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Abstract: Kalman smoothers obtain state estimates in a system with stochastic dynamics
and measurement noise. We consider the smoothing problem in a distributed setting, present a
cooperative smoothing algorithm for Gauss-Markov linear models, and provide a convergence
analysis for the algorithm. An extension of the algorithm that maximizes the likelihood with
respect to a sequence of state vectors subject to inequality constraints, e.g. positivity conditions,
is also described. Finally, a numerical experiment regarding cubic spline regression is included
to test the new approach.
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1. INTRODUCTION

Distributed estimation on graphical models, such as
Markov networks, is an important subject of research in
many scientific fields such as bioinformatics and signal
processing (Jordan, 1998; Rue and Held, 2005). Popular
methods for inference on such structures include e.g. junc-
tion tree algorithms and variational methods as described
in (Wainwright and Jordan, 2008) as well as Markov chain
Monte Carlo methods (Gilks et al., 1996; Hastings, 1970).

We consider simple graphical models representing state
space models underlying Kalman smoothing. In particu-
lar, we study the problem of reconstructing the state of
a Gauss-Markov linear system via a decentralized opti-
mization scheme. The problem of distributed filtering and
smoothing has been studied in the context of a sensor
network by assuming that each node can measure a state
which is common to all the measurements devices, e.g.
a scalar signal evolving over time (Alriksson and Rantzer,
2006; Schizas et al., 2007; Speranzon et al., 2006). The aim
of each node is to achieve a local state estimate by suit-
ably combining its own measurements and the estimates
coming from its neighbors. Such approaches rely upon e.g.
consensus strategies (Carli et al., 2007) and optimization
techniques such as alternating-direction methods and aug-
mented Lagrangians (Schizas et al., 2008). Conversely, we
assume that the nodes can be ordered in time or space
and have access to noisy measurements relative to different
but correlated states. The goal of each node is to compute
the minimum variance estimate of its state conditional on
the overall data acquired by the network. The problem
could be solved by resorting to the well known Mayne-
Fraser two-filter or the Rauch-Tung-Striebel algorithm,
which are however essentially serial in nature (Gelb, 1974).
An interesting parallel smoothing scheme can instead be
found in (Tewfik et al., 1990). However, in our context this

algorithm, after a series of parallel processing of data in
subintervals, would require a serial and expensive exchange
of information between all the nodes of the network. The
distributed smoother presented in this paper is different
since it is an iterative scheme where information exchange
is limited to nodes which are close to each other. In
addition, we show how interior point approaches (Fiacco
and McCormick, 1990; Bell et al., 2009) can be exploited
to provide an efficient solution also to the problem of
distributed smoothing with states subject to inequality
constraints, e.g. positivity conditions.

The paper is organized as follows. In section 2, the es-
timation problem is stated. In section 3, the distributed
smoothing algorithm is presented. In section 4, the in-
equality constrained version is discussed. In section 5, we
provide a convergence analysis of the algorithm by deriving
explicitly the matrix which regulates the dynamics of the
error, i.e. the distance between estimate and minimum
variance one as a function of iterations number. In sec-
tion 6 we discuss the dynamics of our smoother in presence
of node failures in the network. In section 7, a numerical
example regarding the reconstruction of a function and its
derivative via cubic smoothing splines is used to test the
new algorithm and the theoretical findings. Some conclu-
sions then end the paper.

2. PROBLEM DESCRIPTION

We are given the information in Fig. 1 where the subscript
k denotes the node index. The functions hk and gk in Fig. 1
are affine; i.e., there are know matrices Hk ∈ Rm(k)×n and
Gk ∈ Rn×n such that

hk(xk) = hk(0) + Hkxk

gk(xk−1) = gk(0) + Gkxk−1

We use xk to denote the state at index k = 1, . . . N .
There is no state x0, G0 = 0, and g0(x0) plays the role of



n dimension of state vector xk

N Number of nodes; i.e. k = 1, . . . , N
m(k) number of components in measure zk

zk measurement, zk ∈ Rm(k)

p Number of groups working in parallel, p ∈ Z+

Qk Transition variance, Qk ∈ Rn×n

Rk Measurement variance, Rk ∈ Rm(k)×m(k)

gk Transition function, gk : Rn → Rn

hk Measurement function, hk : Rn → Rm(k)

