
DIPARTIMENTO
DI INGEGNERIA
DELL'INFORMAZIONE

Control of Tethered Aerial Robots

in presence of disturbances

and sampled communication:
theory and experiments

Ph.D. candidate

Enrica Rossi

Advisor

prof. Luca Schenato

Director & Coordinator

prof. Andrea Neviani

Ph.D. School in

Information Engineering

.

Department of

Information Engineering

University of Padova

2020

ii

University of Padova

Department of Information Engineering

Ph.D. course in: Information Engineering

Curriculum: Information Science and Technology

Control of Tethered Aerial Robots

in presence of disturbances

and sampled communication:

theory and experiments

Director: Prof. Andrea Neviani

Advisor: Prof. Luca Schenato

Ph.D. candidate: Enrica Rossi

Cycle: 33nd (2017-2020)

Year: 2020

List of Figures

1.1. Examples of robotics in our lives. 2

1.2. Examples of Unmanned Aerial Vehicles. 3

1.3. The first British fixed-wing VTOL aircraft, 1958. 4

1.4. Additional examples of Unmanned Aerial Vehicles. 5

1.5. Scenario introduced in Marino (2018), where four ground robots coopera-

tively transport a common load. 7

2.1. Block diagram of the two-layer control architecture 12

2.2. Representation of the system and its main variables. 14

2.3. Feasible and unfeasible landing . 15

2.4. The robot is clockwise rotated with respect to the sloped surface with

ϑ ≥ α; in this case b ≥ 0 hence both (2.7) are satisfied. 16

2.5. Representation of the sigmoid function with γ = 19 and ϕlim = −0.24[rad]:

observe that for ϕ < ϕlim h(ϕ) → 1. 18

2.6. Interpolation: at time t a sequence of N reference states is generated by

solving (2.13); usually the first output is applied and, at t + Ts, where

Ts = 10[ms] is the shooting time, a new sequence is computed. In this

scenario, instead of sending to the low-level controller a constant reference

for Ts seconds, we send the interpolation with the next state in order to

anticipate the system behavior. 19

2.7. The reaction force (see (2.17)) is active if z ≤ h. 21

2.8. Attitude and elevation angles using only NMPC or the combination of

NMPC and the low level controller (2LC). The yellow line represents the

desired value. Observe that the attitude is already almost parallel to the

ground, before the landing is completed. 22

2.9. Inputs using only NMPC or the combination of NMPC and the low level

controller (2LC). The yellow line represents the lower and upper bounds

of the thrust and torque. Input saturation emphasizes the fact that the

input forces are exploited at best. 22

2.11. Comparison between elevation and attitude angles in presence of wind,

described by the grey line. The yellow line instead represents the desired

value. Note that the disturbance rejection is better tackled by the 2LC

technique with respect to NMPC. 23

2.12. Inputs values under the effect of the wind: smaller values are required if

the 2LC strategy is used. The yellow line represents the lower and upper

bounds of the thrust and torque . 24

2.13. Feasibility constraints under the wind effect: the tracking error is greater

when using only NMPC instead of the 2LC strategy. 24

3.1. Possible configurations of square systems where a common object is manip-

ulated by a group of UAVs: all the possible combinations of (N1c,N2c,N)

introduced in Section 3.2.2 are represented. 30

v

3.2. Representation of a multi-robot system where three robots must keep the

same orientation ϕi with respect to the reference frame centered in the

point OV during the assigned task. 31

3.3. Representation of (3.6) (on the left) and (3.5) (on the right). The pivot is

represented in gray, each agent (dynamical controller plus robot) in blue,

the measurements from the sensors in red and the global planner in green.

The dynamical controller converts u into forces for the robot. The wireless

symbol refers to sampled communication. 32

3.4. Depiction of B0, δeh
, τ∗

o , τo(eh), τ∗
s , τs(eh) and τmax(eh). The time values

are in red, and the points or sets in Rm in black. 36

3.5. Representation of g(τ ;µ) in the three scenarios. 39

3.6. Representation of τ s(µ), τ0(µ) and ρ(µ). 41

3.7. Example of a multi-agent system that transports a payload. αi is the

angle between the cables and the load. 43

3.8. In the figure, label offline refers to the choice (3.25), while label online

refers to (3.26). 43

3.9. Robotic system called Fly-crane used for experiments. 44

3.10. Representation of the Lagrangian variables q(t) when the off-line and on-

line technique are compared. The used sampling time is T = 1.5 [s]. The

first two rows represent respectively the position xV ,yV ,zV and orientation

rV ,pV ,yV (roll, pitch and yaw) of the load. On the last row the angles

αi := qi, i = 1,2,3 between the cables and the load are depicted. 46

3.11. Representation of robots velocities ṗ(t) when the off-line and on-line

technique are compared. The sampling time is T = 1.5 [s]. Each rows

reports one robot velocity. 47

3.12. Representation of the time τ0 and gain k computed for the two strategies. 47

4.1. Manifold of structural constraints and tangent space for projection. 53

4.2. Representation of (4.7) (right) and (4.8) (left) where the gray area repre-

sents the load and the blue one an agent (i.e. dynamical controller plus

robot). qr is generated by the global planner (in green), the red labels are

the measurements from the sensors. The dynamical controller converts u

into forces for the robot. The wireless symbol indicates that the quantity

can be transmitted via sampled communication. 53

4.3. Example of a rectangular multi-agent system where four aerial robots

transport a payload. On the right, a movement of the system is depicted

to give a better intuition of the plot in Figure 4.4. 56

4.4. Behavior of the robots velocities ṗ when the reference ones u are unfeasible:

in practice ṗ → uq where uq are defined in (4.4). 56

4.5. Representation of B∗, δeh
, τ∗

o , τo(eh), τ∗
s , τs(eh) and τmax(eh). The red

labels represent time values, while the black ones are points or sets in Rm. 60

4.6. Representation of |1−τki|
d2

i

and of the maximum. 63

4.7. Representation of |1−τki|
d2

i

+µτ2 and of the maximum. 63

4.8. Evolution of the error norm ‖q − qr‖2 for different initial conditions

(q1, q2) and techniques (on-line and off-line) when the robots velocities

generated by the planner are applied to the kinematic system. In this case

K = I10 and D = diag{I4,4·I6}. 66

4.9. Evolution of the error norm ‖q − qr‖∞ for different initial conditions

(q1, q2) and techniques (on-line and off-line) when the robots velocities

generated by the planner are applied to the kinematic system. In this case

K = I10, D = diag{I4,4·I6}. 66

4.10. Evolution of the error norm ‖q −qr‖2 when the on-line and off-line tech-

niques are applied: moreover, three different values of the gain α are

chosen. 67

4.11. Plot of the error norm when the off-line and on-line techniques are im-

plemented on the dynamical model of the system depicted in Figure 4.3a.

Different packet loss probabilities are considered. 68

5.1. Representation of (5.2) (right) and (5.3) (left). The pivot is represented

in gray, each robot (endowed with a dynamical controller) in blue, the

measurements from the sensors in red and the desired trajectory in green.

The dynamical controller converts u into forces for the robot. The wireless

symbol refers to sampled communication. 73

5.2. Trajectory tracking by using the point stabilization strategy. 76

5.3. Representation of the curve Tc(k) defined in Proposition 5.3.5 and τs(k)

that is obtained using upper bounds on the error norm (see Proposition

5.4.1), hence it delimits a smaller stability region. 82

5.4. Representation of the quantities τs(k), τo(k), τ(ko) defined in Proposition

5.4.2-5.4.4. 89

5.5. Representation of the convergence rate as a function of the gain k and the

time τ . 89

5.6. Architecture used to perform simulations:a global planner generates the

desired trajectory qr, q̇r, sends it to the local planner which generates

the desired robots velocities. The blue rectangle on the right represents a

realistic environment where the robotic system is simulated. 90

5.7. Representation of the stability region, the optimal gain ko and sampling

time τo, obtained by estimating the parameters µ,α,γ1,γ2 along the tra-

jectory depicted in Figure 5.8 and for different couples (k,T). 91

5.8. Comparison of the variables q(t) in three different simulations, where the

tracking strategies 1), 2), 4) described in Tab.5.1 are depicted. The used

sampling time is T = 1.5 [s]. The first two rows represent respectively the

position xl,yL,zL and orientation rL,pL,yL (roll, pitch and yaw) of the

load. On the last row the angles αi := qi, i = 1,2,3 between the cables and

the load are depicted. 92

5.9. Comparison of the variables q(t) for two different values σ1 = 0.01 and

σ2 = 0.003 of noise variance of the sensor that collects measurements fro

the MoCap system: the tracking strategy 2) is exploited with (k,T) =

(1.28,0.75). The used sampling time is T = 0.75 [s]. The first two rows

represent respectively the position xl,yL,zL and orientation φL,θL,ψL (roll,

pitch and yaw) of the load. On the last row the angles αi := qi, i = 1,2,3

between the cables and the load are depicted. 93

6.1. Presence of a multi-layer structure across the thesis. 97

A.1. Example of a rectangular multi-agent system where four aerial robots

transport a payload. 101

A.2. Behavior of the variables qi = αi which are the angles between the cables

and the load. The off-line and on-line strategies are compared when the

wireless packet loss probability is set to 20% and the transmission period

to T = 1.5[s]. 102

A.3. Behavior of the load position and orientation qV : x,y,z are the coordinates

on the three axes and φ,θ,σ the Euler angles. The off-line and on-line

strategies are compared when the wireless packet loss probability is set to

20% and the transmission period to T = 1.5[s]. 103

A.4. On-line scenario: close-up of schedules showing the allocation of common

resources: robots (top) and platform node (bottom). A high signal means

sending or executing and a low signal means idle. The platform sends the

reference velocity vector u to the robots every T = 1.5[s]. Every 0.2[s]

each robot checks if a packet loss occurred (that is if last message arrived

more than 1.5[s] before). In this case the desired velocity is set to zero

until next packet arrives. 103

A.5. Off-line scenario: close-up of schedules showing the allocation of common

resources: robots (top) and platform node (bottom). A high signal means

sending or executing and a low signal means idle. The platform sends its

pose to the robots every T = 1.5[s]. The robots receive the packets unless

a loss occurred. When a packet arrives, then u is computed. 104

A.6. Comparison between the off-line and on-line gains: note that the faster

convergence rate achieved by the on-line strategy is possible thanks to a

bigger value of the gain. 104

B.1. Representation of the fly-crane. 105

B.2. Definition of the reference frames. 106

B.3. Representation of z(k,τ) in the case kτ < 1 and k > α. 113

B.4. Representation of p−
s2

(k). 114

B.5. Representation of p=
s . 115

B.6. Representation of z(k,τ) in the case kτ > 1. 116

B.7. Representation of pτ+
s

(k). 117

B.8. Representation of p−
v (k). 119

B.9. Representation of p−
v (τ). 123

B.10.Representation of p=
s (k,τ). 124

List of Tables

2.1. The bounding values of the thrust, the torque and the stress. The slack

variables must be greater than zero in order to properly formulate soft

constraints. 17

2.2. List of parameters and their values. kfR
, kτR

, kϑ, kϕ̇, kϑ̇, ks, k∆ϕ
, k∆ϑ

are

the cost function weights. 21

5.1. Description of the four strategies used in simulation. 89

5.2. Couples (k,T) of gains and sampling times used to compare the four

strategies 1), 2), 3), 4). The norm of the tracking error is depicted in

Figure 5.9b. 91

ix

Abstract

In this work we address the problem of advance control of tethered aerial robots in the

context of load transportation and landing.

Firstly, we design and implement a two layer hierarchical controller for a tethered

aerial vehicle. In particular, a challenging problem of smoothly landing on a inclined

plane is considered. Such problem is characterized by nonlinear control objective and

constraints which require advanced control techniques like Nonlinear Model Predictive

Control (NMPC), that is known to be computationally demanding. We propose a control

architecture composed by two layers: an NMPC operating at 100Hz is employed to

generate feasible trajectories on-line and a simplified local controller, working at 500Hz, is

used to track them. The effectiveness of this hierarchical control structure is demonstrated

by a closed-loop simulation. Moreover, the rejection of external disturbances, such as the

wind, is a peculiar characteristic of the proposed control strategy.

Secondly, we propose a feedback-based motion planner for a class of multi-agent systems

with a sparse kinematics structure. In other words, the agents are coupled together

only by a common object, that can be a load to be transported (in this case there is a

physical link among each agent and the object), a reference point in the space or a robot

to be escorted (in these cases a constraint is defined and allows to express the agents

configurations with respect to the object one). The goal is to steer this object into a

desired configuration. We show that the proposed strategy can be applied to diverse types

of systems: both aerial and ground ones, with or without physical connections among

the agents. In this chapter we study square systems, whose differential kinematics is

characterized by a square Jacobian matrix: this assumption helps to simplify our analysis.

We suppose that a global motion planner generates a sequence of desired configurations

that satisfy constraints as obstacles and singularities avoidance. Then, a local planner

receives these references and generates the desired agents velocities, which are converted

into force inputs for the vehicles. We focus on the local planner design both in the case

of continuously available measurements and when they are transmitted to the agents via

sampled communication. For the latter problem, we propose two strategies. The first is

the discretization of the continuous-time strategy that preserves stability and guarantees

exponential convergence regardless of the sampling period. In this case, the planner gain

is static and computed off-line. The second strategy requires to collect the measurements

from all sensors and to solve online a set of differential equations at each sampling period.

However, it has the advantage to provide doubly exponential convergence. Numerical

simulations of these strategies are provided for the cooperative aerial manipulation of a

cable-suspended load. In addition, we show experimental results obtained by applying

our strategies on a real system.

We are also interested to extend the analysis of the problem just introduced, where we

developed two strategies to implement point-stabilization control for a class of systems

with a sparse kinematic structure. In particular, we considered the scenario where

measurements are transmitted via wireless. Notice that in the previous case we assumed

that the Jacobian matrix of the kinematic model was square, in order to simplify the

analysis. In this work we still consider a class of multi-agent systems with a sparse

kinematic structure in the scenario where measurements are available at sampling instants,

1

but we extend the analysis to systems characterized by a rectangular Jacobian matrix.

In practice, this means that the number of robots is redundant, i.e. a desired system

configuration can be obtained by different configurations of the robots. We propose a

solution to this problem: if unfeasible velocities are given as references to the agents,

they are projected on a space of feasible values. We firstly propose a kinematic model

which is consistent with the overall systems dynamics under high-gain control and then

we provide sufficient conditions for the exponential stability and monotonic decrease of

the configuration error under different norms. Then, we test the proposed controllers on

the full dynamical system showing the benefit of local communication. Finally, instead of

simplifying the wireless transmission with sampled communication, we exploit a simulator

for real-time control systems, where a wireless network can be simulated, by setting all

the parameters as in a real transmission.

The last contribution is an inverse-kinematics controller for a class of multi-robot

systems in case of sampled communication. The scenario is similar to the one described

in the previous lines, but this time we are interested to trajectory tracking instead

of point-stabilization control, where a sequence of reference velocities was planned

for the system in order to reach a constant desired configuration. Thus, we develop

a Sampled Communication aware Inverse Kinematic controller (SIKM) specific for

trajectory tracking that, given a motion of reference (in configuration space), receives the

sampled measurements from the system and generates the desired robots velocities along

the whole trajectory. We provide two strategies to choose the controller gain. In one

case it is computed off-line: once the sampling time is assigned, we propose a method to

compute the controller gain that guarantees stability and asymptotic zero-tracking error.

In this case the controller is implementable in a distributed way. In the second scenario

the gain is updated on-line and only a centralized implementation can be achieved: in this

scenario we practically show by means of simulations that the proposed control method

provides a faster convergence rate while tracking the assigned trajectory. Notice that both

strategies work with no communication among robots. Numerical simulations of the two

techniques are provided for the cooperative aerial manipulation of a cable-suspended load.

We also compare our strategies to other possible solutions, showing better performance

and stability guarantees.

2

Sommario

In questa tesi proponiamo diverse soluzioni per controllare i robot aerei vincolati. In primo

luogo, progettiamo e implementiamo un controllore gerarchico a due livelli per un veicolo

aereo vincolato. In particolare, viene considerato un problema di atterraggio su un piano

inclinato. Tale problema è caratterizzato da una funzione obiettivo non lineare e vincoli

che richiedono tecniche di controllo avanzate come Nonlinear Model Predictive Control

(NMPC), noto per essere computazionalmente impegnativo. Proponiamo un’architettura

di controllo composta da due livelli: un NMPC che opera a 100 Hz viene utilizzato per

generare traiettorie ammissibili in tempo reale e un controllore locale semplificato, che

lavora a 500 Hz, viene utilizzato per inseguirle. L’efficacia di questa struttura di controllo

gerarchica è dimostrata in simulazione dove si può vedere che il sistema controllato riesce

a gestire disturbi esterni, come il vento, ma anche incertezze di modello.

In secondo luogo, proponiamo un pianificatore di movimento basato sulla retroazione

per una classe di sistemi multi-agente con una struttura cinematica sparsa. In altre parole,

gli agenti sono accoppiati tra loro da un oggetto comune, che può essere un carico da

trasportare (in questo caso c’è un collegamento fisico tra ogni agente e l’oggetto), un punto

di riferimento nello spazio o un robot da scortare (in questi casi viene definito un vincolo

che consente di esprimere le configurazioni degli agenti rispetto a quella dell’oggetto).

L’obiettivo è quello di guidare questo oggetto nella configurazione desiderata. Mostriamo

poi che la strategia proposta può essere applicata a diversi tipi di sistemi: sia aerei che

terrestri e con o senza connessioni fisiche tra gli agenti. In questo capitolo studiamo i

sistemi quadrati, la cui cinematica differenziale è caratterizzata da una matrice Jacobiana

quadrata: questa ipotesi aiuta a semplificare la nostra analisi. Supponiamo che un

pianificatore di movimento globale generi una sequenza di configurazioni desiderate che

soddisfino vincoli come evitare ostacoli e singolarità. Poi un pianificatore locale riceve

questi riferimenti e genera le velocità di riferimento per gli agenti: queste vengono in

seguito convertite in valori di forza che i veicoli devono esercitare. Ci concentriamo

sulla progettazione del pianificatore locale sia nel caso in cui le misure sullo stato del

sistema siano disponibili nel continuo sia quando vengono trasmesse agli agenti tramite

comunicazione campionata. Per quest’ultimo problema, proponiamo due soluzioni. La

prima è la discretizzazione della strategia a tempo continuo che preserva la stabilità e

garantisce la convergenza esponenziale indipendentemente dal periodo di campionamento.

In questo caso, il guadagno del pianificatore è statico e calcolato off-line. La seconda

strategia richiede di conoscere le misure dell’intero stato del sistema e di risolvere in tempo

reale una serie di equazioni differenziali ad ogni periodo di campionamento. Tuttavia,

ha il vantaggio di fornire una convergenza doppiamente esponenziale. Mostriamo poi i

risultati di alcune simulazioni numeriche dove queste strategie vengono utilizzate per la

manipolazione aerea cooperativa di un carico sospeso tramite cavi. Inoltre, mostriamo i

risultati sperimentali ottenuti applicando le nostre soluzioni su un sistema reale.

In seguito viene sviluppata un’interessante estensione del problema appena introdotto.

In particolare consideriamo uno scenario più generico: una classe di sistemi multi-agente

con una struttura cinematica sparsa deve spostarsi da una configurazione a un’altra e

le misure sullo stato del sistema sono disponibili ad istanti campionati. La differenza

sostanziale è che ora assumiamo che la matrice Jacobiana del modello cinematico sia

3

rettangolare. Questo aspetto complica l’analisi sulla stabilità poiché ciò significa che

il numero di robot è ridondante, ossia una velocità di configurazione desiderata può

essere ottenuta da diverse configurazioni dei robot. Proponiamo quindi una soluzione

a questo problema: se delle velocità non ammissibili sono date come riferimento agli

agenti, esse vengono proiettate su uno spazio di valori ammissibili. Sotto l’ipotesi di

separazione delle scali temporali, proponiamo un modello cinematico che sia coerente con

la dinamica complessiva del sistema sotto l’ipotesi di guadagno elevato e poi forniamo

condizioni sufficienti per la stabilità esponenziale e la convergenza a zero dell’errore di

configurazione, considerando diverse norme. Quindi, testiamo la tecnica proposta sul

sistema dinamico completo, evidenziando i vantaggi della comunicazione locale. Infine,

invece di semplificare la trasmissione wireless con comunicazione campionata, sfruttiamo

un simulatore per sistemi di controllo in real-time, dove è possibile simulare una rete

wireless, impostando tutti i parametri come in una trasmissione reale.

Infine sviluppiamo un controllore basato sulla cinematica inversa per una classe di

sistemi multi-robot in caso di comunicazione campionata. Lo scenario è simile a quello

descritto precedentemente, ma ora siamo interessati all’inseguimento di una traiettoria

invece che al raggiungimento di una configurazione costante. Pertanto, sviluppiamo un

controllore che permetta l’inseguimento della traiettoria di riferimento tenendo conto della

comunicazione campionata: in pratica, data una traiettoria (nello spazio di configurazione),

riceve le misure campionate dal sistema e genera le velocità desiderate dei robot lungo

l’intera traiettoria. Anche in questo caso sviluppiamo due strategie per scegliere il

guadagno del controllore. In un caso viene calcolato off-line: una volta assegnato il tempo

di campionamento, proponiamo un metodo per calcolare il guadagno del controllore che

garantisca stabilità e convergenza asintotica dell’errore di tracking a zero. In questo caso il

controllore è implementabile in modo distribuito. Nel secondo scenario il guadagno viene

aggiornato in real-time e si può ottenere solo un’implementazione centralizzata: d’altra

parte, come si evince da simulazioni numeriche, il metodo di controllo proposto fornisce

una velocità di convergenza maggiore. In ogni caso entrambe le strategie funzionano

senza comunicazione tra i robot. Come accennato, mostriamo i risultati di simulazioni

numeriche delle due tecniche per la manipolazione aerea cooperativa di un carico sospeso

via cavo. Confrontiamo inoltre le nostre strategie con altre possibili soluzioni, mostrando

che possiamo ottenere migliori prestazioni e garanzie di stabilità.

4

Acknowledgments

I would like to thank my advisor prof. Luca Schenato for his guidance and support

during my PhD. I care to thank him for his patience and giving me inspiration to deal

with challenging and complicated problems.

I would also like to deeply thank prof. Ruggero Carli for cooperating with Luca to help

me in developing my thesis and spending time to discuss about interesting solutions, also

by creating collaborations with colleagues to exploit at best our knowledge and experience.

I would also like to express my gratitude to Antonio Franchi and Marco Tognon who

supervised me during my staying at LAAS-CNRS in Toulouse, France, after hosting me

to develop my master thesis in 2015-2016. They inspired me with new approaches and

made me see my work from new perspectives. They made me feel like at home during all

the months I spent there. I want also to thank Dario Sanalitro with whom I collaborated

at LAAS-CNRS: he helped me to set-up the experiments I needed for my work and he

revealed to be a very gentle person, always available.

Another special thank goes to all the colleagues and friends that I met at the Depart-

ment of Information Engineering in Padova: since my arrival they made me feel welcome

and they always helped me if I needed some advice, both in academic and personal life.

A thank goes to each of the professors and researchers in the University of Padova,

since, during these eight years as an academic student they all have forged my mind for

the worst case scenarios and contributed to grow me as a cultured scholar, aiming for an

advanced education.

I would like to express an other special thank to all the friends who I met before and

during the last three years: I spent a really great time with them; in particular, I would

like to thank Valeria Rubin and Marta Nardo who have been great friends since I were

very young, Davide Bicego, Selma Zamoum and Henri Prifti with whom I shared my best

and funniest moments in Toulouse.

A very important thank goes to my family with whom I was always free to talk about

everything and who care a lot about my happiness. They supported my during my whole

academic career and personal life. They taught me that working hard gives you more

possibilities and choices and, most of all, satisfaction.

Finally, I would like to thank the person who knows me the best and supported me

during the half of my life, my fiancé Simone Prataviera. He always understood when

I needed to stay at home to study and work instead of going out and having fun. He

has always been there for me both in the easiest and more difficult moments. I really

appreciate everything he has done for me and I wish we will continue to share our lives

as we have done until now.

5

Contents

1. Introduction 1

2. Online Nonlinear Model Predictive Control for tethered UAVs

to perform a safe and constrained maneuver 11

2.1. Introduction . 12

2.2. Modeling and problem formulation . 13

2.3. On-line Reference Generator . 15

2.4. NMPC for Reference Generation . 18

2.5. Low Level Local Controller Design . 20

2.6. Simulation . 20

3. Cooperative Aerial Load Transportation via Sampled Communication: square

systems 25

3.1. Introduction . 26

3.2. Modeling and problem formulation . 28

3.3. Local planner: continous-time . 33

3.4. Local Planner: Sampled Measurements . 34

3.5. Simulation Results . 42

3.6. Experiments . 44

4. Cooperative Aerial Load Transportation via Sampled Communication: non-

square systems 49

4.1. Introduction . 50

4.2. MODELING AND PROBLEM FORMULATION 51

4.3. Physical interpretation of the projection operator 54

4.4. Local planner: continous-time . 57

4.5. Local Planner: Sampled Measurements . 58

4.6. Simulations . 65

5. Cooperative trajectory tracking over sampled communication 69

5.1. Introduction . 70

5.2. Modeling and Problem Formulation . 71

5.3. SIKM: sampled measurements . 74

5.4. Stability and convergence rate bounds . 82

5.5. Simulation Results . 89

6. Conclusions and future works 95

6.1. Summary . 95

6.2. Discussion . 97

6.3. Future works . 98

A. Supplementary material 101

A.1. Additional simulation with a non-square system 101

7

Contents

B. Appendix 105

B.1. Derivation of the Fly-crane model . 105

B.2. Useful properties of continuously differentiable functions 109

B.3. Proof of Theorem 4.4.1 . 110

B.4. Proofs of Propositions Chapter 5 . 113

Bibliography 127

8

1
Introduction

Contents

1.0.1. Contribution . 7

1.0.2. Structure of the Thesis . 8

Nowadays, robotics is part of our lives, in different scenarios; the most common

environment is the industrial one, where different categories of robots are employed,

depending on the specific application. They allow to reduce human effort, to reduce

the time required to accomplish an assigned task, but also to avoid the employees to

perform repetitive, stressful and boring operations. Moreover, they can be exploited to

perform maneuvers which would result dangerous for human beings. The most frequently

encountered robot are the manipulators which are of a great interest both in research

and in industry. This class of robots is mainly used for pick-and-place tasks since they

are characterized by high accelerations, repeatability, and accuracy. Autonomous robot

vehicles are also common and can be used on land, in the water and in the air. The

land-based mobile robots are mostly applied in artificial environments, like apartments,

hospitals, museums, etc. but also on highways and even pathless grounds. Most mobile

robots are nevertheless used on flat ground where they move thanks to the wheels they

are endowed with, which can be designed to enable omnidirectional movements. Robot

vehicles examples are vacuum cleaners, autonomous lawn mowers, intelligent guides

through department stores or museums, attendants in clinical centers, space rovers, or

autonomous cars. Some examples of the mentioned systems are reported in Fig.1.1.

A very special class of robotic vehicles is the one of Unmanned Aerial Vehicles (UAVs)

which are aerial vehicles that can work fully or partially autonomously. Research on

aerial robotics has attracted an increasing interest over the last decade. This is mainly

motivated by recent technological progresses and scaling of the hardware that have made

aerial robots usable in a wide range of applications, e.g., search and rescue, patrolling,

environmental monitoring, providing assistance in hostile environments, etc.

The first studies appeared in the 1900s: the first UAV was built by the Americans

Lawrence and Sperry in 1916. They gave birth to the first attitude control by developing

a gyroscope to stabilize the body. The device was called aviation torpedo and it could fly

for about 50 kilometers. However, it seems that the UAVs were not technically mature

to be exploited during the Second World War. Thus, their actual development and

study began at the end of the 1950s and continued during the Vietnam War until the

1970s. After the War, other countries like Israel and the U.S. began to develop smaller

1

1 Introduction

(a) Dalmec industrial manipulator
https://www.whitech-it.com/.

(b) Opportunity rover
https://mars.nasa.gov/mer/mission/rover/.

(c) Google autonomous car
https://waymo.com/.

(d) Autonomous robots check patients in at
Belgium hospitals.

Figure 1.1. Examples of robotics in our lives.

2

(a) First UAV in the world, 1916. (b) I-SAAN, a semi-rigid Italian-built airship.

(c) Applied Aeronautics Albatross Fixed Wing
UAV.

(d) Example of flapping-wing UAV from Na-
tional Chiao Tung University.

Figure 1.2. Examples of Unmanned Aerial Vehicles.

and cheaper versions of these vehicles. They also carried video-cameras which sent

images to a human operator. Since then, the study and development of the UAVs was

related to the military field. The main goal was to increase the flight endurance and the

admitted payload. Depending on the vehicle configuration and performance, four main

categories of Unmanned Aerial Vehicles have been defined: fixed-wing UAVs which have

high endurance, can fly at high cruising speeds but need a runaway to take-off and land;

then, the rotary-wing UAVs, also called Vertical Take-off and Landing UAVs (VTOL),

which allow high maneuverability and hovering. An other category are the Blimps which

are lighter than air and are characterized by lower flight speed but long endurance; finally,

flapping-wing UAVs have flexible small wings whose movements are inspired by birds.

Figure 1.2 represents some examples of the mentioned aerial vehicles. A more detailed

survey on the history of such systems can be found in Kendoul (2012). Even though

the improvement of these vehicles performance in terms of endurance, maneuverability

and sensing was strictly related to military purposes, anyway their application began

to extend to the civil area: for example they were used as remote sensors to inspect

buildings and terrains, to map some areas of interest or even to surveil road traffic and

coastal borders; in addition, they began to be exploited as autonomous systems able to

interact with the surrounding environment, for instance to manipulate and transport

objects Maza, Kondak, Bernard, and Ollero (2010a); Michael, Fink, and Kumar (2011)

or to search and rescue during disasters. The field of application of the UAVs spread very

quickly due to the improved sensing and computing equipment and to the lower cost and

3

1 Introduction

Figure 1.3. The first British fixed-wing VTOL aircraft, 1958.

lighter weight. These characteristics, indeed, made these vehicle accessible to a wider

community, both in the industrial and research environment.

An interesting category among the ones cited before is of course the VTOL vehicles,

Figure 1.3: they are endowed with high maneuverability and can hover in place and they

do not need any runway to take-off and land. These aspects are fundamental when such

vehicles have to fly in environments which are small or with many obstacles. Besides

these useful properties, standard VTOL vehicles generate a thrust force along a fixed

direction with respect to the body frame; for this reason they belong to the class of

under-actuated vehicles, that is the state cannot be fully controlled. Indeed, the attitude

and the position are not independent one from the other. This is evident when the

vehicle needs to move horizontally: it firstly needs to rotate such that a component of

the generated thrust is horizontal, hence an acceleration along the same direction of this

component allows the robot to translate toward the desired direction. The same happens

when it needs to stop moving forward: in this case an inverse rotation would restore

the thrust direction (vertically this time) such that the horizontal acceleration becomes

zero. Several works studied VTOL because their characteristic (under-actuation) makes

it difficult to develop a controller able to immediately reject external disturbances while

stabilizing the system. To this aim, in Bicego (2019) the authors propose the possibility of

orienting the aerial vehicle actuators in a different manner, in order to take advantage of

the Multi-Directional Thrust (MDT) force capability: this allows the vehicles to perform

maneuvers where rotation and translation are completely independent. As a consequence,

novel control strategies must be designed to drive these aerial robotic systems.

Among all the challenges related to aerial vehicles, some attention has been devoted

to tethered flying solutions (see Maza, Kondak, Bernard, and Ollero (2010b)Pinkney,

Hampel, and DiPierro (1996), Muttin (2011)), like the case of one vehicle tethered to

a ground station via a taut cable. An example is reported in Figure 1.4a. Tethered

aerial vehicles can be exploited for reconnaissance capabilities, surveillance and high-

bandwidth communications. In such situation, the presence of the cable has multiple

purposes: firstly, to be used as a high-bandwidth channel: the cable ensures a more

stable, immune to interference and secured communication w.r.t. wireless connection

hence real-time high-speed data transmission can be achieved, allowing for accident

detection, emergency communication and coordination of rescue operations, see Figure

1.4b. In the telecommunications field tethered UAVs can be used as airborne relays to

4

(a) Example of a tethered drone used for inspec-
tion.

(b) Tethered Station for Unlimited En-
durance Flights.

Figure 1.4. Additional examples of Unmanned Aerial Vehicles.

create temporary networks thanks to their high-speed data transfer. In this case, cellular

coverage can be extended in crowded environments and connectivity can be improved in

remote areas. Secondly, the cable can be used to provide energy: it allows to power the

robots for how long it is needed Eli, without time limitations which instead characterize

batteries usage. Thus long surveillance operations are possible by day and night, allowing

to monitor wide areas. An other useful application of tethered aerial vehicles is to make

them wash or paint buildings at high altitudes: of course this is very helpful because

reduces a lot the risk for the human operators. In addition, being the vehicles autonomous,

their employment reduces time and costs w.r.t. the scenario where some people have

to perform the task. Notice that the cable that tethers the robot to the ground or to

a moving station is useful both to send the necessary fluids and to power the robot.

Finally, tethered solutions improve hover stability in presence of wind or during dangerous

maneuvers, e.g., take off and landing from moving platforms as a ship when the sea is

rough. A solution to this problem is proposed in Oh, Pathak, Agrawal, Pota, and Garratt

(2006), where the authors face the problem of autonomous landing of a helicopter on a ship

deck using a tether. In this scenario, the landing maneuver on a sloped (not flat) surface

is a challenging problem for a VTOL (Vertical Take-Off and Landing) vehicle due to its

intrinsic underactuation. Indeed, since the aerial vehicle needs to be oriented parallel to

the surface when it is close to it, both attitude and position require to be controlled. So,

tethered vehicles represent an interesting solution to make landing operations efficient

and safe also in presence of non-flat terrains. As mentioned before, a cable improves the

stability of the system in presence of disturbances: in Sandino, Bejar, Kondak, and Ollero

(2014), for instance, the wind effect on a tethered unmanned helicopter is considered

to improve hovering performance. Besides the disturbance rejection issue, hovering

and trajectory tracking are interesting tasks for a robot: for example, in Lupashin and

D’Andrea (2013), the authors develop a control strategy to stabilize the robot at a given

constant value, while in Tognon and Franchi (2015) and Tognon, Dash, and Franchi

(2016b), they make the quadrotor follow a desired trajectory assigned a-priori. In the

mentioned works, the desired configurations or paths are generated offline. However, in

real cases, it may happen that external, unpredictable forces are exerted on the system

or an obstacle could be found in the path. To handle such events, the original trajectory,

that did not predict these disturbances, must be recomputed taking into account the

new information. This is faced in Alexis, Nikolakopoulos, and Tzes (2012) and Alexis,

5

1 Introduction

Nikolakopoulos, and Tzes (2012), where a path tracking problem is solved by using the

MPC strategy for an unmanned quadrotor subject to atmospheric disturbances: anyway,

in neither case tethered vehicles are considered. Notice that in the previous lines we

discussed about single-agent systems, where a task is assigned to a single aerial robot.

Besides the interesting applications which can be implemented in this case, some scenarios

require to exploit multiple robots to fulfill a common task. The tasks where single-agent

systems are usually employed require strict specifications in terms of accuracy and speed

of completion, which in some cases can be impossible. Moreover, the risk of mission

failure is significantly high due to possible critical sensor or actuation faults. Instead,

the use of multiple vehicles may significantly speed up the task completion, improve the

perception, and enhance the fault tolerance capabilities of the overall multi-robot system.

Typical fields of applications of aerial multi-robot systems are: mapping, localization

and navigation; distributed cooperative perception and active sensing; decentralized

coordination and cooperation; transporting big objects, surveillance of vast areas. Thanks

to decentralised nature of multi-robot systems, the robots apply spatially distributed

forces at different locations around objects. The independent actions of different agents

can potentially generate a group skill that is very difficult to be achieved by a single

robot. This property is particularly important in cooperative transport tasks, where the

independent exertion of multiple pushing/pulling forces in different points of an object

allow the group to generate precise translation/rotation maneuvers in order to avoid

obstacles during transport. Recently, aerial manipulators or physical links like cables, has

become a very popular topic. They can be used for aerial manipulation of large objects,

for which cooperative approaches are usually applied to overcome the limited payload of a

single platform, hence allowing to lift larger and heavier loads Kumar and Michael (2012);

Maza, Kondak, Bernard, and Ollero (2010c). This solution is safer and less expensive

with respect to the use of a single more powerful aerial vehicle. Different strategies were

proposed in literature to tackle this problem. For instance, in Ritz and D’Andrea (2013)

the authors face the problem of cooperative aerial transportation of an elastic object.

