
Receding Horizon Control

of Multiagents Systems

with

Competitive Dynamics

Candidate: Andrea Carron

Advisor: Prof. Luca Schenato

Advisor: Prof. Elisa Franco

Master in Control Engineering

Department of Information Engineering

2012

To my parents

iv

v

"Questo controllo è un pò nervoso..."

vi

Abstract

We consider the problem of controlling two agents with competitive objectives. Agents are

modelled as linear discrete time systems, and collect each other’s state information without

delays. The competitive problem is formulated in a classical receding horizon framework,

where each agent’s controllers are computed by minimizing a linear, quadratic cost function

which depends on both agents’ states. The two agents specify their state tracking objective in

a coordinated or competitive manner. We do not consider state constraints. The simplicity

of our framework allows us to provide the following results analytically: 1) When agents

compete, their states converge to an equilibrium trajectory where the steady state tracking

error is finite. 2) Limit-cycles cannot occur. Numerical simulations and experiments done

with a LEGO mindstorm multiagent platform match our analytical results.

viii

Contents

1 Introduction 1

2 Tracking with Receding Horizon 5

2.1 Problem Formulation . 5

2.2 Autoregressive Model Estimation . 6

2.3 Trajectory Prediction . 7

2.4 Trajectory Representation . 9

2.5 Cost Function . 10

2.6 Tracking stability . 10

2.7 Tracking Performances with unit delay . 13

2.8 Simulation Results . 14

Parameter Estimation . 14

Prediction Analysis . 15

Tracking without delays . 16

Tracking with unit delay . 16

Tracking with Two Agents . 18

2.9 Conclusion . 18

3 Competition using Receding Horizon 19

3.1 Problem Formulation . 20

3.2 Steady State Behaviour . 20

3.3 Absence of Limit Cycle . 26

3.4 Agents Final Position . 27

3.5 Simulation Results . 28

3.6 Conclusion . 32

4 Robotic Platform and Experimental Results 33

4.1 Experimental Setup . 33

LEGO Robots . 34

x Contents

Bluetooth Router . 35

Laptop and Software . 35

Webcam . 35

4.2 Software Architecture . 35

4.3 Robot Model . 36

4.4 Software details . 38

NXT Firmware . 38

Communication Block . 40

Communication Protocol . 40

PC to MASTER Communication . 41

MASTER and SLAVE Firmware . 42

Vision Block . 42

4.5 Experimental Results . 44

Tracking Tests . 44

Competitive and Cooperative Dynamics Tests . 44

5 Appendix A 49

6 Appendix B 51

7 Appendix C 53

8 Acknowledgement 55

References 59

1
Introduction

Multiagent systems are systems composed of multiple interactive elements that are called

agents. The agents are capable of autonomous actions in order to achieve their objectives

and are able to interact with the other agents. The goal of the communication is to allow the

cooperation or the coordination between the agents.

The cooperation of multiagent systems has token a central role in the control community

in the last twenty years. The complexity of the systems has required to develop advanced

algorithms in order to solve that kind of problems, for example the coordination of multirobot

platform where is impossible use a central unit, or in the electric networks that are so wide

that cannot be controlled in a centralized way.

Another important aspect is the competition, where several agents try to get what just some

of them can get. This thesis analyses the competition in a multiagent system where the single

agent use a Receding Horizon Control technique.

Receding Horizon Control (RHC) was developed during the 1960s, when its application

was limited by the reduced computational capabilities of the period. It attracted the in-

terests of the control community twenty years later, with theory generalizations [10], [9]

and application of RHC in industrial proccesses [19]. RHC is used especially for MIMO

systems with slow dynamics, where it is more easily tunable than a PID controller. For this

specific reason the application area of the RHC is really wide, such as: chemical plants [22],

supply chain management [12], control of hybrid vehicles [2], automotive [4] and aerospace

2 Introduction

application [14].

Modern applications of RHC include control of human crowds [21] (where the model is

based on Mixed Logical Dynamical (MLD) systems) and motion control of biped robots [1].

These applications are inspired by the algorithmic prediction similarity between RHC and the

human mind, where, loosely speaking, control optimization/evaluation over a finite-time

horizon occurs iteratively including updated information about the environment.

Figure 1.1: The LEGO robots used in the experiments.

Many distributed versions of RHC have been proposed in the context of multiagent, co-

operative systems, where agents include local and team information to perform tasks and

maintain stability. Some of the most important works in this ares are [7], where the goal

is to achieve coordination among agents that are solving model predictive control (MPC)

problems with locally relevant variables, costs and constraints; and [11, 13], which considers

stabilization of multi-vehicle formations. To our knowledge, RHC has not been applied

to competitive multiagent systems, where agents have conflicting objectives. Competitive

multiagent systems have been studied in the past using probabilistic approaches based on

game theory. Many interesting results are available for pursuit-evasion games: for exam-

ple, [15] analyzes a greedy policy to control a swarm of agents in the pursuit of one or more

evaders, demonstrating that this policy guarantees to find evaders in a finite time. Another

important reference on pursuit-evasion games is [25], where two different greedy polices are

considered, and all agents concurrently build a map of the unknown environment. Finally, a

3

“hide and seek” game was studied in [5], again in a probabilistic framework.

