
the computational scheme to such a case, it is useful to denote
by y+

j the vector of new output data associated with the j-th
task and by x+

j the vector containing the corresponding input
values, whose dimension is n+

j . For the sake of simplicity, we
assume that x̆k and x+

j do not have common elements. Let
f̆k+

denote the vector whose components are the elements of
the set {f(x), x ∈ x̆k+} where x̆k+

= x̆k
⋃

x+
j . Let also f

+

j

indicate the vector whose components are {f(x), x ∈ x+
j },

while f̃+
j is the vector with components {f̃j(x), x ∈ x+

j }.
Letting ε+j denote the noise vector affecting y+

j :[
yj

y+
j

]
=

[
f j

f
+

j

]
+

[
f̃j

f̃+
j

]
+

[
εj

ε+j

]
Let also

yk+
=

[
yk

y+
j

]
while Dk+

is the training set given by the union of Dk and
the new input-output pairs defined by x+

j and y+
j . Since data

yj have already been considered in the previous steps, the
estimate ξ̆k+|k+

is computed according to eqs. (7)-(12) by
replacing
• the superscript “k+1” with k+ (e.g. f̆k+1 is replaced by

f̆k+
and so on)

• r̆k
k+1 with cov

[
f

+

j , f̆k
]

• V̆ k+1 with

V̆ k+
:= V ar

[
f̆k

f
+

j

]
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• Ṽk+1 and Sk+1 with V ar
[
f̃+

j

]
and V ar

[
ε+j

]
, respec-

tively
• C̆k+1 with the matrix C̆k+ such that

E
[
f

+

j |Dk+
]

= C̆k+ ξ̆k+|k

• yk+1 with y+
j

Then, if q 6= j,

ξk+

q (x) = λ
2

n̆k+n+
j∑

i=1

aiK(x, x̆k+

i ) + λ̃2

nj∑
i=1

biqK̃(x, xiq),

else

ξk+

q (x) = λ
2

n̆k+n+
j∑

i=1

aiK(x, x̆k+

i ) + λ̃2

nj+n+
j∑

i=1

biqK̃(x, xiq),

where

a =
(
V̆ k+

)−1

ξ̆k+|k+

bq =


(
Ṽq + Sq

)−1 (
yq − C̆q ξ̆

k+|k+
)

, q 6= j(
Ṽ +

q + S+
q

)−1
([

yq

y+
q

]
− C̆q ξ̆

k+|k+
)

, q = j.

and

Ṽ +
q := V ar

[
f̃q

f̃+
q

]
S+

q := V ar

[
εq

ε+q

]
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