In Caccavale, Giglio, Muscio, and Pierri (2015) multiple flying arms are exploited for a

similar problem. In Baizid, Caccavale, Chiaverini, Giglio, and Pierri (2014); Yang and

Lee (2015) the authors face the problem by taking into consideration aerial vehicles with

a robotic arm. Notice that in order to reduce the coupling between the transported load

and the aerial vehicles attitude dynamics, a solution is to perform aerial manipulation

using cables instead of manipulators, see Manubens, Devaurs, Ros, and Cortés (2013);

Masone, Bülthoff, and Stegagno (2016); Sreenath and Kumar (2013b). The mentioned

examples exploit a centralized control. Differently, a decentralized algorithm Mellinger,

Shomin, Michael, and Kumar (2010), is more robust and scalable with respect to the

number of robots. Notice that in all these scenarios the robots or do not exchange any

information, adopting a distributed approach, or they exploit an ideal, continuous-time

communication. In the first case, communication is performed implicitly by the forces

exchanged through the load. In Figure 1.5 an example of cooperative system where four

ground robots manipulate a common object is depicted: in this case, being the robots

rigid structures, force feedback can be exploited to control the load pose by installing

force or torque sensors. However, when dealing with aerial manipulation, the presence of

manipulators attached to the aerial robots would increase a lot the complexity of the

6

Figure 1.5. Scenario introduced in Marino (2018), where four ground robots cooperatively
transport a common load.

overall dynamical model, hence of the task. In this case, force feedback is not sufficient if a

precise tracking is required because the system is affected by a lot of external disturbances

which cannot be neglected and/or compensated. As a consequence, a pose feedback from

the load is needed. A solution to simplify the analysis, in the aerial scenario, is to tether

the robots to the load via cables and to exchange information with the common object.

In this way, each robot does not need to estimate the force exerted by the other robots

on the common load in order to retrieve its pose. It is interesting to notice that even in

those cases where force-feedback can be implemented, anyway the force exerted on the

common object could break or damage it. Thus a communication-based solution can still

be a good alternative.

1.0.1 Contribution

In this work we address the problem of advance control of tethered aerial robots in the

context of load transportation and landing.

Firstly, we propose a two-layers strategy to make a tethered quad-rotor land on

an inclined surface: the use of a cable is necessary because of the vehicle under-actuation,

that would not allow it to perform such an operation. The two-layer strategy has two

main purposes: the higher level is an on-line trajectory generator based on Nonlinear

Model Predictive Control (NMPC) that generates the desired inputs for the system

in order to fulfill the task while satisfying non standard constraints and avoid obstacles

and singularities. The low-level controller working at higher frequency allows to handle

external disturbances and model uncertainties while tracking the desired trajectory. It

is based on-feedback linearization and we show that this multi-layer structure allows to

obtain better performance with respect to the use of only NMPC to handle disturbances.

Notice that, even though a similar problem has been already faced in Tognon, Testa,

Rossi, and Franchi (2016c) where an off-line trajectory is generated to be tracked by the

system, in this scenario we aim at proposing a real-time application: indeed, the reference

trajectory is computed online and it takes care of eventual external disturbances (like

7

1 Introduction

the wind) and model uncertaintes which affect the task performance:these un-modeled

quantities can be handled thanks to the use of the two-layer strategy. Moreover, we impose

a set of non-standard and non-linear constraints to be satisfied during the maneuver:

this allows to land and take-off smoothly and to avoid the risk of breaking parts of the

system.

Then, in the second part of the thesis, we still consider tethered aerial vehicles

which are linked to a common object via cables: the goal is to make the whole system

reach a desired configuration or track a desired trajectory. To do that, we propose a

multi-layer architecture that allows to perform the task even in presence of sampled

communication. Indeed, we are interested in realistic robotics applications where

usually communication or is not used at all or is assumed to be ideal, i.e. fast enough

to be considered as continuous. A typical example is the case where a group of ground

robots which are endowed with robotic arms and use them to transport a payload; in

this case they retrieve the payload position and orientation exploiting force feedback.

No information is exchanged among the robots in order to increase the flexibility of

the system: on the other hand, if the object is delicate, then it could break because of

the external forces exerted by the arms. Moreover, if a precise value of position and

orientation are required, then force feedback is not enough. A possible solution is the

use of communication between each robot and the object in order to know exactly the

payload position and orientation. In this case, it is possible to tether a group of aerial

robots to the payload via some cables which are attached through passive joints: this

allows to avoid the use of grippers and robotic arms. Notice that the use of cables

induces the decoupling between the rotational dynamics of the vehicles and the one of

the load. Full pose control of the load is possible when the robotic system can attain a

six-dimensional wrench on the load by controlling the orientation of the cables and the

force applied by them. The minimum setup that possesses such ability is a system with

three vehicles connected to three non-collinear points (this system is called Fly-crane

in the following). Actually, as mentioned before, when dealing with real systems which

communicate via wireless, measurements are sent at sampling times and they may be

affected by packets losses and asynchronous behavior. As a consequence, to guarantee

a low percentage of packets losses, the rate used to transmit information can not be to

large. To our knowledge, for the first time we face such a problem and we propose a

control strategy to perform the task in these conditions. We also prove theoretical results

which guarantee the stability of the system during the maneuver and we show by means

of simulations that our strategy works well on a dynamical system. Finally, we provide

the results of experiments on a real system.

1.0.2 Structure of the Thesis

In Chapter 2 we describe an on-line Model Predictive Control for tethered Unmanned

Aerial Vehicles to perform a safe and constrained maneuver. We propose a multi-layer

architecture to generate on-line an optimal trajectory to allow a tethered aerial robot

land on an inclined surface. In Chapter 3 we design a local planner in order to make

a class of multi-agent systems reach a desired configuration which is assumed to be

generated by a global planner, that takes care of singularities and obstacles avoidance.

8

The proposed strategy is analysed in the context of sampled communication. Chapter 4

considers the previous problem in a more general scenario, where the multi-agent system

is over-actuated: in this case we propose two techniques to implement point-stabilization

control, as before, such that the controlled system can handle unfeasible reference to be

tracked by the system. Finally, in Chapter 5 we propose a solution to make a group of

robots track a trajectory when measurements from the system are available at sampling

instants.

9

2
Online Nonlinear Model

Predictive Control for

tethered UAVs

to perform a safe and

constrained maneuver

Contents

2.1. Introduction . 12

2.1.1. Overview . 13

2.2. Modeling and problem formulation 13

2.3. On-line Reference Generator . 15

2.3.1. Constraints . 16

2.3.2. Functional cost . 17

2.4. NMPC for Reference Generation 18

2.4.1. Implementation Details . 19

2.5. Low Level Local Controller Design 20

2.6. Simulation . 20

2.6.1. Model for simulation . 21

2.6.2. Simulation results . 22

This section focuses on the design and implementation of a two layer hierarchical

controller for a tethered aerial vehicle. In particular, a challenging problem of smoothly

landing on a inclined plane is considered. Such problem yields nonlinear control objective

and constraints which require advanced control techniques like Nonlinear Model Predictive

Control (NMPC), that is known to be computationally demanding. A control architecture

composed by two layers is proposed: an NMPC operating at 100Hz is employed to generate

feasible trajectories on-line and a simplified local controller, working at 500Hz, is used to

track them. The effectiveness of this hierarchical control structure is demonstrated by

a closed-loop simulation. Moreover, the rejection of external disturbances, such as the

wind, is a peculiar characteristic of the proposed control strategy.

11

2 Online Nonlinear Model Predictive Control for tethered UAVs

to perform a safe and constrained maneuver

2.1 Introduction

This section is based on the work Rossi, Bruschetta, Carli, Chen, and Farina (2019): in

Section 1 we already named some motivations that make tethered UAVs an interesting

solution in many scenarios: the presence of the cable guarantees a secure communication,

improves the stability of the robot in presence of external disturbances and allows

maneuvers which would be otherwise impossible due to the intrinsic under-actuation of

vehicles like quad-rotors. The work presented in this section is a further development

of Tognon, Testa, Rossi, and Franchi (2016a), where an optimal trajectory is generated

to make a tethered UAV (Unmanned Aerial Vehicle) perform safe landing and takeoff

maneuvers. A hierarchical nonlinear controller is exploited to track the position and

orientation of the vehicle. Nevertheless, the optimal path is generated offline and is not

recomputed if the system state changes, hence loosing its optimality properties.

As in Tognon et al. (2016a), we consider the case of landing on a inclined plane, but using

a simplified 2D model. In particular, our goal is to develop a two-layers strategy: the

first layer is an on-line reference generator based on Nonlinear Model Preditive Control

(NMPC) that minimizes a nonlinear functional cost under non standard constraints

and to generate feasible trajectories, that adapt on-line to disturbances or modeling

errors; the second layer is a simplified feedback linearization controller that allows the

system to track the trajectory generated by the first layer. Since the constraints are

NMPC
LOW LEVEL

SYSTEM
CONTROLLER

ref. u x

100[Hz] 500[Hz]

Figure 2.1. Block diagram of the two-layer control architecture

computationally demanding, the NMPC problem cannot be solved at high frequency.

This is why the additional low-level controller is used: working at high frequency, it can

handle disturbances and model uncertainties while tracking the reference trajectory. In

Figure 2.1 the mentioned architecture is depicted. In particular, the first sample of the

state sequence generated from the NMPC is interpolated and used as reference for the

low level controller, that works at a higher frequency. With this control architecture,

since NMPC is updated with state measurements at each time step, then the robots are

able to adaptively reconfigure when the environment where they are operating suddenly

changes. At the same time, their behavior satisfies a set of highly non linear constraints,

which are studied for the particular task that is considered. We show that the proposed

control strategy makes the system reject non modeled external disturbances (in this case

the wind) better than using only NMPC. Thus, a controlled landing maneuver can be

performed, adjusting the orientation and the velocity of the UAV when it approaches the

ground. The simulations show that, despite the complexity of such restrictions, it is still

possible to reach high performance, by using such a two-layers structure. A fast NMPC

implementation is used to meet the real time requirement of this application, exploiting

12

2.2 Modeling and problem formulation

the so-called Real Time Iteration (RTI) scheme Diehl, Bock, Schlöder, Findeisen, Nagy,

and Allgöwer (2002) implemented in the package MATMPC Chen, Bruschetta, Picotti,

and Beghi (2019); Yutao (2017). As a consequence, techniques that reduce the model or

the number of prediction points (Abdolhosseini, Zhang, and Rabbath (2013)) are not

required.

We can resume the contributions of this chapter in the following points:

• We derive the 2D dynamical model of a quad-rotor, tethered to the ground through

a cable, motivating the choice of such system

• We define an optimization problem to make the robot land on an inclined surface

by imposing a set of constraints in order to guarantee that the maneuver is safe

and smooth

• Based on the optimization problem, we design a NMPC framework in order to

generate on-line the inputs for the system

• We define a two-layer architecture, where the output of the NMPC, a desired

trajectory, is given to a low-level local controller: it converts the trajectory into

force and torque values for the robot

• We validate our strategy on the dynamical model of the system, by adding external

disturbances (the wind) and including model uncertaintes

2.1.1 Overview

The chapter is organized as follows. In Section 2.2 we describe the model of the system

that has to be controlled and we formulate the problem we aim at solving. In Section

2.3 we illustrate the on-line reference generator we developed, discussing in detail the

optimization problem we solve within the NMPC implementation. In Section 2.5 the low

level controller is introduced. In Section 2.6 we report the numerical results obtained

and we show that the low-level controller improves the performance when external

disturbances affect the system.

2.2 Modeling and problem formulation

Consider an unmanned aerial vehicle (UAV) tethered to the ground through a taut

cable with fixed length l (see Figure 2.2). The robot body (B) has mass mB ∈ R>0 and

inertia JB ∈ R>0, whereas the cable mass and inertia are neglected in order to simplify

the analysis: indeed, for a non rigid connection, they are usually much smaller with

respect to the other components mass and inertia. Let us denote the world frame by

FW , with origin OW and axes {xW ,yW ,zW } where zW is opposite to the gravity vector.

Then let us introduce the frame FB rigidly attached to the UAV, with axes {xB,yB,zB}
and origin OB, set on the center of mass (CoM) of the body. Observe that the axes yB

and yW are parallel to each other and both perpendicular to the plane where the robot

moves; in this work, indeed, we assume that the UAV can move only in the 2-dimensional

13

2 Online Nonlinear Model Predictive Control for tethered UAVs

to perform a safe and constrained maneuver

Figure 2.2. Representation of the system and its main variables.

xW ,zW - plane. In particular, the CoM of the UAV is constrained to move on the circle

centered at OW with radius l. Thus, position and orientation can be completely described

by the generalized coordinates q = (ϕ,ϑ) where ϕ represents the elevation of the UAV

with respect to the ground, while ϑ is the UAV attitude; in particular, the position of

the UAV is described on FW as pB = [xB,yB,zB]T = [lcosϕ,0, l sinϕ]T while the angular

velocity as ωωωB = [0, ϑ̇B,0]T . We assume the UAV is endowed with two propellers, both

situated at distance d from the CoM (see Figure 2.2). When rotating these propellers,

the forces f1, f2 are generated, where fi = bω2
i , being b a constant depending on physical

characteristic and ω2
i the angular speed of propeller i. The forces f1, f2 actuate the

system with the thrust fR ∈ R and torque τR ∈ R (both depicted in red in Figure 2.2)

such that fR = −fRzB and τττR = τRyB . The relation between fR, τττR and f1, f2 is uniquely

determined by

[
fR

τττR

]
=

[
1 1

−d d

][
f1

f2

]
(2.1)

In the following we will assume fR, τR to be the inputs of the UAV. In addition, the

extremities of the cable are anchored to a fixed point, OW , and to OB that moves on

the 2D plane. The dynamic model of the system is derived using the Euler-Lagrangian

formulation, computing the kinetic and potential energies K and U , the Lagrangian

function L = K −U , the generalized forces Q and solving d
dt

dL
dq̇

− dL
dq

= Q, where q = [ϕ ϑ]T ;

the following model is thus obtained

mBlϕ̈ = −mBg cosϕ+fR cosϕ+ϑ

JBϑ̈ = τB. (2.2)

The derivation of (2.2) is explained in Tognon and Franchi (2015). It is convenient to

rewrite the model in state-space form. To this aim, let us introduce the state vector

x = [x1,x2,x3,x4]T = [ϕ,ϕ̇,ϑ, ϑ̇]T and the input vector u = [u1,u2]T = [fR, τR]T ; then we

have

ẋ1 = x2. ẋ2 = a1 cosx1 +a2 cos(x1 +x3)u1

ẋ3 = x4, ẋ4 = a3u2

(2.3)

14

2.3 On-line Reference Generator

ϑ
ϕ

(a) Correct landing

ϑ

ϕ

(b) Wrong landing

Figure 2.3. Feasible and unfeasible landing

where a1 = −g/l a2 = 1/(mBl) a3 = 1/JB.

An important quantity in our framework is the stress fL acting on the cable; it is derived

by projecting along the cable all the forces acting on the system, namely, the gravitational

and centrifugal forces and the total thrust fR, leading to

fL =
1

a2
x2

2 +
a1

a2
sin(x1)+sin(x1 +x3)fR (2.4)

In order to have a taut cable, fL must be greater than zero.

2.3 On-line Reference Generator

In this section, we describe the guidelines used to design the optimization problem to be

solved into the NMPC framework we consider. This allows to generate on-line and in

a closed-loop fashion the trajectory to be followed The design of the on-line reference

generator is based on an NMPC formulation, which allows to define complex control

objectives and constraints. Before describing the optimization problem, we address those

conditions that play an important role in the on-line solution of the control problem.

specifically:

Feasibility condition: to guarantee a safe maneuver, the propellers must touch the ground

with zero velocity. Hence, the UAV must decelerate and be approximately oriented as

the inclined plane while approaching it, in order to avoid situations like the one in Figure

2.3b and prefer instead the scenario shown in Figure 2.3a.

Stress: it is the internal force acting along the cable and must be fL ≥ 0, otherwise the

cable is not taut and the dynamic model is no more valid. However, an upper-bound is

imposed by the internal elasticity properties of the cable.

Thrust, torque: the maximum value ωmax attained by the speeds of the propellers ωi,

i = 1,2 reflects on the maximum admissible thrust and torque values which actuate the

15

2 Online Nonlinear Model Predictive Control for tethered UAVs

to perform a safe and constrained maneuver

d

' < ��

�

b
> �

dPG1

dPG2

Figure 2.4. The robot is clockwise rotated with respect to the sloped surface with ϑ ≥ α; in
this case b ≥ 0 hence both (2.7) are satisfied.

UAV.

Smoothness of the inputs: discontinuities of the inputs or states are not feasible for a real

system, hence smoothness has to be enforced. In this regard, it is convenient to modify

the dynamic model in (2.3), assuming as new input the time-derivatives of the thrust

and of the torque, that is, ḟR, τ̇R. Introducing the state x = [ϕ,ϕ̇,ϑ, ϑ̇,fR, τR]T and the

input u = [ḟR, τ̇R]T , the new dynamics can be written as

ẋ1 = x2, ẋ2 = a1 cosx1 +a2 cos(x1 +x3)x5

ẋ3 = x4, ẋ4 = a3x6, ẋ5 = u1, ẋ6 = u2

(2.5)

Next section formally describes the introduced constraints.

2.3.1 Constraints

We start by formulating the constraints associated to the physical limits of the system,

that is,

0 ≤ fL ≤ fLmax , 0 ≤ fR ≤ fRmax , |τR| ≤ τRmax (2.6)

where fLmax is the maximum stress that can be exerted on the cable, and fRmax , τRmax

are, respectively, the maximum thrust and torque that can be generated by the propellers.

Observe that, in real scenarios, when landing, the propellers can not touch the ground

before the legs of the UAV. In our simplified model we impose that they can not reach

the inclined surface before the system CoM. Let α be the slope of the inclined plane.

Then, from geometrical considerations, we want that the distance between each propeller

and the ground (dP G1 , dP G2) is always greater than zero:

dP G1 := a− b ≥ 0, dP G2 := a+ b ≥ 0 (2.7)

where a = l sin(ϕ + α) ≥ 0 and b = dsin(ϑ − α). The meaning of (2.7) when ϑ ≥ α is

represented in Figure 2.4.

To avoid feasibility issues, such constraints are not suitable to be used as hard constraints

in the NMPC formulation. The formulation with soft constraints is then introduced

16

2.3 On-line Reference Generator

adding the slack variables s1 and s2 and (2.7) become

a− b ≥ s1, a+ b ≥ s2, s1 ≥ 0, s2 ≥ 0 (2.8)

In our problem, we consider constraints in (2.8) as soft constraints and we incorporate

them into the functional cost. In Tab.2.1 the list of constraints and their values are

reported.

min max

fR [N] 0 15
τR [N ·m] -1.2 1.2

min max

fL [N] 0 10
s1,2 [m] 0 ∞

Table 2.1. The bounding values of the thrust, the torque and the stress. The slack variables
must be greater than zero in order to properly formulate soft constraints.

2.3.2 Functional cost

In this subsection we focus on the functional cost to be minimized: it includes different

contributions and formally is described as

J =

∫ T

0

9∑

j=1

∥∥∥ηj
∥∥∥

2

wj

dτ (2.9)

where

η1 = ḟR η2 = τ̇R

η3 = h(ϕ)(ϑ−ϑ∗) η4 = h(ϕ) ϕ̇

η5 = h(ϕ) ϑ̇ η6 = s1, η7 = s2

η8 = ϕ−ϕ∗ η9 = ϑ−ϑ∗.

(2.10)

and wj are the weights, respectively labeled as kfR
,kτR

,kϑ,kϕ̇,kϑ̇,ks,k∆ϕ
,k∆ϑ

. Moreover,

ϑ∗ = α and ϕ∗ = −α denote the desired attitude and elevation. Observe that η1 and η2

penalize the rate of variation of the thrust fR and of the torque τR. The terms η3 , η4

and η5 force the system to slow down when approaching the inclined surface and become

parallel to it before landing. Notice that the contributions (ϑ − ϑ∗), ϕ̇ and ϑ̇ in η3, η4

and η5, are weighted by the sigmoid function

h(ϕ) =
1

1+eγ(ϕ−ϕlim)
(2.11)

where γ and ϕlim are two parameters to be tuned; in particular γ determines the

smoothness of the function, while ϕlim is such that h(ϕlim) = 1
2 . Notice that, since

ϕ∗ = −α, then the closer the UAV to the final configuration (ϕ < ϕlim), the larger is h(ϕ)

and, in turn, the greater the values of η3, η4 and η5 in the functional cost. Figure 2.5

shows an example of a sigmoid function. The terms η6 and η7 are associated to the slack

variables, introduced to generate the relaxed constraints. Note that they are introduced

in (2.10) in a quadratic form instead of the more common linear form: this allows an

easier tuning procedure for the relative weights and a smoother function for the optimizer.

17

2 Online Nonlinear Model Predictive Control for tethered UAVs

to perform a safe and constrained maneuver

Figure 2.5. Representation of the sigmoid function with γ = 19 and ϕlim = −0.24[rad]: observe
that for ϕ < ϕlim h(ϕ) → 1.

Finally, the terms η8 and η9 are used to set the desired final elevation and attitude for

the UAV: to this aim, k∆ϕ
,k∆ϑ

weight the distance between the current configuration

and the desired one.

Based on the above discussion, we need to solve within the NMPC framework the

following optimization problem

J∗
t = min

x(·),u(·),p,T
J [x(·),u(·),s(·),p,T]

subject to:

∀t ∈ [t0,T] : f(t, ẋ(t),x(t),u(t),p,T) = 0

r(t,x(t),u(t),s(t),p,T) ≤ 0

(2.12)

where p is a vector of parameters, T the total duration, x the state, u the input, s the

slack variables and J the functional cost introduced in this subsection. Moreover the

equality constraints refers to the dynamics of the system in (2.5), while the inequality

constraints account for the constraints discussed in subsection 2.3.1.

2.4 NMPC for Reference Generation

To generate a feasible trajectory for the low level controller, problem (2.12) should be

solved on-line in real-time. Firstly, (2.12) is discretized using multiple shooting Bock and

Plitt (1984) yielding the following nonlinear programming problem (NLP):

min
x,u

1

2

N−1∑

k=0

‖ηk(xk,uk)‖2
W +

1

2
‖ηN (xN)‖2

WN

s.t. x0 = x̂0,

xk+1 = F (xk,uk), k = 0,1, . . . ,N −1

rk(xk,uk) ≤ 0, k = 0,1, . . . ,N −1,

rN (xN) ≤ 0,

(2.13)

where x = [x⊤
0 ,x⊤

1 , . . . ,x⊤
N]⊤ and u = [u⊤

0 ,u⊤
1 , . . . ,u⊤

N−1]⊤ are state and control vectors

defined in N shooting nodes and subintervals over the prediction horizon, respectively.

18

2.4 NMPC for Reference Generation

The cost function has the form of ηk = [η1
k, . . . ,η7

k]⊤ and the corresponding weights are set

in the matrix W . The state x0 is enforced to be equal to the current state measurement

x̂0, essentialy leading to a closed-loop scheme. The equality constraint represents the

coupling relation between states from two shooting nodes and system dynamics are

discretized using an integrator, denoted by F . To reduce the time for solving (2.13), the

Real-Time Iteration (RTI) scheme Diehl et al. (2002) is employed. RTI scheme performs

a single Sequential Quadratic Programming (SQP) iteration to solve (2.13). Notice

that if the sampling time used for discretization is too large, then undesired behaviors

may arise between two consecutive samples. Thus, the problem can be neglected by

choosing the sampling time small enough (we chose Ts = 0.01[s]). Moreover, if a complete

SQP is exploited to solve the NLP then the constraints are satisfied; on the other

hand, when using the RTI scheme, the problem can still be neglected only if the KKT

conditions, which are the derivatives of the Lagrangian gradient, are smaller than the

chosen threshold.

In this work, instead of applying u∗ to control the quadrotor, the state vector at the

first shooting node is used to generate a reference for the low level controller for a period

of 10 ms in the future. An interpolator that ensures C2 condition is implemented to

handle the sampling rate transition between NMPC (working at 100Hz) and low level

controller (500Hz) and to enforce smoothness on the generated trajectory.

x(1)

x(3)

x(2)

x(4)

tt t+ Ts

. . . t+N Ts-1t+ 2Ts t+ 3Ts

Figure 2.6. Interpolation: at time t a sequence of N reference states is generated by solving
(2.13); usually the first output is applied and, at t+Ts, where Ts = 10[ms] is the
shooting time, a new sequence is computed. In this scenario, instead of sending to
the low-level controller a constant reference for Ts seconds, we send the interpolation
with the next state in order to anticipate the system behavior.

2.4.1 Implementation Details

The NMPC trajectory generator is implemented in C code and compiled in MATLAB

using the software package MATMPC Chen, Bruschetta, Cuccato, and Beghi (2018);

Chen et al. (2019); Chen, Cuccato, Bruschetta, and Beghi (2017), in order to be used

together with the local controller in Simulink. A fixed step 4th order explicit Runge-

Kutta integrator is used to discretize system dynamics over a prediction horizon T = 0.3s

with N = 30 shooting nodes. The resulting dense QP is solved by qpOASES Ferreau,

Kirches, Potschka, Bock, and Diehl (2014), which employs on-line active-set method with

warm-start strategy.

19

2 Online Nonlinear Model Predictive Control for tethered UAVs

to perform a safe and constrained maneuver

2.5 Low Level Local Controller Design

The output of the NMPC is a desired trajectory, defined in position and velocity, while

the desired acceleration is obtained taking the derivative of the interpolated velocity.

So x(d), ẋ(d), ẍ(d), are the references to be tracked by system in (2.3). This task is

accomplished by a low level controller that we design resorting to a feedback linearization

approach. Let us introduce the auxiliary control variables ū1 and ū2 defined as

ū1 := a1 cosx1 +a2 cos(x1 +x3)u1, (2.14)

ū2 := a3u2

Based on the variables, the dynamics in (2.3) is rewritten as

ẍ1 = ū1, (2.15)

ẍ3 = ū2

namely, it reduces to a two-dimensional system of decoupled double integrators. System

in (2.15) can be stabilized by employing a standard PID controller with a feedforward

term, e.g.,

ū1 = ẍ
(d)
1 −KP e1 −KDė1 −KI

∫
e1(τ)dτ

ū2 = ẍ
(d)
2 −KP e2 −KDė2 −KI

∫
e2(τ)dτ

where e1 := x1 −x
(d)
1 and e2 := x2 −x

(d)
2 are the position errors.

The values of u1 and u2 can be obtained from ū1 and ū2 by inverting relations in

(2.14), i.e.,

u1 = (ū1 −a1 cosx1)/(a2 cos(x1 +x3)), (2.16)

u2 = ū2/a3

Observe that in the first equation cos(x1 +x3) must be different from zero, i.e., ϑ+ϕ Ó= π/2.

In the considered scenario we are far from this critical condition, that, however, might

be taken into account adding a further constraint.

2.6 Simulation

The performance of the proposed control strategy are evaluated simulating the reference

generator, the controller and the process within a MatLab-Simulink environment. The

controller architecture is as presented in Figure 2.1, i.e a series of an NMPC controller

used as reference generator working at 100Hz and a feedback-linearized low level controller

working at 500Hz with feed forward action. This high frequency is motivated by an

20

2.6 Simulation

eventual real-time implementation. The NMPC controller is tuned to exploit at best

the propellers, emulating a minimum time maneuver, hence heavily stressing the control

performance close to the ground. In Tab. 2.2 the cost function weights are reported. As

kfR
,kτR

kϑ kϕ̇,kϑ̇ ks k∆ϕ
,k∆ϑ

10−4 1 1 106 2·102

Table 2.2. List of parameters and their values. kfR
, kτR

, kϑ, kϕ̇, kϑ̇, ks, k∆ϕ
, k∆ϑ

are the cost
function weights.

far as the low level controller is concerned, the gains are tuned manually.

2.6.1 Model for simulation

To obtain more realistic results, the simulations are performed adopting two different

models: one for control, i.e. (2.5), and one for simulation. In particular, the simulation

model is obtained extending the model described in (2.5) by including the following

non-idealities.

Firstly, the robot is assumed to have two landers, which can be compressed when they

touch the ground. Their effect is obtained by introducing a reaction force, modelled as a

dumped elastic force, that counteracts the one exerted by the robot on the ground (see

Figure 2.7):

fRF =





kel(h−z)− ξϕ̇ if z ≤ h

0 otherwise
(2.17)

where kel ≥ 0 is the elastic constant, h the landers height, z the distance between the

robot CoM and the ground and ξ ≥ 0 is the dumping factor that multiplies the robot

velocity. The second non-ideality is an external disturbance: the wind model described

z�

�R� = �

�

z

(a) z1 > h: the landers do not touch the
ground.

z�

�R�
z

�

(b) z2 ≤ h: the landers are compressed.

Figure 2.7. The reaction force (see (2.17)) is active if z ≤ h.

in Sandino et al. (2014) is adopted on the longitudinal direction (xW). A pulse force

at t = 0[s] and a sinusoidal force starting at t = 0.1[s] are applied at the robot CoM,

making the dynamics of θ independent of this disturbance.

In Section 2.6.2, we show how the two-layer strategy guarantees high performance even

if the system used in simulation is different from the one used to generate the optimal

trajectory.

21

2 Online Nonlinear Model Predictive Control for tethered UAVs

to perform a safe and constrained maneuver

0 1 2 3

[s]

-30

-20

-10

0

[d
e

g
]

0 1 2 3

[s]

0

10

20

30

Figure 2.8. Attitude and elevation angles using only NMPC or the combination of NMPC and
the low level controller (2LC). The yellow line represents the desired value. Observe
that the attitude is already almost parallel to the ground, before the landing is
completed.

0 1 2 3

[s]

0

5

10

15

[N
]

0 1 2 3

[s]

-1

-0.5

0

0.5

1
[N

m
]

Figure 2.9. Inputs using only NMPC or the combination of NMPC and the low level controller
(2LC). The yellow line represents the lower and upper bounds of the thrust and
torque. Input saturation emphasizes the fact that the input forces are exploited at
best.

2.6.2 Simulation results

The simulation is performed assuming that the initial conditions are set at 0 degrees

both for ϑ and ϕ, whereas the desired values are set to ϑ∗ = 30◦ = −ϕ∗. In all the figures,

two cases are compared: the dashed lines refer to the signals generated by using only

the NMPC, while the continuous lines describe the signal obtained by the combination

of the NMPC and the feedback linearization, that is by the two-layers control strategy

(the related subscript in the plots is 2LC). Firstly, the simulation is performed without

the wind action. In Figures 2.8 and 2.9 the attitude and the elevation angles and their

rates are reported together with τR and fR. Available input forces are exploited at best,

reaching maximum velocities greater than 100 deg/s and moving the UAV from the

initial position to the final one in almost 0.7 seconds. Figure 2.9 shows that 2LC requires

smaller inputs values and the reason will be more clear in the following lines.

22

2.6 Simulation

0 0.5 1 1.5

[s]

0

0.1

0.2

0.3

0.4

0.5

0.6

[m
]

1.3 1.4 1.5

[s]

0

0.005

0.01

[m
]

Figure 2.10. Feasibility constraints: note that the distance between each propeller and the
ground (dP G1,2) is always greater than 0 (highlighted by the yellow line), that is
(2.7) are satisfied (the propellers never intersect the ground).

The low level controller performance makes the actual behaviour almost over-imposed

to the desired one, although no information on the constraints is used within it. The

behavior (of NMPC and 2LC) is not identical because, for a matter of implementation

feasibility, the multi-layer controller performs an interpolation of the trajectory generated

by the NMPC. As far as the constraints (2.7) are concerned, they are perfectly fulfilled

guaranteeing a smooth landing, as can be seen in Figure 2.10. In addition, note that at

0 1 2 3 4 5 6
-30

-20

-10

[d
e

g
]

0 1 2 3 4 5 6

[s]

0

20

[d
e

g
]

Figure 2.11. Comparison between elevation and attitude angles in presence of wind, described
by the grey line. The yellow line instead represents the desired value. Note that
the disturbance rejection is better tackled by the 2LC technique with respect to
NMPC.

steady-state the propellers do not touch the ground (see the zoomed plot): this is due

to the landers which support the robot. Furthermore, the aggressive PID action in the

2LC case, reduces the tracking error with respect to NMPC, bringing both the propellers

closer to the ground (thus even the CoM). Hence the thrust needed in this case is smaller

at the end of the simulation time, as shown in Figure 2.9. To conclude, from simulations,

23

2 Online Nonlinear Model Predictive Control for tethered UAVs

to perform a safe and constrained maneuver

0 1 2 3 4 5 6
0

5

10

15

[N
]

0 1 2 3 4 5 6

[s]

-1

0

1

[N
m

]

Figure 2.12. Inputs values under the effect of the wind: smaller values are required if the 2LC
strategy is used. The yellow line represents the lower and upper bounds of the
thrust and torque

0 1 2 3 4 5 6

[s]

0

0.2

0.4

0.6

[m
]

Figure 2.13. Feasibility constraints under the wind effect: the tracking error is greater when
using only NMPC instead of the 2LC strategy.

we observed that the constraint on the stress 0 ≤ fL ≤ fLmax is respected during the

whole simulation, maintaining the system structure and model validity, being fL always

far from the limits. Moreover, we observed that the maximal on-line computational time

of NMPC per sampling instant is less than 5 milliseconds. This demonstrates that the

NMPC trajectory generator can comfortably work at 100Hz even if constraints are active,

allowing for possible improvements in the model, or in the constraints or in the operating

frequency. As anticipated before, to emphasize the benefits of the 2LC strategy under

external disturbances, the effect of a sinusoidal wind is studied in an other simulation.

Figure 2.11 shows how the low-level controller has a crucial role in the disturbance

rejection: it, indeed, significantly reduces the tracking error with respect to the only

NMPC case. Observing Figure 2.12, the thrust generated by NMPC is slightly greater

than the one generated in the 2LC case. In the first case, indeed, the robot tries to

compensate the wind effect, that brings ϕNMP C away from the reference. As far as the

stress constraint is concerned, even if not reported, it is fulfilled along all the trajectory,

with ||fL|| ≤ 6 [N]. Finally, Figure 2.13 shows that the constraints in (2.8) are satisfied as

well.

24

3
Cooperative Aerial Load

Transportation via Sampled

Communication: square systems

Contents

3.1. Introduction . 26

3.1.1. Overview . 28

3.2. Modeling and problem formulation 28

3.2.1. Kinematics of multi-agent systems 28

3.2.2. Examples of square systems . 30

3.2.3. Problem Formulation . 32

3.3. Local planner: continous-time 33

3.4. Local Planner: Sampled Measurements 34

3.4.1. Off-line procedure (Stability and convergence rate) 36

3.4.2. Online model-predictive procedure 41

3.5. Simulation Results . 42

3.6. Experiments . 44

In this section, we propose a feedback-based motion planner for a class of multi-agent

systems with a sparse kinematics structure. In other words, the agents are coupled

together only by the transported object. The goal is to steer the load into a desired

configuration. We suppose that a global motion planner generates a sequence of desired

configurations that satisfy constraints as obstacles and singularities avoidance. Then, a

local planner receives these references and generates the desired agents velocities, which

are converted into force inputs for the vehicles. We focus on the local planner design both

in the case of continuously available measurements and when they are transmitted to the

agents via sampled communication. For the latter problem, we propose two strategies.

The first is the discretization of the continuous-time strategy that preserves stability

and guarantees exponential convergence regardless of the sampling period. In this case,

the planner gain is static and computed off-line. The second strategy requires to collect

the measurements from all sensors and to solve online a set of differential equations at

each sampling period. However, it has the advantage to provide doubly exponential

convergence. Numerical simulations of these strategies are provided for the cooperative

aerial manipulation of a cable-suspended load.

25

3 Cooperative Aerial Load Transportation via Sampled Communication:

square systems

3.1 Introduction

The class of tethered aerial vehicles has a large field of applications, like search and

rescue, load manipulation and transportation Maza et al. (2010a); Michael et al. (2011).