We believe that RHC might provide a useful “algorithmic framework” to study competitive

multiagent systems. We are inspired by a simple problem with two adversary agents: one

agent is a pursuer, seeking to reach a given neighborhood of the second agent’s state; the

second agent is an evader, seeking to maintain a safety distance from the pursuer. Suppose

each agent uses an RHC-like algorithm to reach its objective, repeatedly updating its future

decisions (within a certain time horizon) based on the moves of its adversary. What is the

class of dynamics that can arise?

We provide a simple analytical treatment of this problem: we assume that the two agents

are discrete time linear systems (LTI) without internal dynamics, and each agent optimizes a

linear, quadratic cost function in a RHC fashion. The cost function depends on the state of

each agent and its adversary, and competitive objectives are simply defined as a conflicting

distance tracking offset between the two agents. In the absence of state or input constraints,

we analytically show that if their objectives are conflicting, the two agents reach an equilib-

rium trajectory along a line, with a finite tracking error at steady state. We also show that

limit cycles are not possible.

We verified our results with numerical simulations, and we used a LEGO Mindstorm robot

kit [8] to create a two-agent testbed implementing our simple case study. Our experimental

results match extremely well our predictions. Thus, this thisis contributes a) Novel analyt-

ical results in a simple RHC competitive/cooperative system, b) An RHC implementation

benchmark, based on a commercial robot kit, which we believe is valuable for educational

purposes.

Compute/send
RHC controller

Camera

Figure 1.2: Scheme of our experimental LEGO robotic platform.

4 Introduction

This thesis is divided in four chapters, in the first is studied the tracking of a trajectory. To

complete the task the agent predicts the trajectory with a simple autoregressive model, based

on the old and known samples, and use the data obtained to compute the next input. To

solve the problem at the beginning we assume to know the actual trajectory value without

delays and in a second step we suppose to know it with one step delay. The simulations show

that the average performances become worse when then knowledge of the actual position of

the object to follow is delayed. The problem developed in a stochastic framework is brought

back to the standard deterministic problem of the receding horizon.

In the third chapter we consider that both the agents have an "intelligence" and both are

controlled with a receding horizon control technique. We assume that the states vectors and

the inputs vectors don’t have any kind of constraints. The main result proofs that, in case of

competitive targets (for example the first agent has to reach the other and the second has to

keep a safety threshold from the pursuer), the two agents converge over a line and just in

case of cooperative targets they are able to complete the tasks and the steady state position

is fixed. After a short section about the problem formulation, there are the main theoretical

results and the validation given by the simulations.

In the fourth chapter are explained the experimental results, there is also an overview of the

experimental setup and of the software architecture, here there is also a section that shows

how the main software issues encountered were solved. Then the results are shown and

analysed.

2
Tracking with Receding Horizon

In this section is explained how track a trajectory using the receding horizon control. The

idea is to predict the trajectory using a simple autoregressive model (with the past trajectory

samples) in order to have a rough estimation of the future positions. The framework is

stochastic and is shown how bring it back to a deterministic problem, it permits to use the

well known theory of the RHC to guarantee the stability of the system. Moreover we try to

understand how the delays influence the tracking performances.

2.1 Problem Formulation

In this section, the system dynamic is defined. We make use of the following notation, for

any vector x ∈ Rn, ‖x‖2P denotes the P-weighted norm, given by ‖x‖2P = x T P x , and P is any

positive definite real symmetric matrix. We call with the vector st the state of the pursuer

agent at the time t, and with rt the state of the trajectory to follow always at time t. We

assume that all the states vectors don’t have any kind of constraints and also the control

vector of the agent is not subject to any constraint.

The discrite-time invariant linear dynamics of the agent to control is given by:

st+1 =Fsst + Gsut

y s
t =Hsst + vt

(2.1)

6 Tracking with Receding Horizon

Where Fs, Gs, Hs are the state space matrices, where Hs = I, y s
t is the known state vector,

that is equal to the real state vector plus a Gaussian noise given by the signal vt ∼ N(0,σ2),

where σ2 is the variance of the noise.

Algorithm 2.1.1. The steps to follow at any time instant in order to complete the task are:

1. From the past data of the trajectory to pursue the parameters of an autoregressive model

are estimated.

2. Given the model, the values of the trajectory to follow form 1 to k steps ahead is predicted.

3. A quadratic cost function, that depends by the agent actual position, the control and the

trajectory to reach, is minimized in respect of the control.

