Human Motion Prediction for Navigation of a Mobile Robot

Klaus Schmiedhofer

Department of Information Engineering University of Padova

Master Thesis

Supervisor: Prof. Luca Schenato

Padova, 11 Luglio 2011

Technische Universität München

Supervisors:

- Dipl.Ing. Daniel Althoff
- Dipl.Ing Roderick de Nijs

IURO-Project: Interactive Urban Robot

000

Motivation and Goals

Motivation: Why do we need human motion prediction?

- Collision Avoidance
- Learning and Imitation of human behavior
- Improve path planning

Goal: Estimate most probable trajectory for humans

State of the Art & Contributions

State of the Art

- Use of a static environment model (Bennewitz, 2004)
- Constant velocity model (Dee and Hogg, 2008)
- Our approach \Leftrightarrow Chung and Huang, 2010

Contributions:

- Inclusion of the goal information for each human
- Decrease of the prediction error
- Solution for special cases

General Overview

- The idea is to generate all possible way-points for a human:
 - Pedestrian Ego-Graph
- Rank each way-point according to cost functions estimated from human trajectories
 - **⇒** Cost Function
- Learning the cost functions

Estimate the most probable trajectory to reach a predefined Optimal trajectory goal

Markov Decision Process

- Markov Decision Process (MDP): $M = (S, A, P_{ss'}^a, \gamma, R_{ss'}^a)$
 - \triangleright S = Set of states
 - ightharpoonup A = Set of actions
 - $P_{ss'}^a = \text{Transition probability}$
 - $ightharpoonup R^a_{ss'} = \text{Reward function}$
 - λ = Discount factor $\in (0,1)$

Most likely trajectory

• Value function V over the policy π :

$$V^{\pi}(s_0) = R_{s_0s_1} + \lambda R_{s_1s_2} + \lambda^2 R_{s_2s_3} + \ldots + \lambda^t R_{s_ts_{t+1}}$$
 where $R_{s_is_i}$ is the reward function from the state s_i to s_i

Optimal policy π^* :

$$V^{\pi^*}(s_0) = \min_j \quad V^{\pi_j}(s_0)$$

- Description of two variables:
 - 1. π Policy
 - 2. $R_{ss'}^a$ Reward function

Pedestrian Ego-Graph (PEG)

- Set of trajectories obtained with different cluster-algorithms
- Each trajectory is a policy π of the MDP
- Every pedestrian is oriented to a goal \Rightarrow Reduction of the PEG

Cost function

The cost function represents the reward function R of the MDP and are based on social forces [4]:

$$C_{tot}(s_i) = w_{dist}C_{dist}(s_i) + w_{str}C_{str}(s_i) + w_{obs}C_{obs}(s_i) + w_{pers}C_{pers}(s_i) \\$$

Estimation of cost-weightings: $w_i = \{w_{dist}, w_{str}, w_{obs}, w_{pers}\}$

Static Obstacle: Distance Map

• C_{obs}: Static obstacles

$$C_{obs}(s_i) = \exp(-0.5 \frac{dist(s_i)^2}{\sigma_d^2}) \exp(-0.5 \frac{dist(s_i)^2}{\sigma_w^2})$$

Comfortable distance: $\sigma_d = 0.361[m]$ [2] Radius of influence: $\sigma_w = 2.088[m]$ [2]

Dynamic obstacle: Pedestrians

• C_{pres} : Cost function based on the Personal space model:

$$C_{pers}(s_i^k) = \sum_{j} C_{jk} = \sum_{j} exp(-0.5(s_i^j - s_i^k)^t \Sigma^{-1}(s_i^j - s_i^k))$$

The variable $\Sigma = \Sigma_f$ if the pedestrian k is in front of j and $\Sigma = \Sigma_s$ if the pedestrian is on the side.

$$\Sigma_f = \left(\begin{array}{cc} \sigma_{xx}^2 & 0\\ 0 & 4\sigma_{xx}^2 \end{array} \right)$$

$$\Sigma_s = \left(\begin{array}{cc} \sigma_{xx}^2 & 0\\ 0 & \sigma_{xx}^2 \end{array}\right)$$

$$\sigma_{xx} = 0.369[m] \text{ from [3]}$$

Simulation: Prediction Algorithm

Conclusions

The results are obtained by comparing the estimated trajectories with a real dataset [2]

Reduction of the prediction error

	•'	•'	•'	-	
OURs	0.031	0.072	0.097	0.099	- 1
SBCM [1]	0.030	0.074	0.100	0.105	-
LTA [2]	0.054	0.128	0.212	0.285	_
CV	0.037	0.122	0.221	0.363	
Pred. Error	1 [m]	2 [m]	3 [m]	4 [m]	_ '

- ► CV : Constant. velocity model
- ► LTA: Linear trajectory avoidance [2]
- SBCM: Spatial behavior cognition model [1]
- Reduction of the computational effort
- Solution special cases

Future Work

- Detect pedestrian walking in groups
 - ► The prediction is erroneous
 - ► Pedestrian in a group break the standard human behavior

- Train the model on different classes
 - ► Human behavior changes with different environments
 - ► Sidewalk, open space, crossing ...

Literature

- [1] Shu-Yun Chung and Han-Pang Huang "A Mobile Robot that Understands Pedestrian Spatial Behaviors ",2010.
- [2] S.Pellegrini, A.Ess, K.Schindler, L. van Gool "You'll Never Walk Alone: Modeling Social Behavior for Multi-target Tracking ",2009.
- [3] Thositaka Amaoka, Hamid Laga, Suguru Saito, and Masayuki Nakajima 'Personal Space Modeling for Human-Computer Interaction ",2009.
- [4] K Lewin "Field Theory in Social science",1951.
- Hannah Dee, and David Hogg "Detecting inexplicable behavior ".2008.