Due to the limited payload of commercially available vehicles, a group of robots is rather

employed to transport and manipulate payloads, e.g., for construction and assembly

tasks. The most direct approach to control such a multi-robot system is by a centralized

kinematic/dynamic inversion Manubens et al. (2013); Masone et al. (2016); Sanalitro,

Savino, Tognon, Cortés, and Franchi (2020); Sreenath and Kumar (2013a). However, a

distributed approach, where the communication among agents is restricted to neighbors

Farivarnejad and Berman (2018a); Wang and Schwager (2016b) or not employed at all Lim,

Kwon, Kim, and Ahn (2017); Tognon, Gabellieri, Pallottino, and Franchi (2018), is more

favorable. This technique guarantees major robustness and flexibility with respect to a

centralized one, where a central unit handles all the computational load and if the latter

fails, then the whole task fails. However, the distributed approach lacks global information

as the load state and parameters, or the total number of robots. This aspect increases the

difficulty of the controller design and might degrade the performance as well. Examples of

distributed control methods can be found for groups of ground Franchi, Petitti, and Rizzo

(2019); Petitti, Franchi, Di Paola, and Rizzo (2016), underwater Conti, Meli, Ridolfi,

and Allotta (2015) and aerial robots Mellinger, Shomin, Michael, and Kumar (2013).

Other examples of decentralized approaches in which ground or aerial robots employ

robotic manipulators can be found in Sieber and Hirche (2019) and Verginis, Nikou, and

Dimarogonas (2018). To reduce communication issues, communication-less approaches

relying on a leader-follower paradigm were presented for the problem of cooperative

transportation and manipulation Farivarnejad and Berman (2018b); Gabellieri, Tognon,

Sanalitro, Palottino, and Franchi (2020); Tagliabue, Kamel, Siegwart, and Nieto (2019);

Tsiamis, Verginis, Bechlioulis, and Kyriakopoulos (2015); Wang and Schwager (2016a).

Notice that if the leader fails, then the task will fail too, and if one follower fails, the

formation might be loosen. In this scenario, the communication is done implicitly by the

forces exchanged through the load Marino and Pierri (2018); Tagliabue, Kamel, Siegwart,

and Nieto (2017); Tsiamis, Verginis, Bechlioulis, and Kyriakopoulos (2015). However, if

a very precise tracking is required, the force feedback is not enough and a pose feedback

from the load is needed. This can be measured by a sensor on the load, or retrieved from

the robots pose if those are rigidly connected to the load. In detail, the load sensors send

the estimated load pose to the robots via a communication channel. Notice that this

reasoning can be extended to formation control problems where a group of robots must

complete a desired task Franchi and Giordano (2018); Franchi, Masone, Grabe, Ryll,

Bülthoff, and Giordano (2012). Also in this case, a communication-based approach allows

the robots to exchange measurements about the formation of the group, such as relative

distances. In the scenarios where communication among robots is required to meet

the task specifications, problems related to it must be properly assessed. In particular,

the limited bandwidth of wireless communication channels makes the assumption of

continuous signals not valid. Specific strategies to deal with sampled communication and

measurements need to be designed.

26

3.1 Introduction

To the best of our knowledge, in this work we investigate for the first time the problem

of cooperative aerial load transportation via sampled communication. We tackle the

problem by considering an architecture where a global motion planner generates off-line

a sequence of reference points, taking into account obstacles and singularities avoidance.

These points are then loaded in the computational unit, that can be placed on the

transported platform or on the vehicles, depending on the strategy. Then, to connect

each pair of consecutive points along the path computed off-line, we propose a method

that computes online the reference vehicles velocities, guaranteeing the stability and the

exponential convergence of the pose load error, even when the communication is not

continuous. In the following, we call this method a local motion planner. The design of

this planner is our main contribution: we firstly define it in the continuous time scenario

and later extend the analysis to the more realistic case in which the measured variables

are transmitted via sampled communication to the low-level agent controllers. We focus

only on the kinematic model since it is assumed that each agent is endowed with a

dynamic model-based local controller. For this problem, we propose two strategies: a

static feedback technique that exploits the sparsity of the system model and an adaptive

one, where the planner gain is adapted online. The second strategy provides faster

convergence rate with respect to the first one, but cannot be implemented in a distributed

way.

We can resume the contributions of this chapter in the following points:

• We define a class of multi-agent systems characterized by a sparse kinematic

structure: in particular, we consider models which are characterized by a square

Jacobian matrix

• We propose a two-layer architecture where a global planner generates the sequence

of desired configurations for the system; we design the local planner that, working

at low frequency, transforms these references into desired velocities for the agents.

• Firstly, we consider the continuous-time scenario, where measurements from the

system are continuously available: based on Lyapunov theory, we give necessary con-

ditions on the planner gain in order to obtain stability and exponential convergence

guarantees

• Then, we extend the analysis to the case where measurements are available at

sampling instants: this is meant to simulate a wireless transmission. Even in this

case, we provide necessary conditions for stability and convergence, by proposing two

different strategies to compute the planner gain, depending on the implementation

that can be centralized or distributed

• We validate our contribution by means of simulations on the kinematic model of a

system with three aerial robots transporting a load via cables

• Finally, we also provide the results obtained by applying our strategies to the real

system.

27

3 Cooperative Aerial Load Transportation via Sampled Communication:

square systems

3.1.1 Overview

The chapter is organized as follows: in Section 3.2 we formalize the problem for a specific

class of systems. In Section 3.2.2 we show two examples of multi-robot systems which are

correctly described by this class. In Section 3.2.3 we introduce the problem to be solved.

In Section 3.3 we analyze the continuous-time scenario, extended to the sampled case in

Section 3.4. In Section 3.5 numerical simulations are described. Finally, in Section 3.6

we also show the results obtained by applying our strategy to a real robotic system.

3.2 Modeling and problem formulation

3.2.1 Kinematics of multi-agent systems

In this section we describe the kinematic model of a multi-agent system composed by N

agents which cooperate to fulfill a task; the agents do not communicate among themselves

but receive information from a central unit, that we call pivot, and we indicate it with the

letter V . Notice that it can be an object to be manipulated (in this case we assume that

passive, not extendable connections are used, such as cables, bars, joints, etc.), a robot

to be escorted or an other object in the space. Instead of robots, one could use 1-DoF

actuated cables of variable length or even 3-DoF actuated points flying in 3D space.

The kinematic model is derived as shown in Appendix B.1.1: briefly, we defined

a fixed reference frame FO = O − {xO,yO,zO} and a moving reference frame FV =

V −{xV ,yV ,zV } fixed on the center of mass of the pivot. Now, we define the position

pO
V and orientation (described by a rotation matrix) RO

V of the pivot with respect to the

fixed reference frame and the position pV
i and orientation RV

i of each agent with respect

to the pivot. Thus, it is possible to express the position pO
i and orientation RO

i of each

agent with respect to the fixed reference frame. As a consequence:

pO
i = pO

V +RO
V pV

i

that brings directly to the kinematic model of the system:




p1

...

pN


 =




h(1)(q1,qV)
...

h(N)(qN ,qV)


 (3.1)

This function maps the Lagrangian coordinates of the system q = [q⊤
1 · · · q⊤

N q⊤
V]⊤ ∈

Rm×1, m > 0 to the vector collecting the agents configurations p =
[
p⊤

1 . . . p⊤
N

]⊤ ∈
Rn×1, n > 0 where pi ∈ Rni×1 represents the cables lengths in a cable-driven robot

or the positions of the flying points in an aerial system; in case the cables are attached

to carrying robots, then this vector represents the position of the i-th robot in the space.

The variables qi ∈ Rmi×1, mi > 0 instead gathers the angles and/or distances between

28

3.2 Modeling and problem formulation

the pivot V and the i-th agent, and qV ∈ RmV ×1, mV > 0 represents the pose (position

and orientation) of the pivot itself. Notice that m =
∑N

i=1 mi +mV and n =
∑N

i=1 ni.

Moreover, note that mi = 0 if pi can be fully described by the only pivot pose qV .

Otherwise, if pi depends also on qi, then mi = 1 if one angle is sufficient to express

the positions pi with respect to the pivot pose like for example in Figure 3.1a; in that

scenario, if a single cable connects a robot to the pivot instead of two, then the cable

orientation is described by two angles, i.e. mi = 2, see Figure 3.1b. Note that we do not

consider rotations of the cables about their own axis, hence mi ≤ 2.

A key feature of the systems considered in this work is that they exhibit a star-like

interaction topology where each agent is connected to a central unit (the pivot). This

topology is more evident when considering its differential kinematics:

ṗ = Aq q̇, (3.2)

where the Jacobian Aq = ∂h(q)
∂q

∈ Rn×m has the structure

Aq =




A
(1)
q1 0 A

(1)
qV

. . .
...

0 A
(N)
qN

A
(N)
qV


, (3.3)

and A
(i)
qi = ∂hi(q)

∂qi
∈ Rni×mi and A

(i)
qV

= ∂hi(q)
∂qV

∈ Rni×mV .

Notice that the Jacobian has zero elements outside the main diagonal because of the

property of the function h(q): indeed, the position of each agent depends only on

its configuration and on the pivot one, hence it does not depend on the other agents

configurations.

Notice that in this section we will focus on the case n = m, that is on square systems.

This choice is motivated by the fact that the cases n Ó= m requires a dedicated analysis

that is performed in Section 4.1. Indeed, it is not immediate to extend the following

results to the more generic scenario of non square systems. Let us make an example to

justify this: consider a multi-robot system like the one in Figure 3.1a were the robots are

linked to a common platform via tight cables; assume that Aq is invertible and that the

input to the system is the vector of desired robots velocities ṗd. If n = m there always

exists a vector q̇ = A−1
q ṗd in the configuration space that allows the robots to achieve the

desired velocity. Now if n Ó= m then the Jacobian is not square and the system becomes

redundant (if n > m), or there exist trajectories in the configuration space q̇ which cannot

be feasible for any input ṗd (if n < m). Thus, some artifices must be used to control

such systems when n Ó= m. Moreover, in practice when n Ó= m, even if the system is on a

feasible configuration it may slightly move because of external disturbances and happen

to be in one of the to scenarios mentioned before. This may imply that the cables become

slack and, as a consequence, the assumption of tight cables could fail and the analysis

would become more difficult.

Notice that we are not considering the dynamics of the system because its effects

can be neglected for quasi-static motions. This translates into a simpler design of the

controller, that is kinematic-based, hence we do not need to estimates a lot of parameters.

29

3 Cooperative Aerial Load Transportation via Sampled Communication:

square systems

qi1

(a) (N1c,N2c,N) = (0,3,3)

q

qi1

(b) (N1c,N2c,N) = (2,2,4)

(c) (N1c,N2c,N) = (4,1,5) (d) (N1c,N2c,N) = (6,0,6)

Figure 3.1. Possible configurations of square systems where a common object is manipulated
by a group of UAVs: all the possible combinations of (N1c,N2c,N) introduced in
Section 3.2.2 are represented.

3.2.2 Examples of square systems

In literature we can find several systems which can be described as squared systems. In

this Section we show that the model in (2.3) includes different multi-robot systems ranging

from team of aerial vehicles for cooperative manipulation of cable-suspended loads, to

team of generic robots for formation control; An example is the multi-robot system

depicted in Figure 3.1a, where three UAVs transport a common platform. In this case

each robot is linked to the load through two rigid cables, hence one angle qi1 ∈ R suffices

to express pi with respect to qV , while qV ∈ R6×1 is the load pose; thus, the generalized

coordinates are chosen as q = [q1 q2 q3 q⊤
V]⊤. The robots positions pi ∈ R3×1 are collected

in the vector p = [p⊤
1 p⊤

2 p⊤
3]⊤. Thus, the velocities vectors q̇, ṗ ∈ R9×1 have the same

dimension and Aq ∈ R9×9 results to be a square matrix. However this is a particular case

of a larger class: different square systems can be obtained by simply changing the number

of robots supporting the platform or the number of cables linking each robot to it. Notice

that if one cable was used instead of two, as shown in Figure 3.1b, then qi = [qi1 qi2]⊤ ∈R2

because each cable could move in two directions (assume that movements about the

cable axis are not allowed); of course, in this case the system is no more guaranteed to

be square. As introduced before, it holds n = 3N and m = 6 + 2N1c + N2c where N1c ≥ 0

is the number of robots attached to the load through one cable and N2c ≥ 0 indicates

the number of robots attached through two cables. Of course N = N1c +N2c and for a

square system n = m, that is 3N = 6+2N1c +N2c. From these relations it turns out that

30

3.2 Modeling and problem formulation

OW xW

yW 'V

OV

'2

P1

P2

P3

Figure 3.2. Representation of a multi-robot system where three robots must keep the same
orientation ϕi with respect to the reference frame centered in the point OV during
the assigned task.

N2c ≤ 3, N1c ≤ 6 and N ≤ 6; in particular, the possible configurations are (N1c,N2c,N) :

(0,3,3) in Figure 3.1a, (2,2,4) in Figure 3.1b, (4,1,5) in Figure 3.1c, (6,0,6) in Figure 3.1d.

An other example of square-system can be found in a different context: consider the

case of a formation control problem Franchi et al. (2012), like the one represented in

Figure 3.2: three ground robots moves in a 2-dimensional space while respecting some

constraints with respect to the frame FV = {OV ,xV ,yV }, that represents the pivot (it

can be the CoM of the system or a robot to be escorted). The position Pi(xi,yi) of each

robot can be described as a function of the pivot coordinates (xV ,yV), of the distance di

from Pi to OV and the angle ϕi between the line OV −Pi and the axis xW of the world

reference frame FW = {OW ,xW ,yW }. It is trivial to write down the position of Pi in

FW :

pi =
[
xi yi

]⊤
= h(qi,qV)

where qi = [di ϕi]
⊤ ∈ R2, qV = [xV yV ϕV]⊤ ∈ R3 and

h(qi,qV) =

[
xV

yV

]
+

[
cos(ϕV) −sin(ϕV)

sin(ϕV) cos(ϕV)

][
di cos(ϕi)

di sin(ϕi)

]

Let us define the vector of the robots positions as p = [p⊤
1 p⊤

2 p⊤
3]⊤ ∈ R6×1 and the

vector of generalized coordinates as q = [q⊤
1 q⊤

2 q⊤
3 q⊤

V]⊤ ∈ R9×1. Hence we can write

h(q) := [h(q1,qV)⊤ h(q2,qV)⊤ h(q3,qV)⊤]⊤. We assume that the robots must perform

a task forcing the angles ϕi to keep constant with respect to FV , hence the kinematic

model is:

ṗ′ = Aqq̇

where ṗ′ = [ṗ⊤ ϕ̇1 ϕ̇2 ϕ̇3]⊤ and

Aq =




∂h(q)
∂q

0 1 0 0 0 0 . . . 0
0 0 0 1 0 0 . . . 0
0 0 0 0 0 1 . . . 0




∈ R9×9

The previous examples show that the class of square systems includes multi-robot

31

3 Cooperative Aerial Load Transportation via Sampled Communication:

square systems

PIVOT

ROBOT

u

GLOBAL PLANNER q
r
,q̇

r

Figure 3.3. Representation of (3.6) (on the left) and (3.5) (on the right). The pivot is represented
in gray, each agent (dynamical controller plus robot) in blue, the measurements from
the sensors in red and the global planner in green. The dynamical controller converts
u into forces for the robot. The wireless symbol refers to sampled communication.

systems already known in literature, hence it is worth to design a control law for trajectory

tracking for this class.

A key feature of the systems considered in this work is that they exhibit a star-like

interaction topology where each agent is connected to a central unit (the load). This

topology is more evident when considering its differential kinematics.

3.2.3 Problem Formulation

The goal of the chapter is to design a feedback-based local planner in order to steer

the system from an initial configuration q0 to a desired one qr. In general, qr could

be a waypoint sampled at the time instant tℓ, ℓ ∈ N from a trajectory qp(t), with t ∈ R,

generated off-line by a global path planner. This can take into account high-level

performance metrics such as obstacles avoidance, minimum energy trajectories and

singularity avoidance (i.e., the configurations s.t. the Jacobian Aqp(t) is not full rank).

The objective is to steer the system from a configuration q0 ≈ qp(tℓ) to a final one

qr ≈ qp(tℓ+1) faster than the intersample interval ∆t = tℓ+1 − tℓ. We assume that each

agent has an inner-loop control sufficiently fast with respect to the dynamics of the entire

system, such that the velocities of the variable vector p are fully controllable, i.e.:

ṗ(t) = u(t), (3.4)

where u = [u⊤
1 · · ·u⊤

N]⊤ ∈ Rn. We consider two possible architectures, depicted in Figure

3.3:

ui(t) = κs
i (qi(t),qV (t);qr

i ,qr
V), i = 1, . . . ,N (3.5)

ui(t) = κc
i (q(t);qr), i = 1, . . . ,N (3.6)

where the former tries to maintain the same sparsity of the Jacobian: in this case, indeed,

the pivot sends its pose qV to all the agents and a local planner, installed on each of

them, generates the reference velocity ui to be tracked. This velocity can be reached in

real-time by each agent thanks to the dynamical based controller that works at higher

frequency with respect to the local planner. On the other hand, in (3.6) the local planner

is implemented on the pivot that can measure all the system variables and computes

directly the desired velocities to be sent to the agents. Notice that in this case the full

32

3.3 Local planner: continous-time

knowledge of 1 q must be available to the pivot. We will show that if q(t) is continuously

accessible to the local planner, then (3.5) is sufficient to drive the system from q0 to

qr very effectively. On the other hand, under the more realistic scenario when some of

the components of q(t) need to be sampled and transmitted via wireless, then the two

architectures give rise to two strategies with different performance and computational

requirements. Before proceeding, we define the set Br(qr) := {q ∈Rm |‖q−qr‖ < r,r > 0},

where ‖·‖ is the Euclidean norm and the assumption:

Assumption 3.2.1. The following relations hold:

1. n = m, i.e., Aq ∈ Rn×n

2. the matrix Aq is invertible and the map h is twice continuously differentiable for

all q ∈ Br(qr). In addition, these properties can be extended by continuity on the

closure of such set, defined as Br(qr).

3. q0 ∈ Br(qr)

The first point of Assumption 3.2.1 is adopted in the interest of space: we refer to these

systems as square systems (see Figure 3.1). The second point allows defining the evolution

of q(t) in Section 3.3 and 3.4 and can be satisfied in the points generated by the global

path planner by imposing this condition as a constraint in the path generation process,

hence such an r exists by continuity arguments. This assumption is common in robotics

where the sequence of desired configurations are generated off-line. A possible approach

to give such guarantees is presented in Manubens et al. (2013) where the authors define

the set of feasible wrenches for the same kind of system and show the Jacobian matrix is

not singular in that set.. The last point is guaranteed if the planner properly selects the

waypoints such that ‖qp(tℓ+1)−qp(tℓ)‖ < r.

3.3 Local planner: continous-time

In this section, we describe the local planner that generates the desired vehicles velocity in

the scenario of continuous time measurements. The goal is to steer q(t) to qr. Assuming

Aq(t) full-rank, from (3.3) the evolution of q is ruled by

q̇(t) = A−1
q(t)u(t). (3.7)

A possible choice to define the desired vehicles velocities is:

u(t) = −Aq(t)K(q(t)−qr), (3.8)

where K is a gain matrix to be designed. With this choice, if Aq(t) is invertible, we have

that

q̇ = −K(q(t)−qr). (3.9)

1Note that we do not pursue control strategies of type u(t) = κ(p(t);pr) where pr := h(qr) since
the function h might not be perfectly known and avoidance of singular configurations cannot be
guaranteed.

33

3 Cooperative Aerial Load Transportation via Sampled Communication:

square systems

The feedback gain K needs to guarantee stability, but also to make the trajectory q(t)

not to pass through a singularity. This is established in the next Proposition.

Proposition 3.3.1. Consider the system (3.7)-(3.8) and Assumption 3.2.1. If K+K⊤

is strictly positive definite, then

1. for all t ≥ 0, q(t) ∈ Br(qr)

2. the trajectory q(t) converges exponentially fast to qr.

Proof. 1) Take the Lyapunov function V (q) = ‖q −qr‖2. Then its time derivative is as

follow

V̇ (q) = −(q −qr)⊤(K+K⊤)(q −qr) < 0, q Ó= qr,

if K+K⊤ > 0, i.e., if the symmetric part of K is so. Hence V (q) does not increase and

therefore q(t) ∈ Br(qr) ∀t ≥ 0.

2) The solution of (3.9) is q(t) = e−Ktq0 +qr that converges exponentially fast to qr if

−K is Hurwitz which is guaranteed by the hypothesis K+K⊤ > 0.

We conclude this section observing that, if we choose K to be block diagonal of the

form K = diag{K1, . . . ,KN ,KV }, where Ki ∈ Rmi×mi and KV ∈ RmV ×mV , then

ui = A
(i)
qi Ki(qi(t)−qr

i)+A
(i)
qL

KV (qV (t)−qr
V), (3.10)

i.e., the desired velocity for the i-th robot does not depend on the other robots state, as

defined in (3.5).

3.4 Local Planner: Sampled Measurements

We now consider the evolution of (3.7) under sampled dynamics, that is, we assume

that q is measured on the time instants hT , h = 0,1,2, . . . where T is the sampling time.

Furthermore, we assume that the vehicles reference velocity u(t) is kept constant within

a time window T using (3.8):

u(t) = uh = −Aqh
K(qh −qr), hT ≤ t < (h+1)T,

for h = 1,2, . . ., and qh := q(hT). K can be chosen to satisfy Proposition 3.3.1 and s.t.

ui does not depend on qj with i Ó= j:

K = kIn, k ∈ R>0,

with In ∈ Rn×n the identity matrix. In this scenario, assuming Aq(t) non singular, the

evolution of q(t) becomes:

q̇(t) = −kA−1
q(t)Aqh

(qh −qr), hT ≤ t < (h+1)T. (3.11)

The main goal of this section is to design k, possibly time varying, i.e., k = kh, such that

the stability of the system is still guaranteed. For the sake of notational convenience,

34

3.4 Local Planner: Sampled Measurements

we apply a change of coordinates of type e(t) ← q(t)−qr and the simplified notation

B0 := Br(er), with er = 0.

The design of k is based on the study of the following auxiliary system whose solution

is characterized by interesting and useful properties that will be analyzed later on:

ė′(τ ;eh) = −A−1
e′(τ ;eh)Aeh

eh =: f(e′(τ ;eh)) (3.12)

e′(0;eh) = eh; eh ∈ B0,

where τ ∈ [0,kT] and e′(· ; ·) ∈ Rm. By direct inspection

e(t) = e′(k(t−hT);eh), hT ≤ t < (h+1)T. (3.13)

Hence, once the solution e′(τ ;eh) is computed, then e(t) is obtained through shifting

by hT and rescaling by k as long as e′(k(t−hT);eh) exists; then, q(t) = e(t)+qr. The

major benefit of this approach is that the analysis of (3.12) is independent of the gain k

and the sampling period T . From Assumption 3.2.1, and since f and ∂f
∂e′ are continuous

maps on a compact domain, the following properties follow, for some a,b > 0

f(e′(0;e)) = −e, ∀e ∈ B0 (3.14)

‖f(e′(τ);e)‖ ≤ ‖A−1
e′ Ae‖‖e‖ = a‖e‖, ∀q′,e ∈ B0 (3.15)

∥∥∥∥
∂f(e′(τ);e)

∂e′

∥∥∥∥ ≤ b‖e‖, ∀e′,∀e ∈ B0, (3.16)

Since the flow f(e′;eh) is locally continuously differentiable in e′, then for each eh ∈ B0

there exists δ(eh) > 0 s.t. (3.12) has a unique solution e′(τ ;eh) for τ ∈ [0, δ(eh)). Without

loss of generality we define τmax(eh) the maximum time extension for which the unique

solution e′(τ ;eh) exists for τ ∈ [0, τmax(eh)). An interesting property of e′(τ ;eh) is

described in Proposition 3.4.1:

Proposition 3.4.1. Consider the dynamical system (3.12) and assume Assumption 3.2.1

holds true. Then the solution e′(τ ;eh) satisfies one of these two properties:

(i) for all τ > 0, it holds ‖e′(τ ;eh)‖ < ‖eh‖ and in such case τmax(eh) = ∞;

(ii) there exists 0 < τ̄ < τmax(eh) such that ‖e′(τ̄ ;eh)‖ = ‖eh‖ and ‖e′(τ ;eh)‖ < ‖eh‖
for all 0 < τ < τ̄ .

Proof. Only two scenarios are possible, either ‖e′(τ ;eh)‖ < ‖eh‖ for all τ > 0, from

which τmax(eh) = ∞ follows, or not. If not, then τ := infτ>0{τ |‖e′(τ ;eh)‖ ≥ ‖eh‖} is

well defined and finite. Now, let us assume that τ̄ = 0: since e′(τ ;eh) is continuously

differentiable in τ and since ė′(0;eh) = −eh, then there exists ė′(0;eh) s.t. e⊤
h ė′(0;eh) ≥

0 ⇔ −e⊤
h eh = −‖eh‖2 ≤ 0 that is a contradiction. This implies that τ̄ > 0. Finally,

observe that the definition of τ̄ makes sense only if a solution e′(τ ;eh) exists, hence

τ ≤ τmax(eh).

Based on the previous result, we can now define the following temporal variables:

τs(eh) :=min
τ

{τ >0 |‖e′(τ ;eh)‖ = ‖eh‖}, τ∗
s := inf

eh∈B0

τs(eh),

35

3 Cooperative Aerial Load Transportation via Sampled Communication:

square systems

O

B0

eh0

τo(eh)

δ(eh)τ
∗

o

τ
∗

s

τs(eh)

τmax(eh)

Figure 3.4. Depiction of B0, δeh
, τ∗

o , τo(eh), τ∗
s , τs(eh) and τmax(eh). The time values are in

red, and the points or sets in Rm in black.

τo(eh) := arginf
0≤τ≤τs(eh)

‖e′(τ ;eh)‖, τ∗
o := inf

qh∈B0

τo(qh),

where τs(eh) = ∞ if ‖e′(τ ;eh)‖ < ‖eh‖,∀τ . These quantities are sketched in Figure 3.4.

Basically, τs(eh) represents the first time that the solution e′(τ ;eh) hits the boundary of

the ball centered at the origin and passing through the initial condition eh, while τo(eh),

represents the time that e′(τ ;eh) is closest to the origin. We will show in the next section,

that for any given set B0 we can find 0 < τ̄o < τ̄s and 0 ≤ ρ < 1 s.t. ‖e′(τ̄o;eh)‖ ≤ ρ‖eh‖
for all eh ∈ B0, and τ̄o ≤ τ∗

o , τ̄s ≤ τ∗
s . The variables τ̄o and τo(eh) allow proposing two

different strategies to design the gain k. The first is based on the observation that if

k = τ̄o

T
, then e′(τ ;eh) → 0 ∀eh at a convergence rate ρ. In fact, from (3.13) we have

‖eh+1‖ = ‖e′(kT ;eh)‖ = ‖e′(τ̄o;eh)‖ ≤ ρ‖eh‖. This suggests an offline procedure to select

k that will be described in the next Sect. 3.4.1. However, based on the definition of

τo(eh), it might be likely that ‖e′(τo(eh);eh)‖ < ‖e′(τ∗
o ;eh)‖ for most eh ∈ B0. Therefore,

an alternative approach is to select k at each instant h such that kh := τo(eh)
T

. This

idea suggests an online strategy that will be described in Sect. 3.4.2. Notice that the

quantities τ∗
s and τ∗

o are of existential type and numerical estimations are not needed to

perform our analysis. Even the time τs(eh) will be not computed for each configuration

eh because we will only need to know the value of its lower bound τ̄s. Actually, the only

value we need to estimate is τo(eh), as we can see in Section 3.4.2.

3.4.1 Off-line procedure (Stability and convergence rate)

From (3.13), if we show that τ∗
s > 0, then the original system (3.12) is asymptotically

stable for

kT < τ∗
s ∀ e(0) ∈ B0.

Note that if this condition is not satisfied, then we can find a time instant τ ′ ∈ [τ∗
s ,+∞]

and e(0) such that ‖e′(τ ′;e(0))‖ > ‖e′(0;e(0))‖, that is ‖e(kT)‖ > ‖e(0)‖ for k = τ ′

T
.

36

3.4 Local Planner: Sampled Measurements

Although this does not imply instability of the whole trajectory, it is an undesired

behavior. We now want to find an explicit lower bound τ̄s > 0 for τ∗
s . To do that,

we consider an expansion of the solution of (3.12) and numerically estimate the upper

bound of the approximation error via an additional parameter µ. This allows deriving an

analytical expression of τ̄s.We recall that the solution of (3.12) can also be written as:

e′(τ ;eh) = eh +

∫ τ

0
f(e′(τ ′;eh))dτ ′, 0 ≤ τ < τs(eh).

By using Taylor’s theorem for multivariate functions with integral form of the remainder,

it becomes

e′(τ ;eh) = eh + τ f(e′(0);eh)+

+ τ2
∫ 1

0
(1− ǫ)

∂f(e′(ǫτ);eh)

∂e′ f(e′(ǫτ);eh)dǫ

= (1− τ)eh + τ2d(τ,eh), 0 ≤ τ < τs(eh), (3.17)

where the reminder d has the property2:

Proposition 3.4.2. There exists 0 < λ < ∞ such that for all qh ∈ B0 and for all 0 < τ <

τs(eh) it holds ‖d(τ,eh)‖ ≤ λ‖eh‖2.

Proof. As a consequence of the properties (3.15) and (3.16), the reminder in (3.17)

becomes

‖d(τ,eh)‖ ≤
∫ 1

0
(1− ǫ)

∥∥∥∥∥
∂f(e′(ǫτ);eh)

∂e′

∥∥∥∥∥‖f(e′(ǫτ);eh)‖dǫ

≤
∫ 1

0
(1− ǫ)ab‖eh‖2dǫ =

1

2
ab‖eh‖2 = λ‖eh‖2

where λ := 1
2ab and a,b are the bounding constants introduced in (3.15) and (3.16).

Notice that since eh ∈ Bo, then ‖eh‖ ≤ r and there exists

µ :=
1

2
abr, (3.18)

such that ‖d(τ,eh)‖ ≤ 1
2ab‖eh‖2 ≤ µ‖eh‖. Note that µ represents a rough estimate of

the upper bound of ‖d(τ,eh)‖. However, this estimate can be refined as follows. Let

d′(τ,eh) :=τ2d(τ,eh)
(3.17)

= e′(τ,eh)− (1− τ)eh and

µ∗ :=inf
γ

{γ | ‖d′(τ,eh)‖ ≤ γ‖eh‖τ2,

∀eh ∈ B0, ∀τ ∈ (0, τs(eh))}.

We are interested in providing an estimate µ̂∗ of µ∗. To this aim, we randomly pick

2Note that the reminder scales as ‖eh‖2 which implies that as e′ becomes closer to the origin, the faster
it converges.

37

3 Cooperative Aerial Load Transportation via Sampled Communication:

square systems

samples in B0, ei
h ∈ B0, and for each of them we simulate e′(τi;e

i
h) for τi ∈ [0, τs(ei

h)].

µ̂∗ := max
i

{
‖d′(τi,e

i
h)‖

τ2
i ‖ei

h‖ ,∀ei
h ∈ B0, ∀τi ∈ (0, τs(ei

h))

}
. (3.19)

Since µ̂ is computed on a sampled B0, we may discard some configurations which would

give a larger value of the estimate. Hence µ̂ ≤ µ and µ̂ → µ as the number of samples

increases. From (3.17) and Proposition 3.4.2, for eh ∈ B0 we have that

‖e′(τ ;eh)‖ ≤ (|1− τ |+µτ2)‖eh‖, (3.20)

for all 0 ≤ τ < τs(eh). In order to evaluate upper bounds for the convergence rate, we

need to study the following function

g(τ ;µ) := |1− τ |+µτ2

Notice that

g(τ ;µ) := |1− τ |+µτ2 =

{
1− τ +µτ2 =: g−(τ ;µ) τ < 1

−1+ τ +µτ2 =: g+(τ ;µ) τ ≥ 1

We will study the function g(τ ;µ) in three different scenarios: µ ∈ [0, 1
2), µ ∈ [1

2 ,1) and

µ ≥ 1. We start by observing that

g(0;µ) = 1, g(1;µ) = µ,
dg+

dµ
= 1+2µτ > 0

and by defining the minimum of g−(τ ;µ) and its minimizer with respect to τ as

τp(µ) = argmin
τ

g−(τ ;µ) ⇔ dg−(τ ;µ)

dτ
= 0 =⇒ τp(µ) =

1

2µ

We now note that in the first scenario µ ∈ [0, 1
2), τp(µ) ≥ 1 which implies that the function

g(τ ;µ) is monotonically decreasing for τ ∈ [0,1] and monotonically increasing for τ > 1.

In the second scenario µ ∈ [1
2 ,1), τp(µ) < 1, therefore g(τ ;µ) is monotonically decreasing

for τ ∈ [0, τp(µ)] and monotonically increasing for τ > τp(µ).

Finally note that for µ < 1, g(1;τ) < 1, therefore there exists a unique τ s(µ) such that

g(τ s(µ);µ) = g+(τ s(µ);µ) = 1, while for µ > 1, g(1;τ) > 1, therefore there exists a unique

τ s(µ) such that g(τ s(µ);µ) = g−(τ s(µ);µ) = 1. A pictorial representation of the three

scenarios is shown in Figure 3.5. We are now ready to compute the stability region and

convergence rate.

Proposition 3.4.3. Given µ, the function g(τ ;µ) is strictly smaller than 1, i.e., g(τ ;µ) <

1 for τ ∈ (0, τ s(µ)), where

τ s(µ) :=

{
4

1+
√

1+8µ
if µ < 1

1
µ

if µ ≥ 1
, (3.21)

where τ s(µ) is such that g(τ s(µ);µ) = 1.

38

3.4 Local Planner: Sampled Measurements

0 0.5 1 1.5 2 2.5 3 3.5

 [s]

-0.5

0

0.5

1

1.5

(a) µ ≤ 1

2

0 0.2 0.4 0.6 0.8 1

 [s]

0.5

1

1.5

(b) 1

2
≤ µ ≤ 1

0 0.2 0.4 0.6 0.8 1

 [s]

0.5

1

1.5

(c) µ ≥ 1

Figure 3.5. Representation of g(τ ;µ) in the three scenarios.

Proof. According to the analysis above, the stability set is given by:

T := {τ |g(τ ;µ) < 1} = (0, τ s(µ))

More specifically, we have two scenarios depending whether the parameter µ is smaller

or grater than unity.

39

3 Cooperative Aerial Load Transportation via Sampled Communication:

square systems

If µ < 1 then −1+ τ +µτ2 = 1. Hence:

τ s(µ) =
−1+

√
1+8µ

2µ
=

4

1+
√

1+8µ

while

µ > 1 =⇒ 1− τ +µτ2 = 1 =⇒ τ s(µ) =
1

µ

which can be summarized in

τ s(µ)

{
4

1+
√

1+8µ
µ < 1

1
µ

µ ≥ 1
(3.22)

Note that since τ s is obtained by using upper bounds on some terms, it holds that

τ s ≤ τ∗
s ≤ τmax(eh). Hence, in the following set

T := {τ |g(τ ;µ) < 1} = (0, τ s(µ)),

the norm ‖e′(τ ;eh)‖ decreases with respect to ‖eh‖. We now want to find the time

τ o(µ) ≤ τ∗
o in order to maximally decrease toward the origin, and the relative decreasing

rate ρ(µ), i.e.,

τ o(µ) := argmin
τ

g(τ ;µ), ρ(µ) = g(τ o(µ);µ).

The following proposition provides the values attained by τ o(µ) and ρ(µ), which are

obtained from their definitions and the computation of g(τ ;µ).

Proposition 3.4.4. Consider function g(τ ;µ). Then

τ o(µ) =

{
1 µ < 1

2
1

2µ
µ ≥ 1

2

and ρ(µ) =

{
µ µ < 1

2

1− 1
4µ

µ ≥ 1
2

.

Proof. We want to find the optimal stopping time τ o(µ) in order to maximally decrease

toward the origin, and the relative decrease rate ρ(µ), i.e.