4. Just the first control step is applied and the sequence start again.

Now all the steps are analysed more in depth.

2.2 Autoregressive Model Estimation

The problem of estimate the autoregressive model parameters can be brought back to the

least square problem. Let consider an autoregressive model of order n:

yt+1+ a0 yt + a1 yt−1+ . . .+ an−1 yt−n−1 = et+1

A(z−1)yt+1 = et+1

Where yt are the measurements, et is a Gaussian noise with finite variance and zero mean

that drives the model and ai are the coefficients to estimate. Rewriting the equation:

ϕT
t = [−yt − yt . . . − yt−n−1]

θ = [a0 a1 . . . an−1]

yt+1 = ϕ
T
t θ + et+1

The one step predictor is trivial and is given by the last equation without the unpredictable

term that is the Gaussian noise:

ŷθt+1|t = ϕ
T
t θ

2.3 Trajectory Prediction 7

In order to find the best approximation of the parameters the following quadratic prediction

error function has to be minimized:

θ̂ = argmax
θ

1

N

N
∑

t=0

(yt − ŷθt+1|t)
2 (2.2)

Where N is the number of collected data and, obviously, the estimation is more accurate if N

is big. The problem is a typical least square problem, and can be solved in closed form using

the following equation:

θ̂ =

∑N
t=0ϕ

T
t yt

∑N
t=0ϕtϕ

T
t

The last equation admits solution if and only if the matrix at the denominator is invertible

and this propriety is related at the model identification, and is supposed to have always it.

2.3 Trajectory Prediction

Recalling the autoregressive model, and writing it in a more compact form:

yt+1 =
N−1
∑

i=0

ai yt−i + et+1

where N is the model order, et+1 is a Gaussian noise with zero mean and variance σ2
p. The

equation of the one step ahead predictor, as already said, is:

ŷt+1|t =
N−1
∑

i=0

ai yt−i

The two steps ahead predictor is similar and is obtained sliding the temporal window in this

way:

ŷt+2|t = a0 ŷt+1|t +
N−2
∑

i=0

ai+1 yt−i

The k-steps ahead predictor is also trivial:

ŷt+k|t = a0 ŷt+k−1|t + a1 ŷt+k−2|t + . . .+ ak−2 ŷt+1|t +
N−k
∑

i=0

ai+k−1 yt−i

It is interesting compute the prediction error, knowing that the uncertainness is bigger if

the prediction horizon is longer. Using the Z-transform the equation becomes simpler, the

8 Tracking with Receding Horizon

autoregressive model can be rewritten like the product between the Z-transform of a white

noise and a transfer function dependent by the autoregressive coefficients.

Y (z) = H(z)E(z) =
1

1− a0z−1− . . .− aN−1z−N E(z)

Now if we came back in the time domain the representation is given by a convolution between

the impulse response of H(z) and the white noise.

yt =
∞
∑

i=0

hiek−i

The mean of yt is zero because the system is driven by a random signal with zero mean.

Where we can compute the hi terms with the inverse Z transform or could also be convenient

use the method of the long division.

The variance of k step prediction error is equal to:

var(x t+k − x̂ t+k|t) =
k−1
∑

i=0

h2
i var[e] (2.3)

Just to give an example we compute the two steps prediction error.

ŷt+2|t = a0 ŷt+1|t +
N−2
∑

i=0

ai+1 yt−i = a0

N−1
∑

i=0

ai yt−i +
N−2
∑

i=0

ai+1 yt−i

So the prediction error became:

yt+2− ŷt+2|t =
N−1
∑

i=0

ai yt−i+1+ et+2− ŷt+2|t

= a0 yt+1+
N−1
∑

i=1

ai t t−i+1+ et+2− ŷt+2|t

= a0[
N−1
∑

i=0

ai yt−i + et+1] +
N−1
∑

i=1

ai yt−i+1+ et+2− ŷt+2|t

= a0et+1+ et+2

(2.4)

In this example the mean of the error is equal to zero and the variance of the error is equal

to a2
0σ

2
p +σ

2
p.

Using the formula (2.3) and the method of the long division to compute the hi coefficients is

possible make a comparison between the two steps prediction error computed above. The

2.4 Trajectory Representation 9

result is the same because the first two coefficient of the impulse response are 1 and a0.

2.4 Trajectory Representation

The reference trajectory to follow can be represented in state space form.







rt+1 = Fr rt + Gr nt

y r
t = Hr rt + zt

(2.5)

Where rt containts the real values of the trajectory from t to t+N , but just an approximation

of the first sample is known and the others are predicted using the AR model. nt and zt are

zero mean and finite variance white noise where the first represent the uncertainness of the

unpredicted state N+1 and the second the measurement and prediction errors. In particular

the variances assumed over the time by zt are the following

var(zt) =























































σ2
m at t

σ2
p1

at t+1

σ2
p2

at t+2
...

