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Abstract

Kalman-Bucy smoothers are often used to estimate the state variables as a function of time in a system with stochastic
dynamics and measurement noise. This is accomplished using an algorithm for which the number of numerical operations
grows linearly with the number of time points. All of the randomness in the model is assumed to be Gaussian. Including other
available information, for example a bound on one of the state variables, is non trivial because it does not fit into the standard
Kalman-Bucy smoother algorithm. In this paper we present an interior point method that maximizes the likelihood with
respect to the sequence of state vectors satisfying inequality constraints. The method obtains the same decomposition that
is normally obtained for the unconstrained Kalman-Bucy smoother, hence the resulting number of operations grows linearly
with the number of time points. We present two algorithms, the first is for the affine case and the second is for the nonlinear
case. Neither algorithm requires the optimization to start at a feasible sequence of state vector values. Both the unconstrained
affine and unconstrained nonlinear Kalman-Bucy smoother are special cases of the class of problems that can be handled by
these algorithms.
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1 Introduction

The discrete Kalman-Bucy model for the dynamics and
measurement is

xk = gk(xk−1) + wk , zk = hk(xk) + vk (1)

where for time index k = 1, . . . , N , xk ∈ Rn is the un-
known state vector, gk : Rn → Rn is the known model
for the mean dynamics, wk ∈ Rn is the unknown noise
in the dynamics, zk ∈ Rm is the known measurement
vector, hk : Rn → Rm is the known model for the mea-
surement mean, and vk ∈ Rm is the unknown noise in
the measurements. The noise vectors are all mutually
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independent and

wk ∼ N(0, Qk) , vk ∼ N(0, Rk) (2)

where Qk ∈ Rn×n and Rk ∈ Rm×m are the known co-
variance matrices, hence symmetric and positive defi-
nite. We simplify the notation by using g1(x0) for our
initial state estimate, where g1 is a constant function,
and using Q1 for the covariance of this initial estimate.
We also simplify notation by fixing the number of mea-
surements at each time index to m. The algorithms al-
low some or all of these measurement to be missing at
any particular time index so this is not a restriction.

If hk and gk are affine (linear plus a constant), the maxi-
mum likelihood and minimum variance estimate for the
state sequence {xk : k = 1, . . . , N} are identical and
can be obtained using the affine Kalman-Bucy smoother;
e.g., [1, Fig 1] or [23]. A decomposition technique en-
ables these algorithms to solve nN linear equations in
nN variables in O(n3N ) operations. If hk and gk are non-
linear, the iterated Kalman-Bucy smoother can be used
to determine the maximum likelihood estimate for the
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state sequence. This is a Gauss-Newton method where
each iteration of the method uses the affine Kalman-
Bucy smoother (e.g. [1, Fig 2]).

In many cases, the model for xk in (1) is only an approx-
imation that can be improved by including other infor-
mation or considerations about the state vector in the
estimation procedure (for further discussion see [24, Sec-
tion 2.2]). The equality constrained solution where the
model and constraint functions are affine is well known;
e.g. [26]. Nonlinear models with nonlinear equality con-
straints are often approximated by augmenting the mea-
surement vector; e.g., [11,30]. There is much recent work
addressing inequality constraints using moving horizon
estimation; e.g., [21,22,28,34]. The moving horizon is
used to reduce the optimization problem in order to
make it tractable; see the discussion below [8, equation
(9)]. The interior point method presented below obtains
the same decomposition of the linear equations as for the
unconstrained affine Kalman-Bucy smoother (see The-
orem 3). This makes it feasible to simultaneously opti-
mize with respect to the state value at all time indices
even for very large values of N . We use fk : Rn → R` to
denote known functions and model the constraints by

fk(xk) ≤ 0 for k = 1, . . . , N (3)

Active set methods are a popular approach to inequal-
ity constrained optimization problems. However, these
methods have a worst case complexity that is exponen-
tial in number of constraints `N [9, equation (25)] which
is a significant issue for large N . The problem with active
set methods is that even state of the art implementations
cannot guarantee that the optimal active set has been
identified until successful termination [4,7,12,17,32]. In-
terior point methods are, on the other hand, fundamen-
tally different. Indeed, they may be thought of as the
opposite of active set methods since no constraint is al-
lowed to become active as the iterations proceed. Our ap-
proach is motivated by the great practical success of in-
terior point methods which have revolutionized the the-
ory and practice of numerical optimization over the past
25 years. This approach to the inequality constrained
nonlinear Kalman-Bucy smoother is in the same spirit
as the approach taken to certain optimal control prob-
lems in [33].

In Section 2, we introduce a nonlinear Kalman-Bucy
smoother problem with inequality constraints. This
problem is approximated by a Quadratic Program (QP)
that corresponds to the affine Kalman-Bucy smoother
with affine inequality constraints (Section 3). The ap-
proximating QP is solved using an interior point method
that maximizes the likelihood with respect to the en-
tire state sequence {xk : k = 1, . . . , N}. The interior
point method requires only O(n3N ) operations for each
interior point iteration (Sections 4 and 5). As an in-
troduction to the constrained nonlinear algorithm, an

unconstrained version is presented (Section 6). As in se-
quential quadratic programming methods for nonlinear
programs [19], the QP is iterated to obtain a method
for solving the nonlinear constrained Kalman-Bucy
smoother problem (Section 7). A global convergence
proof for the corresponding algorithm is included in
Section 7. A constrained smoothing spline example is
presented as an application of the affine Kalman-Bucy
smoother with affine inequality constraints (Section 8).
A ship tracking example is presented as an application
of the nonlinear Kalman-Bucy smoother with nonlinear
inequality constraints (Section 9).