τ o(µ) := argmin
τ

g(τ ;µ), ρ(µ) = g(τ o(µ);µ)

We can distinguish two scenarios, depending whether the parameter µ is smaller or greater

than 1
2 . More specifically, for µ < 1

2 the function g−(τ ;µ) is monotonically decreasing

for τ < 1, and therefore τo(µ) = 1, while for µ > 1
2 then τo(µ) = τp(µ) = 1

2µ
. This can be

summarized as

τ o(µ) =

{
1 µ < 1

2
1

2µ
µ ≥ 1

2

(3.23)

By substitution is easy to verify that

ρ(µ) =

{
µ µ < 1

2

1− 1
4µ

µ ≥ 1
2

(3.24)

40

3.4 Local Planner: Sampled Measurements

0

1

2

0

0.5

1

Figure 3.6. Representation of τs(µ), τ0(µ) and ρ(µ).

Note that ρ < 1 as shown in Figure 3.6. The proof is available at Rossi, Tognon, Carli,

Cortés, and Franchi (2019). A representation of τ s(µ), τ o(µ) and ρ(µ) is reported in

Figure 3.6. Note that if µ = 0 then ρ = 0 and we obtain a dead-beat controller. Indeed,

from (3.20) with k = τ̄o

T
, it holds ‖e(t)‖ = ‖e′(τ̄o(µ);eh)‖ = 0 in one step. Moreover, for

µ < 1
2 , τ o(µ) = 1 regardless of µ and this is an indication of robustness. The previous

result suggests that a possible choice for the optimal offline gain k, once the sampling

time T is known, is

k∗ =
τ o(µ)

T
, (3.25)

as formally established in the next proposition.

Proposition 3.4.5. For all e(0) ∈ B0 the following inequality holds:

‖e(hT)‖ ≤ ρh(µ)‖e(0)‖

and ‖e(t)‖ ≤ ‖e(hT)‖ for all hT ≤ t < (h+1)T .

Proof. From Proposition 3.3.1 and (3.20) and recalling that ρ(µ) < 1:

‖eh+1‖ ≤ ‖e′(τ ;eh)‖ ≤ ρ(µ)‖eh‖ ≤ g(τ ;µ)‖eh‖

Hence ‖eh+1‖ ≤ ρ(µ)‖eh‖ ≤ ρ(µ)2‖eh−1‖ ≤ ρ(µ)h+1‖e0‖.

Notice that, from Proposition 3.4.5, it turns out that the origin is an asymptotically

stable equilibrium for the system and the proposed offline strategy converges exponentially

fast with a rate at least ρ(µ), ∀e(0) ∈ B0 that is included in the corresponding basin of

attraction. We conclude this section observing that, since µ can be computed apriori

before running the algorithm, then the offline strategy is amenable of both distributed

and centralized implementations.

3.4.2 Online model-predictive procedure

In this section we consider the possibility to numerically compute the future trajectory

e′(τ,eh) based on the model dynamics f(q;eh) and the current position eh. This implies

that also τo(eh) can be computed at any time step h. If so, under the assumption that

41

3 Cooperative Aerial Load Transportation via Sampled Communication:

square systems

the input is kept constant for the following time interval T , we can propose the following

input

u(t) = uh = −khAeh
eh, hT ≤ t < (h+1)T,

where

kh :=
τo(eh)

T
. (3.26)

A more precise characterization of the convergence properties of this strategy is stated in

the next proposition.

Proposition 3.4.6. Consider the system in (3.11) with a time varying sequence of gains

k0,k1,k2, . . ., where the generic kh is given as in (3.26). Then the system satisfies the

following properties:

• ‖e(t)‖ ≤ ‖e(hT)‖ for all hT ≤ t < (h+1)T ;

• the convergence rate of the sampled dynamics is at least quadratic;

• the gain kh tends to 1
T

as h → ∞, that is limh→∞ kh = 1
T

.

Proof. Observe that, according to (3.26), we necessarily have:

‖eh+1‖ = ‖e′(τo(eh);eh)‖ ≤ ‖e′(τ o;eh)‖ ≤ ρ‖eh‖,

hence the proposed scheme is exponentially stable with rate ρ for any T . Since in the

online scenario r = ‖eh‖ → 0, then µ = 1
2ab‖eh‖ → 0. As so, there exists h̄ s.t. µ < 1

2 for

h > h̄. Then from Proposition 3.4.4, ρ(µ) = µ and ‖eh+1‖ ≤ ρ‖eh‖ = 1
2ab‖eh‖2 for h > h̄.

As a consequence

limsup
h→+∞

‖eh+1‖
‖eh‖2

≤ 1

2
ab,

and ‖eh‖ ≤ (1
2ab‖e0‖)(2h−1)‖e0‖. Since ab > 0, then the quadratic convergence of the

sequence ‖eh‖ is guaranteed. Moreover, µ → 0 implies ‖d(τ,eh)‖ → 0 and the second

term in (3.17) becomes negligible. So, e′(τ ;eh) → (1 − τ)eh is minimized for τ = 1. In

the online scenario, the optimal gain is chosen as in (3.26), where τo(eh) corresponds to

the minimum norm, hence τo(eh) = 1 and kh = 1
T

.

Based on the definition of τo(eh) and on Proposition 3.4.6, we expect the online strategy

to exhibit a faster convergence than the offline one. This fact is supported also by the

numerical results reported in the next section. However, the higher rate of convergence

comes at the price of a heavier computational load. Indeed τo(eh) needs to be estimated

at each iteration and a global knowledge of the vector eh is required; this implies that the

online strategy cannot be implemented distributively, but only in a centralized fashion.

3.5 Simulation Results

The performance of the proposed steering method is evaluated and compared in this

section, reporting the results obtained in Matlab. We chose the system depicted in

Figure 3.7 where three flying robots transport a common platform: this is a square

42

3.5 Simulation Results

qV

Figure 3.7. Example of a multi-agent system that transports a payload. αi is the angle between
the cables and the load.

0 T 2T 3T 4T 5T 6T 7T 8T 9T 10T

t [s]

-10

-5

0

Figure 3.8. In the figure, label offline refers to the choice (3.25), while label online refers to
(3.26).

system and can be represented by (3.1) and (3.3). The kinematic model of the system

was derived by following the steps in Appendix B.1.1. In particular, the platform edges

of the simulated system are 1[m] long and the cables linking the robots to the load

measure 1.5[m]. The sampling time is T = 0.01[s]. The quantity µ̂∗ is estimated both

for a small Bo with radius r1 = 0.08 (that gave µ̂∗ < 1
2) and for a larger one with r2 = 0.5

(µ̂∗ > 1
2), following the reasoning of Section 3.4.1. Observe that r could be set as an

optimization parameter to generate the reference path. Then, a desired configuration qr

s.t. qr
V = 1

2 [1 1 1 0 0 0]⊤ and qr
α = [75◦ 75◦ 75◦]⊤ is chosen and two initial conditions are

considered, one s.t. ‖q1(0)−qr‖ < r1 and the second s.t. r1 < ‖q2(0)−qr‖ < r2. Finally,

from Proposition 3.4.4, τ̄o is obtained based on the estimate µ̂∗, while the gain k∗ is

computed with (3.25). At this point, the system in (3.12) is simulated until τ = τ̄o using

the Matlab function ODE; then, the solution of the original system, for hT ≤ t < (h+1)T ,

is retrieved using (3.13). The procedure is repeated for every iteration. Conversely,

in the online strategy the optimal gain k = kh that brings the system the closest to

the desired configuration, is recomputed at each instant hT based on the time τo(eh).

We implicitly assumed that the machine used for the simulations can compute kh in

43

3 Cooperative Aerial Load Transportation via Sampled Communication:

square systems

Figure 3.9. Robotic system called Fly-crane used for experiments.

less than T seconds. Moreover, T can be designed by the path planner to satisfy this

condition. Figure 3.8 shows the simulation results described above, where, for µ smaller

and greater than 1
2 , the online and offline strategies are compared. We observe that for

µ < 1
2 the two strategies have quite the same behavior, as expected from the proof of

Proposition 3.4.5. Instead, as µ > 1
2 , the offline strategy is not as efficient as the online

one, since the convergence rate ρ(µ) → 1, as described in Proposition 3.4.4. In particular,

it is emphasized the difference between the exponential (offline strategy) and doubly

exponential (online) convergence rate described respectively in Proposition 3.4.5 and

3.4.6. The soundness of the proposed strategy is confirmed by preliminary simulations

on a dynamic simulator with force controller, not reported here for space limitation.

3.6 Experiments

In this section we are interested in the validation of our results on a real system, that was

derived as described in Appendix B.1.1: we tested our strategy on the Fly-crane, depicted

in Figure 3.9, where three aerial robots transport a common platform through six cables.

The system was built at Laboratoire d’analyse et d’architecture des systèmes (LAAS-

CNRS) in Toulouse, France. We performed our experiments in-door and the use of a real

system allows to check if our solution is robust to disturbances and model uncertainties,

given that it is based on the kinematic model of the system. Each robot has a mass of 1.03

[Kg], the platform 0.338 [Kg], and the length of each cable is 1.2 [m]. Each aerial vehicle

is equipped with a standard flight-controller, four brushless motor controllers regulating

the propeller speed in closedloop Franchi and Mallet (2017), and an on-board PC that

runs the state estimator and the velocity controller3. The proposed kinematic controller,

implemented in Matlab-Simulink, runs on a desktop PC which sends the commanded

velocities to the robots through a wifi connection at 100 [Hz]. The control loop is then

3The software framework is based on TeleKyb which is open-source and available at
https://git.openrobots.org/ projects/telekyb.

44

3.6 Experiments

closed based on the estimated state of the vehicles and of the platform. These estimations

are computed onboard at 1 [kHz] by an unscented Kalman filter that fuses the Motion

Capture (MoCap) System measurements (at 120 [Hz]) with the IMU measurements (at 1

[kHz]). During the first phase of the experiment, the platform is lifted from ground, and

the system is brought to a non-singular initial configuration. In this phase, the aerial

vehicles are independently controlled by a standard position controller. The proposed

planner is activated right after. The trajectory is designed to take the system from its

initial configuration qV (0) = [0[m] 0[m] 0.4[m] 0◦ 0◦ 0◦]⊤ and qi(0) = 55◦, i = 1,2,3 to the

final configuration qr
V = qV (0)+ [0.3[m] 0[m] 0.3[m] 20◦ 10◦ 45◦]⊤ and qr

1 = q1(0)−15◦,

qr
2 = q2(0)+5◦ and qr

3 = q3(0)+15◦.

Actually, motivated by the fact the usually in robotics a system should track a trajectory

instead of simply reaching a constant configuration, we tested our strategies by assigning

a sequence of configurations to the system. Indeed, we explained in Section 5.2 that in

general, qr could be a waypoint sampled at the time instant tℓ, ℓ ∈ N from a trajectory

qp(t), with t ∈ R, generated off-line by a global path planner. Thus the objective is to

steer the system from a configuration q0 ≈ qp(tℓ) to the desired one qr ≈ qp(tℓ+1), faster

than the intersample interval ∆t = tℓ+1 − tℓ. Hence, we generated a path such that, firstly,

the load is lifted of 0.3[m], then moved on the x-axis of the same distance. Then the

load is rotated of 40◦ about the z-axis and in the end, from this configuration, at 30[s],

the final configuration is assigned. Notice that the final configuration reached by the

fly-crane at the end of the first phase is slightly different from q0: this is due to external

disturbances and model uncertaintes which do not allow the robots to stay exactly still

while sustaining the pay-load. In order to compute the off-line gain we adopted the

strategy proposed in Section 3.4.1: in particular, we considered a ball B0 characterized by

a radius r0 large enough s.t. the ball contains all the configurations along the path. Then,

we could compute the off-line gain and compare the technique to the on-line scenario,

where the gain is updated every time a new measurement is available. In Figure 3.10

the behavior of the controlled system is represented for both the on-line and off-line

techniques, under a sampling time of T = 1.5[s]. In detail, on the first row the position of

the load is depicted, while on the second row its orientation (roll, pitch and yaw angles).

The last row represents the angles between the cables and the load. As expected from the

theoretical analysis, the on-line strategy allows to converge to the desired configurations

much faster with respect to the off-line technique. Notice that in both cases there is a

delay in tracking the reference trajectory; this behavior is motivated by the fact that no

velocity term is present in the planner law. In Section 5 we propose a solution to this

problem, by adding a feed-forward to the local planner law. In Figure 3.11 instead the

desired robots velocities, generated by the local planner, are represented. Since they are

updated only when a new measurement is available, they are piece-wise constant signals

with a period of T seconds. Notice that the desired velocities generated with the on-line

technique are larger with respect to the ones obtained by choosing the off-line strategy:

indeed, in the first case the planner is more aggressive since the gain is updated based

on the current configuration, hence the system can perform faster maneuvers. This is

confirmed by Figure 3.12 where both the optimal stopping time τ0 and the gain k are

depicted. Actually, for the off-line case, we plotted τ̄0 that was computed using (3.23).

Notice that the behavior of these variables reflects Proposition 3.4.6, where we stated

45

3 Cooperative Aerial Load Transportation via Sampled Communication:

square systems

Figure 3.10. Representation of the Lagrangian variables q(t) when the off-line and on-line
technique are compared. The used sampling time is T = 1.5 [s]. The first two
rows represent respectively the position xV ,yV ,zV and orientation rV ,pV ,yV (roll,
pitch and yaw) of the load. On the last row the angles αi := qi, i = 1,2,3 between
the cables and the load are depicted.

that τ0 → 1 and kh → 1
T

as q → qr.

46

3.6 Experiments

Figure 3.11. Representation of robots velocities ṗ(t) when the off-line and on-line technique are
compared. The sampling time is T = 1.5 [s]. Each rows reports one robot velocity.

0 10 20 30 40

-1

0

1

0 10 20 30 40

-1

0

1

Figure 3.12. Representation of the time τ0 and gain k computed for the two strategies.

47

4
Cooperative Aerial Load

Transportation via Sampled

Communication: non-square

systems

Contents

4.1. Introduction . 50

4.1.1. Overview . 51

4.2. MODELING AND PROBLEM FORMULATION 51

4.2.1. Kinematics of multi-agent systems 51

4.2.2. Problem Formulation . 52

4.3. Physical interpretation of the projection operator 54

4.4. Local planner: continous-time 57

4.5. Local Planner: Sampled Measurements 58

4.5.1. Off-line procedure (Stability and convergence rate) 61

4.5.2. Online model-predictive procedure 64

4.6. Simulations . 65

4.6.1. Truetime simulations . 67

In this Chapter we are interested to extend the analysis of the problem faced in Chapter

3 where we developed two strategies to implement point-stabilization control for a class

of squared systems with a sparse kinematic structure. Similarly to the previous chapter

we consider wireless communication and therefore sampled dynamics. Differently, in

this work we study a class of systems characterized by a rectangular Jacobian matrix,

which are defined non-square. In practice, this means that the number of robots is

redundant, i.e. a desired system configuration can be obtained by different configurations

of the robots, since the number of inputs to the system is greater than the number of

degrees of freedom. We exploit the same architecture where a global motion planner is

assumed to generate off-line a sequence of reference points for the system, taking into

account obstacles and singularities avoidance. Then, a local motion planner generates

the reference velocities for the robots to move from the current configuration to a desired

one.

49

4 Cooperative Aerial Load Transportation via Sampled Communication:

non-square systems

4.1 Introduction

In aerospace, vehicle, robot and other high tech industry, over-actuated systems are

commonly used because of their advantage of increasing maneuverability and robust

performance in fault situations. But there is some weakness: over-actuating a system

provides a certain amount of redundancy for the controller, thus potentially allowing for

recovery from off-nominal conditions. Due to this redundancy, it is necessary to compute

a unique solution of a system of equation, which has more unknowns than the number

of equations. Since such a system has infinite number of solutions, the problem is to

find at least one that satisfies control input constraints and some additional optimization

criterion. Our choice is to find a unique solution by selecting the closest feasible velocity

to the desired one in case it is not admissible for the system: the strategy is based on

the kinematics of the system, but we show that this corresponds to the behavior of the

dynamical system when an unfeasible velocity is assigned to it. In detail, our contribution

can be resumed in the following points:

• Firstly, we define a class of multi-agent systems with a sparse kinematic structure,

characterized by a non-square Jacobian matrix: this corresponds to have an over

or under-actuated system

• We exploit the same multi-layer architecture of the previous chapter, but this time

it may happen that the reference velocities generated by the global planner are not

feasible for the system, because of the over-actuation. Thus, we give a solution in

this sense, but assigning to the system a desired velocity value that is a s close as

possible to the reference one.

• We derive stability and convergence results in the continuous-time scenario and we

give the condition such that the kinematic model is compatible with the behavior

of the dynamical

• Every result is analysed both under the weighted 2-norm and ∞-norm: the weight is

useful when the components of the configuration variables are expressed in different

units of measure (angles and distances in our case); moreover, the ∞-norm is also

taken into consideration because it is useful to express upper and lower bounds in

a constrained problem

• We propose the design of the local planner for non-square systems both in the

continuous and sampled-time scenarios: in particular, we give two procedures to

compute the planner gain

• We validate our results both on the kinematic and dynamical model of the system

• Finally, we test the strategies in a far-from-ideal environment, where we use the

dynamical model and simulate a wireless network instead of simplifying it with a

sampling process.

50

4.2 MODELING AND PROBLEM FORMULATION

4.1.1 Overview

The chapter is organized as follows: in Section 4.2 we derive the kinematic model of

the class of non-square systems. Moreover, we introduce the problem that we want to

solve. We also give some definitions which allows to define the scenario that we aim

at studying. In Section 4.3 we show that the kinematic model arises naturally when

applying to the mechanical system of interest a feedback force with the aim of tracking

a desired profile of velocities. In Chapter 4.4 we define the local planner law in the

continuous time scenario. We then study the planner in the sampled scenario in Section

4.5; we provide two strategies to compute the planner gain. Finally, in Section 4.6 we

validate the theoretical results by means of simulations.

4.2 MODELING AND PROBLEM FORMULATION

4.2.1 Kinematics of multi-agent systems

In this section we recall the kinematic model of a multi-robot system composed by N

robots which cooperate to fulfill a task: a more detailed description is given in Section

3.2. The robots do not communicate among themselves and receive information from

a central unit, called pivot that we indicate with the letter V . It can be an object to

be manipulated, a robot to be escorted or an other object in the space. The kinematic

model, introduced in (3.1), is derived as in Appendix B.1.1:

[
p1 . . . pN

]⊤
= h(q) =

[
h(1)(q1,qV) . . . h(N)(qN ,qV)

]⊤
(4.1)

This function maps the Lagrangian coordinates of the system q = [q⊤
1 · · · q⊤

N q⊤
V]⊤ ∈

Rm×1, m > 0 to the vector collecting the robots configurations p =
[
p⊤

1 . . . p⊤
N

]⊤ ∈
Rn×1, n > 0: pi ∈ Rni×1 is the position of the i-th robot in the space, qi ∈ Rmi×1, mi > 0

gathers the angles and/or distances between the pivot V and the i-th robot, and

qV ∈ RmV ×1, mV > 0 represents the pose (position and orientation) of the pivot it-

self.

The differential kinematics can be derived differentiating (4.1):

ṗ = Aq q̇,

where the Jacobian Aq = ∂h(q)
∂q

∈ Rn×m has the structure

Aq =




A
(1)
q1 0 A

(1)
qV

. . .
...

0 A
(N)
qN

A
(N)
qV


, (4.2)

and A
(i)
qi = ∂hi(q)

∂qi
∈ Rni×mi and A

(i)
qV

= ∂hi(q)
∂qV

∈ Rni×mV .

51

4 Cooperative Aerial Load Transportation via Sampled Communication:

non-square systems

We conclude this section by introducing a parametrization of the configurations space

that is compatible with the structural constraints (4.1). It allows to define the local

planner law even when n Ó= m (non-square systems). Let us introduce the manifold M :=

{(p,q) |p = h(q)} and its tangent space at a point (p,q) as T(p,q)M := {(ṗ, q̇) | ṗ = ∂h
∂q

q̇}.

Under the assumption that ∂h
∂q

= Aq ∈ Rn×m is full rank, then a possible parametrization

of such space is given by:

T(p,q)M = {(Aqq̇, q̇),∀q̇ ∈ Rm}

i.e. the tangent space is a m-dimensional linear space embedded into an (n + m)-

dimensional space.

4.2.2 Problem Formulation

As in Chapter 3 the goal of this chapter is to design a feedback-based local planner in

order to steer the system from an initial configuration q0 to a desired one qr, where the

latter could be a way point of a trajectory that is generated offline.

In this scenario, we assume that each agent has an inner-loop control sufficiently faster

than the dynamics of the entire system, able to control the velocities of the variable

vector p with the respect to a vector of desired velocities u = [u⊤
1 · · ·u⊤

N]⊤ ∈ Rn.

In presence of square systems, that is n = m, we might assume the velocities p to be

fully controllable, i.e.:

ṗ(t) = u(t). (4.3)

Indeed in this case the matrix Aq(t), defined in (4.2), is a square matrix and the assigned

u belongs to ImAq(t) = Rn, provided that Aq(t) is full rank. Instead, if n > m, then

the system is over-actuated, that is there exist some unfeasible desired velocities which

cannot be achieved by any configuration q. Indeed, in this case, dim(ImAq(t)) = m < n,

so there exists some u ∈ Rn which does not belong to ImAq(t). On the other hand, if

n < m then the system is under-actuated, that is the number of control variables is

strictly smaller than the controlled ones and not all the configurations q can be reached

by choosing the input u. Notice that this does not mean that the system cannot be

controlled, but it is really unlikely.

In this work we are interested in the analysis of the over-actuated scenario where n > m,

hence all the possible configurations q can be achieved by assigning a vector of desired

vehicles velocities u. On the other hand it may happen that u Ó∈ ImAq and in this case

we propose a solution such that the assigned velocities become feasible. More specifically,

if u ∈ ImAq(t), that is, u = Aq(t)q̇(t), then (u(t), q̇(t)) ∈ T(p,q)M; instead if u Ó∈ ImAq(t)

the idea is to find the closest feasible velocity to the desired one and this is obtained by

projecting u onto ImAq(t), see Fig.4.1. Formally, we are interested in computing the

vector uq defined as follows:

uq(t) := arg min
v∈ImAq(t)

‖u(t)−v‖ = Πq(t)u(t) (4.4)

where Πq(t) = Aq(t)A
†
q(t) ∈ Rn×n is the orthogonal projector onto ImAq(t) being A

†
q(t)

52

4.2 MODELING AND PROBLEM FORMULATION

u

Figure 4.1. Manifold of structural constraints and tangent space for projection.

PIVOT

ROBOT

u

GLOBAL PLANNER q
r
,q̇

r

Figure 4.2. Representation of (4.7) (right) and (4.8) (left) where the gray area represents the
load and the blue one an agent (i.e. dynamical controller plus robot). qr is generated
by the global planner (in green), the red labels are the measurements from the
sensors. The dynamical controller converts u into forces for the robot. The wireless
symbol indicates that the quantity can be transmitted via sampled communication.

the Moore-Penrose inverse of Aq(t), i.e.,

A
†
q(t) = (A⊤

q(t)Aq(t))
−1A⊤

q(t).

It turns out that the velocities of vector p satisfy

ṗ = uq(t) = Πq(t)u(t); (4.5)

equivalently, if Aq(t) is full rank, we have

q̇ = A
†
q(t)u(t). (4.6)

Note that if n ≤ m, than Πq(t) = In, hence no projection is needed since the space of

all the possible values of u(t) lies is a subset of the space Im Aq(t); this scenario includes

the case n = m that was already described in Chapter 3, where the space of the inputs

u(t) is exactly equal to Im Aq(t) = Rn. We consider two possible architectures, depicted

in Fig.4.2 and B.1.:

ui(t) = κs
i (qi(t),qV (t);qr

i ,qr
V), i = 1, . . . ,N (4.7)

ui(t) = κc
i (q(t);qr), i = 1, . . . ,N (4.8)

53

4 Cooperative Aerial Load Transportation via Sampled Communication:

non-square systems

where the former tries to maintain the same sparsity of the Jacobian while the latter

exploit the full knowledge of the vector q1. We will show that, if q(t) is continuously

accessible to the local planner, then (4.7) is sufficient to drive the system to q0; otherwise,

if q(t) is available at sampled time instants, then the two architectures give rise to two

different strategies with different performance and computational requirements.

Before proceeding, for R > 0, we define the sets

B2(qr) = {q ∈ Rm |‖q −qr‖DDD,2 < R}
B∞(qr) = {q ∈ Rm |‖q −qr‖DDD,∞ < R}

where DDD is a weighting matrix such that DDD = diag{DDD1, . . . ,DDDN ,DDDV }, with DDDi = 1
d2

i

Imi

and DDDV = 1
d2

V

ImV
, and where

‖q −qr‖DDD,2 = ‖DDD (q −qr)‖2 =

√√√√
∑

i

‖qi − qr
i ‖2

d2
i

‖q −qr‖DDD,∞ = ‖DDD (q −qr)‖∞ = max
i

‖qi − qr
i ‖∞

d2
i

are respectively the 2-norm and ∞-norm, weighted with DDD. Without loss of generality

we make the following assumption on the weights of matrix DDD,

min{d1, . . . ,dN ,dV } ≥ 1. (4.9)

This allows to derive some stability related properties in Section 4.5.1. From now on,

for the sake of notational convenience, by the symbol B∗(qr) we denote interchangeably

either the set B2(qr) or the set B∞(qr).

We conclude this section with the following assumption.

Assumption 4.2.1. The following relations hold:

1. the matrix Aq is full-rank and the map h is twice continuously differentiable for

all q ∈ B∗(qr). In addition, these properties can be extended by continuity on the

closure of such set, defined as B∗(qr);

2. q0 ∈ B∗(qr).

4.3 Physical interpretation of the projection operator

The goal of this section is to provide a physical interpretation of the projection step in

(4.4). In particular we want to show that the kinematic model in (4.6) arises naturally

when applying to the mechanical system of interest a feedback force with the aim of

tracking a desired profile of velocities u(t).

1Note that we do not pursue control strategies of type u(t) = κ(p(t);pr) where pr := h(qr) since
the function h might not be perfectly known and avoidance of singular configurations cannot be
guaranteed.

54

4.3 Physical interpretation of the projection operator

To do that, let us consider the dynamical model

M(q)q̈ +C(q, q̇)q̇ +g(q) = J⊤(q)F (4.10)

where M(q) is the joint-space inertia matrix, C(q, q̇) is the Coriolis and centripetal

coupling matrix, g(q) is the gravity term, and J⊤(q)F describes the effect of the external

forces applied to the system, being J(q) = Aq the Jacobian matrix.

Without loss of generality, we can neglect g(q) since a gravity compensation action can

be implemented by the controller. Hence (4.10) becomes

M(q)q̈ +C(q, q̇)q̇ = Aq
⊤F

Let us assume to apply an external force F to the robot of the type

F := −α(ṗ−u) (4.11)

where α > 0 is a constant gain, ṗ is the current velocity vector and u ∈ Rn is the vector

of desired velocities.

Then the dynamical model can be rewritten as

M(q)q̈ +C(q, q̇)q̇ = −αAq
⊤Aqq̇ −αAq

⊤u

or equivalently

ǫq̈ = M(q)−1
(

−Aq
⊤Aqq̇ +A⊤

q u − ǫC(q, q̇)q̇
)

(4.12)

where ǫ = 1/α. Observe that for small ǫ we have that

−Aq
⊤Aqq̇ +A⊤

q u ≈ 0,

that is,

q̇ ≈ A
†
q(t)u,

which is the kinematic model in (4.6). Notice that this result can be seen in a multi

time-scale scenario, where for small values of ǫ the dynamics of the system is fast enough

such that it achieves ṗ ≈ u before the next reference velocity u is assigned. Otherwise,

for larger values of the parameter, the time-scale separation is no more achieved and the

stability of the controlled system is no more guaranteed.

In order to practically show the meaning of this result, we choose the system depicted

in Figure 4.3a where four aerial robots transport a payload. We define the Lagrangian

variables as in Section 4.2.1, hence we have q = [q1 q2 q3 q4 qV]⊤ ∈ R10 where qi ∈ R

are the angles of the cables with respect to the load and qV ∈ R6 is the load pose. We

derive the dynamical model of the system following the procedure in Appendix B.1.2.

The initial configuration is q0 and we define q̇0 such that the load moves upwards on

the axis z and the angles qi increase with velocity q̇i(0), as shown in Figure 4.3b. This

velocity is then transformed into velocities for the robots with u = Aq0 q̇0 and the vector

u is then converted into forces to be applied to the cables ends through equation (4.11).

At the beginning u ∈ ImAq, hence it is feasible; then, as the system dynamics evolves,

it happens that u Ó∈ ImAq because the angles qi keep increasing becoming even greater

55

4 Cooperative Aerial Load Transportation via Sampled Communication:

non-square systems

(a) (b)

Figure 4.3. Example of a rectangular multi-agent system where four aerial robots transport
a payload. On the right, a movement of the system is depicted to give a better
intuition of the plot in Figure 4.4.

than π
2 . In Figure 4.4 you can see what happens in this scenario, that is when unfeasible

velocities are given as references to the system: the actual robots velocities ṗ behave like

uq in (4.4), stopping tracking the vector u as soon as it becomes unfeasible.

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4.4. Behavior of the robots velocities ṗ when the reference ones u are unfeasible: in
practice ṗ → uq where uq are defined in (4.4).

56

4.4 Local planner: continous-time

4.4 Local planner: continous-time

In this section we describe the local planner that generates the desired vehicles velocities

in the scenario of continuous time measurements. The goal is to steer q(t) to qr.

As introduced in Sec. 4.2.2 if u Ó∈ ImAq(t), then we choose u(t) as the smallest norm

velocity that is compatible with (4.1); hence, the dynamics of q(t) given these reference

velocities is:

q̇(t) = arg min
v∈Rm

{‖v‖|Πq(t)u(t) = Aq(t)v} = A
†
q(t)u(t) (4.13)

Note that according to this modeling the velocities (ṗ, q̇) are compatible with the tangent

manifold, i.e.

(Πq(t)u(t),A†
q(t)u(t)) ∈ T(p,q)M

A possible choice to define the velocities u is

u(t) = −Aq(t)K(q(t)−qr) (4.14)

where K is a gain matrix to be designed. Note that according to (4.14), the dynamics of

q(t) evolves according to

q̇(t) = −A
†
q(t)Aq(t)K(q(t)−qr) = −K(q(t)−qr) (4.15)

The feedback gain K must guarantee stability, possibly maintain the decentralized

structure induced by Aq(t), and to make the trajectory q(t) not to pass through a

singularity.

In this paper, we assume that the gain matrix has the form K = k ·K where k is a

positive scalar gain, i.e., k > 0, and K is a diagonal matrix with the following structure

K = diag{K1, . . . ,KN ,KV } ,

where Ki = kiImi
, KV = kV ImV

being ki,kV > 0.

We have the following result.

Proposition 4.4.1. Consider system described by (4.13) and (4.14), where K is defined

as above. Assume Assumption 4.2.1 holds true. Then, for all (N + 2)-upla of positive

real numbers k,k1, . . . ,kN ,kV , we have that

1. for all t ≥ 0, q(t) ∈ B∗(qr);

2. the trajectory q(t) converges exponentially fast to qr.

Proof. 1. Consider the Lyapunov function V (q) = ‖q − qr‖2
∗, then it is easy to see

that V̇ (q) < 0 for every q Ó= qr by following the same reasoning as in the proof of

Proposition 3.3.1.

2. From (4.15) and since K is diagonal with all positive entries, then it is straightfor-

ward to conclude that q(t) converges exponentially fast to qr.

57

4 Cooperative Aerial Load Transportation via Sampled Communication:

non-square systems

Notice that, according to the structure of the matrix K, a different weight is assigned

to each qi, modifying the corresponding convergence rate. For instance, the choice

K = diag{Im1 , . . . ,ImN
,kV ImV

} with kV > 1 allows for a faster convergence of qV w.r.t.

the other variables.

Interestingly, the exponential stability property established in the previous Proposition

for the kinematic model (4.13) when the control input (4.14) is adopted, holds true also

for the dynamic model in (4.12) provided the gain α is sufficiently high. This fact is

formally stated in the next theorem.

Theorem 4.4.1. Consider the dynamic model (4.12) with F given in (4.11) and u

defined as in (4.14). There exist α > 0 and a neighborhood of qr, say B̄(qr), contained

in B∗(qr), i.e., B̄(qr) ⊆ B∗(qr), such that, if q(0) ∈ B̄(qr) and α > ᾱ, then

1. for all t ≥ 0, q(t) ∈ B̄(qr);

2. the trajectory q(t) converges exponentially fast to qr.

The proof of the Theorem is reported in Appendix B.3.

4.5 Local Planner: Sampled Measurements

We now consider the evolution of (4.13) under sampled dynamics, that is we assume

that q is measured at the time instants hT , h = 0,1,2, . . . where T is the sampling time.

Moreover, we assume that the vehicles reference velocity u(t) is kept constant within a

time window T using (4.14):

u(t) = uh = −kAqh
K(qh −qr), hT ≤ t < (h+1)T,

for h = 1,2, . . ., and where we defined qh = q(hT). In this scenario, assuming Aq(t), t ≥ 0

full rank, the evolution of q(t) becomes:

q̇(t) = −kA†
q(t)Aqh

K(qh −qr), hT ≤ t < (h+1)T. (4.16)

In this section we assume that K is assigned a-priori (or, equivalently, that the values

of kV and ki, i = 1, . . . ,N , are assigned a-priori), while k is a positive parameter to be

designed, possibly time varying, i.e., k = kh, such that the stability of the system is still

guaranteed.

The approach we propose for the design of k within each interval [hT, (h+1)T], is

based on the analysis of the following auxiliary system whose solution is characterized by

interesting and useful properties that will be analyzed later on

ė′(τ ;eh) = −A†
qr+e′(τ ;eh) Aqr+eh

Keh =: f(e′(τ ;eh)) (4.17)

e′(0;eh) = eh

where eh is such that qr +eh ∈ B2,∞(qr) and e′(· ; ·) ∈ Rm.

58

4.5 Local Planner: Sampled Measurements

Let e(t) := q(t)−qr. Note that by direct inspection we have

e(t) = e′(k(t−hT);eh), hT ≤ t < (h+1)T. (4.18)

Hence, once the solution e′(τ ;eh) is computed, then e(t) can be obtained through shifting

by hT and rescaling by k, i.e., as long as e′(k(t−hT);eh) exists; then, q(t) = e(t)+qr.

The major benefit of this approach is that the analysis of (4.17) is independent of the

gain k and the sampling period T .

Remark 4.5.1. In the following the symbol ‖·‖ indicates that the relation where it is used

holds both for ‖·‖D,2 and ‖·‖D,∞ for the equivalence of norms. The only difference

could be some inequality coefficients.

From Ass. 4.2.1 the following properties hold true for all e, e′ such that qr +e, qr +e′

belong to B∗(qr)

f(e′(0;e)) = −Ke, (4.19)

‖f(e′(τ);e)‖ ≤ ‖A†
qr+e′ Aqr+e K‖‖e‖ = a‖e‖, (4.20)

∥∥∥∥
∂f(e′(τ);e)

∂e′

∥∥∥∥ ≤ b‖e‖, , (4.21)

for some a,b > 0 since f and ∂f
∂e′ are continuous maps on a compact domain.

Since the flow f(e′;eh) is locally continuously differentiable in e′, then for each eh

such that qr + eh ∈ B2,∞(qr), there exists δ(eh) > 0 s.t. (4.17) has a unique solution

e′(τ ;eh) for τ ∈ [0, δ(eh)). Without loss of generality, let us define τmax(eh) the maximum

time extension for which the unique solution e′(τ ;eh) exists (see Khalil (2002)) for

0 ≤ τ < τmax(eh). The following Proposition shows an interesting property of the solution

e′(τ ;eh).

Proposition 4.5.1. Consider the dynamical system (4.17) where we assume eh +qr ∈
B∗(qr). Then the solution e′(τ ;eh) satisfies one of these two properties:

(i) for all τ > 0, it holds ‖e′(τ ;eh)‖ < ‖eh‖ and in such case τmax(eh) = ∞;

(ii) there exists 0 < τ̄ < τmax(eh) such that ‖e′(τ̄ ;eh)‖ = ‖eh‖ and ‖e′(τ ;eh)‖ < ‖eh‖
for all 0 < τ < τ̄ .