ε Algorithm convergence criteria

Fig. 1. Known values that define the problem

the initial state estimate for x1. We assume the following
statistical model:

xk = gk(xk−1) + wk, wk ∼ N[0, Qk]
zk = hk(xk) + vk, vk ∼ N[0, Rk]

where {vk}∪{wk} are all mutually independent. We define
the following terms

J = (N − 1)/p
K(j) = 1 + (j − 1)J (j = 1, · · · , p + 1)
L(j) = 1 + J/2 + (j − 1)J (j = 0, · · · , p + 1)

Let X denote the entire state sequence {xk : k =
1, . . . , N}. We use the following notation for specific sub-
sets of the state sequence:

XK = {xK(1), xK(2), . . . , xK(p+1)}
XL = {xL(1), xL(2), . . . , xL(p)}

XK(j,k) = {xK(j), xK(k)}
XL(j,k) = {xL(j), xL(k)}

In the case where j = 0 (k = p+1), the corresponding xL(j)

(xL(k)) is not included in the set XL(j,k). Let Z = {zk :
k = 1, . . . , N}. We introduce a different type of subsets
of Z ‘contained’ between, and not including, the indices j
and k,

ZK(j,k) = {zK(j)+1, · · · , zK(k)−1}
ZL(j,k) = {zL(j)+1, · · · , zL(k)−1}

As before, indices that are not between one and N are not
included; i.e., the cases j = 0 and k = p + 1 have the
following definitions for ZL(j,k)

ZL(0,k) = {z1, z2, · · · , zL(k)−1}
ZL(j,p+1) = {zL(j)+1, · · · , zN−1, zN}

3. ALGORITHM

In the sequel, vectors are column vectors and E[·] denotes
the expectation operator. In addition, given the random
vectors Y and W , V[Y,W ] is their covariance; i.e.,

V[Y,W ] = E
[
(Y −E[Y ])(W −E[W ])T

]

and we use the notation V[Y ] = V[Y, Y ]. The distributed
smoothing algorithm is defined below:

(1) Set ` = 0 and X0
K as follows, for j = 1, . . . , p + 1,

x0
K(j) = E[xK(j) | ZL(j−1,j)]

(2) Compute X`+1
L = E[XL | Z , XK = X`

K ].
(3) Compute X`+2

K = E[XK | Z , XL = X`+1
L ].

(4) If |x`+2
K(j) − x`

K(j)| ≤ ε for all j = 1, . . . , p + 1,

return E[xk | Z , XK = X`+2
K ]

as the state estimate for k = 1, . . . , N .
(5) Set ` = ` + 2 and go to step 2

It follows from the Markov property for the state sequence
that

E[xL(j) | Z , XK ]
= E[xL(j) | ZK(j,j+1) , XK(j,j+1)]

(1)

E[xK(j) | Z , XL]
= E[xK(j) | ZL(j−1,j) , XL(j−1,j)]

(2)

In view of the above equations, the expectation in Step 2
can be computed using p parallel procedures. Each of these
parallel procedures solves a smoothing problem over a set
of J nodes where the state at the boundaries of the set of
nodes is given. The computational complexity of each of
these parallel procedures is O(Jn3). A similar conclusion
holds for the expectations in Step 3 and Step 4.

4. CONSTRAINED SMOOTHING

Because the functions hk and gk are affine, the minimum
variance algorithm above also minimizes the following sum
of squares function

S(X) =
1
2

N∑

k=1

[zk − hk(xk)]TR−1
k [zk − hk(xk)]

+ [xk − gk(xk−1)]TQ−1
k [xk − gk(xk−1)]

Because it is convex, optimizing this function is equivalent
to solving the first order necessary condition ∇S(X) = 0.
Using (Bell et al., 2009, eq. 6), ∇S(X) = 0 is equivalent
to, for k = 1, . . . , N