2 The Nonlinear Problem

Let {xk} denote the entire state sequence {xk : k =
1, . . . , N} with a similar notation for all other indexed
quantities in equations (1)-(3). The probability density
corresponding to a multivariate normal distribution
is given by [14, equation 2.80]. In particular, for the
Kalman-Bucy model (1)-(2), the negative log of the
probability density for the measurement sequence {zk}
given the state sequence {xk} is

− logp({zk}|{xk}) =
1
2

N∑

k=1

logdet(2πRk)

+ [zk − hk(xk)]TR−1
k [zk − hk(xk)]

Prior to making the measurements, the negative log of
the probability density for the state sequence is

− logp({xk}) =
1
2

N∑

k=1

logdet(2πQk)

+ [xk − gk(xk−1)]TQ−1
k [xk − gk(xk−1)]

Define Sk : Rn × Rn → R to be the residual sum of
squares corresponding to time index k,

Sk(xk, xk−1) = 1
2 [zk − hk(xk)]TR−1

k [zk − hk(xk)]

+ 1
2
[xk − gk(xk−1)]TQ−1

k [xk − gk(xk−1)]
(4)

Define S : {Rn} → R to be the total sum of squares

S({xk}) =
N∑

k=1

Sk(xk, xk−1).

Given our model formulation, S({xk}) can be computed
for any input sequence {xk}; furthermore,

p({zk}, {xk}) = p({zk}|{xk}) p({xk})
∂x(j) logp({zk}, {xk}) = −∂x(j)S({xk})
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(Here and below we use w(p) to denote wp when it is
a subscript.) It follows that S({xk}) is equal to a con-
stant plus the negative log of the joint probability den-
sity of {zk} and {xk}. Thus, minimizing S({xk}) subject
to a set of constraints is equivalent maximizing the joint
density subject to the same set of constraints. Our in-
equality constrained nonlinear Kalman-Bucy smoother
problem is

minimize S({xk}) w.r.t. {xk}
subject to fk(xk) ≤ 0 (k = 1, . . . , N ).

(5)

Remark 1 There is an inherent contradiction in the
model formulation (1)-(3). The constraints (3) for the
state sequence {xk} conflict with the model for the noise
sequence {wk}, and so the model for noise cannot be com-
pletely accurate. In the case of linear equality constraints,
there are computable consistent statistical models; e.g.,
[15]. In the nonlinear inequality constrained, for com-
putational as well as modeling simplicity, it is useful to
think of the components of {wk} as truncated Gaussian
distributions so that the lemma makes sense.

3 The Quadratic Programming Sub-problem

Our grand strategy for solving problem (5) is to build an
algorithm that is reminiscent of the iterative Kalman-
Bucy filter for the unconstrained problem. We do this
by iteratively solving QP approximations that are built
around the current estimate of a solution. These QP
approximations correspond to local Gauss-Newton ap-
proximations to problem (5). We propose to solve these
QP subproblems using an interior point approach that
exploits their structure in much the same way as the
Kalman-Bucy filter. We now turn to the development of
our Gauss-Newton approximation.

It follows from the definition of Sk in equation (4) that

∂x(j)Sk(xk, xk−1) =



{
[xk − gk(xk−1)]TQ−1

k

−[zk − hk(xk)]TR−1
k h

(1)
k (xk)

}
, if j = k

−[xk − gk(xk−1)]TQ−1
k g

(1)
k (xk−1) , if j = k − 1

0 , otherwise

Hence, except for the case j = N ,

∂x(j)S({xk}) =
N∑

k=1

∂x(j)Sk(xk, xk−1)

= ∂x(j)Sj(xj, xj−1) + ∂x(j)Sj+1(xj+1, xj)

= [xj − gj(xj−1)]TQ−1
j

− [zj − hj(xj)]TR−1
j h

(1)
j (xj) (6)

− [xj+1 − gj+1(xj)]TQ−1
j+1g

(1)
j+1(xj)

For the case where j = N , there is no term Sj+1(xj+1, xj)
in the summation. Thus, we obtain the following lemma.

Lemma 2 Define QN+1 ∈ Rn×n to be the identity ma-
trix and gN+1 ≡ 0. Then the partial derivative of S({xk})
with respect to x(j) is given by equation (6) for j =
1, . . . , N .

We now build an affine approximation to the model (1)-
(3) that is first-order accurate for a state sequence {yk}
near a fixed state sequence {xk}. Define the affine ap-
proximations f̃k, g̃k, and h̃k by

f̃k(xk; yk) = fk(xk) + f
(1)
k (xk)(yk − xk)

g̃k(xk; yk) = gk(xk) + g
(1)
k (xk)(yk − xk)

h̃k(xk; yk) = hk(xk) + h
(1)
k (xk)(yk − xk)

and, correspondingly, define S̃({xk}; {yk}) to be the
residual sum of squares function associated with these
affine approximations:

S̃k(xk, xk−1; yk, yk−1) =

(1/2)[yk − g̃k(xk−1; yk−1)]TQ−1
k [yk − g̃k(xk−1; yk−1)]

+(1/2)[zk − h̃k(xk; yk)]TR−1
k [zk − h̃k(xk; yk)]

S̃({xk}; {yk}) =
N∑

k=1

S̃k(xk, xk−1; yk, yk−1) (7)

It follows from these definitions that

S({xk}) = S̃({xk}; {xk}) (8)

Next fix the state sequence {xk} and use f̃k, g̃k, and
h̃k in place of fk, gk, and hk to define a Kalman-Bucy
model (1)-(3) for the state sequence {yk}. Applying the
equation (6) to the affine approximation yields

∂y(j)S̃({xk}; {yk}) = [yj − g̃j(xj−1; yj−1)]TQ−1
j

−[zj − h̃j(xj; yj)]TR−1
j h

(1)
j (xj)

−[yj+1 − g̃j+1(xj; yj)]TQ−1
j+1g

(1)
j+1(xj)

(9)

∂x(j)S({xk}) = ∂y(j)S̃({xk}; {yk})
∣∣∣
{yk}={xk}

(10)

We conclude from equations (8) and (10) that S̃({xk}; {yk}),
as a function of {yk}, is a first-order accurate approxi-
mation to S({xk}) near {xk}. In addition, S̃({xk}; {yk})
is smooth with respect to {xk} (provided that gk(xk−1)
and hk(xk) are smooth).
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Our approach to solving the nonlinear problem (5) is
based on iteratively solving QP subproblems of the form:

minimize S̃({xk}; {yk}) w.r.t. {yk}
subject to f̃k(xk; yk) ≤ 0 (k = 1, . . . , N )

(11)

This approach is similar in spirit to sequential quadratic
programming (SQP) methods for constrained nonlinear
programs [19].