σ2
pk

at t+k
...

σ2
pN

at t+N

(2.6)

Where σ2
m is the measurement error variance and σ2

pi
is the prediction error variance at time

t + i. Moreover the model matrix are:

Fr =



















0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

0 0 0 . . . 0



















Gr =
h

0 0 0 . . . 1
iT

Hr =
h

1 0 0 . . . 0
i

10 Tracking with Receding Horizon

The matrix Fr is a nilpotent matrix of dimension N so at every step selects a different value

of the predicted trajectory.

2.5 Cost Function

The cost function to minimize is the following and is based on the noisy measures.

J(N , y s
t , y r) = ‖(y s

t+N − y r
t+N)‖

2
P +

N−1
∑

j=0

‖(y s
t+ j − y r

t+ j)‖
2
QN− j−1

+ ‖ut+ j‖2RN− j−1
(2.7)

where the norm is the euclidean norm, P,Q i are a set of 2N semi positive symmetric matrices,

and Ri are definite positive symmetric matrices.

2.6 Tracking stability

Theorem 2.6.1. Given the system (2.1) and a trajectory, predicted by past measurement,

represented with the model (2.5) the stochastic receding horizon problem based on the cost

function (2.7) is solved under the same assumptions of the deterministic one.

Proof. Considering the following augmented state:

x t =





st

rt





x t+1 = F x t + Gut =





Fs 0

0 Fr



 x t +





Gs 0

0 Gr









ut

nt





et = y s
t − y r

t =
h

Hs −Hr

i

x t + vt − zt = er rt +mt

where err(t) is the real distance between the state of the two agents and mt is the difference

of the Gaussian noise so is always a Gaussian noise with zero mean and variance the sum of

2.6 Tracking stability 11

the two variances. In our particular case the variance of mt is equal to:

var(mt) =























































2σ2
m at t

σ2
p1
+σ2

m at t+1

σ2
p2
+σ2

m at t+2
...

σ2
pk
+σ2

m at t+k
...

σ2
pN
+σ2

m at t+N

Rewriting the cost function in this way:

J(N , x t) = ‖er rt+N +mt+N‖2P +
N−1
∑

j=0

‖er rt+ j +mt+ j‖2QN− j−1
+ ‖ut+ j‖2RN− j−1

= ‖er rt+N‖2P + ‖mt+N‖2P + 2< er rt+N , mt+N >P +
N−1
∑

j=0

‖er rt+ j‖2QN− j−1

+ ‖mt+ j‖2QN− j−1
+ 2< er rt+ j , mt+ j >QN− j−1

+‖ut+ j‖2RN− j−1

It is known that the mean of mt is equal to zero and the distribution of a square

Normalized Gaussian is a Chi Squared where the mean is given by the degree of freedom.

Recalling also that the variance is equal to the raw moment if the mean is zero because holds

Var[m] = E[m2]− E[m]2. Considering the mean of the cost function and the relations just

written:

E[J(N , x t)] =‖er rt+N‖2P + var{mt+N}PN +
N−1
∑

j=0

[‖er rt+ j‖2QN− j−1
+ var{mt+ j}QN− j−1+ ‖ut+ j‖2Rt+N− j−1

]

=‖er rt+N‖2P +
N−1
∑

j=0

[‖er rt+ j‖2QN− j−1
+ ‖ut+ j‖2Rt+N− j−1

] +
N
∑

j=0

Pj var{mt+ j}

(2.8)

where in the last equations Pi stans for the Q i . The receding horizon problem is based on the

12 Tracking with Receding Horizon

minimization of this cost index, but observing that:

UO
C (t) = Ar g min

u
E(J(N , x t)) = Ar g min

u
E(Ĵ(N , x t))

where

E[Ĵ(N , x t)] = ‖er rt+N‖2P +
N−1
∑

j=0

‖er rt+ j‖2QN− j−1
+ ‖ut+ j‖2Rt+N− j−1

This is a standard Linear Quadratic problem and it is possible get a closed form solution for

the receding horizon control.

ut =−(GT PN−1G+ RN−1)
−1GT PN−1F x t = KN−1 x t

To discuss about the stability of the tracking two important theorems are recalled. [18]

Theorem 2.6.2. Consider the ARE associated with an infinite horizon LQ control problem

P = F T PF − F T PG(GT PG+ R)−1GT PF +Q

where

• (F,G) is stabilizable.

• (F,Q1/2) has no unobservable modes on the unit circle.

• Q ≥0 and R>0.

Then

• there exists a unique, maximal, non negative definite symmetric solution P̄.

• P̄ is a unique stabilizing solution.

The theorem above is fundamental for the stability of the infinite horizion LQ control,

the next is fundamental for the RHC asymptotic stability.