0 = [xk − gk(0)−Gkxk−1]TQ−1
k

− [zk − hk(0)−Hkxk]TR−1
k Hk

− [xk+1 − gk+1(0)−Gk+1xk]TQ−1
k+1Gk+1

which is a set of linear N equations with respect to xk for
k = 1, . . . N . Defining the terms

bk = Q−1
k gk(0) + HT

k R−1
k [zk − hk(0)]−GT

k+1Q
−1
k+1gk+1(0)

Ak =−Q−1
k Gk , AN+1 = 0 (3)

Ck = Q−1
k + HT

k R−1
k Hk + GT

k+1Q
−1
k+1Gk+1

Proposition 4.1. Suppose that Ak, Bk, Ck are defined as
in equation (3). It follows that the distributed algorithm
above solves the following linear equations for the values
of x1, . . . , xN :

bk = Akxk−1 + Ckxk + AT
k+1xk+1 (k = 1, . . . , N)

Suppose that for k = 1, . . . , N , Uk ∈ Rn×n is symmetric
positive definite and uk ∈ Rn×n is an arbitrary vector. We
define the extended measurement function and measure
vector by

h̄k(xk) =
(

xk

hk(xk)

)
, z̄k =

(
uk

zk

)
, R̄k =

(
Uk 0
0 Rk

)

Proposition 4.2. Suppose that Ak, bk, Ck are defined as
in equation (3). If we apply the distributed smoother
algorithm to the extended measure model corresponding
to h̄k, z̄k, and R̄k defined above, it will solve the following
linear equations for the values of x1, . . . , xN :

bk + U−1
k uk = Akxk−1 + [Ck + Uk]xk + AT

k+1xk+1

for k = 1, . . . , N

Suppose that we want to solve the affine inequality con-
strained smoother problem

minimize S(X) w.r.t X
subject to fk(xk) ≤ 0 (k = 1, . . . , N)



where fk : Rn → Rp is affine; i.e., f(xk) = f(0) + Fkxk

for some Fk ∈ Rp×n. This is equivalent to (Bell et al.,
2009, problem 11) (where xk = 0 in problem 11 and yk in
problem 11 corresponds to xk above). In Bell et al. (2009)
it has been shown, by using interior point methods, that
the solution of this problem calls for solving the following
linear equations for the value of x1, . . . , xN :

ak = Akxk−1 + [Ck + FkDkFk]xk + AT
k+1xk+1

for k = 1, . . . , N , where ak ∈ Rn is arbitrary and Dk

is a diagonal matrix with positive elements along the
diagonal. (Using the notation in Bell et al. (2009) this
will enable us to multiply the term [C + BTD(s/u)B]−1

in (Bell et al., 2009, equation 22) by an arbitrary vector.)
Setting Uk = FkDkFk and uk = Uk(ak− bk) we see by the
previous proposition that we can in fact use the distributed
smoother to solve the linear equations necessary for the
constrained problem.

5. CONVERGENCE ANALYSIS

The following lemma reports well known formulas about
joint Gaussian vectors, see e.g. (Anderson and Moore,
1979).
Lemma 1. If Y,W are jointly Gaussian random variates,
it holds that

E(Y |W ) = E(Y ) + V(Y, W )V(W )−1[W −E(W )] (4)

V(Y |W ) = V(Y )−V(Y, W )V(W )−1V(W,Y ) (5)

For future developments, it is useful to define the following
notation

Ξj = V
(
xK(j), XL(j−1,j) | ZL(j−1,j)

)

×V
(
XL(j−1,j) | ZL(j−1,j)

)−1
, j = 1, . . . , p + 1

Πj = V
(
xL(j), XK(j,j+1) | ZK(j,j+1)

)

×V
(
XK(j,j+1) | ZK(j,j+1)

)−1
, j = 1, . . . , p

These matrices can be computed using (5) (for large values
of J it may be more efficient and computationally stable
to use (Bell and Pillonetto, 2008, corollary 7)).

We use δ`
K = X`

K −E[XK |Z] to denote the error for even
values of `. We also use δ`

K(j,k) for the column vector

δ`
K(j,k) = (δ`

K(j), δ
`
K(k))

T

We use a similar notation for δ`
L.