Let us analyze the structure of these subproblems a bit
further. It follows from equation (9) that the second par-
tials of S̃({xk}, {yk}) with respect to {yk} are zero ex-
cept for the terms

∂y(j−1)∂y(j)S̃({xk}; {yk}) = −g
(1)
j (xj−1)TQ−1

j

∂y(j)∂y(j)S̃({xk}; {yk}) = Q−1
j

+h
(1)
j (xj)TR−1

j h
(1)
j (xj) + g

(1)
j+1(xj)TQ−1

j+1g
(1)
j+1(xj)

∂y(j+1)∂y(j)S̃({xk}; {yk}) = −Q−1
j+1g

(1)
j+1(xj)

for j = 1, . . . , N . Also note that the Hessian of
S̃({xk}, {yk}) with respect to {yk} is constant with re-
spect to {yk}, that is, S̃({xk}, {yk}) is quadratic in {yk}.
Define Ak ∈ Rn×n, Ck ∈ Rn×n, and C ∈ RnN×nN by

Ak = −Q−1
k g

(1)
k (xk−1)

Ck =

{
Q−1

k + h
(1)
k (xk)TR−1

k h
(1)
k (xk)

+g
(1)
k+1(xk)TQ−1

k+1g
(1)
k+1(xk)

}

C =




C1 AT
2 0

A2 C2 AT
3 0

0
.. . . . . . . .

0 AN CN




(12)

In Theorem 3 we will see that equations involving the
matrix C can be inverted in a stable and efficient fash-
ion. This matrix is the Hessian of S̃({xk}, {yk}) with
respect to {yk} where the dependence on {xk} is not ex-
plicitly expressed. We now use this simplified notation
to reformulate the QP subproblem (11). Define the vec-
tor ak ∈ Rn by

ak = ∂y(k)S̃({xj}; {yj})
∣∣∣
T

{yj}={xj}

= Q−1
k [xk − gk(xk−1)] − h

(1)
k (xk)TR−1

k [zk − hk(xk)]

−g
(1)
k+1(xk)TQ−1

k+1[xk+1 − gk+1(xk)]

and define the vector a ∈ RnN , the vector b ∈ R`N , and

the matrix B ∈ R`N×nN by

a =




a1

...

aN


 , b =




f1(x1) − f
(1)
1 (x1)x1

...

fN (xN ) − f
(1)
N (xN )xN




B =




f
(1)
1 (x1) 0

0
.. . 0

0 f
(1)
N (xN )




(13)

The vector a is a representation for the gradient of
S̃({xk}, {yk}) with respect to {yk} at {yk} = {xk}.
The affine approximation to the constraints (3) is given
by b + By ≤ 0 where y ∈ RnN is the column vector
representing {yk}. With this notation, the QP subprob-
lem (11) becomes

minimize 1
2
yTCy + dTy w.r.t. y ∈ RnN

subject to b + By ≤ 0
(14)

where d = a − Cx and x ∈ RnN is the column vector
representing {xk}. This reformulation is obtained from

S̃({xk}; {yk}) =

(1/2)(y − x)TC(y − x) + aT(y − x) + S({xk})

by removing the terms that are constant with respect to
y. Since the matrix C is positive definite (see Theorem 3),
this is a strictly convex QP, and so a unique solution
exists whenever the problem is feasible.

4 Solving the QP Sub-problem

The QP subproblem (14) is solved using an interior point
approach [16,19]. Interior point methods apply a damped
Newton’s method to a relaxation of the Karush-Kuhn-
Tucker (KKT) conditions. The relaxed optimality con-
ditions are themselves optimality conditions for an asso-
ciated relaxed optimization problem. The relaxed sub-
problem uses a log barrier to maintain strict feasibility
(see [13, Chapter 3] for a discussion log barrier methods):

minimize (1/2)yTCy + dTy − µ
∑`N

i=1 log(si) w.r.t

(y, s) ∈ RnN ×R`N
+ subject to s + b + By = 0

(15)

where si ∈ R+ means that si ≥ 0, and µ is the relaxation
parameter. One can show [16] that if the originalproblem
is strictly feasible, i.e., there exists y such that b+By <
0, then a unique solution to problem (15) exists for all
µ > 0. The expression −µ

∑`N
i=1 log(si) in the objective

4



is called a log-barrier term. This term assures that at the
solution (y(µ), s(µ)) to problem (15) one has 0 < s(µ).

The first-order necessary conditions for optimality in
problem (15), or equivalently, the KKT conditions, can
be stated in terms of its Lagrangian function

Lµ(y, s, u) =
1
2
yTCy + dTy − µ

`N∑

i=1

log(si)

+ uT(s + b + By)

where u ∈ R`N
+ is the vector of Lagrange multipliers

corresponding to the constraint s + b + By = 0. These
optimality conditions take the form

0 = ∇uLµ(y, s, u) = s + b + By

0 = ∇yLµ(y, s, u) = Cy + BTu + d

0 = ∇sLµ(y, s, u) = u − µD(s)−1e

(16)

for y ∈ RnN and s, u ∈ R`N
+ , where, for any vector

w ∈ Rq, D(w) ∈ Rq×q denotes the diagonal matrix
with w along its diagonal (i.e., D(w)i,j is wi if i = j
and zero otherwise), and e ∈ R`N is the vector having
all components equal to one. We now transform these
equations into a form that is more convenient for the
application of Newton’s method. Define

Fµ : R`N+nN+`N → R`N+nN+`N

Fµ(s, y, u) =




s + b + By

Cy + BTu + d

D(s)D(u)e − µe




Since problem (15) is a convex program with only poly-
hedral constraints, the point (s, y) solves problem (15)
if and only if there is a multiplier vector u ∈ R`N

+ such
that (s, y, u) solves the KKT conditions (16), or equiva-
lently, Fµ(s, y, u) = 0 [25]. Our solution method for the
QP subproblems (14) uses a predictor-corrector New-
ton’s method to follow the central path

C =

{
[s(µ), y(µ), u(µ)]

∣∣∣∣∣
0 < µ, 0 < s(µ), 0 < u(µ)

Fµ[s(µ), y(µ), u(µ)] = 0

}

as µ decreases to zero. This is the basic idea of the in-
terior point approach, however, the implementation de-
tails that yield an efficient and numerically stable algo-
rithm can be quite delicate. A few of these details are
discussed in the remainder of this section.