Proof. Only two scenarios are possible, either ‖e′(τ ;eh)‖ < ‖eh‖ for all τ > 0, from which

τmax(eh) = ∞ follows, or not. If not, then τ := infτ>0{τ |‖e′(τ ;eh)‖ ≥ ‖eh‖} is well defined

and finite. Now, let us assume that τ̄ = 0: since e′(τ ;eh) is continuously differentiable in τ

and since ė′(0;eh) = −Keh, then there exists ė′(0;eh) s.t. e⊤
h ė′(0;eh) ≥ 0 ⇔ −e⊤

h Keh ≤ 0

that is a contradiction. This implies that τ̄ > 0. Finally, observe that the definition of τ̄

makes sense only if a solution e′(τ ;eh) exists, hence τ ≤ τmax(eh).

Based on the previous Proposition, we can introduce the following temporal variables

τs(eh) :=min
τ

{τ >0 |‖e′(τ ;eh)‖ = ‖eh‖}

τo(eh) := arginf
0≤τ≤τs(eh)

‖e′(τ ;eh)‖,

59

4 Cooperative Aerial Load Transportation via Sampled Communication:

non-square systems

q
r

B∗

qh0

τo(qh)
δ(qh)

τ
∗

oτ
∗

s

τs(qh)
τmax(qh)

Figure 4.5. Representation of B∗, δeh
, τ∗

o , τo(eh), τ∗
s , τs(eh) and τmax(eh). The red labels

represent time values, while the black ones are points or sets in Rm.

where τs(eh) = ∞ , if ‖e′(τ ;eh)‖ < ‖eh‖ for all τ > 0. Basically, τs(eh) represents the first

time that the solution e′(τ ;eh) hits the boundary of the ball centered at the origin and

passing though the initial condition eh, , while τo(eh), represents the time that e′(τ ;eh)

is closest to the origin.

Based on τs(eh) and τo(eh), we can define also

τ∗
s := inf {τs(eh) |qr +eh ∈ B∗(qr)} (4.22)

and, analogously,

τ∗
o := inf {τo(eh) |qr +eh ∈ B∗(qr)} . (4.23)

All the above quantities are graphically sketched in Fig.4.5.

The following result provides a further interesting characterization of the trajectories

e′(τ ;eh).

Proposition 4.5.2. There exist τ̄o and 0 ≤ ρ < 1 such that, for all eh s.t. qr + eh ∈
B∗(qr), it holds

0 < τ̄o ≤ τ∗
o ≤ ∞ and ‖e′(τ̄o;eh)‖ ≤ ρ‖eh‖.

The proof is constructive and it is provided in the next subsection where we show how

to numerically compute a pair (τ̄o,ρ) satisfying these relations. It is worth stressing that

τ̄o is independent of eh, but, as we will see later on, it is possibly dependent on B∗(qr).

The variables τ̄o and τo(eh) allow to propose two different strategies to design the

gain k. The first is based on the observation that if k = τ̄o

T
, then e′(τ ;eh) → 0 ∀eh at a

convergence rate ρ. In fact, from (4.18) we have ‖eh+1‖ = ‖e′(kT ;eh)‖ = ‖e′(τ̄o;eh)‖ ≤
ρ‖eh‖. This suggests an offline procedure to select k that will be described in the next

subsection 4.5.1. However, based on the definition of τo(eh), it might be likely that

‖e′(τo(eh);eh)‖ < ‖e′(τ∗
o ;eh)‖ for most eh. Therefore, an alternative approach is to select

k at each instant h such that kh := τo(eh)
T

. This idea suggests an online strategy that will

be described in subsection 4.5.2.

60

4.5 Local Planner: Sampled Measurements

4.5.1 Off-line procedure (Stability and convergence rate)

We start this section by observing that, if τ∗
s > 0, then the original system (4.16) is

asymptotically stable for

kT < τ∗
s .

Note that if this condition is not satisfied, then we can find a time instant τ ′ ∈ [τ∗
s ,+∞]

and e(0) such that ‖e′(τ ′;e(0))‖ > ‖e′(0;e(0))‖, that is ‖e(kT)‖ > ‖e(0)‖ for k = τ ′

T
.

Although this does not imply instability of the whole trajectory, it is an undesired

behavior.

To show that τ∗
s > 0, we next provide an explicit lower bound τ̄s > 0 for τ∗

s . To do that,

we consider an expansion of the solution of (4.17) and numerically estimate the upper

bound of the approximation error via an additional parameter µ. This allows to derive

an analytical expression of τ̄s.We recall that the solution of (4.17) can also be written as:

e′(τ ;eh) = eh +

∫ τ

0
f(e′(τ ′;eh))dτ ′, 0 ≤ τ < τs(eh).

By using Taylor’s theorem for multivariate functions with integral form of the remainder,

it becomes

e′(τ ;eh) = eh + τ f(e′(0;eh))+

+ τ2
∫ 1

0
(1− ǫ)

∂f(e′(ǫτ ;eh))

∂e′ f(e′(ǫτ ;eh))dǫ

= (I− τK)eh + τ2d(τ,eh), 0 ≤ τ < τs(eh), (4.24)

where the reminder d has the property2:

Proposition 4.5.3. For all eh, such that qr +eh ∈ B∗(qr) and for all 0 < τ < τs(eh) it

holds ‖d(τ,eh)‖ ≤ 1
2ab‖eh‖2, where a,b are the bounding constants introduced in (4.20)

and (4.21).

Proof. As a consequence of the properties (4.20) and (4.21), the reminder in (4.24)

becomes

‖d(τ,eh)‖D,2 ≤

≤
∫ 1

0
(1− ǫ)

∥∥∥∥∥
∂f(e′(ǫτ);eh)

∂e′

∥∥∥∥∥
D,2

‖f(e′(ǫτ);eh)‖D,2dǫ

≤
∫ 1

0
(1− ǫ)ab‖eh‖2

D,2dǫ =
1

2
ab‖eh‖2

D,2

By equivalence of norms the same relation holds for ‖·‖D,∞.

Notice that since eh is such that qr + eh ∈ B∗(qr), then ‖eh‖ ≤ r and, hence, by

2Note that the reminder scales as ‖eh‖2 which implies that as e′ becomes closer to the origin, the faster
it converges.

61

4 Cooperative Aerial Load Transportation via Sampled Communication:

non-square systems

defining,

µ :=
1

2
abr, (4.25)

we can write ‖d(τ,eh)‖ ≤ µ‖eh‖. Note that µ, as defined in (4.25), represents a rough

estimate of the upper bound of ‖d(τ,eh)‖. However this estimate can be refined as

follows. Let

d′(τ,eh) := τ2d(τ,eh)
(4.24)

= e′(τ,eh)− (I− τK)eh,

and

µ∗ := inf
γ

{γ | ‖d′(τ,eh)‖ ≤ γ‖eh‖τ2, (4.26)

∀eh, ∀τ ∈ (0, τs(eh))}.

We are interested in providing an estimate µ̂∗ of µ∗. To do that, we adopt a Monte-Carlo

sampling method. Specifically, given the positive integer number N , we randomly pick

samples ei
h, i = 1, . . . ,N , such that qr + eh ∈ B∗(qr) for all 1 ≤ i ≤ N , and for each of

them, we simulate e′(τi;e
i
h) for τi ∈ [0, τs(ei

h)].

µ̂∗ := max
i

{
‖d′(τi,e

i
h)‖

τ2
i ‖ei

h‖ ,∀ei
h, ∀τi ∈ (0, τs(ei

h))

}
(4.27)

Since µ̂∗ is computed on a sampled set, we may discard some configurations which would
give a larger value of the estimate. Hence we conclude that µ̂∗ ≤ µ∗ and µ̂∗ → µ∗ as the

number of samples increases, that is, as N → ∞. From (4.24) and Prop.4.5.3, given eh

such that qr +eh ∈ B∗(qr), we have that

‖e′(τ ;eh)‖ ≤ ‖(I− τK)eh‖+µτ2‖eh‖
≤

(
‖(I− τK)‖+µτ2

)
‖eh‖ (4.28)

for all 0 ≤ τ < τs(eh), where ‖(I− τK)‖ denotes the matrix norm induced by the corre-

sponding vector norm. In order to evaluate upper bounds for the convergence rate, we

need to study the following function

g(τ ;µ) := ‖I− τK‖+µτ2

Since K is diagonal we can write

g(τ ;µ) = max
i

|1− τki|
d2

i

+µτ2. (4.29)

Observe that g(τ ;µ) is a strictly convex function and that, from (4.9), it follows

g(0;µ) = max
i

1

d2
i

≤ 1.

Moreover, g′(0;µ) < 0. Based on these properties of the function g we can define

τ s(µ) := {τ > 0 |g(τ ;µ) = 1}

62

4.5 Local Planner: Sampled Measurements

0 0.5 1 1.5

0

0.5

1

1.5

Figure 4.6. Representation of |1−τki|

d2
i

and of the maximum.

0 0.5 1 1.5

0

0.5

1

1.5

Figure 4.7. Representation of |1−τki|

d2
i

+µτ2 and of the maximum.

63

4 Cooperative Aerial Load Transportation via Sampled Communication:

non-square systems

and, in turn,

τ o(µ) := argmin
0≤τ≤τs(µ)

g(τ ;µ).

Accordingly let

ρ(µ) = g(τ o(µ);µ).

Since ρ(µ) < 1, it turns out that the pair (τ o(µ),ρ(µ)) satisfies the properties stated in

Proposition 4.5.2.

The strict-convexity property of the function g allows to compute τ s(µ), τ o(µ) and

ρ(µ) in a efficient way, by resorting to standard numerical toolboxes. In order to better

understand the properties of the function g just described, we depict in Figure 4.6 the

terms |1−τ ki|
d2

i

and in Figure 4.7 |1−τ ki|
d2

i

+µτ2 and their maxima. We chose random values

for ki and di such that (4.9) is satisfied and we show also the values τ̄s(µ), where g = 1

and τ̄0(µ) where g has its minimum. As you can notice by comparing the two pictures,

because of the quadratic term µτ2, the minimum of g can never be zero, neither for µ = 0;

indeed, if in Chapter 3 g was minimized in τ = 1 when µ = 0, in this case the value of

the minimizer depends on the values ki which can be different from 1. As a consequence

we cannot obtain a dead-beat controller anymore.

4.5.2 Online model-predictive procedure

In this section we consider the possibility to numerically compute the future trajectory

e′(τ,eh) based on the model dynamics f(q;eh) and the current position eh. This implies

that also τo(eh) can be computed at any time step h. If so, under the assumption that

the input is kept constant for the following time interval T , we can propose the following

input

u(t) = uh = −khAeh
Keh, hT ≤ t < (h+1)T,

where

kh :=
τo(eh)

T
. (4.30)

A more precise characterization of the convergence properties of this strategy is stated in

the next proposition.

Proposition 4.5.4. Consider the system in (4.16) with a time varying sequence of gains

k0,k1,k2, . . ., where the generic kh is given as in (4.30). Then we have that

‖e(t)‖ ≤ ‖e(hT)‖

for all hT ≤ t < (h+1)T , and

‖e(hT)‖ ≤ ρh(µ)‖e(0)‖.

Remarkably, the convergence is at least quadratic if one of the following two facts is

verified

• the weights of the matrix D are all equal, that is,

d1 = d2 = . . . = dN = dV ;

64

4.6 Simulations

• the gains defining the matrix K are all equal, that is,

k1 = k2 = . . . = kN = kV .

Proof. Observe that, according to (4.30), we necessarily have:

‖eh+1‖ = ‖e′(τo(eh);eh)‖ ≤ ‖e′(τ o;eh)‖ ≤ ρ‖eh‖,

hence the proposed scheme is exponentially stable with rate ρ for any T . This proves the

first part of the Proposition.

Consider now the case where all the di are equal to the same value d̄. In this case we

have that (4.29) can be rewritten as

g(τ ;µ) = max
i

|1− τki|
d̄

+µτ2 (4.31)

=
|1− τkmin|

d̄
+µτ2 (4.32)

where kmin = mini ki.

Since in the online scenario r = ‖eh‖ → 0, then µ = 1
2ab‖eh‖ → 0. This implies that

τ o(µ) → 1/k̄min and, in turn, ρ(µ) → 1
k̄2

min

µ. As so, ‖eh+1‖ ≤ ρ‖eh‖ → 1
2k̄2

min

ab‖eh‖2.

As a consequence

limsup
h→+∞

‖eh+1‖
‖eh‖2

≤ 1

2k̄2
min

ab,

and ‖eh‖ ≤ (1
2k̄2

min

ab‖e0‖)(2h−1)‖e0‖. Since ab > 0, then the quadratic convergence of the

sequence ‖eh‖ is guaranteed.

Similar reasonings hold for the scenario where the gains defining the matrix K are all

equal with each other.

Based on the definition of τo(eh) and on Prop. 4.5.4, we expect the online strategy

to exhibit a faster convergence than the offline one. This fact is supported also by the

numerical results reported in the next section. However, the higher rate of convergence

comes at the price of a heavier computational load. Indeed τo(eh) needs to be estimated

at each iteration and a global knowledge of the vector eh is required; this implies that the

online strategy cannot be implemented distributively, but only in a centralized fashion.

4.6 Simulations

In the first part of this section we show the results of the simulations performed on

Matlab-Simulink when the off-line (Section 4.5.1) and on-line (Section 4.5.2) techniques

are applied to the kinematic model of the system depicted in Figure 4.3a. In detail,

we assume that the sampling time is T = 1.5 [s] and the weight and gain matrices are

K̄ = I10 and D = diag{I4, 4·I6}. In this case we chose to weight differently the variables

qi, i = 1,2,3,4 with respect to qV . In Figure 4.8 we compare the behavior of the system

when the 2-norm is considered and the the off-line and on-line strategies are compared.

65

4 Cooperative Aerial Load Transportation via Sampled Communication:

non-square systems

Figure 4.8. Evolution of the error norm ‖q −qr‖2 for different initial conditions (q1, q2) and
techniques (on-line and off-line) when the robots velocities generated by the planner
are applied to the kinematic system. In this case K = I10 and D = diag{I4,4·I6}.

Figure 4.9. Evolution of the error norm ‖q −qr‖∞ for different initial conditions (q1, q2) and
techniques (on-line and off-line) when the robots velocities generated by the planner
are applied to the kinematic system. In this case K = I10, D = diag{I4,4·I6}.

In addition, two different initial conditions are taken into account. The picture shows

that, when q(0) = q1 is close to qr, then the two strategies have more or less the same

performance. Indeed, in this case, a smaller value of µ is obtained from procedure (4.27):

as a consequence, the minimum of g is smaller and the convergence rate is closer to the

one of the on-line scenario. Instead, the difference between the two strategies is evident

when q(0) = q2 that is further from the reference configuration. In Figure 4.9 a similar

result is obtained: the only difference is the norm used to perform the simulations, that

is ‖·‖∞. Finally, in Figure 4.10 we performed more simulations but using the dynamical

model of the system, derived as explained in Appendix B.1.2: in particular, our goal

is to graphically show the validity of Theorem 4.4.1. For this reason we only consider

the 2-norm, indeed the ∞-norm would give the same result. The picture highlights that

for large values of α the convergence of the system is achieved, while for lower values

the norm of the error is not guaranteed to converge to zero. As explained above in

Section 4.3, this means that for large α the approximation q̇ ≈ Aq
†u holds true and the

dynamical model can be approximated with the kinematic one.

66

4.6 Simulations

Figure 4.10. Evolution of the error norm ‖q − qr‖2 when the on-line and off-line techniques
are applied: moreover, three different values of the gain α are chosen.

4.6.1 Truetime simulations

In this section we describe the results obtained by simulating the system in Figure 4.3a

and comparing the off-line and on-line strategies. The meaningful difference with respect

to the previous simulation is that the proposed solutions are tested in a more realistic

environment. Indeed, the sampled communication is implemented as a wireless network

by using Truetime that will be described in the following; moreover, the desired velocities

for the robots are given as input to the dynamical model of the system instead of the

kinematic one. Note that the simulation is related to the special case of four robots which

carry the load. Hence mi = 1, i = 1,2,3,4, mV = 6 and m = 10; moreover, N = 4 and

n = 3N = 12 > m, so this is a particular case of an over-actuated system. TrueTime is a

Matlab/Simulink-based simulator for real-time control systems. It facilitates co-simulation

of controller task execution in real-time kernels, network transmissions, and continuous

plant dynamics. We implemented our architecture simulating a wireless network 802.11b

where five nodes (the four robots and the transported load) are connected by one network

block. In our scenario, the load, depending on the chosen implementation, tries to

transmit its pose qV or the vector of desired velocities u to the robots via wireless

with a data rate equal to 1.2Mbits/s. Hence, a triggering signal is sent to the network

block on the corresponding input channel. When the simulated transmission of the

message is finished, the network block sends a new triggering signal on the output channel

corresponding to the receiving node. The transmitted message is put into a buffer at

the receiving node. In order to compare the performance of the controlled system when

different packets loss probabilities are considered, in Figure 4.11 we report the norm of

the configuration error e = q −qr for different values of the parameter: 0%, 30%, 70%.

The initial configuration is set to q0 = [80◦ 80◦ 80◦ 80◦ 0[m] 0[m] 0[m] 0◦ 0◦ 0◦]⊤ to the

final one to qr = [60◦ 60◦ 60◦ 60◦ 0[m] 0[m] 0[m] 0◦ 0◦ 0◦]⊤. As expected, since the input

u to the system is updated only when a new measurement arrives, then the performance

of the controlled system gets worse as the probability of loosing packets increases.

In Section A.1 we also report more detailed plots of an additional simulation where we

set the packet loss probability equal to 20 %: we show the behavior of the Lagrangian

67

4 Cooperative Aerial Load Transportation via Sampled Communication:

non-square systems

0 5 10 15 20 25 30
-15

-10

-5

0

on, loss:0%

off, loss:0%

off, loss:30%

on, loss:30%

off, loss:70%

on, loss:70%

Figure 4.11. Plot of the error norm when the off-line and on-line techniques are implemented
on the dynamical model of the system depicted in Figure 4.3a. Different packet
loss probabilities are considered.

variables together with the reference velocities u generated by the local planner. We also

show how the allocation of common resources is handled: in particular the figures show

when information is sent on the network and if a packet is lost.

68

5
Cooperative trajectory

tracking over sampled

communication

Contents

5.1. Introduction . 70

5.1.1. Overview . 71

5.2. Modeling and Problem Formulation 71

5.2.1. Kinematics of multi-robot systems 71

5.2.2. Problem Formulation and contribution 72

5.3. SIKM: sampled measurements 74

5.3.1. Review of the positioning control law proposed in Chapter 3 . . . 74

5.3.2. First approach: point-stabilization control 75

5.3.3. Second approach: feed-forward technique 77

5.4. Stability and convergence rate bounds 82

5.4.1. Estimate of the parameters µ,α,γ1,γ2 85

5.4.2. Analysis of the function z
(
k,τ ;µ,γ1,γ2

)
. 86

5.5. Simulation Results . 89

In this Section we propose an inverse-kinematics controller for a class of multi-robot

systems in the scenario of sampled communication. The goal is to make a group of

robots cooperate to fulfill a common goal. In particular, we make three aerial robots

transport a common object via cables: a trajectory is assigned and tracked by the system.

Given a feasible desired trajectory in the configuration space, the controller receives the

measurements from the system at sampled time instants and computes the desired robots

velocities. We provide two strategies to choose the controller gain. In one case it is

computed off-line: once the sampling time is assigned, we propose a method to compute

the controller gain that guarantees stability and asymptotic zero-tracking error. In this

case the controller is implementable in a distributed way. In the second scenario the

gain is updated on-line and only a centralized implementation can be achieved: in this

scenario we practically show by means of simulations that the proposed control method

provides a faster convergence rate while tracking the assigned trajectory. Notice that

both strategies work with no communication among robots, but only with the common

69

5 Cooperative trajectory tracking over sampled communication

load. Numerical simulations of the two techniques are provided for the cooperative aerial

manipulation of a cable-suspended load (the Fly-crane). We also compare our strategies

to other possible solutions, showing that we can obtain better performance and stability

guarantees.

5.1 Introduction

Generally, a group of robots allows to improve the task performance with respect to

the use of a single robot: problems like the limited payload and time of flight can be

mitigated using multiple robots. However, groups of mobile robots requires a careful

consideration of cooperation strategies to achieve a common objective. Let us consider

the scenario where a group of UAVs transport a common object while avoiding obstacles

or passing through a narrow aperture. In this case, it is not sufficient that each UAV

avoids obstacles. The overall multi-robot system should move in a cooperative way such

that the transported load avoids obstacles as well. In Chapter 3 we already discussed the

reasons why we are interested in a decentralized implementation of the controller where

we include the possibility to exchange information among the robots and a central unit.

We also investigated the problem of cooperative aerial load transportation via sampled

communication. In particular, considering the problem of rest-to-rest motions, we

designed an inverse kinematic planner that makes the system move from an initial to

a final configuration with zero velocity. In particular, we analysed the behavior of the

system under sampled communication (e.g., in case of wi-fi transmission), namely, when

the desired robots velocities are transmitted at sampled time instants to the robots. In

this paper we propose a Sampled communication-aware Inverse-Kinematic controller

for Multi-robot systems (SIKM) to address the more relevant challenging problem of

trajectory tracking under sampled communication. We depart from the work of Chapter 3

considering a more generic framework. The contributions of this chapter can be resumed

in the following points:

• We exploit the kinematic model derived for square systems and we exploit the

same multi-layer architecture: the difference is that we want the system to track a

desired trajectory (positions and velocities in time), hence no more a sequence of

configurations.

• We design the local planner both in the continuous-time and sampled scenarios

• In the sampled case we show that the strategy developed in Chapter 3 can still

be applied for trajectory tracking but cannot guarantee zero-tracking error. We

provide a solution that gives stability and convergence guarantees

• In the sampled scenario, we give the definition of ρ monotonically contractiveness in

order to derive stability and convergence characterizations both during a sampling

interval and among different time intervals.

• Based on the definition of ρ monotonically contractiveness, we derive explicit bounds

for the stability set and the convergence rate

70

5.2 Modeling and Problem Formulation

• Finally, we perform simulations with the Fly-crane in a far-from ideal scenario;

sensors noise and software in the simulation are considered as well.

Remark 5.1.1. It is worth motivating the choice of the strategy name (controller) with

respect to the planner introduced in Chapter 3: even if in both cases the reference

velocities for the vehicles are generated, in the first scenario a sequence of velocities is

planned from the initial to the final configuration of the system. In this scenario, instead,

for each point of the trajectory to be tracked, a desired velocity is computed, based on

the received measurements, hence no sequence of reference velocities is generated between

two consecutive configurations. For this reason we decided to distinguish the technique

proposed in this chapter by using the term controller.

5.1.1 Overview

In this section we outline the structure of the chapter in order to facilitate the reading.

In Section 5.2 we introduce the class of multi-robot systems that we aim at controlling

to perform trajectory tracking. In particular, we define the kinematic model of the class

(Section 5.2.1), recalling that different types of real systems can be represented by such

model (Section 3.2.2). Then, we introduce and formalize the problem in exam, detailing

our contribution (Section 5.2.2): we design a SIKM controller to perform trajectory

tracking with a multi-robot system under sampled communication. We firstly consider the

case where measurements are continuously available and we show that the combination

of a feed-back and feed-forward term guarantees perfect tracking. We then analyze in

Section 5.3 the sampled scenario, when measurements are available at discrete times.

To this aim, we firstly (Section 5.3.1) recall the solution proposed in Chapter 3 for the

point-stabilization problem: this is helpful to better understand our contribution. Then

(Section 5.3.2) we show that the technique can be exploited also to track a trajectory, even

though no guarantees about stability can be proved. Thus, in Section 5.3.3 we introduce

our solution to design a controller to perform trajectory tracking in the scenario of

sampled communication (SIKM). Until this point the results are of existential type, hence

in Section 5.4 we find explicitly the sets of the controller parameters which guarantee the

system to keep stable during the maneuver and to converge as fast as possible. Finally, in

Section 5.5 we provide the results obtained by simulating our strategy on a far-from-ideal

dynamical system. We show that it gives better performance with respect to the other

techniques introduced before.

5.2 Modeling and Problem Formulation

5.2.1 Kinematics of multi-robot systems

In this section we briefly recall the kinematic model of a multi-robot system composed by

N robots which cooperate to fulfill a task: a more detailed description is given in Section

3.2. The robots do not communicate among themselves but receive information from a

71

5 Cooperative trajectory tracking over sampled communication

central unit, that is called pivot and is indicated with the letter V . Notice that it can

be an object to be manipulated (in this case we assume that the object is linked to the

robots through passive, non extendable connections), a robot to be escorted or an other

object in the space. The kinematic model was introduced in (3.1) and is derived as in

Manubens et al. (2013):

[
p1 . . . pN

]⊤
= h(q) =

[
h(1)(q1,qV) . . . h(N)(qN ,qV)

]⊤

This function maps the Lagrangian coordinates of the system q = [q⊤
1 · · · q⊤

N q⊤
V]⊤ ∈

Rm×1, m > 0 to the vector collecting the robots configurations p =
[
p⊤

1 . . . p⊤
N

]⊤ ∈
Rn×1, n > 0: pi ∈ Rni×1 is the position of the i-th robot in the space, qi ∈ Rmi×1, mi > 0

gathers the angles and/or distances between the pivot V and the i-th robot, and

qV ∈ RmV ×1, mV > 0 represents the pose (position and orientation) of the pivot itself.

The differential kinematics of the system is:

ṗ = Aq q̇,

where the Jacobian Aq = ∂h(q)
∂q

∈ Rn×m has the structure

Aq =




A
(1)
q1 0 A

(1)
qV

. . .
...

0 A
(N)
qN

A
(N)
qV




and A
(i)
qi = ∂hi(q)

∂qi
∈ Rni×mi and A

(i)
qV

= ∂hi(q)
∂qV

∈ Rni×mV .

In this section we will focus on the case n = m, that is on square systems. Anyway, we

obtained interesting results in Section 4.1 about point-stabilization control for non-square

systems, hence we expect that similar extensions can be applied to implement trajectory

tracking.

5.2.2 Problem Formulation and contribution

In this work we formulate a trajectory tracking problem where a square system must

follow a sequence of desired configurations and velocities (qr(t), q̇r(t)), t ≥ 0, assigned

a-priori in the configuration space. The trajectory could be generated by a planner that

takes into account high-level performance metrics such as obstacles avoidance, minimum

energy trajectories and singularity avoidance. We assume that each robot is endowed

with a dynamical controller sufficiently fast with respect to the dynamics of the entire

system, s.t. the velocities of the robots are fully controllable, i.e.:

ṗ(t) = u(t), (5.1)

where u = [u⊤
1 · · ·u⊤

N]⊤ ∈ Rn. We consider two possible architectures to implement the

SIKM controller:

ui(t) = κs
i (qi(t),qV (t);qr

i (t),qr
v(t), q̇r(t)), i = 1, . . .N (5.2)

ui(t) = κc
i (q(t);qr(t), q̇r(t)), i = 1, . . .N (5.3)

72

5.2 Modeling and Problem Formulation

PIVOT

ROBOT

u

GLOBAL PLANNER q
r
,q̇

r

Figure 5.1. Representation of (5.2) (right) and (5.3) (left). The pivot is represented in gray, each
robot (endowed with a dynamical controller) in blue, the measurements from the
sensors in red and the desired trajectory in green. The dynamical controller converts
u into forces for the robot. The wireless symbol refers to sampled communication.

where in (5.2) ui(t) does not depend on qj(t) with j Ó= i, while in (5.3) ui(t) depends on

the whole vector q. We refer to the former architecture as sparse feedback, and to the

latter one as centralized feedback. In Figure 5.1 the two implementations are depicted:

on the left, the centralized SIKM controller is implemented on the pivot and it receives

all the state measurements q; then, the computed input u is sent via wireless to the

robots. Differently, in the sparse implementation, the controller can be located separately

on each robot and the pivot pose is received via wireless. We will show that if q(t) is

continuously accessible to the SIKM controller, then (5.2) is sufficient to make the system

track the desired trajectory, hence the knowledge of the whole vector q is not necessary,

see (5.6). On the other hand, in the more realistic scenario when some of the components

of q(t) need to be sampled and transmitted via wireless, then we can prove that (5.2)

guarantees the stability of the system and asymptotic zero-tracking error (strategy 2 in

the following). Instead for strategy (5.3) we cannot provide similar theoretical results,

but only practical ones (strategy 1).

We have shown in Chapter 3, in Proposition 1, that the control law

u(t) = −kAq(t)(q(t)−qr) := uk(t), k > 0, (5.4)

drives exponentially fast the state q(t) to the desired constant configuration qr. In order

to track a trajectory the feed-forward velocity term

uff (t) = Aq(t)q̇
r(t)

is typically added to the control input uk(t) Sanz (2009). Indeed, by applying the control

law

u(t) = uk(t)+uff (t) (5.5)

the kinematics of system becomes

q̇(t) = −k
(
q(t)−qr(t)

)
+ q̇r(t)

Defining e(t) = q(t)−qr(t) we get

ė(t) = q̇(t)− q̇r(t) = −k
(
q(t)−qr(t)

)
= −k ·e(t)

73

5 Cooperative trajectory tracking over sampled communication

which shows that the error goes exponentially fast to zero if k > 0. Moreover notice that

ui(t) =kA
(i)
qi(t)

(qi(t)−qr
i (t))+kA

(i)
qV (t) (qV (t)−qr

V (t)) (5.6)

+A
(i)
qi(t)

q̇r
i (t)+A

(i)
qV (t)q̇

r
V (t), (5.7)

that is, the control law exhibits the structure in (5.2), hence it is amenable of a sparse

implementation.

To deal with sampled measurements, that is when information about q is available

only every T seconds, being T the sampling time, in Chapter 3 we have proposed the

following sampled version of (5.4)

u(t) = uk(hT) = −kAq(hT)(q(hT)−qr), (5.8)

for t ∈ [hT, (h+1)T) , h = 0,1,2, Under mild assumptions that we review in next

Section, (5.8) is shown to still drive q exponentially fast to qr.

We conclude this section by making the following assumption.

Assumption 5.2.1. The following relations hold:

1. The reference trajectory qr(t) ∈ Q is twice continuously differentiable and Q is a

compact set; moreover speed and accelerations are bounded, i.e. ‖q̇r(t)‖ ≤ vmax and

‖q̈r(t)‖ ≤ amax

2. There exist d > 0 such that, for any qr(t) and q being at distance smaller than d

from the the trajectory to be followed, i.e., ‖qr(t)−q‖ < d for some t, then Aq is

twice continuously differentiable and invertible;

3. ‖q(0)−qr(0)‖ < d.

In the following, we are interested to find a control law that guarantees asymptotic

zero-tracking error.

5.3 SIKM: sampled measurements

In this section we analyze the solutions we propose to deal with the trajectory tracking

problem formulated in the previous section in presence of sampled measurements. The

section is organized as follows. We first review the positioning control law proposed in

Chapter 3. Based on those results we characterize the performance of that strategy in

the more general scenario of trajectory tracking. Then we introduce two strategies to

improve the performance and give stability guarantees. In the remaining of the chapter

we assume that the sampled measurements of q are available every T seconds.

5.3.1 Review of the positioning control law proposed in Chapter 3

It is straightforward to see that the dynamics of the system q̇ = A−1
q u, under the action

of (5.8) becomes

q̇(t) = −kA−1
q(t)Aq(hT)(q(hT)−qr).

74

5.3 SIKM: sampled measurements

In Chapter 3 we have shown that, if q(0) belongs to a ball Br(qr) of a certain radius

r centered on the reference point qr such that the Jacobian Aq is twice continuously

differentiable for any q ∈ Br(qr), then there exist a k∗ such that if k < k∗ then exponential

stability is achieved. More precisely, defining e(t) = q(t)−qr(t), it has been proved that

there exists 0 < ρ < 1 such that e((h + 1)T) < ρe(hT) and e(t) < e(hT) for hT < t ≤
(h+1)T . It is easy to see that, if k is assigned offline then (5.8) can be implemented in a

sparse way.

In Chapter 3 we have shown that the performance of (5.8) can be improved by designing

the gain k online leading to a time-varying sequence kh. In particular the gain kh is

designed bby studying the following auxiliary system

q̇′(τ ;qh) = −A−1
q′(τ ;qh)Aqh

qh =: f(q′(τ);qh) (5.9)

q′(0;qh) = qh; qh ∈ Br(qr),

being qh := q(hT). Since f(q,q) = −q, then ‖q′(0+,qh) − qr‖ < ‖qh − qr‖. Therefore

only two scenarios are possible, either ‖q′(τ ;qh)−qr‖ < ‖qh −qr‖ for all τ > 0, or not.

Let us introduce

τs(qh) :=min
τ

{τ >0 |‖q′(τ ;qh)‖ = ‖qh‖} (5.10)

and, accordingly,

τo(qh) := arginf
0≤τ≤τs(qh)

‖q′(τ ;qh)‖. (5.11)

where τs(qh) = ∞ if ‖q′(τ ;qh)−qr‖ < ‖qh −qr‖,∀τ . Then kh is designed as

kh =
τo(qh)

T
. (5.12)

Interestingly in Chapter 3 we have shown that, adopting the time-varying sequence

k0,k1,k2, . . . , generated as in (5.12), then the convergence rate of the sampled dynamics

is at least quadratic. Moreover the gain kh tends to 1/T as h → ∞.

Notice that the computation of τo(qh) requires the knowledge of the entire vector

q(hT), hence the design of kh must be done online and in a centralized way.

5.3.2 First approach: point-stabilization control

In the previous Section, we have discussed how, given a set Bo of possible configurations

of the system, it is possible to compute an off-line gain k s.t. uk(·) in (5.8), drives the

system to a desired configuration qr ∈ Bo exponentially fast.

Given that performance, the first idea to perform trajectory tracking is to exploit the

same technique by assigning, at a certain frequency, a sequence of points as references

to the system, instead of a single point. Let us sample the reference trajectory every T

seconds, obtaining the sequence of points (qr(hT), q̇r(hT)). Then the applied control

law is

u(t) = uk(hT) = −kAq(hT)(q(hT)−qr(hT)), (5.13)

75

5 Cooperative trajectory tracking over sampled communication

q
r
h

qh
qh+1

q
r
h+1

Figure 5.2. Trajectory tracking by using the point stabilization strategy.

for t ∈ [hT, (h+1)T).

In the next proposition the performance of (5.13) is characterized when k is assigned

off-line.

Proposition 5.3.1. Consider the system described by (3.2) and (5.1), where u is given

by (5.13). There exist r > 0, β > 0, 0 < ρ < 1 and k∗ such that, if q(0) ∈ Br(qr(0)),

‖qr((h+1)T)−qr(hT)‖ < β for all h and 0 < k < k∗, then the tracking error e(hT) :=

q(hT)−qr(hT) is bounded. In particular,

‖e(hT)‖ ≤ β

1−ρ
.

Proof. We want to prove that the tracking error is bounded, hence we give some definitions

and derive the error dynamics when the point-stabilization technique is applied. Observe

Figure 5.2 and note that at time t = hT the system configuration is qh = q(hT) and the

reference point is qr
h; then, at time t = (h+1)T , the system state is qh+1 = q((h+1)T)

and a new reference qr
h+1 is assigned and this strategy is applied every T seconds. Recall

Proposition 3.4.5 of Chapter 3 where we have shown that, given a configuration qh and

a desired one qr, we can find an optimal gain for the control law such that

‖e((h+1)T)‖ ≤ ρ‖e(hT)‖, ‖e(hT)‖ ≤ ρh‖e(0)‖

where ρ ∈ (0,1) was defined in Proposition 5 of Chapter 3: it depends on the how the set

Bo is chosen and sampled. This relation tells us that the error decreases between two

consecutive sampling times and also in each time interval t ∈ (hT,(h + 1)T). Now we

define the quantities

e+
h+1 := qh+1 −qr

h+1, e−
h+1 := qh+1 −qr

h

In practice e−
h+1 represents the distance between the configuration qh+1 and the desired

one qr
h. Then, e+

h+1 represents the error between qh+1 and the next desired configuration

qr
h+1. From the previous definitions and properties, we can write

‖eh+1‖ = ‖e−
h+1‖ ≤ ρ‖eh‖ = ρ‖qh −qr

h‖ = ρ‖e+
h ‖

‖e+
h+1‖ = ‖qh+1 −qr

h +qr
h −qr

h+1‖ ≤ ‖qh+1 −qr
h‖+

+‖qr
h −qr

h+1‖ = ‖e−
h+1‖+‖qr

h −qr
h+1‖ ≤

76

5.3 SIKM: sampled measurements

≤ ρ‖e+
h ‖+β

where β > 0 is the maximum distance between two consecutive reference points. Now we

find an upper bound of the steady-state tracking error: from the last inequality, we can

start from h = 0 and write

‖e+
1 ‖ ≤ ρ‖e+

0 ‖+β

‖e+
2 ‖ ≤ ρ‖e+

1 ‖+β ≤ ρ2‖e+
0 ‖+ρβ +β

‖e+
3 ‖ ≤ ρ‖e+

2 ‖+β ≤ ρ3‖e+
0 ‖+ρ2β +ρβ +β

...