We define matrices E1, E2, . . . , Ep+1, where Ej ∈ Rn×2n

if j ∈ {1, p + 1} and Ej ∈ Rn×3n otherwise. The block-
tridiagonal matrix Γ associated with {Ej} is such that
E1 specifies the nonzero-entries in the first n rows, E2

the nonzero-entries in the second n rows and so on. The
next proposition characterizes the error dynamics of the
distributed smoothing algorithm.
Proposition 5.1. Let Γ be the block-tridiagonal matrix
associated with the blocks

E1 = Ξ1Π1

Ej = Ξj

(
Πj−1 0n×n

0n×n Πj

)
j = 2, . . . , p

Ep+1 = Ξp+1Πp

Then, it holds that

(1) the error dynamics of the distributed smoothing al-
gorithm at the nodes {K(j)} are regulated by the
equation

δ`+2
K = Γδ`

K (6)
(2) Γ is asymptotically stable, i.e. all its eigenvalues are

inside the complex unit circle

Proof: Let’s start focusing on the error propagation at a
generic node K(j), with 1 < j < p + 1, when ` is 0 or an
even number. Step 2 of the algorithm computes

X`+1
L = E[XL | Z , XK = X`

K ]
by means of local computations; see (1). Exploiting (4),
with Y = xL(j) and W = XK(j,j+1) and both conditional
on ZK(j,j+1), the linear projection (1) admits the following
decomposition

E[xL(j) | ZK(j,j+1) , XK(j,j+1)] = E[xL(j) | ZK(j,j+1)]
+V(xL(j), XK(j,j+1) | ZK(j,j+1))
×V−1(XK(j,j+1) | ZK(j,j+1))
× (

XK(j,j+1) −E[XK(j,j+1) | ZK(j,j+1)]
)

Using our definition for Πj , this becomes
E[xL(j) | ZK(j,j+1) , XK(j,j+1)] = E[xL(j) | ZK(j,j+1)]
+Πj

(
XK(j,j+1) −E[XK(j,j+1) | ZK(j,j+1)]

)
(7)

Taking the expected value E[·|Z] of both sides of the
equation above, we obtain

E[xL(j) | Z] = E[xL(j) | ZK(j,j+1)]
+Πj

(
E[XK(j,j+1) | Z]−E[XK(j,j+1) | ZK(j,j+1)]

) (8)

In the places where XK(j,j+1) is a fixed value, substitute
xK(j) = x`

K(j), and xK(j+1) = x`
K(j+1). Note that for these

choices,
x`+1

L(j) = E[xL(j) | ZK(j,j+1) , XK(j,j+1)]

Now, with this choice, subtracting equation (8) from (7),
we obtain

x`+1
L(j) −E[xL(j) | Z] = Πj

(
X`

K(j,j+1) −E[XK(j,j+1) | Z]
)

δ`+1
L(j) = Πjδ

`
K(j,j+1) (9)

We now move to consider Step 3 of the algorithm given by
(2). We have

E[xK(j) | ZL(j−1,j) , XL(j−1,j)] = E[xK(j) | ZL(j−1,j)]
+V(xK(j), XL(j−1,j) | ZL(j−1,j))
×V−1(XL(j−1,j) | ZL(j−1,j))
× (

XL(j−1,j) −E[XL(j−1,j) | ZL(j−1,j))
)

Using our definition for Ξj , this becomes
E[xK(j) | ZL(j−1,j) , XL(j−1,j)] = E[xK(j) | ZL(j−1,j)]
+Ξj

(
XL(j−1,j) −E[XL(j−1,j) | ZL(j−1,j))

)
(10)

Taking the expected value E[·|Z] of both sides of the
equation above, we obtain

E[xK(j) | Z] = E[xK(j) | ZL(j−1,j)]
+Ξj

(
E[XL(j−1,j) | Z]−E[XL(j−1,j) | ZL(j−1,j)]

) (11)