Theorem 2.6.3. Consider the ARE and its stabilizing solution P̄, and consider the RDE

Pt+1 = F T Pt F − F T Pt G(GT Pt G+ R)−1GT Pt F +Q

Then, provided (F,G) is stabilizable. (F,Q1/2) is detectable and P(0) ≥0, Pt → P̄ as t →∞

These theorems provide us a sufficient condition for the stability of the receding horizion

control, to consider it valid is important have big values of N .

2.7 Tracking Performances with unit delay 13

2.7 Tracking Performances with unit delay

Here is discussed the stability of the controller using the target trajectory known with a step

delay. In this case the mean input is exactly the same input computed for the control without

delay, but the difference is given by the variance that is bigger. Looking at the prediction of

the target trajectory, an extra step prediction is necessary and the variance of all the steps is

bigger than a quantity equal to σp(the variance of the one step prediction). It is shown that

the central momentum of the cost function increase if the target trajectory is known with a

delay. Considering this simplified cost function:

J(y s
t , y r

t , N) =
N−1
∑

j=0

‖y s
t+ j − y r

t+ j‖
2
Q j

The central momentum is given by E[J(y s
t , y r

t , N)2], so rewriting it in this way:

E[J(y s
t , y r

t , N)2] = E[
N−1
∑

j=0

‖er rt+ j +mt+ j‖4Q2
j
]

Here is computed the square of the square:

‖er rt+ j +mt+ j‖4Q2
j
=‖er rt+ j‖4Q j

+ ‖mt+ j‖4Q j
+ 4‖mt+ jer r3

t+ j‖
2
Q j
+

4‖m2
t+ jer rt+ j‖2Q j

+ 6‖m2
t+ jer r2

t+ j‖
2
Q j

Moreover all the odd raw moment of a Gaussian distribution are equal to zero if the mean is

zero.

E[‖er rt+ j +mt+ j‖4Q2
j
] = ‖er rt+ j‖4Q j

+ E[‖mt+ j‖4Q j
] + 6E[‖m2

t+ jer r2
t+ j‖

2
Q j
]

= ‖er rt+ j‖4Q j
+ 3σ2

p j
+ 6σ2

p j
er r2(t + j)

And then:

E[J(x t , N)2] =
N−1
∑

j=0

Q2
j (er r(t + j)4+ 3σ2

p j
+ 6σ2

p j
er r2(t + j))

When there is a delay of one or more steps the variance of the prediction grows and also the

statistic power grows.

14 Tracking with Receding Horizon

2.8 Simulation Results

In this section all the results obtained are verified via simulations. All the simulations

are made using Matlab and same extra toolboxes. In the first subsection is tested the

parameters estimation using the least square method. In the second subsection the prediction

performances are tested. In the third and fourth subsections is tested the tracking with and

without delays of a circular trajectory with a white noise added. In the last section is tested a

multiagent system, the first agent tracks a circular trajectory and the second tracks the first

with a distance of about 40cm along both the axis.

The model considered is the following:





x t+1

yt+1



=





1 0

0 1









x t

yt



+





1 0

0 1









ux
t

uy
t



 (2.9)

And the trajectory to follow is a circular trajectory with white noise added.

Parameter Estimation

To estimate the model parameters is used the free matlab toolobox ar f i t [23], that allows to

solve the least squares problem.The code implementation first of all estimates the parameters

and after this the prediction is made. The prediction is analysed in the next section.

1 function [pred] = prediction(qr,k)
2 % PREDICTION This function recognize the model from the data
3 % and gives as output the predicted step from t+1 to t+k
4

5 n = 3;
6 % Estimation of the parameters
7 [wX ,paramX] = arfit(qr(1,:) ’,n,n);
8 [wY ,paramY] = arfit(qr(2,:) ’,n,n);
9

10 pred = [qr(:,end -n+1:end),zeros(2,k)];
11

12 % Prediction
13 for j=1:k
14 pred(1,j+n) = paramX(end: -1:1)*pred(1,j:j+n-1)’ + wX;
15 pred(2,j+n) = paramY(end: -1:1)*pred(2,j:j+n-1)’ + wY;
16 end
17

18 pred = pred(:,end -k+1:end);
19

2.8 Simulation Results 15

20 end

In this code snippet the predicted value of the trajectory is computed and the parameters

are estimated for all the equations of the linear model.

In the simulations the model is driven with samples obtained from a circular trajectory with

white noise added. From the plot is shown that after a transient the parameters converge to

a steady state value and the poles of the model are stable.

0 5 10 15 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time [s]

A
R

 P
ar

am
et

er
s

E
st

im
at

io
n

Parameter a
1

Parameter a
2

Figure 2.1: Autoregressive model parame-
ters estimation over the time.

