PROGETTAZIONE E SVILUPPO DI UN SISTEMA CROMOTERAPICO MEDIANTE UNA RETE DI SENSORI WIRELESS

Laureando: Massimo Marra Relatore: Ch.mo Prof. Luca Schenato

Dipartimento di Ingegneria dell'Informazione Università degli Studi di Padova

> Padova, 7 Dicembre, 2010 Anno Accademico 2010/2011

Objectives

Motivation and goals

- Soft real-time chromotherapy application
- Real time generation of the color sequence
- Interaction with the user

State of the art - WSN

- Wireless Sensors ($\sim 10^2$ - 10^3)
- Small size
- Mobility
- Low cost and maintenance
- Ad-hoc network for environment monitoring

Application fields:

Environment control

Indoor localization and Tracking

Monitoring of industrial equipment

Health Care Applications

State of the art - Chromotherapy devices

Devices on the market

- All wired
- Centralized
- Poor coverage remote controller

Problematics and contribution

Problematics

- Coordination of the nodes
- Low complexity clock synchronization
- Communication of the real-time sequence across the WSN
- Reliability
- Fast colors change
- Coexistence of more than one WSN chromotherapy system

Problematics and contribution

Problematics

- Coordination of the nodes
- Low complexity clock synchronization
- Communication of the real-time sequence across the WSN
- Reliability
- Fast colors change
- Coexistence of more than one WSN chromotherapy system

Contributions

- Development of adaptive overlay-based synchronization algorithm
- Development of real-time color sequence deployment
- Implementation of the complete system

SYSTEM ARCHITECTURE

SYSTEM ARCHITECTURE

Overlay-based synchronization algorithm

Many synchronization algorithms for WSN

- FTSP
- RBS
- Solis et al. Algorithm
- ..

Overlay-based synchronization algorithm

Many synchronization algorithms for WSN

- FTSP
- RBS
- Solis et al. Algorithm
- ...

Simplified version: offset compensation

$$\widehat{ au}_i^+ = \rho \widehat{ au}_i + (1 - \rho) \widehat{ au}_j = \widehat{ au}_i + (1 - \rho) (\widehat{ au}_j - \widehat{ au}_i)$$

where $ho \in (0,1]$ tuning parameter

Overlay-based synchronization algorithm

Many synchronization algorithms for WSN

- FTSP
- RBS
- Solis et al. Algorithm
- ...

Simplified version: offset compensation

$$\widehat{ au}_i^+ = \rho \widehat{ au}_i + (1 - \rho) \widehat{ au}_j = \widehat{ au}_i + (1 - \rho) (\widehat{ au}_j - \widehat{ au}_i)$$

where $\rho \in (0,1]$ tuning parameter

Network configuration of O-b algorithm

$$\widehat{\tau}_i^+ = \frac{\rho}{\rho} \widehat{\tau}_i + (1 - \frac{\rho}{\rho}) \widehat{\tau}_j$$

Network configuration of O-b algorithm

$$\widehat{\tau}_i^+ = \rho \widehat{\tau}_i + (1 - \rho)\widehat{\tau}_j$$

FULLY DISTRIBUTED

- A. Slow convergence
- B. Worst steady state error
- C. Robust to node failure

NETWORK

FULLY HIERARCHICAL

- A. Fast convergence
- B. Best steady state error
- C. Fragile to node failure

Network configuration of O-b algorithm

$$\widehat{\tau}_i^+ = \rho \widehat{\tau}_i + (1 - \rho)\widehat{\tau}_j$$

SOFT-HIERARCHY **FULLY DISTRIBUTED FULLY HIERARCHICAL**

- A. Slow convergence
- B. Worst steady state error
- C. Robust to node failure

- A. Fast convergence
- B. Small steady state error
- C. Robust to node failure
- D. Adaptive

- A. Fast convergence
- B. Best steady state error
- C. Fragile to node failure

The color sequence communication

The color sequence communication

Communication protocol

- Flooding
- Random delay forwarding
- Double retransmission

• Grid network

- Grid network
- 35 nodes

- Grid network
- 35 nodes
- 10 hops

- Grid network
- 35 nodes
- 10 hops
- Synchronization period 30 sec

1 tick = 30 μs

ntroduction Architecture Synchronization The chromotherapy System **Tests** Videos Conclusion oo o o o o

Test results of the chromotherapy system

Results

• Double retransmission is necessary

- Double retransmission is necessary
- $r_c = 5Hz$ easy achievable

- Double retransmission is necessary
- $r_c = 5Hz$ easy achievable
- \bullet Low packet loss ($\ll 1\%$) up to 4/5 hops (50/100m indoor)

- Double retransmission is necessary
- $r_c = 5Hz$ easy achievable
- Low packet loss ($\ll 1\%$) up to 4/5 hops (50/100m indoor)
- Packet period ≥ 2 sec

- Double retransmission is necessary
- $r_c = 5Hz$ easy achievable
- Low packet loss ($\ll 1\%$) up to 4/5 hops (50/100m indoor)
- Packet period ≥ 2 sec
- Predefined sequence delay ≥ 1 sec

- Double retransmission is necessary
- $r_c = 5Hz$ easy achievable
- Low packet loss ($\ll 1\%$) up to 4/5 hops (50/100m indoor)
- Packet period ≥ 2 sec
- Predefined sequence delay $\geqslant 1$ sec
- Color jitter < 1 ms

Videos

Overlay-based synchronization protocol

Chromotherapy effect simulation

Conclusions

- Adaptive and high performance synchronization protocol
 - error $\leqslant 1$ ms
 - 100 nodes
 - synchronization period 30 sec

Conclusions

- Adaptive and high performance synchronization protocol
 - ullet error $\leqslant 1$ ms
 - 100 nodes
 - synchronization period 30 sec
- High fidelity Chromotherapy system
 - up to 4/5 hops
 - $r_c = 5Hz$
 - ullet Predefined delay $\geqslant 1$ sec
 - Sequence change 2 sec

Conclusions

- Adaptive and high performance synchronization protocol
 - ullet error $\leqslant 1$ ms
 - 100 nodes
 - synchronization period 30 sec
- High fidelity Chromotherapy system
 - up to 4/5 hops
 - $r_c = 5Hz$
 - Predefined delay ≥ 1 sec
 - Sequence change 2 sec
- Implementation of the entire architecture

Conclusions

- Adaptive and high performance synchronization protocol
 - error $\leqslant 1$ ms
 - 100 nodes
 - synchronization period 30 sec
- High fidelity Chromotherapy system
 - up to 4/5 hops
 - $r_c = 5Hz$
 - Predefined delay $\geqslant 1$ sec
 - Sequence change 2 sec
- Implementation of the entire architecture

further developments

- Leader election
- Event-based sequence generation (movements or sounds)
- Sequence compression