Let µ > 0 and (s, y, u) ∈ R`N+nN+`N with 0 < s and
0 < u. The Newton step at (s, y, u) for the function Fµ

is obtained by solving the equation

F (1)
µ (s, y, u)(∆s, ∆y, ∆u)T = −Fµ(s, y, u)

The derivative of Fµ is given by

F (1)
µ (s, y, u) =




I`N B 0

0 C BT

D(u) 0 D(s)




where I`N is the `N × `N identity matrix. Hence, the
Newton iteration becomes



I`N B 0

0 C BT

D(u) 0 D(s)







∆s

∆y

∆u


 =




−s − b − By

−Cy − BTu − d

µe − D(s)D(u)e


(17)

The first row of this equation gives ∆s in terms of ∆y:

∆s = −s − b − B(y + ∆y) (18)

Replacing the bottom row of equation (17) by the bot-
tom row minus D(u) times the top row, we obtain the
reduced set of equations
(

C BT

−D(u)B D(s)

)(
∆y

∆u

)
=

(
−Cy − BTu − d

µe + D(u)(b + By)

)

Replacing the top row by C−1 times the top row

∆y + C−1BT∆u = −y − C−1(BTu + d)

−D(u)B∆y + D(s)∆u = µe + D(u)(b + By)
(19)

The first row of this equation gives ∆y in terms of ∆u:

∆y =−y − C−1[d + BT(u + ∆u)] (20)

Replacing the bottom row of equation (19) by D(u)−1

times the bottom row plus B times the top row, we ob-
tain the reduced equation

[BC−1BT + D(s/u)]∆u =

[µ(e/u) + b − BC−1(BTu + d)]
(21)

where (s/u) ∈ R`N
+ is the vector defined by (s/u)i =

si/ui. Having ∆u, the vector ∆y can be computed using
equation (20), and then ∆s can be computed using equa-
tion (18). Following this approach, a Newton step can
be obtained by successively solving the three equations,

Cz = BTu + d[
BC−1BT + D(s/u)

]
∆u = [µ(e/u) + b − Bz]

Cw = d + BT(u + ∆u)

5



and setting ∆y = −y−w and ∆s = −s−b−B(y+∆y).
That is, we must be able to solve equations involving
the matrices C and [BC−1BT +D(s/u)]. The Sherman-
Morrison-Woodbury formula can be applied to invert
[BC−1BT + D(s/u)] giving the alternative representa-
tion

[BC−1BT + D(s/u)]−1 = D(s/u)−1

−D(s/u)−1B[C + BTD(s/u)−1B]−1BTD(s/u)−1
(22)

Hence, the problem reduces to being able to solve equa-
tions involving matrices of the form C + BTDB, where
D is either zero or positive definite and diagonal. This
can be accomplished using the following theorem.

Theorem 3 Suppose that the matrix C is given by equa-
tion (12). It follows that the matrix C +BTD(s/u)−1B
is symmetric positive definite, and has the same tridiago-
nal block structure as the matrix C. Further suppose that
the sequence of derivatives g

(1)
k (xk−1) for k = 2, . . . , N

are invertible matrices. It follows that, C is positive def-
inite and that, ∆u in equation (21) and ∆y in equa-
tion (20), can be calculated in a numerically stable fash-
ion with O(n3N ) floating point operations using the block
tridiagonal algorithm in [2].

Proof: The matrix BTD(s/u)−1B is symmetric
block diagonal with blocks of size n × n. Hence
C + BTD(s/u)−1B has the same tridiagonal block
structure as the matrix C. The matrix C is the Hessian,
with respect to {yk}, of

S̃({xk}; {yk}) =
N∑

k=1

S̃k(xk, xk−1; yk, yk−1)

and the Hessian, with respect to {yk}, of each
S̃k(xk, xk−1; yk, yk−1) is positive semi-definite since it
is a positive semi-definite quadratic form (see equa-
tion (7) where both g̃k(xk; yk) and h̃k(xk; yk) are affine
with respect to yk). Hence C is symmetric and positive
semi-definite. Given the structure of the blocks in C,
displayed in equation (12), C satisfies the conditions in
[2, Lemma 6] and we can compute ∆y in equation (20).
Hence C is nonsingular and so positive definite. Since
each of the n × n diagonal blocks in BTD(s/u)−1B is
positive semi-definite, C + BTD(s/u)−1B must also be
positive definite. One can now apply equation (22) and
[2, Lemma 6] to solve for ∆u in equation (21).

5 The Constrained QP Algorithm

In the case where the functions {fk}, {gk}, and {hk}
are all affine (their derivatives are constant), the original
problem (5) is equivalent to the QP (14). The algorithm
below terminates at an approximate solution to QP (14)

consisting of a primal vector yp ∈ RnN and Lagrange
multiplier vector up ∈ R`N

+ satisfying

b + Byp ≤ δ , ‖BTup + Cyp + d‖∞ ≤ δ , and

‖up · (b + Byp)‖∞ ≤ δ
(23)

where p is the iteration index and for v ∈ Rq and
w ∈ Rq, v ≤ δ means vi ≤ δ for i = 1, . . . , q, v · w ∈ Rq

is defined by (v · w)i = viwi, and ‖v‖∞ is maximum of
|vi| for i = 1, . . . , q. The convergence criteria (23) cor-
respond to a δ relaxed version of the KKT conditions
for QP (14). These KKT conditions are given by equa-
tion (16) with µ = 0. To be more specific, the first term
in criteria (23) corresponds to a δ relaxation of the fea-
sibility condition b + By ≤ 0, the second term corre-
sponds to a δ relaxation of the Lagrangian stationarity
condition ∇yLµ(y, s, u) = 0, and the third term corre-
spond to a δ relaxation of the complementarity condition
u · (b + By) = 0.

The algorithm below solves the QP (14). It is a naive
implementation of the interior point method. In the al-
gorithm, scalar and function iterates are subscripted by
the iteration counter p while vector iterates are super-
scripted by p. Given a vector w, max(w) denotes the
maximum component of w, and ‖w‖2 denotes the square
root of the sum of squares of the components of w.