0 5 10 15 20

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [s]

A
R

 P
ol

es
 E

st
im

at
io

n

Pole 1
Pole 2

Figure 2.2: Autoregressive model poles esti-
mation over the time.

Prediction Analysis

After a transient used to collect enough data in order to made invertible the matrix at the

denominator on the least square formula (2.2) the prediction starts. The trajectory used

in the simulations is always circular with center (1.12,−1.5)[m] and radius 0.75[m]. The

prediction horizon is equal to 3. In this example is added a Gaussian noise with zero mean

and variance σ2 = 0.1.

16 Tracking with Receding Horizon

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Time [s]

x
co

m
po

ne
nt

 [m
]

Reference Trajectory
Prediction

Figure 2.3: Prediction of the x state compo-
nent.

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

2

2.5

Time [s]
P

re
di

ct
io

n
er

ro
r

[m
]

x component
y component

Figure 2.4: Prediction errors along each
axes.

Tracking without delays

In the simulations the target is moving on a circle of center (1.12,−1.50)[m] and radius

0.75[m], the target actual position is supposed to be known without delays also if in the

reality the actual position is known with at least one step delay, moreover the noise variance

is equal to 0.1. After a short transient the tracking is almost perfect and the agent follows the

trajectory with a really small delay that can be reduced changing the weights of the control

in the cost function. The initial conditions of the agent are (0,0)[m] and the length of the

control horizon is 3. The parameter of the RHC are R= 0.1I2 and P = I2.

Tracking with unit delay

The simulations carry on again the same task but the target trajectory is known with a step

delay and the circle to track has center in (1.12,−1.50)[m] with radius 0.75[m]. The initial

conditions are (2.70,−1.25)[m] and the parameters of the receding horizon control are

R= 0.1I2, P = I2 and N = 3. The white noise added has a variance of σ2 = 0.1. The results

of the simulation are really good also with this limitation.

2.8 Simulation Results 17

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Time [s]

x
co

m
po

ne
nt

 [m
]

Reference Trajectory
Tracked Trajectory

Figure 2.5: Tracking of the x state compo-
nent using RHC with parameters R = 0.1I2

and P = I2.

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

2

2.5

Time [s]

T
ra

ck
in

g
er

ro
r

[m
]

x component
y component

Figure 2.6: Tracking error along each axes.

1 1.5 2 2.5

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

0s

88s

176s

263s

351s

x [m]

y
[m

]

Agent Position

Figure 2.7: Tracking of a circular trajectory
known with a one step delay using RHC with

parameters R= 0.1I2 and P = I2.

0 50 100 150 200 250 300 350
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time [s]

D
is

ta
nc

es
 E

rr
or

s
al

on
g

ax
es

 [m
]

Error along x axis
Error along y axis

Figure 2.8: Tracking error of a circular tra-
jectory known with a one step delay.

18 Tracking with Receding Horizon

Tracking with Two Agents

In this simulation the first agent tracks a circular trajectory and the second tracks the first

keeping a distance of 37.5 [cm] on both the axes. The result is that the second agents tracks

a circular trajectory with a different center, moved exactly of 37.5 [cm] on both the axes.

The reported results show good performances, considering also that the circular trajectory

is know with a white noise of zero mean and variance σ2 = 0.1. The parameters used are

P = 0.5I2 and R= 40I2 for both the agents. The initial conditions are (1.49,−1.05)[m] for

the first and (1.94,−1.18)[m] for the second.

0.6 0.8 1 1.2 1.4 1.6 1.8 2

−1.4

−1.2

−1

−0.8

−0.6

−0.4

0s

0s

59s

59s

118s

118s 177s

177s

236s

236s

x [m]

y
[m

]

Agent 1 Position
Agent 2 Position

Figure 2.9: Position of the two agents.

0 50 100 150 200
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Time [s]

D
is

ta
nc

es
 E

rr
or

s
al

on
g

ax
es

 [m
]

Error along x axis
Error along y axis

Figure 2.10: Distance errors between the
two agents.

2.9 Conclusion

The performances of the algorithm analysed are good also with a unit delay. Considering that

also the trajectory is known with a white noise added we can conclude that this technique is

reliable and resilient at the external noises.

3
Competition using Receding Horizon

In this chapter, we consider two agents described by a linear discrete-time dynamic system

controlled with the Receding Horizon technique. Each agent is provided with a local target,

that could be conflicting with the control objective of the others. For example the first wants

to catch the other agent, but the second wants reach a safety distance from the first. We show

that for this unconstrained system, the agents with conflicting targets, reach an equilibrium

along a line and the steady state error is finite. Otherwise if the control objectives are not

conflicting the agents will reach them and the steady state position is fixed and depends

by the initial conditions. Simulation and experimental results for a group of UGVs are also

reported The experimental tests were executed with LEGO robots and more information for

educational purposes can find here [8].