‖e+
h ‖ ≤ ρh‖e+

0 ‖+β
h−1∑

i=0

ρi = ρh‖e+
0 ‖+β

1−ρh

1−ρ

Since ρ < 1, then for h → ∞ we have

‖e+
h ‖ ≤ β

1−ρ

and we conclude that the tracking error is bounded.

As we have just proved, the point-stabilization control gives some guarantees even

when a sequence of different points is assigned as reference, instead of a constant

desired configuration. Nevertheless it is not sufficient to guarantee zero tracking error.

Intuitively, a better bound could be obtained by designing a sequence of time-varying gains

k0,k1,k2, . . . as described in the second part of Section 5.3.1. However this improvement

of the performance would come at the price of an higher computational cost, since kh

needs to be computed via a centralized architecture.

5.3.3 Second approach: feed-forward technique

In the previous Section we have seen that the point-stabilization technique does not allow

to track a varying reference with zero tracking error. Thus, the addition of a feed-forward

velocity term is required as in the continuous-time scenario. A possible choice is to obtain

the control law by sampling the continuous-time one (5.5):

u(hT+τ) =−kAq(hT)(q(hT)−qr(hT))+Aq(hT)q̇
r(hT+τ) (5.14)

where h ∈ N, τ ∈ [0,T) and q̇r(hT + τ) is assumed to be continuously available1. Now we

derive the dynamics of the tracking error e(hT + τ) := q(hT + τ)−qr(hT + τ). In order

to write the control law in terms of the error, note that q = e+qr, hence (5.14) becomes

u(hT + τ) = Ae(hT)+qr(hT)(−ke(hT)+ q̇r(hT + τ)),

1Even qr(hT + τ) is continuously available, but it is convenient to pick it at instants hT in order to
make the error e(hT) appear in the expression.

77

5 Cooperative trajectory tracking over sampled communication

and the evolution of q(·) is

q̇(hT + τ) = A−1
q(hT +τ)u(hT + τ) = A−1

e(hT +τ)+qr(hT +τ)u(hT + τ)

while the evolution of the error ė = q̇ − q̇r becomes

ė(hT + τ) = −kA−1
e(hT +τ)+qr(hT +τ)Ae(hT)+qr(hT)e(hT)+

+
(
A−1

e(hT +τ)+qr(hT +τ)Ae(hT)+qr(hT) − I
)
q̇r(hT + τ)

Proposition 5.3.2. The sampled control strategy of (5.14) does not always guarantee

perfect tracking, i.e.

q(t) := qr(t) ; ė(t) = 0,∀t ≥ 0

Proof. If q(t) := qr(t) for all t ≥ 0, then

ė(hT + τ) =
(
A−1

qr(hT +τ)Aqr(hT) − I
)
q̇r(hT + τ)

which is in general not identically zero for all h ∈ N and τ ∈ [0,T) since Aqr(hT) Ó=
Aqr(hT +τ), unless qr(t) = qr, i.e. it is constant.

The previous result shows that if we simply sample the continuous-time law (5.5)

in order to perform trajectory tracking, then this is not enough to guarantee perfect

tracking.

Starting from this observation, we propose to slightly modify the feed-forward term in

order to guarantee perfect (asymptotic) tracking. As before, we assume that a desired

trajectory qr(·), q̇r(·) is given as reference to the system and we choose a new control

law for the SIKM controller:

u(hT+τ)=−kAq(hT)(q(hT)−qr(hT))+Aqr(hT+τ)q̇
r(hT+τ) (5.15)

Notice that the difference from (5.14) is that the Jacobian of the feed-forward term is

computed on qr(hT + τ) instead of q(hT). According to this choice, the error dynamics

is

ė(hT +τ) = −kA−1
e(hT+τ)+qr(hT+τ)Ae(hT)+qr(hT)e(hT)+

+
(
A−1

e(hT +τ)+qr(hT+τ)Aqr(hT+τ)−I
)
q̇r(hT+τ)

= f(e(hT +τ),qr(hT +τ), q̇r(hT +τ)) (5.16)

This allows to prove the following property of the modified feedforward strategy:

Proposition 5.3.3. Under the sampled control strategy of (5.15) the reference trajectory

qr(t) is an equilibrium trajectory i.e.

q(t) := qr(t) ⇒ ė(t) = 0,∀t ≥ 0

Proof. Under the assumption that q(t) := qr(t) then e(t) = 0 and the error dynamics

78

5.3 SIKM: sampled measurements

flow becomes:

ė(hT +τ) =−kA−1
qr(hT+τ)Aqr(hT) e(hT)︸ ︷︷ ︸

=0

+

+
(
A−1

qr(hT+τ)Aqr(hT+τ)−I
︸ ︷︷ ︸

=0

)
q̇r(hT+τ) = 0,

for all τ ∈ [0,T) and h ∈ N.

The previous proposition states that if q(0) = qr(0), i.e. if we start from a point on

the reference trajectory, then q(t) = qr(t),∀t > 0, i.e. will perfectly track the trajectory.

However, this does not guarantee that if q(0) Ó= qr(0) then limt→∞ q(t)−qr(t) = 0, i.e. if

the proposed strategy guarantees asymptotic tracking, and if so, under what conditions

in terms of the sampling period T and the feedback gain k. To answer these questions

we need to study the evolution of the dynamical systems given in (5.16). The flow

f(·) is not continuous since the feedback term which depends on e(hT) is reset at

every sampling period t = hT , therefore existence of global solution based on standard

Lipschitz continuity cannot be invoked. However, by observing that within the intervals

s.t. τ ∈ [0,T) the flow is Lipschitz continuous from Assumption 5.2.1, then if we can show

that a solution e(hT + τ) exists for any τ ∈ [0,T) and that the limit limτ→T e(hT + τ)

exists and it is finite starting from any e(hT) satisfying Assumption 5.2.1, then the global

existence is guaranteed also globally by patching together these pieces of trajectories.

As so we will study the evolution of the dynamics ė(t) = f(e(t),qr(t), q̇r(t);e(hT)) for

t = hT + τ, τ ∈ [0,T). Note that with a little abuse of notation, we explicitly exposed the

dependence on the “intial” condition e(hT). In order to prove asymptotic stability we

will use the following notion of contraction of the trajectory:

Definition 5.3.1. For a fixed choice of T and k, we say that the flow f(e(t),qr(t), q̇r(t);e(hT))

is ρ-monotonically contractive if, under Assumption 5.2.1, for any ‖e(hT)‖ < d we have

1. ‖e(hT + τ)‖ ≤ ‖e(hT)‖, τ ∈ [0,T)

2. limτ→T ‖e(hT + τ)‖ ≤ ρ‖e(hT)‖, ρ ∈ [0,1)

From this definition it easily follows the following lemma:

Lemma 5.3.1. If the error flow defined in (5.16) is ρ-monotonically contractive and

under Assumptions 5.2.1 then

‖q(t)−qr(t)‖ ≤ ρ
t
T

−1‖q(0)−qr(0)‖, t ≥ 0

The previous lemma guarantees exponential convergence of the system trajectory to

the reference one. The property of ρ-monotonically contractivness is rather strong since

it must hold for any segment of the trajectory of period T , however it allows to prove

asymptoptic convergence.

We now provide two negative results in terms of ρ-monotonically contractivness

Proposition 5.3.4. Under Assumption 5.2.1, there exists k1 > 0 such that if at least

one of following conditions are satisfied:

79

5 Cooperative trajectory tracking over sampled communication

1. k < k1

2. k > 2
T

then the error flow defined in (5.16) is not ρ-monotonically contractive.

Proof. 1) We prove the first statement by showing that the error norm initially increases

for some initial conditions e(hT) and choice of reference trajectory qr(t). Consider the

following Lyapunov function

V (τ) =
1

2
‖e(hT + τ)‖2 (5.17)

and its time derivative in τ = 0:

V̇ (0) = e(hT)⊤ė(hT) =

= e(hT)⊤
(

−ke(hT)+(A−1
e(hT)+qr(hT)Aqr(hT) − I)q̇r(hT)

)
=

= −k‖e(hT)‖2 +e⊤(hT)(A−1
e(hT)+qr(hT)Aqr(hT) − I)q̇r(hT)

)

Let us pick e(hT) Ó= 0 and qr(hT) satisfying Assumption 5.2.1 for which

‖e(hT)⊤(A−1
e(hT)+qr(hT)Aqr(hT) − I)‖ =: a > 0

Such values clearly exists. Let us set

q̇r(hT)⊤ :=
e(hT)⊤(A−1

e(hT)+qr(hT)Aqr(hT) − I)

‖e(hT)⊤(A−1
e(hT)+qr(hT)Aqr(hT) − I)‖

vmax

which clearly satisfies Assumption 5.2.1. Therefore

V̇ (0) = −k‖e(hT)‖2 +avmax

If we define k1 := avmax

‖e(hT)‖2 , then for any k < k1 V̇ (0) > 0, hence there exists 0 < τ̄ < T s.t.

‖e(hT + τ)‖ > ‖e(hT)‖,∀τ ∈ (0, τ̄), therefore it is not ρ-monotonically contractive.

2) In order to prove the second statement we first choose qr(t) = qr, t ≥ 0 which

satisfies Assumption 5.2.1, i.e. the reference trajectory is constant. As so the error

dynamics reduces to

ė(hT +τ) = −kA−1
e(hT+τ)+qr Ae(hT)+qr e(hT) := kg(e(hT + τ))

The error trajectory can also be written in the form

e(hT + τ) = e(hT)+k

∫ hT +τ

hT
g(e(hT + τ ′))dτ ′

By using Taylor’s theorem for multivariate functions with integral form of the remainder,

it becomes

e(hT + τ) = e(hT)+kτ g(e(hT))+

+k2τ2
∫ 1

0
(1−ε)

∂g(e(hT + ǫτ))

∂e
g(e(hT +ετ))dε

80

5.3 SIKM: sampled measurements

= (1−kτ)e(hT)+k2τ2r(e(hT + τ);e(hT)) (5.18)

where r(·) is the second-order reminder where we made explicit the dependence on

e(hT). Under Assumption 5.2.1, the functions g and ∂g
∂e

are continuously differentiable.

Moreover their arguments are defined in a compact set and have the additional properties

that g(e(hT + τ)) = 0, ∂g(hT +τ)
∂e

= 0, ∀τ ∈ [0,T] if e(hT) = 0. As a result, if we apply

Lemma B.2.3 reported in Appendix, there must exist δ > 0 such that

‖r(e(hT + τ);e(hT))‖ ≤ δ‖e(hT)‖2, ∀τ ∈ [0,T),∀e(hT)

we now use the reverse triangle inequality(|‖x‖−‖y‖| ≤ ‖x −y‖ and the previous in-

equality to get:

‖e(hT + τ)‖ = ‖(1−kτ)e(hT)+k2τ2r(e(hT + τ);e(hT))‖
= ‖(1−kτ)e(hT)− (−k2τ2r(e(hT + τ);e(hT)))‖
≥

∣∣∣‖(1−kτ)e(hT)‖−k2τ2‖r(e(hT + τ);e(hT))‖
∣∣∣

≥ max{0 , |1−kτ |−k2τ2δ‖e(hT)‖}‖e(hT)‖

Now if kT > 2 , there exist ǫ > 0 and τ̄ ∈ (0,T) s.t. kτ̄ = 2+ ǫ. Then we can choose e(hT)

s.t. ‖e(hT)‖ = ǫ
2kτ̄2δ

, hence

‖e(hT + τ̄)‖ ≥ (1+ ǫ− ǫ

2
)‖e(hT)‖ ≥ ‖e(hT)‖

implying the system not to be ρ-monotonically contractive.

The previous proposition basically states that there are choices of T and k for which

the dynamics is surely not ρ-monotonically contractive. However, we can prove that

there exist pairs of T and k for which the dynamics is ρ-monotonically contractive.

Proposition 5.3.5. Under Assumption 5.2.1, there exists k2 > 0 such that for any

k > k2 there exists Tc(k) such that for all T < Tc(k) the error flow defined in (5.16) is

ρ-monotonically contractive.

Proof. Let us consider the Lyapunov function defined in (5.17) and its time derivative in

τ = 0

V̇ (0)=−k‖e(hT)‖2+e⊤(hT)(A−1
e(hT)+qr(hT)Aqr(hT)−I)q̇r(hT)

Note that the quantity A−1
e(hT)+qr(hT)Aqr(hT)−I = 0,∀qr(hT) if e(hT) = 0. Moreover

being e(hT) and qr(hT) in a compact set according to Assumption 5.2.1, we must have

‖A−1
e(hT)+qr(hT)Aqr(hT)−I‖ ≤ δ‖e(hT)‖ for some δ > 0, therefore we have:

V̇ (0) ≤−k‖e(hT)‖2+δ‖e(hT)‖2vmax =−(k−δvmax)‖e(hT)‖2

= −2(k−δvmax)V (0)

Let k2 := δvmax, then for each k > k2, there exists ξ ∈ (0,k − δvmax) and Tc(k) s.t.

V (τ) ≤ e−2ξτ V (0), τ ∈ [0,Tc(k))

=⇒ ‖e(hT + τ)‖ ≤ e−ξτ ‖e(hT)‖, τ ∈ [0,Tc(k))

81

5 Cooperative trajectory tracking over sampled communication

Tc(k)

T

k
k2 τs(k)

k T = 2

k1

Tmax

Figure 5.3. Representation of the curve Tc(k) defined in Proposition 5.3.5 and τs(k) that is
obtained using upper bounds on the error norm (see Proposition 5.4.1), hence it
delimits a smaller stability region.

As a consequence for any T < Tc(k) if we define ρ := e−T ξ < 1 then we have

‖e(hT + τ)‖ ≤ ‖e(hT)‖, τ ∈ [0,T)

lim
τ→T

‖e(hT + τ)‖ ≤ ρ‖e(hT)‖

i.e. the systems is ρ-monotonically contractive.

The previous theorem guarantees the existence of a set of pairs T and k s.t. the

system is ρ-monotonically contractive. By combining this theorem with the previous

one, we can already see that limk→∞ Tc(k) = 0 and that there exists Tmax > 0 such that

Tc(k) < Tmax,∀k > k2. In Figure 5.3 these quantities are depicted. From Proposition

5.3.4 we know that the error flow defined in (5.16) is not ρ-monotonically contractive

for values of (k,T) in the red area. Instead, the curve Tc(k) introduced in Proposition

5.3.5 delimits the area where the flow (5.16) is ρ-monotonically contractive. In the next

Section we show how to obtain an estimate of Tc(k). Actually, since our analysis is based

on upper bounds on the tracking error norm, then we provide an under-estimate that is

represented by the green line τs(k).

5.4 Stability and convergence rate bounds

The theorems introduced in the previous Section are of existential type, i.e. do not

provide explicit computation of the set of the pairs k and T for which the system is

ρ-monotonically contractive nor the convergence rate ρ. In this section we want to find

explicit bounds for the “stability” set (green area in Figure 5.3 delimited by τs(k)) and

for the convergence rate, that is the region where the error norm decreases and for which

gains and sampling times it goes fastest to zero.

Remark 5.4.1. When we talk about stability, we actually imply that the flow (5.16) is

ρ-monotonically contractive.

Now we want to obtain an explicit expression for τs(k):

82

5.4 Stability and convergence rate bounds

Proposition 5.4.1. Given the system (5.16), where ‖e(·)‖ is the tracking error and T

the sampling time, it is possible to find an explicit upper bound of the decreasing norm of

the error:

‖e(hT + τ)‖ ≤ z
(
k,τ ;µ,α,γ1,γ2

)
·‖e(hT)‖ (5.19)

for h ∈ N, τ ∈ (0, τs(k)), and

z
(
k,τ ;µ,α,γ1,γ2

)
= |1−kτ |+τα+τ2(k2µ+kγ1 +γ2) (5.20)

where α,µ,γ1,γ2 ≥ 0 are defined in the Proof and can be estimated following the procedure

described in Section 5.4.1.

Proof. Note that the solution of (5.16) can be written as

e(hT + τ) = e(hT)+

∫ hT +τ

hT
f(e(·),qr(·), q̇r(·))

∣∣∣∣∣
hT +τ ′

dτ ′

By using Taylor’s theorem for multivariate functions with integral form of the remainder,

it becomes

e(hT + τ) = e(hT)+ τ f(e(hT),qr(hT), q̇r(hT))+

+ τ2
∫ 1

0
(1−ε)·

[
∂f(e(·),qr(·), q̇r(·))

∂e(·)
f(e(·),qr(·), q̇r(·))+

+
∂f(e(·),qr(·), q̇r(·))

∂qr(·)
q̇r(·)+

+
∂f(e(·),qr(·), q̇r(·))

∂q̇r(·)
q̈r(·)

]

hT +ετ

dε (5.21)

This form of the solution allows to easily find an upper bound of ‖e(hT +τ)‖, τ ∈ (0, τs(k))

by acting on the single terms of (5.21). Hence we can compute a more precise estimate

of the convergence rate, that is how much quickly ‖e(hT + τ)‖, τ ∈ (0, τs(k)) decreases

with respect to ‖e(hT)‖. Moreover, the following computations will be useful to find for

which values of (k,T) the system is stable and the tracking error converges to zero. First,

we observe that

f(e(hT),qr(hT), q̇r(hT)) =

= −ke(hT)+
(
A−1

e(hT)+qr(hT)Aqr(hT) − I
)

q̇r(hT) (5.22)

Notice that, by using Lemma B.2.2 reported in Appendix we can derive an upper bound

for the norm of the second term:

‖
(
A−1

e(hT)+qr(hT)Aqr(hT) − I
)

q̇r(hT)‖ ≤ α‖e(hT)‖

where α := a·vmax. Moreover, from (5.16),

‖f(e(hT + τ),qr(hT + τ), q̇r(hT + τ))‖ ≤
≤ ‖−kA−1

e(hT +τ)+qr(hT +τ)Ae(hT)+qr(hT)e(hT)‖+

83

5 Cooperative trajectory tracking over sampled communication

+‖
(
A−1

e(hT +τ)+qr(hT +τ)Aqr(hT +τ) − I
)
q̇r(hT + τ)‖ (5.23)

Now, observe that both the terms in (5.23) are continuously differentiable functions

on a compact set; in addition, they are equal to zero respectively if e(hT) = 0 and

e(hT + τ) = 0, then we can apply Lemmas B.2.1-B.2.2 reported in Appendix and obtain

‖kA−1
e(hT +τ)+qr(hT +τ)Ae(hT)+qr(hT)e(hT)‖ ≤ k ·b‖e(hT)‖, b > 0 and

‖
(
A−1

e(hT +τ)+qr(hT +τ)Aqr(hT +τ) − I
)
q̇r(hT + τ)‖ ≤ cvmax‖e(hT)‖, c > 0. Notice that we

used Proposition 5.3.5 and point 1) from Definition 5.3.1. Given these observations it is

possible to rewrite (5.23):

‖f(e(·),qr(·), q̇r(·))‖hT +τ ≤ (kb+ cvmax)‖e(hT)‖ (5.24)

In addition, since f(e(·),qr(·), q̇r(·)) is a differentiable function with respect to all

its variables on the compact set Br(e(·)), then we can derive the following properties

based on (5.22) :

∥∥∥∥∥
∂f(e,qr, q̇r)

∂e

∥∥∥∥∥
(hT +τ)

≤ (k d+g vmax)‖e(hT)‖
∥∥∥∥∥

∂f(e,qr, q̇r)

∂qr

∥∥∥∥∥
(hT +τ)

≤ (k l +mvmax)‖e(hT)‖
∥∥∥∥∥

∂f(e, q̇r, q̇r)

∂q̇r

∥∥∥∥∥
(hT +τ)

≤ kn‖e(hT)‖ (5.25)

where d, l,g,m,n > 0.

Given the previous properties, we can easily derive the following upper bound for the

tracking error:

‖e(hT + τ)‖ ≤

≤ (|1−kτ |+ τα)‖e(hT)‖+ τ2
∫ 1

0

[
(1−ε)(kd+gvmax)(k b+ cvmax)‖e(hT)‖2+

+(kl +mvmax)vmax ‖e(hT)‖+knamax ‖e(hT)‖
]
dε

= (|1−kτ |+ τα)‖e(hT)‖+ τ2
∫ 1

0

[
(1−ε)(k2db+kdcvmax +kgbvmax +gcv2

max)‖e(hT)‖2+

+(klvmax +mv2
max)‖e(hT)‖+knamax ‖e(hT)‖

]
dε =

= (|1−kτ |+ τα)‖e(hT)‖+ τ2
∫ 1

0
(1−ε)dε

[
k2db‖e(hT)‖+kdcvmax ‖e(hT)‖+

+kgbvmax ‖e(hT)‖+gcv2
max‖e(hT)‖+klvmax +mv2

max +knamax

]
‖e(hT)‖dε =

= (|1−kτ |+ τα)‖e(hT)‖+

+
1

2
τ2

[
k2db‖e(hT)‖+k

(
vmax(dc‖e(hT)‖+gb‖e(hT)‖+ l)+namax

)
+

+gcv2
max‖e(hT)‖+mv2

max

]
‖e(hT)‖ =

=
[
|1−kτ |+ τα + τ2(k2µ+kγ1 +γ2)

]
‖e(hT)‖

84

5.4 Stability and convergence rate bounds

where

α := avmax

µ := db‖e(hT)‖
γ1 := vmax(dc‖e(hT)‖+gb‖e(hT)‖+ l)+namax

γ2 := (gc‖e(hT)‖+m)v2
max

Finally, we can write that

‖e(hT + τ)‖ ≤ z
(
k,τ ;µ,γ1,γ2

)
‖e(hT)‖ (5.26)

Given the properties obtained in (5.22),(5.24) and (5.25), we derive the overall bound

defined in (5.19):

‖e(hT + τ)‖ ≤
(
|1−kτ |+ατ + τ2(k2µ+kγ1 +γ2)

)
‖e(hT)‖

where, given a > 0 defined in the proof of Proposition 5.3.4,

α := avmax

µ := b‖e(hT)‖
γ1 := (c+gb)vmax‖e(hT)‖+namax

γ2 := g cvmax‖e(hT)‖+mvmax

Notice that we obtained an expression for the convergence rate but the value of the

parameters µ,α,γ1,γ2 is not known yet. Thus, in the next Section we provide a numerical

procedure to find an estimate of those parameters.

5.4.1 Estimate of the parameters µ,α,γ1,γ2

In the previous Section we defined the function z(k,τ ;µ,α,γ1,γ2) that describes the

convergence rate of the tracking error. Now we would like to estimate this rate and

choose the values (k,T) which guarantee the fastest one. To do that we need to know the

value of the parameters θ := (µ,α,γ1,γ2), hence in the following we provide a numerical

procedure to compute them. Proposition 5.4.1 implies that the following set is not empty:

Θ :=
[
θ > 0 |‖e(hT + τ)‖ ≤ z

(
k,τ ;θ

)
‖e(hT)‖,∀qr(·),q(0)

]

where the inequality is to be intended componentwise. Ideally, we would like to pick the

smallest possible values for the entries of the vector θ in order to get the largest possible

set of feasible pairs (k,T) described in the next section. For example, one possible way is

to choose θ as follows

ϑ := argmin
θ∈Θ

‖θ‖

although other (possibly weighed) norms, such as ‖θ‖1 or ‖θ‖∞, could be adopted. Note

that such ϑ exists since qr(·) and q(0) belongs to a compact set, however it cannot

85

5 Cooperative trajectory tracking over sampled communication

numerically be computed since one would have to check it for all pairs (k,T) and points

qr(t) and q(0). We will then propose an approximate strategy to estimate ϑ by sampling

qr(t) and q(0) from their compact set for different values of (k,T) and run simulations to

get a set of samples {(ki,Ti,e
i
h+1,ei

h)}N
i=1, where N is the sample set size. Let us define

the following quantities:

yi := ‖ei
h+1‖,

aT
i = [T 2

i k2
i Ti T 2

i ki T 2
i]‖ei

h‖
bi = |1−kiTi|·‖ei

h‖

then the inequality ‖ei
h+1‖ ≤ z

(
ki,Ti;θ

)
‖ei

h‖ can be rewritten as yi ≤ aT
i θ + bi. Based on

these sampled trajectories we then propose to solve the following quadratic programming

(QP) problem:

θ̂N := argmin
θ

‖θ‖2

s.t. θ ≥ 0,

yi ≤ Aiθ + bi, i = 1, . . . ,N

(5.27)

Unfortunately it is possible that θ̂N /∈ Θ since we are checking the inequality ‖e(hT +

τ)‖ ≤ z
(
k,τ ;θ

)
‖e(hT)‖ only over a finite number of points, however we expect that

limN→∞ θ̂N = ϑ if we sample enough different qr(·) and q(0). A formal proof of this

claim is, however, not trivial. Moreover there might be alternative numerical strategies

to compute better estimates of ϑ or alternative parameter choices in the set Θ. These

problems go beyond the scope of this work, however we will show in the simulation

section as the strategy proposed here is nonetheless effective.

5.4.2 Analysis of the function z
(
k,τ ;µ,γ1,γ2

)

Recall that the function z
(
k,τ ;µ,γ1,γ2

)
in (5.19) describes for which (k,τ) and how fast

the norm of the tracking error decreases starting from the last sampled measurement.

In this Section we analyse the function in order to compute the convergence rate of

the error and to define the stability region (green area in Figure 5.3), that is where

z
(
k,τ ;µ,γ1,γ2

)
< 1. Notice that if we fix k, then there exists a value of τ where the

system reaches the fastest convergence rate and vice-versa. These values will be called

optimal time τo(k) or ko(τ) and they obviously lie in the green area in Figure Figure 5.3.

Notice that (5.20) can be rewritten as2:

z
(
k,τ

)
=

{
z−(k,τ) if kτ < 1

z+(k,τ) if kτ > 1

where

z−(k,τ) = 1+ τ(α −k)+ τ2(k2µ+kγ1 +γ2)

2In the following, we will use the short notation z
(
k,τ

)
:= z

(
k,τ ;µ,γ1,γ2

)

86

5.4 Stability and convergence rate bounds

z+(k,τ) = −1+ τ(α +k)+ τ2(k2µ+kγ1 +γ2)

We want to find the stability set, that is

U := {(k,τ)|z(k,τ ;µ,α,γ1,γ2

)
) < 1}

thast is defined in the following Proposition.

Proposition 5.4.2. The stability set of z
(
k,τ ;µ,γ1,γ2

)
is

U = {α < k < +∞,0 < τ < τs(k)}

where α = kmin was defined in Proposition 5.4.1 and

τs(k) =





τs1(k) α < k < k̄ if µ > 1

τs1(k) α < k < k̄ if µ < 1

τs2(k) k > k̄ if µ < 1

where τs1 := k−α
k2µ+kγ1+γ2

, τs2 :=
−(α+k)+

√
(α+k)2+8(k2µ+kγ1+γ2)

2(k2µ+kγ1+γ2)
, k̄ =

α+γ1+
√

(α+γ1)2+4γ2(1−µ)

2(1−µ) .

The proof is reported in Appendix B.4.1.

Moreover, if we fix k, then we define respectively the time and convergence rate as

functions of k and of the parameters µ,α,γ1,γ2:

τo(k;µ,α,γ1,γ2) := argminτ z(k,τ(k);µ,α,γ1,γ2) (5.28)

ρo(k;µ,α,γ1,γ2) := z(k,τo(k);µ,α,γ1,γ2) (5.29)

where τo is the time when ‖e(hT + τ)‖, 0 ≤ τ ≤ T is closest to the origin, hence it

corresponds to the fastest convergence rate ρo of the error.

Proposition 5.4.3. Let us assume to fix k, then the optimal time τo(k) := τo(k;µ,α,γ1,γ2)

defined in (5.28) can be computed as:

τo(k) =





τo1(k) for α < k < ¯̄k if µ > 1
2

τo1(k) for α < k < ¯̄k if µ < 1
2

1
k

for k > ¯̄k if µ < 1
2

where τo1(k) := k−α
2(k2µ+kγ1+γ2)

and ¯̄k =
α+2γ1+

√
(α+2γ1)2+8γ2(1−2µ)

2(1−2µ) .

The corresponding convergence rate ρo(k) := ρo(k;µ,α,γ1,γ2) is:

ρo(k) =





ρk1(k) if µ > 1
2

ρk1(k) for α < k < ¯̄k if µ < 1
2

ρk2(k) for k > ¯̄k if µ < 1
2

where ρk1(k) := 1− (α−k)2

4(k2µ+kγ1+γ2)
and ρk2(k) := µ+ 1

k
(α +γ1)+ γ2

k2 .

The proof is reported in Appendix B.4.2.

87

5 Cooperative trajectory tracking over sampled communication

The same quantities can be found as functions of τ :

ko(τ ;µ,α,γ1,γ2) := argminkz(k(τ), τ ;µ,α,γ1,γ2) (5.30)

ρo(τ ;µ,α,γ1,γ2) := z(ko(τ), τ ;µ,α,γ1,γ2) (5.31)

Proposition 5.4.4. Let us assume to fix τ , then the optimal ko(τ) := ko(τ ;µ,α,γ1,γ2),

defined in (5.30), can be computed as:

ko(τ) =





1−τγ1

2τµ
for τ < 1

γ1
if µ > 1

2
1−τγ1

2τµ
for τmk

< τ < τMk
if µ < 1

2
1
τ

for 0 < τ < τmk
if µ < 1

2

where τmk
:= 1−2µ

γ1
, τMk

:= 1
γ1

and the corresponding convergence rate ρo(τ) := ρo(τ ;µ,α,γ1,γ2)

is:

ρo(τ) =





ρτ1(τ) for τ < τ−
v2

if µ > 1
2

ρτ1(τ) for τmτ < τ < τMτ if µ < 1
2

ρτ2(τ) for 0 < τ < τmτ if µ < 1
2

where τmτ := min{1−2µ
γ1

, τ−
v2

}, τMτ := max{1−2µ
γ1

, τ−
v2

}, ρτ1(τ) :=
(−γ2

1+4γ2µ)τ2+2(γ1+2αµ)τ+4µ−1
4µ

,

ρτ2(τ) := γ2τ2 +(α +γ1)τ +µ and τ−
v2

=
−(γ1+αµ)+

√
(γ1+αµ)2+(−γ2

1+4γ2µ)

−γ2
1+4γ2µ

.

The proof is reported in Appendix B.4.3.

Figures 5.4a, 5.4b and 5.4c depict the quantities that we defined above: in particular,

τs(k) is defined in Proposition 5.4.2; then τo(k) in Proposition 5.4.3 and τ(ko) was

obtained by deriving τ from the definition of ko(τ) in Proposition 5.4.4). Depending on

the parameter that we fix, we can choose the optimal gain or sampling time in order

to obtain the fastest convergence rate. We chose three examples which correspond to

µ < 1
2 , 1

2 < µ < 1 and µ > 1 in order to represent the three different scenarios of the

definitions given in the previous propositions. Note that τ = 1
k

represents the value where

z−(k,τ) = z+(k,τ). Figure 5.5 instead represents the convergence rate ρo(k) as a function

of k (figure above) and time τ (figure below). Observe that the convergence rate is always

smaller than one, hence

‖e(hT + τ)‖ ≤ ρo‖e(hT)‖ ≤ ‖e(hT)‖, τ ∈ [0,T]

Observe that the instant τCR is the critical time corresponding to the maximum of τs(k)

and it corresponds to the slowest convergence rate.

Remark. Consider (5.19) and suppose that a constant reference is assigned, that is
d(n) qr(t)

dt(n) ≡ 0 for n ≥ 1. Then α = γ1 = γ2 = 0. As a consequence z(k,τ ;µ) is exactly

the function g(τ ;µ)
∣∣∣
τ=kτ

that we found in Chapter 3. In addition, in that case for any

sampling time T > 0 we could find a gain small enough to make the system converge to

the desired configuration. In this scenario, instead, there exists a maximum time τCR > 0

that can be chosen.

88

5.5 Simulation Results

(a) (b) (c)

Figure 5.4. Representation of the quantities τs(k), τo(k), τ(ko) defined in Proposition 5.4.2-5.4.4.

0 10 20 30

k

0

0.5

1

0 0.05 0.1 0.15 0.2

0

0.5

1

Figure 5.5. Representation of the convergence rate as a function of the gain k and the time τ .

5.5 Simulation Results

In this section we compare the different techniques described before to perform trajectory

tracking. Recalling the SIKM controller law u = uk +uff , in the following we refer to

the different strategies used in simulation with the numbers 1)−4) as shown in Tab.5.1.

They differ both in the computation (off-line (kOF F) or on-line (kON)) of the gain in

uk(hT) and in the point where the Jacobian in uff (hT + τ) is evaluated: or on the

last received measurement qhT or on the desired configuration qr
hT +τ . In particular our

analysis started with point-stabilization control (Section 5.3.2) with off-line computation

of the gain and we saw that it does not guarantee zero-tracking error, even though it

is possible to find an upper bound to it. We also noticed in the second part of Section

5.3.1 that a better performance could be intuitively obtained by designing a sequence of

time-varying gains kh (strategy 4). Even if we cannot derive theoretical results in this

uhT +τ = uk(hT)+uff(hT +τ) uk(hT) uff (hT + τ)

1) −kON Aqh
(qh −qr

h) Aqr
hT +τ

q̇r
hT +τ

2) −kOF F Aqh
(qh −qr

h) Aqr
hT +τ

q̇r
hT +τ

3) −kON Aqh
(qh −qr

h) AqhT
q̇r

hT +τ

4) −kON Aqh
(qh −qr

h) 0

Table 5.1. Description of the four strategies used in simulation.

89

5 Cooperative trajectory tracking over sampled communication

GLOBAL PLANNER

SIKM

qr
, q̇r

DYN.CONTR.
f , τ

MoCap

+

IMU

genoM

Estimated State

Matlab

DYN.CONTR.
f , τ

DYN.CONTR.
f , τu1

u2

u3

Figure 5.6. Architecture used to perform simulations:a global planner generates the desired
trajectory qr, q̇r, sends it to the local planner which generates the desired robots
velocities. The blue rectangle on the right represents a realistic environment where
the robotic system is simulated.

case, we show practically in the next plots that a bounded tracking error can be achieved.

In the simulations we also plot the results of the sampled Jacobian technique, introduced

in the first part of Section 5.3.3 (strategy 3), where the gain is computed on-line following

the same reasoning of point-stabilization. Finally, we present our solution to the problem:

in particular, we adopt the second technique of Section 5.3.3. In one case we compute the

optimal gain off-line (strategy 2), following the procedure of Section 5.4 where stability

guarantees were given, then we exploit the same technique but k is computed on-line

(5.12) (strategy 1) to check if this allows to reach a faster convergence with respect to

the off-line computation.

We simulate the four techniques on the Fly-Crane: it consists of three Quadrotor

UAVs connected by six cables to a platform, depicted in Figure 3.1a. The dynamical

model of the system has been developed in Gazebo and the communication part among

the system, the planner and the sensing part was implemented by using a middle-ware

called Pocolibs and the software framework genoM Koenig and Howard (2004). These

tools allow to represent in a very detailed manner the real system that is described in

Sanalitro et al. (2020). The architecture that we used is represented in Figure 5.6: a

global planner is assumed to generate off-line the desired trajectory (qr, q̇r) and this

information is available to the SIKM controller, implemented in Matlab-Simulink. This

generates the desired robots velocities ui which are sent to the robots every T seconds.

Then, the low-level-dynamical controller of each robot converts these velocities into thrust

and torque (f , τ) for the quad-rotors. Then, an unscented Kalman filter, running at 1

[kHz], fuses the Motion Capture (MoCap) System measurements (at 120 [Hz]) with the

IMU measurements (at 1 [kHz]). The estimated system state is then sent to the SIKM

controller.

Of course, when implementing the architecture on a real system, the blue rectangle on

the right in Figure 5.6 is no more simulated but real sensors and robots are exploited.

Moreover, the desired velocities would be sent via wireless.