The following is a list of the inputs to the algorithm
below: the convergence tolerance δ > 0, the quadratic
factor in the objective C ∈ RnN×nN , the linear factor
in the objective d ∈ RnN , the constant term in the in-
equality constraint b ∈ R`N , and the linear factor in the
inequality constraint B ∈ R`N×nN .

Algorithm 4 Inequality Constrained Affine Smoother

(1) Initialization: Let y0 ∈ RnN be the solution to
the unconstrained problem; i.e., y0 = −C−1d. If
max(b + By0) ≤ δ, set u0 = 0 and return (y0, u0)
(the convergence criteria (23) are satisfied by this
pair). Otherwise set p = 0 , µ0 = max(b + By0) ,
and s0 = u0 =

√
µ0e.

(2) Solve the following equation for ∆sp, ∆yp, ∆up

0 = Fµ(p)(sp, yp, up)

+F
(1)
µ(p)(s

p, yp, up)(∆sp , ∆yp , ∆up)T

(3) Compute the largest step size βp less than or equal
to 1 such that sp+βp∆sp ≥ sp/10 and up+βp∆up ≥
up/10. This is calculated as follows

αp = max(max(−∆sp/sp), max(−∆up/up))

βp =

{
1 if αp ≤ 0.9

0.9/αp otherwise
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(4) Compute the line search parameter λp, new iterates
sp+1, yp+1, up+1, and penalty parameter µp+1

Gp(λ) =

‖Fµ(p)(sp + λ∆sp , yp + λ∆yp , up + λ∆up)‖2
2

λp = max{ βp2−q | q ∈ Z+ and

Gp(βp2−q) ≤ (1 − βp2−q/10)Gp(0) }

where Z+ is the nonnegative integers. Set sp+1 =
sp + λp∆sp , yp+1 = yp + λp∆yp , and up+1 =
up + λp∆up . If mod(p, 3) = 1 then µp+1 = µp else
µp+1 = µp/10.

(5) Set p = p + 1. If the convergence criteria (23) are
satisfied, return yp, up; otherwise go to step 2.

6 The Unconstrained Nonlinear Algorithm

As an introduction to Algorithm 6 below, we first present
an unconstrained version. The unconstrained version of
problem (5) is

minimize S({xk}) w.r.t. {xk}

We solve this problem by iteratively solving different
versions of an approximating QP. This is similar to the
Gauss-Newton method in [1], except that a line search
is included to ensure global convergence; see Theorem 9.
The unconstrained QP that approximates the problem
above near {xk} is minimize S̃({xk}; {yk}) with respect
to {yk} which is equivalent to

minimize 1
2yTCy + dTy w.r.t. y ∈ RnN (24)

where C and d are the same as in problem (14); i.e., a is
defined by equation (13), C is defined by equation (12),
x ∈ RnN is the column vector representing {xk}, and
d = a−Cx. The solution of the QP (24) is y = −C−1d.
This can be computed in a numerically stable fashion,
with O(n3N ) floating point operations, using the block
tridiagonal algorithm in [2]. The unconstrained first or-
der convergence criteria is

‖∂x(k)S({xp
j})‖∞ ≤ ε (k = 1, · · · , N ) (25)

The inputs to the unconstrained algorithm are as follows
(values with subscript k are known for all k): the con-
vergence tolerance ε, the dynamical model gk in equa-
tion (1), the measurement model hk in equation (1), the
measurement values zk in equation (1), the dynamics
covariance Qk in equation (2), the measurement covari-
ance Rk in equation (2), and the starting state vector
for the optimization process x0

k ∈ Rn.

Algorithm 5 Unconstrained Nonlinear Smoother

(1) Initialization: Set the iteration counter p = 0.
(2) Affine approximation: Substitute {xp

k} for {xk} in
equations (12), (13) and let Cp and dp be the cor-
responding values for C, d in QP (24).

(3) Let yp = −(Cp)−1dp.
(4) If the convergence criteria (25) is satisfied, return

xp as the solution.
(5) Compute the line search step size λp as follows:

ηp = (ap)T(yp − xp) , Hp(λ) = S[xp + λ(yp − xp)]

λp = max{ 2−q | q ∈ Z+ and

Hp(2−q) − Hp(0) ≤ 2−qηp/10 }

(6) Set xp+1 = xp +λp(yp −xp), then set p = p+1 and
go to step 2.

7 The Constrained Nonlinear Algorithm

Given a termination tolerance ε, the termination criteria
for the general nonlinear problem are based on the KKT
conditions for problem (5). Specifically, the algorithm
terminates at a primal vector xp ∈ RnN and Lagrange
multiplier vector up ∈ R`N

+ such that for k = 1, . . . , N

fk(xp
k) ≤ ε , ‖up

k · fk(xp
k)‖∞ ≤ ε and

‖(up
k)Tf

(1)
k (xp

k) + ∂x(k)S({xp
j})‖∞ ≤ ε

(26)

where the sequence {xp
k}with each xp

k ∈ Rn corresponds
to the vector xp ∈ RnN and {up

k} with each up
k ∈ R`

corresponds to the vector up ∈ R`N .

Given a vector w ∈ Rq , we use max(0, w) ∈ Rq to de-
note the vector with i-th component equal to max(0, wi).
Given a x ∈ RnN , the `1 distance from the constraint
function values {fk(xk)} to the constraint set is

φ(x) =
N∑

k=1

∑̀

i=1

max[fk(xk)i, 0]

and its approximation is given by

φ̃(x; y) =
N∑

k=1

∑̀

i=1

max[f̃k(xk; yk)i, 0]

The algorithm below solves the nonlinear problem (5).
The inputs to this algorithm are the same as for uncon-
strained algorithm in Section (6) with the addition of
the constraint functions fk : Rn → R` for k = 1, . . . , N .

Algorithm 6 InequalityConstrained Nonlinear Smoother

(1) Initialization: Set the iteration counter p = 0 and
the initial penalty parameter α0 = 0.
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(2) Affine approximation: Substitute {xp
k} for {xk} in

equations (12), (13) and let ap, bp, Bp, Cp, and dp

be the corresponding values for a, b, B, C, and d in
QP (14).