In Section 3.1, the linear discrete-time dynamic system and the control objective are

defined. In Section 3.2 is proofed that the dynamics of the competitive agents converges

along a line and also that the steady state error is finite. In Section 3.3 is proofed that the

system doesn’t admit limit cycle. In Section 3.4 is shown, when there is cooperation, that

the final position depends by the initial condition. In the Section refsec:sim are reported the

simulation results and finally, Section VIII provides conclusions.

20 Competition using Receding Horizon

3.1 Problem Formulation

We consider two agents described by the discrete LTI state equation:

si
t+1 = si

t + ui
t , i = 1, 2, (3.1)

where si
t ∈ R

n denotes the state vector, and ui
t ∈ R

n the input vector. We assume that agents

can measure each other’s state without delays.

For each agent, and for a given value of the state vector si
t at time instant t, we introduce

the following convex cost function:

Ji, j =
N i−1
∑

k=1

(‖si
t+k − s j

t + d i j‖2
P i + ‖ui

t+k‖
2
Ri), i 6= j, (3.2)

where ‖ · ‖ is the euclidean norm, i, j ∈ 1,2, N i denote the lengths of the control horizon

for each agent, P i , Ri are positive diagonal matrices, and d i j ∈ Rn are the desired distances

between the state components of the agents [13?]. The sign and modulus of d i j determine

whether the agents are competing or cooperating.

Definition 3.1.1. If di j =−d ji in cost function (3.2), then we say the agents control objective

is cooperative; otherwise, if di j 6=−d ji the control objective is considered competitive.

The agents compute their control action minimizing function (3.2) iteratively, according

to the RHC algorithm [6]:

Algorithm 3.1.1. At each time t the ith agent, having state si
t , collects information about

the state of the other agent s j
t . Assuming s j

t is constant in the N i-step prediction window, the

ith agent minimizes cost function (3.2) solving a finite horizon optimal control problem. The

optimal input vector ui
t , ui

t+1, . . . , ui
t+N is computed, and only the first element of the control

vector, ui
t is applied. This procedure is repeated at each time instant.

Problem 3.1.1. Using the RHC algorithm 3.1.1 we want to establish the steady state behavior

of system (3.1) as a function of vector di j .

3.2 Steady State Behaviour

Theorem 3.2.1. Consider the two agents described in expression (3.1), controlled using the

RHC strategy 3.1.1, without any state and input constraints. We define the agents distance:

ei j
t = si

t − s j
t (3.3)

3.2 Steady State Behaviour 21

1. If di j 6=−d ji , the dynamics of the agents converge to a line, for t →∞ the agents distance

is finite, and lim
t→+∞

ei j
t 6=−di j for each agent.

2. If di j =−d ji the agents reach a steady state position, and lim
t→+∞

ei j
t =−di j .

Proof. The objective of this proof is to find a closed form expression of the control law, in

order to evaluate the closed-loop dynamics of the two agents. Due to the simplicity of our

problem, we will not use the classical constrained optimization approach [?] leading to the

algebraic Riccati equation treatment. We now make three observations:

i) We can rewrite the state vector at time t + k explicitly as a linear function of state si
t

and as a function of the inputs from t to t + k− 1:

si
t+k = si

t + ui
t + . . .+ ut+k−1

t . (3.4)

ii) Because state components are decoupled (there are no off-diagonal elements in the

linear state dynamics), we can focus on each component separately. Thus, our problem

becomes effectively a scalar RH optimization.

iii) The minimum of the cost function can be found by simply setting to zero its derivative

with respect to the input:

∂ Ji, j

∂ ui
t+q

= 2P i
N i−1
∑

k=q

(si
t+k − s j

t + d i j) + 2Riui
t+k = 0, (3.5)

where 0≤ q ≤ N i − 1, and expression (3.4) can be directly substituted to evaluate the

minimum along the system trajectories.

Since we can focus on each scalar component separately, we can rewrite equation (3.5) in

matrix form, where each row corresponds to the qth partial derivative of the cost function,

with respect to ui
t+q. We simplify our notation as: N i = N , assuming both agents have the

same prediction horizon; Pk = p and Rk = r where Pk and Rk indicate the weights of the

kth state component. In the following equation the q− th row of the matrix represent. We

remark that i and j are indices associated to our two generic agents. We obtain a linear

system of equations:

Au= b.

22 Competition using Receding Horizon

Where:

A= 2















(N p+ r) (N − 1)p . . . p

(N − 1)p ((N − 1)p+ r) . . . p
... . . .

...

p p . . . (p+ r)















,

u=















ui
t

ui
t+1
...

ui
t+N−1















, b =















N

N − 1
...

1















2p(x j
t − x i

t − di j).