Next, we show two different results: firstly the four tracking strategies described

above are compared when T = 1.5 [s]. In this first part you will see the benefits of the

feed-forward term with respect to to the point-stabilization technique, which is slower in

tracking the desired trajectory. In the second part we compare the four strategies using

different sampling times and we plot the mean of the tracking error norms obtained in

90

5.5 Simulation Results

1 2 3 4

T = 0.5[s] kon koff = 2 kon kon

T = 0.75[s] kon koff = 1.28 kon kon

T = 1.5[s] kon koff = 0.67 kon kon

T = 4[s] kon × kon ×

Table 5.2. Couples (k,T) of gains and sampling times used to compare the four strategies 1),
2), 3), 4). The norm of the tracking error is depicted in Figure 5.9b.

Figure 5.7. Representation of the stability region, the optimal gain ko and sampling time τo,
obtained by estimating the parameters µ,α,γ1,γ2 along the trajectory depicted in
Figure 5.8 and for different couples (k,T).

the simulations. Notice that, in order to apply strategy 2, we estimated the parameters

[µ,α,γ1,γ2] = [0.02, 0.13, 0.1, 0.2] along the desired trajectory depicted in Figure 5.8 for

different couples of (k,T) as described in Section 5.4.1, obtaining the stability region

depicted in Figure 5.7. Then, for each value of T , we chose the gain k which gave the

maximum convergence rate while keeping the system stable. To do that we only needed

to chose the gain on the curve τ(ko) in the picture which corresponds to the sampling

time T . Table 5.2 indicates which simulations have been performed: in three cases we

could test all the strategies; then, for larger values of T (last row) strategy 2 is no more

feasible because T > τCR, hence stability cannot be guaranteed. Finally for even bigger

T (last row), strategy 4 is no more interesting because the error norm increases too much.

Let us consider now the first result: in Figure 5.8 the variables q(t) are depicted: the

desired trajectory was generated in order to stress all the components of q, except for

the y-translation since the system is symmetric with respect to y = x, hence we forced

only translations along the x-axis. We assume that the sampling time is T = 1.5 [s].

In this picture you can notice that strategy 4 has clearly a delay with respect to the

feed-forward techniques, as emphasized in the zoom plot of the component zL: this is due

to the fact that the desired velocity u is updated only when a new measurement arrives.

As far as the feed-forward techniques are concerned, strategies 1 and 2 gives slightly

better performance with respect to the other two: this can be intuitive by observing the

zoomed plot (zL), where strategy 3 has an overshoot, but is even more evident observing

Figure 5.9a, where the Euclidean norm of the tracking error is depicted. Anyway, this

comparison is related to a single value of T : a more interesting and general result is

depicted in Figure 5.9b where the strategies are compared for different values of the

sampling time, as resumed in Table 5.2. In particular, for each strategy, we computed the

91

5 Cooperative trajectory tracking over sampled communication

Figure 5.8. Comparison of the variables q(t) in three different simulations, where the tracking
strategies 1), 2), 4) described in Tab.5.1 are depicted. The used sampling time is
T = 1.5 [s]. The first two rows represent respectively the position xl,yL,zL and
orientation rL,pL,yL (roll, pitch and yaw) of the load. On the last row the angles
αi := qi, i = 1,2,3 between the cables and the load are depicted.

mean of the tracking error norm of different simulations, characterized by different values

of T . For instance let us call ‖ei
Tj

‖ the norm of vector ei
Tj

that is the tracking error

obtained by applying the i-th strategy (i = 1, . . .4) with T = Tj , j = 1, . . . ,Nj . Now, each

line of the plot is related to one of the four strategies and is obtained by computing the

mean 1
Nj

∑Nj

j=1 ‖ei
Tj

‖. This plot allows to appreciate the benefit of the feed-forward term

in (5.5), indeed strategy 4 is characterized by a very larger tracking error; moreover, it is

evident that strategy 3, besides the fact that it does not give any stability guarantees, it

is slower in achieving zero-tracking error, indeed the Jacobian of the feed-forward term

is sampled, hence updated every T seconds. Finally, strategies 1 and 2 are comparable,

indeed we proved that 1 was faster only in the point-stabilization scenario. Anyway, from

the plot we can see a slight better performance of 1, where the gain is updated on-line,

with respect to strategy 1, especially during the first seconds. Finally, we show in Figure

5.9 the behavior of the system state when increasing the noise variance of the sensor that

collects data for the MoCap system: σ2 is the variance used for the previous simulations,

while σ1 = 3σ2. You can notice that, as expected, the performance become worse when

increasing the noise variance and the oscillations around the reference trajectory become

bigger. This result shows that our strategy can handle uncertain measurements of the

state q while guaranteeing stability of the system.

92

5.5 Simulation Results

0 20 40 60 80

0

0.1

0.2

0.3

0.4

0.5

1

2

3

4

(a) Comparison of the error tracking norm
e(t) = q(t) − qr(t) when using the four
tracking strategies described in Tab.5.1 are
depicted. The used sampling time is T = 1.5
[s]

0 10 20 30 40

0

0.1

0.2

0.3

0.4

0.5

1

2

3

4

(b) Each line in the plot is obtained by com-
puting the mean of the tracking error norm
for the same strategy applied with different
sampling times T .

Figure 5.9. Comparison of the variables q(t) for two different values σ1 = 0.01 and σ2 = 0.003
of noise variance of the sensor that collects measurements fro the MoCap system:
the tracking strategy 2) is exploited with (k,T) = (1.28,0.75). The used sampling
time is T = 0.75 [s]. The first two rows represent respectively the position xl,yL,zL

and orientation φL,θL,ψL (roll, pitch and yaw) of the load. On the last row the
angles αi := qi, i = 1,2,3 between the cables and the load are depicted.

93

6
Conclusions and future works

The global goal of this thesis was to advance in the control and motion planning for

aerial robots interacting with the environment. In particular, we studied different types

of tethered aerial vehicles and derived novel control laws which make the systems perform

demanding tasks in challenging scenarios.

6.1 Summary

In Chapter 2 we consider an unmanned aerial vehicle tethered to the ground through a

cable. For this system we design a real-time control strategy to drive it from an initial to

a final configuration. In particular, our goal is to design a NMPC based solution, able to

handle external disturbances. Indeed, until now, solutions based on purely NMPC are

considered not trustable for real applications, since they are model-based, hence do not

consider a number of non idealities. As a consequence, these solutions are delegated to

research. In this work we wanted to prove that it is possible to improve the controller

performance when a low level controller, working at high frequency, is added into the loop.

Indeed, it is not ensured the NMPC can work at high frequencies (kHz), for example

when the model is particularly complicated and the optimization problem to be solved at

each iteration is computationally demanding. As a consequence, if external disturbances

affect the system at these frequencies, they cannot be handled by the controller. Thus,

we propose a two-layers control strategy where the NMPC is used at a lower rate to

generate feasible reference trajectories for the low level local controller, which runs at a

higher frequency. Thanks to this approach the low-level controller design results to be

simple and the NMPC can handle complex constraints and control objectives. Thus, the

trajectory generated by NMPC adapts on-line to possible disturbances or modeling errors.

A fast implementation of NMPC is used to achieve real time performance in presence

of nonlinear constraints. The effectiveness of the proposed control strategy is proved

by simulations where a challenging maneuver is performed. In particular, the effect of

the wind on the system is analysed, showing that the multi-layer strategy guarantees a

better rejection to un-modeled disturbances with respect to the use of purely NMPC.

In Chapter 3, we defined a class of multi-agent systems whose kinematic model is

characterized by a square and invertible Jacobian matrix. The considered class includes

different types of systems, from ground to aerial one, hence the result we obtain is pretty

general. In particular, we are interested to the case where communication is implemented

via wireless. This subject is usually not considered in robotics, where communication

is assumed to be continuous or is not employed. We face the problem of steering a

multi-agent system to a desired configuration by means of a feedback-based planner that

95

6 Conclusions and future works

exploits the sparse structure of the system and provides the desired vehicles velocities to

be tracked by the system. As we discussed in the Chapter, a decentralized approach is

commonly adopted in robotics for several reasons, like the fact that it guarantees major

robustness and flexibility with respect to a centralized approach. The choice of exploiting

communication is useful in scenarios where the exact position and orientation of an object

of interest (load to be transported, object to be manipulated, robot to be escorted and

so on) cannot be retrieved exactly from the knowledge of the system structure. For these

reasons we design and compare two different strategies to make the system accomplish the

task: the offline strategy converges exponentially fast and exploits a static control gain,

while the second method is even faster, but computationally demanding since the gain

must be computed online. Furthermore, if the second technique can be implemented only

in a centralized fashion, the first one can be fulfilled also in a distributed way. Anyway,

both the techniques do not require any communication among the robots. We validate

the proposed strategies with simulations on the kinematic model of the system; then,

we also report the results obtained on a real system. In detail, instead of assigning a

constant reference configuration, we considered the more realistic scenario where a path

must be followed. The experiment confirmed the theoretical results.

In Chapter 4 we faced a similar problem as in the previous chapter, but we considered

a more general scenario, where the Jacobian matrix of the kinematic model is not square.

This aspect corresponds to have an over-actuated or under-actuated system. In particular,

we focused on the first case: notice that the dimension of the input to the system is

greater than the degrees of freedom, hence one could assign unfeasible inputs which

cannot be handled by the system. To solve this problem, we adapt the architecture

introduced in Chapter 3 where a global planner is assumed to generate off-line the

reference configurations and a local planner generates on-line the robots velocities in

order to make the configuration error converge to zero as fast as possible. We still propose

two strategies to generate the gain of the local planner, with different computational

requirements and performance. These results are proved both for Euclidean and infinite

norm. Anyway, the most interesting contribution is the solution adopted to handle the

case where the reference velocities for the robots are not feasible for the system. In this

scenario, we propose a technique to project these values on a feasible space. We also show,

through a multi-scale time approach, that this choice is consistent with what happens

when applying such unfeasible inputs to a dynamical system. This allows to validate the

theoretical results obtained in the Chapter. A further contribution is the simulation with

the dynamical model of a non-square system under far-from-ideal conditions: we simulate

a wireless network to test our strategies when the packet loss probability is greater than

zero.

In Chapter 5 we propose a Sampled communication-aware Inverse-Kinematics controller

for Multi-robot systems. The goal is to make a multi-robot system track a desired trajec-

tory: in detail, the controller we design is assumed to know the reference configurations

while it receives the measurements from the system at sampled time instants. Based

on this knowledge, it computes the desired robots velocities to complete the task. We

provide two strategies to compute the controller gain. In one case the gain is computed

off-line and we provide stability and convergence guarantees, while in the second case the

gain is updated on-line, allowing a faster convergence rate, but only practical guarantees

96

6.2 Discussion

ONLINE TRAJECTORY GENERATOR

NMPC

LOCAL CONTROLLER

Feedback Linearization

LOCAL PLANNER

Inverse Kinematics

LOCAL CONTROLLER

Inverse Kinematics

OFFLINE PATH GENERATOR

CH. 2

CH. 3-4

CH. 5 OFFLINE TRAJECTORY GENERATOR

Figure 6.1. Presence of a multi-layer structure across the thesis.

can be shown. Moreover, we compare these techniques with the point-stabilization

strategy proposed in Chapter 3: it turns out that it does not guarantee the tracking

error to converge to zero, while the new strategy, where a feed-forward term is added

to the control law, allows to track a reference trajectory with a smaller tracking error.

We validate our results by implementing the strategies to cooperatively manipulate a

cable-suspended load.

6.2 Discussion

Notice that the whole work deals with tethered aerial solutions (even if we showed that

our strategies can be adapted to different types of systems) for which we propose a

two-layer architecture. What we learned is that this choice can be very helpful to deal

with model uncertaintes and external disturbances. This observation comes mainly from

Chapter 2 where we simulated the wind disturbing the system and handled un-modeled

parts of the system. In addition, in Chapters 3-5 we found different solutions to drive

a multi-agent system from a configuration to an other one or to track a trajectory. In

these cases we could exploit the kinematic structure of the system to generate reference

velocities for the agents. We assumed the presence of an off-line path/trajectory generator,

that avoids singular configurations and eventual obstacles in the path. In these chapters,

our strategies allowed to solve the problem of driving the multi-agent system even in

presence of sampled communication, i.e. when the state measurements are available

at sampling instants. The multi-layer architecture allows to intermediate between the

high-level planner and the system, by generating on-line the reference velocities for the

agents by guaranteeing stability and convergence to the desired configuration. In Figure

6.1 we reported a resume of the proposed techniques, highlighting the two levels in each

problem.

97

6 Conclusions and future works

6.3 Future works

As far as the solution proposed in Chapter 2 is concerned, there is space for improvements.

For instance, we considered a simplified 2D model of the system, assuming that it can

move only on a plane. An intuitive extension is to consider the 3D model to both

formulate the NMPC problem and design the low-level controller. In Tognon et al.

(2016a) the authors study this scenario where the 3D model is considered. Anyway, in

that case the optimal trajectory to be tracked by the system is generated off-line. As a

consequence, any disturbance or in general any un-predicted event cannot be handled by

the controlled system. In conclusion, the next step would be a merge between that work

and the one presented in this thesis, where the optimal trajectory is generated on-line and

the 3D model is considered. An other important aspect that would give more relevance to

our work is to test our multi-layer strategy on a real system. An other interesting future

work is the theoretical analysis of the system stability during the maneuver. Dealing

with Chapter 3, the main aspect to develop is the design of the global planner; indeed,

the sequence of points to be reached by the system is generated off-line and we assume

that singular configurations are avoided in this process. The natural development is the

design of the planner, that is the study of a cost function with the related constraints

in order to generate effectively the sequence of configurations. In addition, we could

implement a NMPC based solution in order to generate on-line the points: this approach

is helpful to handle external disturbances by generating a new sequence if the system

state is different from the desired one; moreover, additional parameters as the inter-

sample interval can be taken into account. Further developments of this work are already

included in the following chapter of the thesis, where we study systems characterized

by non-square Jacobian matrix in Chapter 4 and then we focus on trajectory tracking

instead of point-stabilization control in Chapter 5. Notice that a fault-tolerance analysis

would be an interesting development: if for example one cable breaks the system could

not be able to sustain the load anymore: in this case the system would not be square,

but we have seen that there exist rectangular configurations which can transport the

load, see Chapter 4. It would be interesting to analyse for which of these configurations

the system would be still able to perform the task. An other important aspect is collision

avoidance: indeed, during the maneuver a robot may collide against an other robot. This

can be avoided by adding a constraint in the off-line trajectory generator. Anyway, this

could be not enough if the collision happens between two sampling times; in this case

the use of cameras or other sensors could help to avoid collisions.

In Chapter 5 we propose a Sampled communication-aware Inverse-Kinematics controller

for Multi-robot systems. In this case two main aspects could be developed: the trajectory

generation could be implemented by exploiting NMPC based solutions, as we already

explained in the previous lines; then, experiments with a real system would be a natural

step forward1. In this thesis we analysed scenarios where communication was simplified

as a sampled transmission. In particular we provided theoretical analysis only in this

case. Of course a more realistic communication would be an interesting aspect to be

1Actually, the experiments were scheduled, but then canceled because of the restrictions related to
COVID-19

98

6.3 Future works

considered, taking into consideration possible delays, packet losses and synchronization.

Actually, in Chapter 4 and A we provided the results obtained by simulating a non-square

system in a realistic scenario, exploiting a tool called Truetime: it allowed to simulate a

real wireless network, with all the related characteristics mentioned above. Of course, it

would be interesting, as future work, to provide theoretical analysis of this more complete

scenario.

Related to this aspect, an other aspect could be taken into consideration: event-

triggered and self-triggered control systems Heemels, Johansson, and Tabuada (2012).

They consist of two elements: a feedback controller computing the control input and a

triggering mechanism determining when the control input has to be updated again. In

the first case a triggering condition is based on current measurements and is continuously

monitored: when it is violated, an event is triggered. In the latter, the next update time

is pre-computed at a control update time and is based on predictions using previously

received data and knowledge on the dynamical model of the plant. We could apply

these strategies for instance to avoid periodic communication and choosing to exchange

information only under certain conditions.

99

A
Supplementary material

A.1 Additional simulation with a non-square system

Figure A.1. Example of a rectangular multi-agent system where four aerial robots transport a
payload.

In this section we show the behavior of the system depicted in Figure A.1 when the

strategies introduced in Chapter 4 are exploited. Notice that it is a non-square system,

hence the Jacobian matrix of the kinematic model is rectangular, indeed it has n = 3N

rows, with N = 4 the number of robots, and m = 10 columns (which correspond to four

angles of the cables and the six degrees of freedom of the payload). In order to simulate

the system in a far-from ideal environment, we exploit a Matlab/Simulink-based toolbox

called Truetime. We already detailed its characteristics in Section 4.6.1.

In this simulation we consider the packet loss probability equal to 20%. Figures

A.2 and A.3 represent the behavior of the Lagrangian variables q starting from an

initial configuration q0 = [80◦ 80◦ 80◦ 80◦ 0[m] 0[m] 0[m] 0◦ 0◦ 0◦]⊤ to the final one

qr = [60◦ 60◦ 60◦ 60◦ 0[m] 0[m] 0[m] 0◦ 0◦ 0◦]⊤. In the on-line scenario the load measures

the whole vector q, then it computes the desired velocities u and sends them to the robots

every 1.5[s] (see last plot of Figure A.4). If they receive the message, then they try to

101

A Supplementary material

0 10 20 30
60

70

80

[d
e

g
]

0 10 20 30
60

70

80

0 10 20 30

t [s]

60

70

80

0 10 20 30

t [s]

60

70

80

[d
e

g
]

Figure A.2. Behavior of the variables qi = αi which are the angles between the cables and the
load. The off-line and on-line strategies are compared when the wireless packet
loss probability is set to 20% and the transmission period to T = 1.5[s].

track the desired velocity, otherwise the desired velocity is set to zero until next message

arrives. Moreover a faster periodic task establishes if a message was lost by checking

every 0.2[s] how much time has passed since the last message (see plots R1,R2,R3,R4

in Figure A.4). In the off-line case, the load pose is sent every 1.5[s] (see last plot of

Figure A.5) and the reference velocities u to be tracked are computed by the robots. If a

packet loss occurs, then the latest value of u is kept as reference. This is possible thanks

to the smaller value of the planner gain, whereas the on-line strategy aims at a faster

convergence rate, by exploiting a bigger value of the gain: as a consequence it would be

not safe to keep the last reference velocity constant until the new reference arrives (see

the comparison between the gains in Figure A.6).

102

A.1 Additional simulation with a non-square system

Figure A.3. Behavior of the load position and orientation qV : x,y,z are the coordinates on
the three axes and φ,θ,σ the Euler angles. The off-line and on-line strategies
are compared when the wireless packet loss probability is set to 20% and the
transmission period to T = 1.5[s].

Figure A.4. On-line scenario: close-up of schedules showing the allocation of common resources:
robots (top) and platform node (bottom). A high signal means sending or executing
and a low signal means idle. The platform sends the reference velocity vector u to
the robots every T = 1.5[s]. Every 0.2[s] each robot checks if a packet loss occurred
(that is if last message arrived more than 1.5[s] before). In this case the desired
velocity is set to zero until next packet arrives.

103

A Supplementary material

0 5 10 15
1

1.5

2

0 5 10 15 20 25 30 35 40
1

1.5

2

0 5 10 15 20 25 30 35 40
1

1.5

2

0 5 10 15 20 25 30 35 40
1

1.5

2

0 5 10 15

t [s]

1

1.5

2

L

Figure A.5. Off-line scenario: close-up of schedules showing the allocation of common resources:
robots (top) and platform node (bottom). A high signal means sending or executing
and a low signal means idle. The platform sends its pose to the robots every
T = 1.5[s]. The robots receive the packets unless a loss occurred. When a packet
arrives, then u is computed.

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

k

Figure A.6. Comparison between the off-line and on-line gains: note that the faster convergence
rate achieved by the on-line strategy is possible thanks to a bigger value of the
gain.

104

B
Appendix

B.1 Derivation of the Fly-crane model

B.1.1 Kinematic model

In this section the system, reported in Fig.B.1, is introduced and described. We refer to

it as Fly-crane and it consists of a load (referred as V in the following), that is a flat

platform, that can move in the 3D space thanks to three flying robots which carry it.

Each robot is linked, through two cables, to two points of the platform. In Fig.B.2, we

represent the reference frames which are define to derive the robots and load positions

in the world reference frame. Some assumptions are taken with respect to the system

variables:

• The cables are tight, hence their length is fixed, equal to li

• The dimensions of the load are given

• the cables are considered mass-less

• We assume that the robots center of mass corresponds to the point where the cable

is attached

Figure B.1. Representation of the fly-crane.

105

B Appendix

αi

yV

yVi

yO
xO

zO xV

xVi

σi

zV

x

zCi

Ai

OV

O

O

yRi
xRi

zRi

Figure B.2. Definition of the reference frames.

Let FO = {O,xO,yO,zO} be the fixed reference frame and FV = {OV ,xV ,yV ,zV } the

moving one, centered on the Center of Mass (CoM) of the load. From FV , it is immediate

to define the reference frames FVi
= {OV ,xVi

,yVi
,zVi

}, i = 1,2,3 which are centered on

OV and rotated about the axis zV of σi: each yVi
points to the corresponding OCi

, which

divides each load edge in two equal parts. Each robot can rotate about the edge to

which it is attached: to this aim we define the reference frames FCi
= {OCi

,xCi
,yCi

,zCi
},

i = 1,2,3. Thus, the position of the i-th robot is described by a rotation about xCi
of αi

with respect to FOCi
. Moreover, we call β the constant angle between each cable and the

axis xi.

In the following, we define the unitary vectors e1,e2,e3 ∈ R3 and we use the notation

pK
H to indicate the position of a point H with respect to a reference frame FK =

{OK ,xK ,yK ,zK}. When the reference frame is not indicated, then we mean that it is

the fixed reference frame FO. Moreover, we define lCi
the distance between OCi

and OV .

Thus we can derive the expressions for the following position vectors

• p
Ci

Ai
= li sin(β)e3 is the position of the point Ai with respect to FCi

;

• p
Vi

Ci
= lCi

e2 is the position of the point OCi
with respect to FVi

;

• pO
V is the position of the load CoM with respect to FO.

The generalized coordinates of the system are chosen as q =
[
qα

T ; qT
V

]
∈ R9 where

qα = [α1 α2 α3]⊤ ∈ R3 and qV = [xV yV zV φV θV ψV]⊤ ∈ R6, which are the position and

orientation (expressed with Euler angles roll, pitch and yaw) of the load. The rotation

matrix that allows to transform vectors from FV to FO and vice-versa is

RO
V = Rz(φV)Ry(θV)Rx(ψV) (B.1)

Other useful rotation matrices are described in the following:

• RV
Vi

, i = 1,2,3 represents the orientation of FVi
with respect to FV , obtained by

rotating FV about zV of σi;

106

B.1 Derivation of the Fly-crane model

• RVi

Ci
represents the orientation of FCi

with respect to FVi
, obtained by rotating FVi

about xVi
of −(π

2 −αi) (the minus is due to the clock-wise rotation and π
2 appears

because the rotation angle is actually the complementary angle of αi);

• RO
Ci

= RO
V RV

Vi
RVi

Ci
is the rotation matrix from FCi

to FO.

At this point, the position of the i-th robot with respect to FO is:

pO
Ai

= pO
V +RO

V RV
Vi

(pVi

Ci
+RVi

Ci
p

Ci

Ai
);

Hence

p =




pO
A1

pO
A2

pO
A3


 = h(q) =




h(1)(α1,qV)

h(2)(α2,qV)

h(3)(α3,qV)


 (B.2)

where p = [p⊤
A1

p⊤
A2

p⊤
A3

]⊤ ∈ R9×1 with pAi
∈ R3×1, q = [α1 α2 α3 q⊤

V]⊤ ∈ R9×1, with

αi ∈ R and qV ∈ R6×1.

The differential kinematics of the system is:

ṗ =
∂h(q)

∂q
q̇ = Aq q̇,

where Aq is the Jacobian matrix.

B.1.2 Dynamical model

In this section we show how to derive the dynamical model of the Fly-crane. We adopt

the Lagrangian-Euler method, hence we need to compute the kinetic K and potential U

energies of the system. Recall that we assume mass-less cables and that they are linked

to the robots with a passive joint at their CoM. In the following we use the subscript Ri

to refer to the robots reference frames and positions, hence ORi
:= OAi

and pRi
= pAi

.

The kinetic energy of the load is

KV =
1

2
mV p⊤

V pV +
1

2
ωωω⊤

V IV ωωωV

where IV ∈ R3×3 is the positive definite inertia matrix of the load, expressed in FV and

relative to OV , mV is the load mass and ωωωV = [φ̇V θ̇V ψ̇V]⊤ ∈ R3 the angular velocity of

FV with respect to FO, expressed in FV .

The potential energy of the load is

UV = mV g e⊤
3 pV

where g is the gravitational constant.

The reference frame centered on robot i is defined as FRi
= {ORi

,xRi
,yRi

,zRi
}. The

orientation of the robot in the fixed reference frame is expressed by the roll, pitch and

yaw angles qRi
= [φRi

,θRi
,ψRi

]⊤. Thus RO
Ri

= Rz(φRi
)Ry(θRi

)Rx(ψRi
) represents the

rotation from FRi
to FO.

107

B Appendix

Thus, the kinetic energy of the robots is

KRi
=

1

2
mR ṗ⊤

Ri
ṗRi

+
1

2
ωωω⊤

Ri
IR ωωωRi

, i = 1,2,3

where IR ∈ R3×3 is the positive definite inertia matrix of each robot, expressed in FRi

and relative to ORi
, while mR is the mass and ωωωRi

= [φ̇Ri
θ̇Ri

ψ̇Ri
]⊤ ∈ R3 is the angular

velocity of FRi
with respect to FO, expressed in FRi

.

The potential energy of each robot is

URi
= mR g e⊤

3 pRi
, i = 1,2,3

The total kinetic energy of the system is then

K(q, q̇) = KV +KR1 +KR2 +KR3

and the potential one

U(q) = UV +UR1 +UR2 +UR3

Now, let us compute the generalized forces and torques. The motion of a quad-rotor is

controlled by the coordinated action of four control inputs: fRi
∈ R is the intensity of the

total thrust applied in ORi
such that fRi

= fRi
zRi

, which generates translational motion,

and τττRi
= [τxRi

τyRi
τzRi

]⊤ ∈ R3 is the total moment applied to FRi
and expressed in FRi

,

which generates rotational motion. Thus we can compute the vector of generalized forces

QRi,f (fRi
,q) = f⊤

Ri

dpRi

dq
and torques QRi,τ (τττRi

,q) = τττ⊤
Ri

dqRi

dq
Then, the total vector of

generalized forces and torques is given by

Q(f ,q) =
3∑

i=1

QRi,f (fRi
,q)+QRi,τ (τττRi

,q)

At this point we compute the Lagrangian function

L(q, q̇) = K(q, q̇)−U(q)

and then the corresponding Lagrangian equation

d

dt

∂ L

∂ q̇
− ∂ L

∂q
= Q

The resulting equations of motion can be then written in the form:

M(q)+C(q, q̇)q̇ +g(q) = Q

where C(q, q̇)q̇ contains the centrifugal and Coriolis terms, while g(q) contains the

gravitational terms, and Q the generalized forces.

Notice that the same reasoning can be used when more then three robots transport the

load, like in Chapter 4 where we considered four robots. In addition, if external forces

fi ∈ R3 are applied at the end of the cables instead of using aerial robots, then the model

simplifies and the terms QRi,τ (τττRi
,q) disappear, while fi take the place of the thrust

forces fRi
.

108

B.2 Useful properties of continuously differentiable functions

B.2 Useful properties of continuously differentiable functions

In this section we derive some useful Lemmas related to continuously differentiable

functions for which we found upper bounds on the norms.

Lemma B.2.1. Given x ∈ X , where X ⊂ Rn is a compact set and given a continuously

differentiable function f(x) : Rn → Rm s.t. f(0) = 0, then there exists α > 0 s.t.:

‖f(x)‖ ≤ α‖x‖ ∀x ∈ X

Lemma B.2.2. Given x ∈ X and y ∈ Y, where X ⊂ Rn, Y ⊂ Rp are compact sets

and given a function that is continuously differentiable on the second argument f(x,y) :

Rn ×Rp → Rm s.t. f(x,0) = 0∀x ∈ X , then there exists α > 0 s.t.:

‖f(x,y)‖ ≤ α‖y‖ ∀(x,y) ∈ X ×Y

Lemma B.2.3. Given x ∈ X , where X ⊂ Rn is a compact set and given two continuously

differentiable functions f(x) : Rn → Rm, g(x) : Rn → Rm s.t. f(0) = g(0) = 0, then there

exists α > 0 s.t.:

‖f(x)·g(x)‖ ≤ α‖x‖2 ∀x ∈ X

109

B Appendix

B.3 Proof of Theorem 4.4.1

The proof of Theorem 4.4.1 follows from a direct application of Theorem 11.4 of Khalil

(2002). In particular we show that the model in (4.12) satisfies the Theorem hypotheses.

In order to do that we firstly rewrite the dynamics of the system in state-space form;

to do that let us define the state variables
[
x

z

]
:=

[
q

q̇

]

As a consequence, (4.12) when (3.8) is applied can be rewritten in state-space form as





ẋ = z

εż = −Mx
−1Ax

⊤Axz

−kMx
−1Ax

⊤Ax(x −xr)−εMx
−1Cx,z z

(B.3)

where xr := qr. System in (B.3) can be analyzed in a multitime-scale scenario Khalil

(2002), where the dynamical system is characterized by slow and fast transients as far as

the response to external stimuli is concerned. In particular, (B.3) can be written as

{
ẋ = f(z)

εż = g(x,z,ε)

that is, in the form introduced in Theorem 11.4 of Khalil (2002), except for the fact that

some dependences do not appear (the function f for example depends only on z and does

not depend on (t,x,z)). To make the proof as self-contained as possible, we next state

Theorem 11.4. Then, we will show that the hypotheses of this Theorem are satisfied by

system in (B.3).

Theorem B.3.1. Consider the singularity perturbed system

ẋ = f(t,x,z,ε) (B.4)

εż = g(t,x,z,ε) (B.5)

Assume that the following assumptions are satisfied for all

(t,x,z,ε) ∈ [0,∞) × Br × [0,ε0]

1. f(t,0,0,ε) = 0 and g(t,0,0,ε) = 0.

2. The equation

0 = g(t,x,z,0)

has an isolated root z = h(t,x) such that h(t,0) = 0.

3. The functions f,g,h and their partial derivatives up to the second order are bounded

for y = z −h(t,x) ∈ Bρ.

110

B.3 Proof of Theorem 4.4.1

4. The origin of the reduced system

ẋ = f(t,x,h(t,x),0)

is exponentially stable.

5. The origin of the boundary-layer system

dy

dτ
= g(t,x,y +h(t,x),0)

is exponentially stable, uniformly in (t,x).

Then, there exists ε∗ > 0 such that for all ε < ε∗, the origin of (B.4)-(B.5) is exponentially

stable.

Now we show that all the assumptions of the previous Theorem are satisfied for the

system of interest. As far as the function g is concerned, we apply a change of coordinates

defining

ex := x−xr

Hence

g(ex,z,ε) = Mex

−1[−(A⊤
ex

Aex
)z−k(Aex

⊤Aex
)ex −εCex,z z]

where Aex
, Mex

, Cex,z are compact notations for Aex+xr , Mex+xr , Cex+xr,z and de-

scribe the dependence of these matrices on ex; we will see that our reasoning holds

independently of this notation.

Assumption 1: In our scenario it is easy to verify that f(0) = 0 and g(0,0,ε) = 0.

Assumption 2: In our scenario we have the equation 0 = g(ex,z,0) = −Mex

−1[(A⊤
ex

Aex
)z+

k(Aex

⊤Aex
)ex]. Since Aex

⊤Aex
and Mex

are strictly p.d. matrices by assumption, then

the equation is equivalent to z + kex = 0 ⇔ z = −kex = h(ex) that is an isolated root.

Moreover note that h(0) = 0.

Assumption 3: This condition is guaranteed as soon as q(t) belongs to B∗(qr).

Assumption 4: In our scenario the reduced system is

ėx = f(h(ex)) = −kex

that is exponentially stable since k > 0.

Assumption 5: In our scenario the boundary-layer system is

dy

dτ
= g(ex,y+h(ex),0)

where

111

B Appendix

g(ex,y+h(ex),0) = g(ex,y−kex,0)

= −Mex

−1(A⊤
ex

Aex
)[(y−kex)+kex]

= −Mex

−1(A⊤
ex

Aex
)y

From now on, to keep the notation lighter, we omit the subscripts of the matrices M and

A. Note that M is positive definite, hence M− 1

2 = (M− 1

2)⊤ and

M−1A⊤A = M− 1

2 M− 1

2 A⊤A = M− 1

2 (M− 1

2 A⊤AM− 1

2)M
1

2

= M− 1

2 (AM− 1

2)⊤(AM− 1

2)M
1

2

Thus M−1A⊤A is similar to (AM− 1
2)⊤(AM− 1

2) and, in turn, they have the same eigen-

values. Since (AM− 1
2)⊤(AM− 1

2) is definite positive, then the eigenvalues of M−1A⊤A

are positive real numbers thus implying that the matrix −Mex

−1(A⊤
ex

Aex
) is Hurwitz

. It follows that the boundary-layer system is exponentially stable. Since B∗(qr) is

compact, the exponential stability property is uniform in ex.

The fact that the assumptions of Theorem B.3.1 are satisfied implies the existence of a

Lyapunov function V (ex) for the reduced system and a Lyapunov function W (ex,z) for

the boundary system. Consider the function

ν(ex,z) = V (ex)+W (ex,z).

Then, exploiting the properties of f and g, and following the lines of proof of Theorem

11.4 of Khalil (2002), we can conclude that there exists ǭ > 0 and a neighborhood of qr,

B̄(qr) ⊆ B∗(qr), such that for any 0 < ǫ < ǭ and q(0) ∈ B̄(qr) we have that q(t) ∈ B∗(qr)

for all t > 0 and ν̇ < 0 for all t > 0. This concludes the proof.

112

B.4 Proofs of Propositions Chapter 5

B.4 Proofs of Propositions Chapter 5

This section contains the derivation and analysis of quantities related to the stability and

rate of convergence of the class of systems introduced in Chapter 5. In particular, we

report the proof of Propositions 5.4.2-5.4.4. Before each proof, we recall the statement of

the corresponding proposition, to facilitate the reading.

B.4.1 Proof of Proposition 5.4.2

Proposition. The stability set of z
(
k,τ ;µ,γ1,γ2

)
is

U = {α < k < +∞,0 < τ < τs(k)}

where α = kmin was defined in Proposition 5.4.1 and

τs(k) =





τs1(k) α < k < k̄ if µ > 1

τs1(k) α < k < k̄ if µ < 1

τs2(k) k > k̄ if µ < 1

where τs1 := k−α
k2µ+kγ1+γ2

, τs2 :=
−(α+k)+

√
(α+k)2+8(k2µ+kγ1+γ2)

2(k2µ+kγ1+γ2)
, k̄ =

α+γ1+
√

(α+γ1)2+4γ2(1−µ)

2(1−µ) .

Proof. In the following, we will indicate z
(
k,τ

)
= z

(
k,τ ;µ,γ1,γ2

)
for convenience.

Recall that the stability time τs(k) is s.t. z(k,τ) < 1 for k > α,0 < τ < τs(k). Hence the

goal now is to find an expression for τs(k) by studying the inequality

z(k,τ) < 1

From the definition of the function z(k,τ), we can distinguish three cases: kτ < 1, kτ = 1,

kτ > 1.

1. kτ < 1 : In this case

z(k,τ) = z−(k,τ) = 1+ τ(α −k)+ τ2(k2µ+kγ1 +γ2)

We are interested to understand when z−(k,τ) < 1, that is to find the maximum τ

for which ‖e(hT + τ)‖ < ‖e(hT)‖.

τ

z
−

τv

1

τ
−

s

Figure B.3. Representation of z(k,τ) in the case kτ < 1 and k > α.

z−(k,τ) < 1

113

B Appendix

⇔ 1+ τ(α −k)+ τ2(k2µ+kγ1 +γ2) < 1

⇔ p−
s (k) := τ(α −k)+ τ2(k2µ+kγ1 +γ2) < 0

p−
s (k) represents an upward parabola with solutions

τ−
s1

= 0, τ−
s2

=
k −α

k2µ+kγ1 +γ2

Hence p−
s (k) < 0 if 0 < τ < τ−

s2
; as a consequence z−(k,τ) < 1 if 0 < τ < τ−

s2
.