(3) Solve this QP using Algorithm 4 with inputs δ =
ε×10−2, C = Cp, d = dp, b = bp, and B = Bp. Let
yp and up be the resulting solution.

(4) If the convergence criteria (26) are satisfied, return
xp, up as the solution.

(5) If αp > 0, set α̂p = αp; otherwise, α̂p = ‖up‖∞.
Define the value

ζp = (yp − xp)TCp(yp − xp) + (ap)T(yp − xp)

If ζp ≤ α̂pφ(xp), set αp+1 = α̂p; otherwise, αp+1 =
max[ζp/φ(xp) , 2α̂p].

(6) Compute the line search step size λp as follows:

ηp = (ap)T(yp − xp) + αp+1[φ̃(xp; yp) − φ(xp)]

Hp(λ) = S[xp + λ(yp − xp)]

+αp+1φ[xp + λ(yp − xp)]

λp = max{ 2−q | q ∈ Z+ and

Hp(2−q) − Hp(0) ≤ 2−qηp/10 }

(7) Set xp+1 = xp +λp(yp −xp), then set p = p+1 and
go to step 2.

Remark 7 This algorithm can be generalized using the
model algorithm in [5]. One natural extension considers
the case where the subproblems do not have feasible so-
lutions. In addition, the convergence theory in [5] can be
extended to the case where the subproblems are not solved
exactly; i.e., δ > 0; see [6, Section 7, Remark 6].

Lemma 8 Suppose ε = 0, all the quadratic subproblems
in step 2 have feasible solutions, and the corresponding
sequence {yp} is bounded. Then Algorithm 6 is a spe-
cial case of the model algorithm in [5, Section 4], the
sequences {xp} and {Cp} are bounded, and {Cp} is con-
tained in a compact set of real symmetric positive definite
matrices. (See proof in Appendix.)

The convergence result in Theorem 9 below requires the
use of the constraint qualification given in [5, Defini-
tion 5.1]. This constraint qualification is a modest ex-
tension of the well-known Mangasarian-Fromowitz con-
straint qualification (MFCQ) [19, Definition 12.6]. The
extension allows the application of the condition to in-
feasible as well as feasible points, and is equivalent to
the MFCQ at feasible points. For this reason we refer to
this extension as the Mangasarian-Fromowitz constraint
qualification. However, we mention that there are many
possible extensions of the Mangasarian-Fromowitz con-
straint qualification to non-feasible points. For example,
generalizations that exploit the geometry induced by a
specific choice of norm are given in [6, Definition 9.1].

MFCQ: Problem (5) can be written as

minimize S(x) w.r.t. x ∈ RnN subject to f(x) ≤ 0

A point x̂ ∈ RnN satisfies the Mangasarian-Fromowitz
Constraint Qualification for this problem if there is a
direction ŵ ∈ RnN such that if i ∈ {1, . . . , `N} and
fi(x̂) ≥ 0 then f

(1)
i (x̂)ŵ < 0.

A point x̂ is a cluster point of the sequence {xp} if for
every ε > 0 there are infinitely many indices p such that
|xp − x̂| < ε.

Theorem 9 Suppose ε = 0, all the quadratic subprob-
lems in step 2 have feasible solutions, the corresponding
sequence {yp} is bounded, and every cluster point of {xp}
satisfies the MFCQ. Then the sequence {xp} is bounded
and each of its cluster points is a KKT point for prob-
lem (5), i.e. satisfies convergence criteria (26) for some
vector of Lagrange multipliers. (See proof in Appendix.)

8 Affine Example

We consider the problem of estimating an unknown func-
tion from a finite set of noisy measurements of the func-
tion’s value. For the purpose of simulating the measure-
ments {zk}, the function’s derivative X1(t) and its value
X2(t) are given by

X(t) = [ − cos(t) , − sin(t) ]T

Our model for this unknown function is given by the
stochastic differential equation (see [20] or [10])

dX(t) = FX(t) dt + G dB(t) (27)

where B(t) is Brownian motion and

F =

(
0 0

1 0

)
, G =

(
1

0

)

Thus the X1(t) is equal to B(t) plus a constant of in-
tegration and X2(t) is just the integral of X1(t). This
model is often used to describe signals that are known
to be smooth (but nothing more). In particular, it forms
the basis for a Bayesian interpretation of cubic smooth-
ing splines. The problem of reconstructing X2(t) from a
finite set of noisy direct measurements, subject to linear
inequality constraints, is considered in [29, Section 9.4].
The interior point Kalman smoother presented above
solves this problem efficiently with the number of oper-
ations scaling linearly with the number of observation
time points.

For s ≤ t, let P (t|s) denote the covariance of X(t) given
the value of X(s). In general, when F , G are constant
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matrices and B(t) is Brownian motion with identity ma-
trix covariance per unit time, the covariance P (t|s) sat-
isfies a differential Lyapunov equation (see [14, page 133
equation 4.138]). To be more specific, the covariance of
the state at time t, conditioned on state value at time s,
and prior to knowing the system output measurements,
satisfies the differential Lyapunov equation

P (s|s) = 0 and ∂tP (t|s) = FP (t|s) + P (t|s)FT + GGT

For our particular choice of F and B,

∂tP (t|s) =

(
0 0

1 0

)
P (t|s) + P (t|s)

(
0 1

0 0

)
+

(
1 0

0 0

)

=

(
1 P1,1(t|s)

P1,1(t|s) P1,2(t|s) + P2,1(t|s)

)

P (t|s) =

(
(t − s) (t − s)2/2

(t − s)2/2 (t − s)3/3

)

In this example, ∆t is constant between time points.
Thus, the dynamical model for k > 1 is represented by
gk : R2 → R2 and Qk ∈ R2×2 where

gk(xk−1) = (x1,k−1 , x2,k−1 + x1,k−1∆t)T

Qk =

(
∆t ∆t2/2

∆t2/2 ∆t3/3

)

The initial state estimate is given by g1(x0) = X(t1)
and Q1 = 100I2 where I2 is the two by two identity
matrix. The covariance of the initial state estimate is
large so that it has no noticeable affect on the resulting
fit. The measurement variance σ2 is also constant. Direct
measurements of X2(t) are represented by hk : R2 → R1

and Rk ∈ R1×1 where

hk(xk) = x2,k , Rk = σ2

The function X(t) satisfies −1 ≤ X1(t) ≤ 1 and −1 ≤
X2(t) ≤ 1. We require that the estimate of X(t) satisfy
the same constraints which we represent by fk(xk) ≤ 0
where fk : R2 → R4 is defined by

fk(xk) = (−x1,k − 1, x1,k − 1, −x2,k − 1, x2,k − 1)T

The specifications for the example are completed by :
the number of measurement times N = 50, the spacing
between time points ∆t = 2π/N , the time correspond-
ing to k-th measurement tk = k∆t, the standard devi-
ation of the measurement noise σ = .5, the simulated
measurement noise vk ∼ N(0, Rk), and the simulated
measurement values zk = hk[X(tk)] + vk.