In the places where XL(j−1,j) is a fixed value, substitute
xL(j−1) = x`+1

L(j−1), and xL(j) = x`+1
L(j). Note that now for

these choices,
x`+2

K(j) = E[xK(j) | ZL(j−1,j) , XL(j−1,j)]



Now, with this choice, subtracting equation (11) from (10),
we obtain

x`+2
K(j) −E[xK(j) | Z] = Ξj

(
X`+1

L(j−1,j) −E[XL(j−1,j) | Z]
)

δ`+2
K(j) = Ξjδ

`+1
L(j−1,j)

Thus, using equation (9), we conclude that

δ`+2
K(j) = Ξj

(
Πj−1 0

0 Πj

) (
δ`
K(j−1,j)

δ`
K(j,j+1)

)

Note that, for 1 < j < p+1, the block matrix above is size
n × 4n. But since the values δ`

K(j) are repeated, one can
replace the block matrix by a n× 3n matrix (as is done in
the definition of Ej). Considering j = 1 and j = p + 1 as
special cases (where the matrix above is n× 2n) equation
(6) is immediately obtained.
Viewing the algorithm as maximizing the likelihood func-
tion, it is a special version of coordinated gradient method,
see e.g. (Bertsekas and Tsitsiklis, 1997; Luenberger, 2003),
which is guaranteed to converge to E[X|Z] for any initial
point. Hence, all the eigenvalues of Γ must be less than
one (Kailath, 1979).

6. SMOOTHER DYNAMICS IN PRESENCE OF
NODE FAILURES

In this subsection, we think of Γ as a matrix function in
place of a fixed matrix. To be more specific, we have

Γ : {1, 2, . . . , s} 7→ Rn(p+1)×n(p+1) (12)
where the scalar s represents the number of possible
scenarios, i.e. the number of configurations of the sensor
network subject to possible node failures.
Let’s start considering a simple situation where s = 2. In
the first scenario all the nodes are assumed to work and
we let Γ(1) describe the error dynamics so that

δ`+2
K1 = Γ(1)δ`

K1

where δ`
K1 is the distance between X`

K and X̂K1 :=
E[XK |Z]. In the second situation we assume that the i-
th node does not work and that, for the sake of simplicity,
does not belong to {K(j)}⋃{L(j)}. Let δ`

K2 denote the
distance between X`

K and the minimum variance estimate
which, since zi is not available, is given by

X̂K2 := E[XK |Z\zi]
Thus, for a suitable matrix Γ(2), error dynamics are

δ`+2
K2 = Γ(2)δ`

K2

Let’s now assume that at any iteration of the algorithm the
probability that node i works is equal to a. By defining

d(1) := 0, d(2) = X̂K2 − X̂K1

the model which describes the evolution of δ`
K1 becomes

δ`+2
K1 = Γ(ξ`)

[
δ`
K1 + d(ξ`)

]− d(ξ`)

= Γ(ξ`)δ`
K1 + e(ξ`) (13)

where
e(ξ`) := Γ(ξ`)d(ξ`)− d(ξ`) (14)

and {ξ(`)}, ` = 0, 2, 4, . . ., are independent random vari-
ables which may assume values 1 with probability a and 2
with probability 1− a.

A straightforward generalization of the situation described
above for a generic integer s allows us to conclude that,
in presence of node failures, the dynamics of the distance
between X`

K and E[XK |Z] are described by the following
Markov chain

δ`+2
K1 = Γ(ξ`)δ`

K1 + e(ξ`) (15)
where {ξ(`)}, ` = 0, 2, 4, . . ., are independent random vari-
ables taking values on {1, 2, . . . , s} while e : {1, 2, . . . , s} 7→
Rn(p+1) is a suitable deterministic map.