Let us define

τ−
s := τ−

s2

Now let us check when τ−
s < 1

k
, that is

k −α

k2µ+kγ1 +γ2
<

1

k

⇔ p−
s2

(k) := k2(1−µ)−k(α +γ1)−γ2 < 0

The solutions are

k−
s1,2

=
α +γ1 ±

√
(α +γ1)2 +4γ2(1−µ)

2(1−µ)

k

kv

k

kv

−γ2

µ > 1 µ < 1

k̄−γ2

Figure B.4. Representation of p−
s2

(k).

• if µ < 1, then p−
s2

(k) is an upward parabola such that the solutions and the

vertex kv satisfy

∑
sol =

α +γ1

1−µ
> 0,

∏
sol =

−γ2

1−µ
< 0

kv =
α +γ1

2(1−µ)
> 0

Hence, if µ < 1, then τ−
s < 1

k
for α < k < k̄, where

k̄ = max{k−
s1

,k−
s2

} =




α+γ1+
√

(α+γ1)2+4γ2(1−µ)

2(1−µ) if µ < 1

α+γ1−
√

(α+γ1)2+4γ2(1−µ)

2(1−µ) if µ > 1
(B.6)

In this case µ < 1, hence k̄ =
α+γ1+

√
(α+γ1)2+4γ2(1−µ)

2(1−µ) .

114

B.4 Proofs of Propositions Chapter 5

• if µ > 1, then p−
s2

(k) is a downward parabola such that

∑
sol < 0,

∏
sol > 0

kv < 0

Hence, if µ > 1, then τ−
s < 1

k
∀ k > α.

In conclusion,
z−(k,τ) < 1 if 0 < τ < τ−

s

τ−
s <

1

k
if

{
α < k < k̄ if µ < 1

k > α if µ > 1

2. kτ = 1 : In this case

z

(
k,

1

k

)
= µ+

1

k
(α +γ1)+

γ2

k2

For which values of k is z
(
k, 1

k

)
< 1?

µ+
1

k
(α +γ1)+

γ2

k2
< 1

p=
s (k) := k2(µ−1)+k(α +γ1)+γ2 < 0 (B.7)

k

kvγ2

k
kv

γ2

µ > 1 µ < 1

k̄

Figure B.5. Representation of p=
s .

• µ < 1: p=
s is a concave downward parabola. In k = 0 the parabola intersects

the y-axis in γ2 > 0. Now the vertex of the parabola is in k=
v > 0, the sum of

the solutions is
∑

sol > 0 and product
∏

sol < 0. Finally, z
(
k, 1

k

)
< 1 where

p=
s (k) < 0, that is for k > k̄, where k̄ := max{k=

s1
,k=

s2
} has the same value that

we have found in (B.6).

• µ > 1: p=
s is a concave upward parabola. In k = 0 the parabola intersects the

y-axis in γ2 > 0. The vertex of the parabola is in

k=
v =

α +γ1

2(1−µ)
< 0

The sum and product of the solutions are

∑
sol =

α +γ1

1−µ
< 0,

∏
sol =

γ2

µ−1
> 0

hence the solutions are both negative and p=
s (k) is always positive, so z

(
k, 1

k

)
>

115

B Appendix

1 ∀k > α if µ > 1.

In conclusion:

z(k,1/k) < 1 for

{
∄ k > α if µ > 1

k > k̄ if µ < 1

3. kτ > 1 : In this case

z
(
k,τ

)
= z+

(
k,τ

)
= −1+ τ(α +k)+ τ2(k2γ1 +kγ2 +γ3)

This is an upward parabola with vertex

τ+
v = − k +α

2(k2γ1 +kγ2 +γ3)
< 0

Notice that z+(k,0) = −1 < 0 and

∑
sol = − α +k

k2µ+kγ1 +γ2
< 0

∏
sol = − 1

k2µ+kγ1 +γ2
< 0

For which values of k is z+(k,τ) < 1?

τ

z

τv

-1

1

τ
+
s

Figure B.6. Representation of z(k,τ) in the case kτ > 1.

z+(k,τ) < 1

⇔ −1+ τ(α +k)+ τ2(k2µ+kγ1 +γ2) < 1

⇔ p+
s (k) := τ2(k2µ+kγ1 +γ2)+ τ(α +k)−2 < 0

p+
s (k) represents an upward parabola with solutions s.t.

∑
sol = − α +k

k2µ+kγ1 +γ2
< 0

∏
sol = − 2

k2µ+kγ1 +γ2
< 0

τ+
s1

=
−(α +k)−

√
(α +k)2 +8(k2µ+kγ1 +γ2)

2(k2µ+kγ1 +γ2)

τ+
s2

=
−(α +k)+

√
(α +k)2 +8(k2µ+kγ1 +γ2)

2(k2µ+kγ1 +γ2)

116

B.4 Proofs of Propositions Chapter 5

We define

τ+
s := max{τ+

s1,2
} = τ+

s2

and z+(k,τ) < 1 for 0 < τ < τ+
s . Notice that in this case we have to check for which

k it holds τ+
s > 1

k
since we are analyzing the case kτ > 1:

τ+
s >

1

k
−(α +k)+

√
(α +k)2 +8(k2µ+kγ1 +γ2)

2(k2µ+kγ1 +γ2)
>

1

k

−k(α +k)+k
√

(α +k)2 +8(k2µ+kγ1 +γ2) >

> 2(k2µ+kγ1 +γ2)

k2((α +k)2 +8(k2µ+kγ1 +γ2)) > k2(α +k)2+

+4(k2µ+kγ1 +γ2)2 +4k(α +k)(k2µ+kγ1 +γ2)

8k2(k2µ+kγ1 +γ2) > 4(k2µ+kγ1 +γ2)2+

+4k(α +k)(k2µ+kγ1 +γ2)

2k2 > (k2µ+kγ1 +γ2)+k(α +k)

k2(1−µ)−k(α +γ1)−γ2 > 0

pτ+
s

(k) := k2(µ−1)+k(α +γ1)+γ2 < 0

The solutions are

kk

kv

γ2

µ > 1 µ < 1

k̄

kv
γ2

Figure B.7. Representation of p
τ+

s
(k).

k± =
α +γ1 ±

√
(α +γ1)2 +4γ2(1−µ)

2(1−µ)

• µ > 1: pτ+
s

(k) is an upward parabola s.t. for k = 0 it intersects the y-axis in

γ2 and

∑
sol = −α +γ1

µ−1
< 0,

∏
sol =

γ2

µ−1
< 0

As a consequence, this parabola is never negative for k > 0, hence τ+
s < 1

k
∀k > 0.

• µ < 1: pτ+
s

(k) is a downward parabola and

∑
sol > 0,

∏
sol > 0

As a consequence, it is negative for k > k̄, hence τ+
s > 1

k
for k > k̄ = max{k±},

that is the same value found in (B.6).

117

B Appendix

In conclusion,
z+(k,τ) < 1 if 0 < τ < τ+

s

τ+
s

{
< 1

k
for k > α if µ > 1

> 1
k

for k > k̄ if µ < 1

Notice that only if µ < 1, then τ+
s belongs to the region kτ > 1 that we are

considering. Otherwise, we have to consider τ−
s instead.

Hence τs = τ−
s if µ > 1 or if µ < 1 and α < k < k̄, whereas τs = τ+

s if µ < 1 and k > k̄,

that is

τs(k;µ,γ1,γ2) =
k −α

k2µ+kγ1 +γ2
if µ > 1

τs(k;µ,γ1,γ2) =

=





k−α
k2µ+kγ1+γ2

for α < k < k̄

−(α+k)+
√

(α+k)2+8(k2µ+kγ1+γ2)

2(k2µ+kγ1+γ2)
for k > k̄

if µ < 1

B.4.2 Proof of Proposition 5.4.3

Proposition. Let us assume to fix k, then the optimal time τo(k) := τo(k;µ,α,γ1,γ2)

defined in (5.28) can be computed as:

τo(k) =





τo1(k) for α < k < ¯̄k if µ > 1
2

τo1(k) for α < k < ¯̄k if µ < 1
2

1
k

for k > ¯̄k if µ < 1
2

where τo1(k) := k−α
2(k2µ+kγ1+γ2)

and ¯̄k =
α+2γ1+

√
(α+2γ1)2+8γ2(1−2µ)

2(1−2µ) .

The corresponding convergence rate ρo(k) := ρo(k;µ,α,γ1,γ2) is:

ρo(k) =





ρk1(k) if µ > 1
2

ρk1(k) for α < k < ¯̄k if µ < 1
2

ρk2(k) for k > ¯̄k if µ < 1
2

where ρk1(k) := 1− (α−k)2

4(k2µ+kγ1+γ2)
and ρk2(k) := µ+ 1

k
(α +γ1)+ γ2

k2 .

Proof. In the following, we will indicate z
(
k,τ

)
= z

(
k,τ ;µ,γ1,γ2

)
for convenience.

Recall that the optimal time τo(k) is s.t. z(k,τo(k)) reaches its minimum value. Hence

the goal now is to find an expression for τo(k).

From the definition of the function z(k,τ), we can distinguish two cases: kτ < 1, kτ > 1.

1. kτ < 1 : In this case

z(k,τ) = z−(k,τ) = 1+ τ(α −k)+ τ2(k2µ+kγ1 +γ2)

118

B.4 Proofs of Propositions Chapter 5

z(k,τ) is an upward parabola (see Fig.B.3) with vertex at

τ−
v =

k −α

2(k2µ+kγ1 +γ2)
(B.8)

Notice that τ−
v > 0 since k > α (Prop.??). The value of the function at the vertex

corresponds to its minimum:

z(k,τv) = 1− (k −α)2

2(k2µ+kγ1 +γ2)
+

+
(k −α)2

4(k2µ+kγ1 +γ2)✁2
✭✭✭✭✭✭✭✭
(k2µ+kγ1 +γ2) =

= 1− 1

4

(k −α)2

(k2µ+kγ1 +γ2)
< 1

Now we want to check if τ−
v < 1

k
, that is if the minimum value belongs to the region

we are analyzing:

τ−
v =

k −α

2(k2µ+kγ1 +γ2)
<

1

k

⇔ k2 −kα < 2µk2 +2γ1k +2γ2

⇔ p−
v (k) := k2(1−2µ)−k(α +2γ1)−2γ2 < 0 (B.9)

where the solutions of p−
v (k)

k± =
α +2γ1 ±

√
(α +2γ1)2 +8γ2(1−2µ)

2(1−2µ)

are s.t. ∑
sol =

α +2γ1

1−2µ
,

∏
sol =

−2γ2

1−2µ

where there exist two different solutions if (α +2γ1)2 +8γ2(1−2µ) > 0, that is

µ <
(α +2γ1)2

16γ2
+

1

2

otherwise τ−
v is always greater than 1/k.

k

kv

k

kv

−2γ2

µ > 1

2
µ < 1

2

¯̄k−2γ2

Figure B.8. Representation of p−
v (k).

• if 1−2µ > 0, that is µ < 1
2 , then p−

v (k) is an upward parabola with solutions

119

B Appendix

k± s.t.
∑

sol > 0,
∏

sol < 0 and τv < 1
k

if α < k < ¯̄k, where

¯̄k := max{k−,k+} =

=





α+2γ1+
√

(α+2γ1)2+8γ2(1−2µ)

2(1−2µ) if µ < 1
2

α+2γ1>
√

(α+2γ1)2+8γ2(1−2µ)

2(1−2µ) if µ > 1
2

(B.10)

• if 1−2µ < 0, that is µ > 1
2 , then p−

v (k) is a downward parabola with solutions

k± s.t.
∑

sol < 0,
∏

sol > 0 and τv < 1
k

if k > α.

In conclusion,

τ−
v <

1

k
if

{
α < k < ¯̄k if µ < 1

2

k > α if µ > 1
2

So τ−
v represents the optimal time in the case kτ < 1 for α < k < ¯̄k if µ < 1

2 and for

k > α if µ > 1
2 .

2. kτ > 1. In this case

z
(
k,τ

)
= z+

(
k,τ

)
= −1+ τ(α +k)+ τ2(k2γ1 +kγ2 +γ3)

we still have an upward parabola with vertex

τ+
v = − k +α

2(k2γ1 +kγ2 +γ3)
< 0

Since τ+
v < 0 it cannot be a valid optimal time and, since z(k,τ) is a monotonically

increasing function in k and τ , then the minimum can be detected in τ = 1/k.

Finally τo(k) = τ−
v (k) for α < k < ¯̄k if µ < 1

2 and for k > α if µ > 1
2 , whereas τo(k) = 1/k

for k > ¯̄k if µ < 1
2 , that is

τo(k;µ,γ1,γ2) =
k −α

2(k2µ+kγ1 +γ2)
if µ >

1

2

τo(k;µ,γ1,γ2) =





k−α
2(k2µ+kγ1+γ2)

for α < k < ¯̄k
1
k

for k > ¯̄k
if µ <

1

2

Computation of the convergence rate

The convergence rate, defined in (5.29), corresponds to the function z(k,τ) evaluated in

τ = τo(k):

ρ(k) = z(k,τo)

We have already seen that, depending on the value of the parameter µ, then τo(k) has

different values and z(k,τo(k)) too:

120

B.4 Proofs of Propositions Chapter 5

• 0 < µ < 1
2 :

τo =

{
τ−

v if α < k < ¯̄k
1
k

if k > ¯̄k

and

ρ(k) = z−(k,τo) =

=





z−(k,τ−
v) = 1− (α−k)2

4(k2µ+kγ1+γ2)
if α < k < ¯̄k

z(k, 1
k
) = µ+ 1

k
(α +γ1)+ 1

k2 γ2 if k > ¯̄k

Notice that z−(k,τo) < 1 always and z(k, 1
k
) < 1 in the case it is considered (µ < 1

2).

Moreover, note that for γ1 = γ2 = 0, z−(k, 1
k
) = µ + α

k
that tends to µ for large

values of k:

ρ(k) →





1− 1
4µ

if α < k < ¯̄k

µ if k > ¯̄k

• µ > 1
2 : in this case

ρ = z−(k,τ−
v) = 1− (α −k)2

4(k2µ+kγ1 +γ2)
∀ k > α

and for γ1 = γ2 = 0 and big values of k:

ρ(k) → 1− 1

4µ
∀ k > α

B.4.3 Proof of Proposition 5.4.4

Proposition. Let us assume to fix τ , then the optimal ko(τ) := ko(τ ;µ,α,γ1,γ2), defined

in (5.30), can be computed as:

ko(τ) =





1−τγ1

2τµ
for τ < 1

γ1
if µ > 1

2
1−τγ1

2τµ
for τmk

< τ < τMk
if µ < 1

2
1
τ

for 0 < τ < τmk
if µ < 1

2

where τmk
:= 1−2µ

γ1
, τMk

:= 1
γ1

and the corresponding convergence rate ρo(τ) := ρo(τ ;µ,α,γ1,γ2)

is:

ρo(τ) =





ρτ1(τ) for τ < τ−
v2

if µ > 1
2

ρτ1(τ) for τmτ < τ < τMτ if µ < 1
2

ρτ2(τ) for 0 < τ < τmτ if µ < 1
2

where τmτ := min{1−2µ
γ1

, τ−
v2

}, τMτ := max{1−2µ
γ1

, τ−
v2

}, ρτ1(τ) :=
(−γ2

1+4γ2µ)τ2+2(γ1+2αµ)τ+4µ−1
4µ

,

ρτ2(τ) := γ2τ2 +(α +γ1)τ +µ and τ−
v2

=
−(γ1+αµ)+

√
(γ1+αµ)2+(−γ2

1+4γ2µ)

−γ2
1+4γ2µ

.

Proof. 1. kτ < 1:

Let us rewrite the function z−(k,τ) s.t. it depends on k, since τ is assumed to be

121

B Appendix

fixed now.

z−(k,τ) = τ2µk2 + τ(τγ1 −1)k +1+ τα + τ2γ2 (B.11)

The function represents an upward parabola with vertex

k−
v =

1− τγ1

2τµ
> 0 if τ <

1

γ1

Let us check when k−
v < 1

τ
:

1− τγ1

2τµ
<

1

τ
⇔ τ >

1−2µ

γ1

Observe that if µ > 1
2 , then 1−2µ

γ1
< 0, hence τ > 1−2µ

γ1
always and k−

v < 1
τ
.

In conclusion,

k−
v <

1

τ
if τ >

1−2µ

γ1

Now we find out when z−(k−
v , τ) < 1. First of all we compute the expression

z−(k−
v , τ):

z−(k−
v , τ) =✚

✚τ2µ
(1− τγ1)2

4!!τ
2µ✁2

+✚τ(τγ1 −1)
1− τγ1

2✚τµ
+ τ2γ2+

+ τα +1 =

=
(1− τγ1)2

4µ
− (1− τγ1)2

2µ
+ τ2γ2 + τα +1

= −(1− τγ1)2

4µ
+ τ2γ2 + τα +1

=
(−γ2

1 +4γ2µ)τ2 +2(γ1 +2αµ)τ +4µ−1

4µ

Now, under which conditions does it hold z−(k−
v , τ) < 1?

(−γ2
1 +4γ2µ)τ2 +2(γ1 +2αµ)τ +4µ−1

4µ
< 1

⇔ (−γ2
1 +4γ2µ)τ2 +2(γ1 +2αµ)τ +4µ−1 < 4µ

p−
v (τ) := (−γ2

1 +4γ2µ)τ2 +2(γ1 +2αµ)τ −1 < 0 (B.12)

p−
v (τ) is a parabola in τ with vertex in

τ−
v = − γ1 +2αµ

−γ2
1 +4γ2µ

> 0 if µ <
γ2

1

4γ2

The solutions of (B.12) are

τ−
v1

=
−(γ1 +αµ)−

√
(γ1 +αµ)2 +(−γ2

1 +4γ2µ)

−γ2
1 +4γ2µ

122

B.4 Proofs of Propositions Chapter 5

τ

τ
−

v

τ

µ <
γ
2

1

4γ2

τ
−

v1
τ
−

v2
τ
−

v1
τ
−

v2

τ
−

v

µ >
γ
2

1

4γ2

Figure B.9. Representation of p−
v (τ).

τ−
v2

=
−(γ1 +αµ)+

√
(γ1 +αµ)2 +(−γ2

1 +4γ2µ)

−γ2
1 +4γ2µ

Notice that

∑
sol =

γ1 +αµ

γ2
1 −4γ2µ

> 0 if µ <
γ2

1

4γ2

∏
sol =

1

γ2
1 −4γ2µ

> 0 if µ <
γ2

1

4γ2

Moreover the argument of the square root is always positive and τ−
v1

< τ−
v2

if µ >
γ2

1
4γ2

.

Finally, the concavity of p−
v (τ) is upward if µ >

γ2
1

4γ2
, otherwise it is downward. You

can see these results in Fig.B.9.

In conclusion, z−(k−
v , τ):





< 1 for 0 < τ < τ−
v2

∨ τ > τ−
v1

if µ <
γ2

1
4γ2

< 1 for 0 < τ < τ−
v2

if µ >
γ2

1
4γ2

2. kτ = 1

Even if the stability analysis has been performed in the scenario where k was fixed,

we will analyze the stability on the curve k = 1
τ

because the result will be useful

when we will compute the convergence rate.

z(
1

τ
,τ) = γ2τ2 +(α +γ1)τ +µ

Let us check when z(1
τ
, τ) < 1:

γ2τ2 +(α +γ1)τ +µ < 1

⇔ p=(τ) := γ2τ2 +(α +γ1)τ +µ−1 < 0

p=(τ) is an upward parabola with vertex

τ=
v =

−(α +γ1)

2γ2
< 0

and solutions

τ=
s1,2

=
−(α +γ1)±

√
(α +γ1)2 −4γ2(µ−1)

2γ2

123

B Appendix

k

τ
=

v

k

µ > 1

τ
=

s1
τ
=

s2

µ < 1

τ
=

vτ
=

s1
τ
=

s2

Figure B.10. Representation of p=
s (k,τ).

s.t.

∑
sol = −α +γ1

γ2
< 0

∏
sol =

µ−1

γ2
> 0 if µ > 1

In conclusion:

z
(1

τ
,τ

)
< 1 for

{
∄ τ > 0 if µ > 1

0 < τ < τ=
s2

if µ < 1

3. kτ > 1:

Let us rewrite the function z+(k,τ) s.t. it depends on k, since τ is assumed to be

fixed now.

z+(k,τ) = τ2µk2 + τ(τγ1 +1)k + τ2γ2k + τα −1 (B.13)

The function represents an upward parabola with vertex

k+
v = −1+ τγ1

2τµ
< 0 for τ > 0

Hence k+
v never belongs to the region kτ > 1.

In conclusion ko(τ) = k−
v for 0 < τ < 1

γ1
if µ > 1

2 and for 1−2µ
γ1

< τ < 1
γ1

if µ < 1
2 ; instead,

ko(τ) = 1
τ

for 0 < τ < 1−2µ
γ1

if µ < 1
2 , that is

ko(τ ;µ,γ1,γ2) =
1− τγ1

2τµ
for τ <

1

γ1
if µ >

1

2

ko(τ ;µ,γ1,γ2)− =

{
1−τγ1

2τµ
for 1−2µ

γ1
< τ < 1

γ1
1
τ

for 0 < τ < 1−2µ
γ1

if µ <
1

2

Computation of the convergence rate

The convergence rate, defined in (5.31), corresponds to the function z(k,τ) evaluated in

τ = τo(k):

ρ(τ) = z(ko, τ)

We have already seen that, depending on the value of the parameter µ, then ko(τ) has

different values and z(ko(τ), τ) too:

124

B.4 Proofs of Propositions Chapter 5

• 0 < µ < 1
2 :

ko =

{
k−

v for 1−2µ
γ1

< τ < 1
γ1

1
τ

for 0 < τ < 1−2µ
γ1

and

ρ(τ) = z−(ko, τ) =

=

{
z−(k−

v , τ) for 1−2µ
γ1

< τ < 1
γ1

z(1
τ
, τ) for 0 < τ < 1−2µ

γ1

=





(−γ2
1+4γ2µ)τ2+2(γ1+2αµ)τ+4µ−1

4µ
for 1−2µ

γ1
< τ < 1

γ1

γ2τ2 +(α +γ1)τ +µ for 0 < τ < 1−2µ
γ1

• µ > 1
2 : in this case

ρ(τ) = z−(k−
v , τ) =

=
(−γ2

1 +4γ2µ)τ2 +2(γ1 +2αµ)τ +4µ−1

4µ

for 0 < τ <
1

γ1

125

Bibliography

Elistair | the tethered drone company. https://elistair.com/. (Accessed on

07/13/2020).

Abdolhosseini M., Zhang Y. M., and Rabbath C. A. An efficient model predictive

control scheme for an unmanned quadrotor helicopter. Jour. of Intelligent & Robotic

Systems, 70(1):27–38, Apr 2013. ISSN 1573-0409.

Alexis K., Nikolakopoulos G., and Tzes A. Model predictive quadrotor control:

attitude, altitude and position experimental studies. IET Control Theory Applications,

6(12):1812–1827, 2012.

Alexis K., Nikolakopoulos G., and Tzes A. On trajectory tracking model predictive

control of an unmanned quadrotor helicopter subject to aerodynamic disturbances.

Asian Journal of Control, 16(1):209–224, 2012.

Baizid K., Caccavale F., Chiaverini S., Giglio G., and Pierri F. Safety in

coordinated control of multiple unmanned aerial vehicle manipulator systems: Case of

obstacle avoidance. In 22nd Mediterranean Conference on Control and Automation,

pages 1299–1304, 2014.

Bicego D. Design and Control of Multi-Directional Thrust Multi-Rotor Aerial Vehicles

with applications to Aerial Physical Interaction Tasks. Theses, INSA de Toulouse,

September 2019. URL https://hal.laas.fr/tel-02433940.

Bock H. G. and Plitt K.-J. A multiple shooting algorithm for direct solution of

optimal control problems. In Proceedings of the IFAC World Congress, 1984.

Caccavale F., Giglio G., Muscio G., and Pierri F. Cooperative impedance control

for multiple uavs with a robotic arm. In 2015 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 2366–2371, 2015.

Chen Y., Bruschetta M., Cuccato D., and Beghi A. An adaptive partial sensitivity

updating scheme for fast nonlinear model predictive control. IEEE Trans. on Automatic

Control, 2018.

Chen Y., Bruschetta M., Picotti E., and Beghi A. Matmpc-a matlab based

toolbox for real-time nonlinear model predictive control. In European Control Conf.

2019, Accepted, 2019.

Chen Y., Cuccato D., Bruschetta M., and Beghi A. An inexact sensitivity

updating scheme for fast nonlinear model predictive control based on a curvature-like

measure of nonlinearity. In 2017 IEEE 56th CDC, pages 4382–4387. IEEE, 2017.

Conti R., Meli E., Ridolfi A., and Allotta B. An innovative decentralized strategy

for i-auvs cooperative manipulation tasks. Robotics and autonomous systems, 72:

261–276, 2015.

127

Bibliography

Diehl M., Bock H. G., Schlöder J. P., Findeisen R., Nagy Z., and Allgöwer F.

Real-time optimization and nonlinear model predictive control of processes governed

by differential-algebraic equations. Jour. of Process Control, 12(4):577–585, 2002.

Farivarnejad H. and Berman S. Stability and convergence analysis of a decentralized

proportional-integral control strategy for collective transport. In 2018 Annual American

Control Conference (ACC), pages 2794–2801, June 2018a.

Farivarnejad H. and Berman S. Stability and convergence analysis of a decentralized

proportional-integral control strategy for collective transport. In 2018 Annual American

Control Conference (ACC), pages 2794–2801. IEEE, 2018b.

Ferreau H., Kirches C., Potschka A., Bock H., and Diehl M. qpOASES: A

parametric active-set algorithm for quadratic programming. Mathematical Programming

Computation, 6(4):327–363, 2014.

Franchi A. and Giordano P. R. Online leader selection for improved collective

tracking and formation maintenance. IEEE Transactions on Control of Network

Systems, 5(1):3–13, 2018.

Franchi A. and Mallet A. Adaptive closed-loop speed control of bldc motors with

applications to multi-rotor aerial vehicles. In 2017 IEEE International Conference on

Robotics and Automation (ICRA), pages 5203–5208, 2017.

Franchi A., Petitti A., and Rizzo A. Distributed estimation of state and parameters

in multi-agent cooperative load manipulation. IEEE Trans. on Control of Network

Systems, 6(2):690–701, 2019.

Franchi A., Masone C., Grabe V., Ryll M., Bülthoff H. H., and Giordano

P. R. Modeling and control of uav bearing formations with bilateral high-level

steering. The International Journal of Robotics Research, 31(12):1504–1525, 2012.

URL https://doi.org/10.1177/0278364912462493.

Gabellieri C., Tognon M., Sanalitro D., Palottino L., and Franchi A. A study

on force-based collaboration in swarms. Swarm Intelligence, 14:57–82, 2020.

Heemels W. P. M. H., Johansson K. H., and Tabuada P. An introduction to

event-triggered and self-triggered control. In 2012 IEEE 51st IEEE Conference on

Decision and Control (CDC), pages 3270–3285, 2012.

Kendoul F. Survey of advances in guidance, navigation, and control of unmanned

rotorcraft systems. Journal of Field Robotics, 29(2):315–378, 2012. URL https:

//onlinelibrary.wiley.com/doi/abs/10.1002/rob.20414.

Khalil H. Nonlinear Systems. Pearson Education. Prentice Hall, 2002. ISBN

9780130673893.

Koenig N. and Howard A. Design and use paradigms for gazebo, an open-source

multi-robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) (IEEE Cat. No.04CH37566), volume 3, pages 2149–2154

vol.3, 2004.

128

Bibliography

Kumar V. and Michael N. Opportunities and challenges with autonomous micro

aerial vehicles. The International Journal of Robotics Research, 31(11):1279–1291,

2012. URL https://doi.org/10.1177/0278364912455954.

Lim Y., Kwon S., Kim K., and Ahn H. Implementation of load transportation

using multiple quadcopters. In 2017 IEEE International Conference on Advanced

Intelligent Mechatronics (AIM), pages 639–644, July 2017.

Lupashin S. and D’Andrea R. Stabilization of a flying vehicle on a taut tether

using inertial sensing. 2013 IEEE/RSJ International Conf. on Intelligent Robots and

Systems, pages 2432–2438, 2013.

Manubens M., Devaurs D., Ros L., and Cortés J. Motion planning for 6-D

manipulation with aerial towed-cable systems. In 2013 Robotics: Science and Systems,

Berlin, Germany, May 2013.

Marino A. Distributed adaptive control of networked cooperative mobile manipulators.

IEEE Transactions on Control Systems Technology, 26(5):1646–1660, 2018.

Marino A. and Pierri F. A two stage approach for distributed cooperative manipula-

tion of an unknown object without explicit communication and unknown number of

robots. Robotics and Autonomous Systems, 103:122 – 133, 2018. ISSN 0921-8890. URL

http://www.sciencedirect.com/science/article/pii/S0921889017307807.

Masone C., Bülthoff H. H., and Stegagno P. Cooperative transportation of a

payload using quadrotors: A reconfigurable cable-driven parallel robot. In 2016

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages

1623–1630, Oct 2016.

Maza I., Kondak K., Bernard M., and Ollero A. Multi-UAV cooperation and

control for load transportation and deployment. Journal of Intelligent & Robotics

Systems, 57(1-4):417–449, 2010a.

Maza I., Kondak K., Bernard M., and Ollero A. Multi-uav cooperation and

control for load transportation and deployment. J. Intell. Robotics Syst., 57(1-4):

417–449, January 2010b. ISSN 0921-0296.

Maza I., Kondak K., Bernard M., and Ollero A. Multi-uav cooperation and control

for load transportation and deployment. Journal of Intelligent & Robotic Systems,

57(1-4):417, 2010c. URL https://app.dimensions.ai/details/publication/pub.

1012942262.

Mellinger D., Shomin M., Michael N., and Kumar V. Cooperative grasping and

transport using multiple quadrotors. DARS, pages 545–558, 2010.

Mellinger D., Shomin M., Michael N., and Kumar V. Cooperative grasping and

transport using multiple quadrotors. In Distributed autonomous robotic systems, pages

545–558. Springer, 2013.

Michael N., Fink J., and Kumar V. Cooperative manipulation and transportation

with aerial robots. Autonomous Robots, 30(1):73–86, Jan 2011. ISSN 1573-7527. URL

https://doi.org/10.1007/s10514-010-9205-0.

129

Bibliography

Muttin F. Umbilical deployment modeling for tethered uav detecting oil pollution from

ship. Applied Ocean Research, 33(4):332 – 343, 2011. ISSN 0141-1187.

Oh S.-R., Pathak K., Agrawal S. K., Pota H. R., and Garratt M. Approaches

for a tether-guided landing of an autonomous helicopter. IEEE Trans. on Robotics, 22

(3), June 2006. ISSN 1552-3098.

Petitti A., Franchi A., Di Paola D., and Rizzo A. Decentralized motion control

for cooperative manipulation with a team of networked mobile manipulators. In IEEE

Int. Conf. on Robotics and Automation, pages 441–446, Stockholm, Sweden, May 2016.

Pinkney M. F. J., Hampel D., and DiPierro S. Unmanned aerial vehicle (uav)

communications relay. In Conf. on Military Communications, IEEE, volume 1, pages

47–51 vol.1, 1996.

Ritz R. and D’Andrea R. Carrying a flexible payload with multiple flying vehicles.

In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages

3465–3471, 2013.

Rossi E., Bruschetta M., Carli R., Chen Y., and Farina M. Online nonlinear

model predictive control for tethered uavs to perform a safe and constrained maneuver.

In 2019 18th European Control Conference (ECC), pages 3996–4001, 2019.

Rossi E., Tognon M., Carli R., Cortés L. J., and Franchi A. Discrete-time control

of parallel kinematic systems. Technical report, University of Padova, March 2019. URL

http://automatica.dei.unipd.it/tl_files/utenti2/rossi/tech_report.pdf.

Sanalitro D., Savino H. J., Tognon M., Cortés J., and Franchi A. Full-pose

manipulation control of a cable-suspended load with multiple uavs under uncertainties.

IEEE Robotics and Automation Letters, 5:2185–2191, 01/2020 2020. ISSN 2377-3766.

Sandino L. A., Bejar M., Kondak K., and Ollero A. Advances in modeling and

control of tethered unmanned helicopters to enhance hovering performance. Jour. of

Intelligent & Robotic Systems, 73(1):3–18, Jan 2014. ISSN 1573-0409.

Sanz P. Robotics: Modeling, planning, and control (siciliano, b. et al; 2009) [on the

shelf]. Robotics & Automation Magazine, IEEE, 16:101–101, 12 2009.

Sieber D. and Hirche S. Human-guided multirobot cooperative manipulation. IEEE

Transactions on Control Systems Technology, 27(4):1492–1509, 2019.

Sreenath K. and Kumar V. Dynamics, control and planning for cooperative manipu-

lation of payloads suspended by cables from multiple quadrotor robots. In Robotics:

Science and Systems, Berlin, Germany, June 2013a.

Sreenath K. and Kumar V. Dynamics, control and planning for cooperative manipu-

lation of payloads suspended by cables from multiple quadrotor robots. 06 2013b.

Tagliabue A., Kamel M., Siegwart R., and Nieto J. Robust collaborative object

transportation using multiple mavs. The International Journal of Robotics Research,

38(9):1020–1044, 2019. URL https://doi.org/10.1177/0278364919854131.

130

Bibliography

Tagliabue A., Kamel M., Siegwart R., and Nieto J. I. Robust collaborative

object transportation using multiple mavs. CoRR, abs/1711.08753, 2017.

Tognon M. and Franchi A. Nonlinear observer-based tracking control of link stress

and elevation for a tethered aerial robot using inertial-only measurements. In 2015

IEEE International Conf. on Robotics and Automation, pages 3994–3999, May 2015.

Tognon M., Gabellieri C., Pallottino L., and Franchi A. Aerial co-manipulation

with cables: The role of internal force for equilibria, stability, and passivity. IEEE

Robotics and Automation Letters, Special Issue on Aerial Manipulation, 3(3):2577 –

2583, 2018.

Tognon M., Testa A., Rossi E., and Franchi A. Takeoff and landing on slopes via

inclined hovering with a tethered aerial robot. In 2016 IEEE/RSJ International Conf.

on Intelligent Robots and Systems, pages 1702–1707, 2016a.

Tognon M., Dash S. S., and Franchi A. Observer-based control of position and ten-

sion for an aerial robot tethered to a moving platform. IEEE Robotics and Automation

Letters, 1:732–737, 2016b.

Tognon M., Testa A., Rossi E., and Franchi A. Takeoff and landing on slopes

via inclined hovering with a tethered aerial robot. In 2016 IEEE/RSJ Int. Conf.

on Intelligent Robots and Systems, pages 1702–1707, Daejeon, South Korea, 10/2016

2016c.

Tsiamis A., Verginis C. K., Bechlioulis C. P., and Kyriakopoulos K. J. Co-

operative manipulation exploiting only implicit communication. In 2015 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 864–869,

Sep. 2015.

Tsiamis A., Verginis C. K., Bechlioulis C. P., and Kyriakopoulos K. J. Co-

operative manipulation exploiting only implicit communication. In 2015 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 864–869.

IEEE, 2015.

Verginis C. K., Nikou A., and Dimarogonas D. V. Communication-based decen-

tralized cooperative object transportation using nonlinear model predictive control. In

2018 European Control Conference (ECC), pages 733–738. IEEE, 2018.

Wang Z. and Schwager M. Force-amplifying n-robot transport system (force-ants) for

cooperative planar manipulation without communication. The International Journal

of Robotics Research, 35(13):1564–1586, 2016a.

Wang Z. and Schwager M. Multi-robot manipulation without communication. In

Chong N.-Y. and Cho Y.-J., editors, Distributed Autonomous Robotic Systems,

pages 135–149, Tokyo, 2016b. Springer Japan. ISBN 978-4-431-55879-8.

Yang H. and Lee D. Hierarchical cooperative control framework of multiple quadrotor-

manipulator systems. In 2015 IEEE International Conference on Robotics and Au-

tomation (ICRA), pages 4656–4662, 2015.

Yutao C. Matmpc. https://github.com/chenyutao36/MATMPC, 2017.

131