The results of fitting a typical realization are plotted in
Figure 1 where circles denote the noisy measurements

0 1 2 3 4 5 6

−
1
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Affine Kalman−Bucy Smoother
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free
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Fig. 1. Measurement values (meas), simulated function
(true), constrained estimate (con), unconstrained estimate
(free), and estimate bounds (bound)

and the solid lines denote the constraints. We can see
the beneficial effect of the constraints: notice that the
constrained estimate (long dashed-line) is much closer
to the true function (dotted line) when compared with
the unconstrained estimate (short dashed-line). The un-
constrained estimate is the initial state sequence used
during the optimization process to determine the con-
strained estimate; i.e., y0 in step 1 of Algorithm 4. We
also note that this initial state sequence is not feasible.

9 Nonlinear Example

Consider the problem of tracking a ship traveling close
to shore where we are given distance measurements from
two fixed stations to the ship as well as the location of
the shoreline. The corresponding measurement functions
{hk} are not affine because the distance is not affine
with respect to the position of the ship. In addition, the
corresponding constraint functions {fk} are not affine
because the shoreline is not a straight line. For the pur-
pose of simulating the measurements {zk}, the ship ve-
locity [X1(t), X3(t)] and the ship position [X2(t), X4(t)]
are given by

X(t) = [ 1 , t , − cos(t) , 1.3 − sin(t) ]T

We model the ship velocity components as independent
Brownian motions plus an initial velocity, and the po-
sition of the ship as the integral of the velocity plus an
initial location. This example also uses a constant spac-
ing ∆t between time points. The dynamical model for
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k > 1 is given by gk : R4 → R4, Qk ∈ R4×4 where

gk(xk−1) = (x1,k−1 ,

x2,k−1 + x1,k−1∆t , x3,k−1 , x4,k−1 + x4,k−1∆t)T

Qk =




∆t ∆t2/2 0 0

∆t2/2 ∆t3/3 0 0

0 0 ∆t ∆t2/2

0 0 ∆t2/2 ∆t3/3




The initial state estimate is given by g1(x0) = X(t1) and
Q1 = 100I4 where I4 is the four by four identity matrix.
The measurement variance is constant for this example
and is denoted by σ2. The distance measurements are
made from two stationary locations on shore. One is
located at (0, 0)T and the other is located at (2π, 0)T.
These distance measurements are represented by hk :
R4 → R2 and Rk ∈ R2×2 where

hk(xk) =




√
x2

2,k + x2
4,k√

(x2,k − 2π)2 + x2
4,k


 , Rk =

(
σ2 0

0 σ2

)

We know that the ship does not cross land and so
X4(t) ≥ 1.25 − sin[X2(t)]. This information is repre-
sented by fk(xk) ≤ 0 where fk : R4 → R1 is defined by

fk(xk) = 1.25− sin(x2,k) − x4,k

The specifications for this example are completed by :
the number of measurement times N = 50, the spacing
between time points ∆t = 2π/N , the time correspond-
ing to k-th measurement tk = k∆t, the standard devi-
ation of the measurement noise σ = .25, the simulated
measurement noise vk ∼ N(0, Rk), and the simulated
measurement values zk = hk[X(tk)] + vk.

Our choice for the initial state sequence for the optimiza-
tion process is given by x0

1,k = 0, x0
2,k = 0, x0

3,k = 0,
and x0

4,k = 1. It follows that, for k = 1, . . . , N , the cor-
responding value for the constraint function is

fk(x0
k) = 1.25− sin(x2,k) − x4,k = .25 > 0

Thus, the initial state vector for this example problem
is not feasible. The results of fitting a typical realization
are now plotted in Figure 2 with the same conventions as
adopted in Figure 1 (except that measurements are not
reported in Figure 2). The beneficial effect of including
the constraints similar to those in Figure 1.

10 Conclusions

In many situations, certain information about a dy-
namical system is most naturally represented using
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Fig. 2. Simulated function (true), constrained estimate (con),
and unconstrained estimate (free), estimate bound (bound)

constraints. Including such information can compensate
for model approximation errors and greatly improve the
state estimates. Strategies for including equality con-
straints can be found in the literature. However, han-
dling inequality constraints is a much harder problem
due to the complexity of identifying those constraints
that are active at the solution (e.g. see [9, equation (25)]).
Nonetheless, estimates that respect inequality con-
straints may be crucial; e.g., [3,9,11,18,21,24,27,28,34].
In this paper we have shown how interior point methods
can be applied to maximize the Kalman-Bucy smoother
likelihood subject to nonlinear inequality constraints.
A key contribution of this approach is that it exploits
the same decomposition that is used for unconstrained
Kalman-Bucy smoothers and so the required operations
scale linearly with the number of measurements. Interior
point methods allow for efficient and highly accurate
solution of the QP subproblem (14). Possible future
enhancements may be obtained by applying more so-
phisticated techniques from the interior point literature
and by improving robustness as suggested in Remark 7.

Matlab code and documentation for the algorithms can
be found at the address below. If your browser does not
support MathML, use ckbs.xml instead of ckbs.xml.
http://www.seanet.com/∼bradbell/ckbs/ckbs.xml

Appendix

Proof of Lemma 8: Let θ be a bound for x0 and the
sequence {yp}; i.e., ‖x0‖2 ≤ θ and ‖yp‖2 ≤ θ. We show
by induction that ‖xp‖ ≤ θ for all p. It is true for p = 0 so
assume it is true for some index p. It follows from step 7
that xp+1 is a convex combination of xp and yp. It now
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follows that ‖xp+1‖2 ≤ θ. This completes the induction
and shows that the sequence {xp} is bounded.