7. NUMERICAL EXAMPLE

We consider the problem of estimating in a distributed
way the derivative of an unknown function f from a finite
set of noisy measurements of f . Each measurement is
taken by distinct nodes. In particular, let X1(t) denote
the derivative of the unknown function while X2(t) is its
value. Our prior model for f is given by the stochastic
differential equation (see (Oksendal, 2003) or (De Nicolao
and Ferrari Trecate, 2003))

dX(t) = SX(t) dt + T dB(t) (16)
where B(t) is Brownian motion (its derivative is white
noise) and

S =
(

0 0
1 0

)
, T =

(
10−3

0

)

This model provides the basis for a Bayesian interpretation
of cubic smoothing splines (Wahba, 1990).
For s ≤ t, we use V(t|s) to indicate the covariance of X(t)
given the value of X(s) which, prior to knowing the system
output measurements, satisfies the differential Lyapunov
equation (see (Jazwinski, 1970, page 133 equation 4.138))

V(s|s) = 0

∂tV(t|s) = SV(t|s) + V(t|s)ST + TTT.

For our particular choice of S and T , we have

V(t|s) = 10−3




(t− s)
(t− s)2

2
(t− s)2

2
(t− s)3

3


 .

The distance between sampling points where each sensor
is located is denoted by ∆t. Thus, the transition model for
k > 1 is represented by gk : R2 → R2 and Qk ∈ R2×2

where

gk(xk−1) =
(

x1,k−1

x2,k−1 + x1,k−1∆t

)

Qk = 10−3




∆t
∆t2

2
∆t2

2
∆t3

3


 .

The initial state estimate is given by

g1(x0) = X(t1), Q1 =
(

100 0
0 10

)

The measurement variance σ2 is known and direct mea-
surements of X2(t) are represented by hk : R2 → R1 and
Rk ∈ R1×1 where

hk(xk) = x2,k , Rk = σ2 .

The specifications for the example are completed by the
following choices:
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Fig. 3. Cubic smoothing spline example: true function f
(solid line) and noisy measurements (circles).

N = 480 number of measurements
∆t = 1 spacing between nodes
σ2 = 1 measurement noise variance
vk ∼ N(0, Rk) simulated measurement noise
zk = hk[X(tk)] + vk simulated measurement value

Given such specifications, Fig. 2 reports the maximum
absolute value of the eigenvalues {λi} of the matrix Γ as
a function of J which defines the size of the sensor blocks
working in parallel. As a matter of fact, the developed anal-
ysis makes available a clear picture on the error dynamics
also pointing out the importance of establishing a good
trade off between level of parallelism and convergence rate
of the iterative algorithm. For instance, when the value
of J is low, say J ≤ 8, a node is stressed with very high
frequency to produce a new estimate of its own state and to
send it to its adjacent node. However, even if this choice
leads to a high level of parallelism, Fig. 2 suggests the
need of a very large number of iterations for obtaining an
acceptable level of accuracy in the estimate. In fact, the
maximum modulus of the eigenvalue is very close to 1. The
situation changes when J increases and a good trade-off

appears between 16 and 30 where eigenvalues vary from
0.7 to 0.2.
To corroborate the theoretical analysis, let’s consider a
realization of f drawn from the prior and plotted in Fig. 3
(solid line). The aim is to reconstruct the derivative of
such function from the noisy measurements displayed as
circles in the same figure. Fig. 4 reports the estimates of
the derivative of f obtained by the distributed Kalman
smoother when J is 2 (top panels), 16 (middle) or 30
(bottom), for ` equal to 0,2 and 4. It is apparent that, in
practice, when J = 2 the algorithm will never converge to
the minimum variance estimate in reasonable time. On the
other hand, when J = 16, already for ` = 2 the algorithm
returns an estimate sufficiently close to the optimum.

8. CONCLUSIONS

We have considered smoothing of Gauss-Markov linear
systems via distributed optimization. In the context of a
sensor network, our problem amounts to assuming that
any node has access to noisy measurements of different
but correlated states. Then, the aim is to reconstruct the
overall state sequence in a cooperative way, by taking ad-
vantage of all the data obtained by the network. A parallel
smoothing scheme has been presented together with a con-
vergence analysis. The latter points out the importance, in
the algorithm design, of finding the right trade off between
parallelism and rate of convergence towards the optimal
estimate. Extension of the algorithm to the case of state
sequence subject to inequality constraints has been also
provided. Future developments of this work may regard the
extension of the method, and relative convergence analysis,
to more general and complex graphical models.
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