In what follows, we use Model algorithm to refer to the
model algorithm in [5, Section 4]. We use ‖w‖1 to de-
note the `1 norm of w; i.e., ‖w‖1 =

∑q
i=1 |wi| The table

below lists the notational correspondence between the
Model algorithm in [5] and Algorithm 6. In the table,
Pαi is an abbreviation for Pαi(xi + λdi) and f(x)+ is an
abbreviation for max[f(x), 0].

Model Algo 6 Description

xi xp state sequence for this iterate

αi αp penalty parameter

f(xi) S(xp) objective function

g(xi) f(xp) inequality constraint function

h(xi) none equality constraint function

∇f(xi) ap gradient of objective

Hi Cp subproblem quadratic factor

r1(xi) 0 constraint feasibility factor

‖w‖ ‖w‖1 the `1 norm of w

‖w‖0 ‖w‖∞ the `∞ norm of w

R0(x) f(x)+ constraint violation

βi β subproblem trust region radius

−∆(xi, σi) φ(xp) `1 norm of constraint violation

di yp − xp line search direction

Pαi Hp(λ) penalty function

λi λp line search parameter

By equation (10), and the definition of yp in step 3 of
Algorithm 6, wp = yp − xp solves the QP

minimize 1
2wTCw + S(1)(xp)w w.r.t. w ∈ RnN

subject to f(xp) + f (1)(xp)w ≤ 0

The sequence {wp} is bounded, because both {yp} and
{xp} are bounded. Thus wp also solves the QP above
with the additional constraint β ≥ ‖w‖1 for some suffi-
ciently large and fixed value of β. Therefore the problems
in step 3 are instances of the QP subproblems referred
to as Q(xi, Hi, σi, βi) in the Model algorithm.

The boundedness of {xp}, implies that there is a compact
set Ω ⊂ RnN such that xp ∈ Ω for all p. We define the
mapping ω : Ω → RnN×nN by ω(x) is the matrix C
that corresponds to x in equation (12). It follows from
Theorem 3 that each C ∈ ω(Ω) is positive definite. It
follows from the continuity of ω(x) that ω(Ω) is compact.

Thus, the sequence {Cp} is contained in the compact set
of real symmetric positive definite matrices ω(Ω).

In step 5 the value α̂p is used to initialize the first non-
zero value of αp. To be specific, the first non-zero multi-
plier vector up is used to set the first non-zero value of
αp. It follows from ε = 0, that δ = 0 which implies that
the subproblem is solved exactly; hence φ̃(xp, yp) = 0.
It now follows that the formulas for αp+1 are the same
as in step (3) of the Model algorithm.

Using the fact that δ = 0 and yp solves the QP in step 3,
we conclude that φ̃(xp; yp) = 0 and in step 6 we have

ηp = ap(yp − xp) − αp+1φ(xp)

As a special case of the Model algorithm, we can choose
its values γ1 = 1, γ2 = 1/2, and µ1 = µ2 = 1/10. Note
that if λp < γ1,

Hp(1) − Hp(0) > µ2ηp

It follows that the procedure for choosing λp in step 6
is an instance of step (4) of the Model algorithm (where
λ̄i = λi/γ2 in step (4) of the Model algorithm). There-
fore, Algorithm 6 is a special case of the Model algo-
rithm.

Proof of Theorem 9: The hypotheses of Lemma 8 are
satisfied, hence the sequence {xp} is bounded. Let x̂ be a
cluster point for {xp} and let J ⊂ Z+ be a subsequence
for which xp J→ x̂. The point x̂ can not be a Fritz John
point (in the sense of [5]) because the MFCQ is satisfied
at x̂. We note that for all x, S(x) ≥ 0, φ(x) ≥ 0. It follows
that for all p and λ, Hp(λ) ≥ 0. Hence, [5, Theorem 6.1,
Case (2)-(a)] is not possible.

Case 1: Suppose that x̂ is not feasible. It follows that
it cannot be a stationary point for the penalty function
φ(x) [5, Theorem 5.1, Case (2)]. It now follows from [5,
Corollary 6.1] that the sequence of penalty parameters
{αp} is bounded. It follows that [5, Theorem 6.1, Case
(1)] and [5, Theorem 6.1, Case (2)-(b)] are not possible.
Thus, by [5, Theorem 6.1, Case (2)-(c)] we conclude that
x̂ must be feasible.

Case 2: Suppose the sequence {αp} is not bounded.
This sequence is monotone increasing and hence there
must be a cluster point x̂ for the set {xp : αp < αp+1}.
It follows from [5, Corollary 6.1] that x̂ is a not feasible,
but this contradicts the conclusion for Case 1 above.

Case 3: Since neither Case 1 or Case 2 can occur, we con-
clude that x̂ is feasible and the sequence {αp} is bounded.
It follows that [5, Theorem 6.1, Case (1)] and [5, Theo-
rem 6.1, Case (2)-(b)] are not possible. Thus, by [5, The-
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orem 6.1, Case (2)-(c)] we conclude that (yp − xp) → 0,
φ(xp) → 0, and

S(1)(xp) + (wp)Tf (1)(xp) → 0

where wp is any Lagrange multiplier for the correspond-
ing QP in step 3. Any multiplier for the subproblem must
satisfy the corresponding complementarity condition

‖wp · f̃(xp; yp)‖∞ = 0

It follows from [5, Theorem 5.1, Item (4)] that we can
choose the multipliers wp to be bounded in a neigh-
borhood of x̂. There is a further subsequence of indices
K ⊂ J , and a multiplier value ŵ, such that xp K→ x̂ and
wp K→ ŵ. It follows that f̃ (xp; yp) K→ f(x̂), f(x̂) ≤ 0,
‖ŵTf (1)(x̂) + S(1)(x̂)‖∞ = 0, and ‖ŵ · f(x̂)‖∞ = 0; i.e.,
x̂ is a KKT point for problem (5).
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