We need to: 1) Verify whether matrix A is invertible, and 2) If A is invertible, find

explicitly the first row of its inverse: this will yield the first element of the sequence of control

actions in the optimization window, which is given by the product between the first row of

the inverse of the matrix A and the column vector b. We know that the first input element

will be a function:

ui
t = α(p, r, N)(x j

t − x i
t − di j). (3.6)

Our objective is to find an expression for α. We start by rewriting matrix A as the sum of two

matrices, H + G, where:

G = 2















r 0 . . . 0

−p r . . . 0
... . . .

...

−(N − 1)p −(N − 2)p . . . r















,

H = 2p















N (N − 1) . . . 1

N (N − 1) . . . 1
... . . .

...

N (N − 1) . . . 1















.

Matrix H is lower triangular and invertible, while matrix G is singular with rank one. We

invoke the main result in [16] (theorem 7.1 reported in Appendix I), which helps us finding

the inverse of the sum of two matrices:

(G+H)−1 = G−1−
1

1+ g
G−1HG−1. (3.7)

Matrix G is also a Toeplitz matrix, so we invoke theorem 7.2 in [24] (reported in Appendix

3.2 Steady State Behaviour 23

I), which gives us a closed form for its inverse. Denoting the coefficients of the inverse of the

Toeplitz matrix G as gn, we find:

gn =
n
∑

k=1

(−1)kk!

ak+1
0

∑

k

1

k1 . . . kn!
ak1

1 . . . akn
n .

Thus, the inverse of G is:

G−1 =
1

2















1
r

0 . . . 0

g1
1
r

. . . 0
... . . .

...

gN−1 . . . g1
1
r















.

With few additional steps we can evaluate the inverse of matrix A:

g = Tr
�

HG−1
�

=
p

r

N(N + 1)
2

+ p
N−1
∑

z=1

(gz

N−z
∑

w=1

w)

G−1HG−1 =

=
p

2r















N
r
+ . . .+ gN−1

N−1
r
+ . . .+ gN−2 . . . 1

r

∗ ∗ . . . ∗
...

...
...

...

∗ ∗ . . . ∗















And finally:

(H + G)−1 =














1
2r
− p

2(1+g)r (
N
r
+ . . .+ gN−1) . . . − p

2(1+g)r2

∗ . . . ∗
...

...
...

∗ . . . ∗















Now we can evaluate coefficient α in expression (3.6), which is equal to the first row of

24 Competition using Receding Horizon

A−1 b:

α(p, r, N) =2p

¨

N

2r
−

N p

2(1+ g)r

�

N

r
+ (N − 1)g1+

. . .+ gN−1

�

−
(N − 1)p
2(1+ g)r

�

N − 1

r
+ (3.8)

. . .+ gN−2

�

− . . .−
�

p

2(1+ g)r
1

r

�«

The first inputs of the optimal control sequence for the two agents are:

ui
t = α(N , P ix , Rix)(x j

t − x i
t − di j)

u j
t = γ(N , P jx , R jx)(x i

t − x j
t − d ji)

(3.9)

Where in our notation γ is the control coefficient computed exactly as in expression (3.8),

but with weights P jx and R jx . Finally, the closed-loop dynamics of the two systems are:

x i
t+1 = x i

t + ui
t = (1−α)x

i
t +αx j

t −αdi j

x j
t+1 = x j

t + u j
t = (1− γ)x

j
t + γx i

t − γd ji

(3.10)

Recalling expression (3.3), the distance among the two agents’ states is componentwise given

by:

ei j
t+1 = (1−α− γ)e

i j
t + γd ji −αdi j . (3.11)

Boundedness of this distance is guaranteed if the sum of the controller coefficients be

bounded between 0 and 2. Thus, stability is assured if both α and γ are in the interval [0, 1].

These bounds are indeed always verified.

The lower bound can be demonstrated by multiplying (G+H)−1 by vector1T = [N N . . . N],

instead of by vector [N N − 1 . . . 1]T . We obtain:

α(N , p, r)>
N p

r
(1−

g

1+ g
)> 0.

The upper bound is also always verified; the proof is in Appendix II.

Thus, at steady state we have:

ei j = (1−α− γ)ei j + γd ji −αdi j ,

where ei j is equal to:

ei j =
γd ji −αdi j

(α+ γ)
.

3.2 Steady State Behaviour 25

We can now conclude the proof of point 1) of our Theorem. If di j 6=−d ji , after a transient

that depends by the values of α and γ, the agents distance reaches a finite value; thus, the

agents achieve a stationary regime and maintain a constant distance. This concludes the first

part of our proof.

Now we conclude the proof for point 2). If the two agents cooperate, i.e. di j =−d ji , we

have:

ei j =
α+ γ
α+ γ

di j =−di j

In this case the steady state positions of the two agents are fixed because:

ui
t =−α(N , p, r)(di j + ei j)

u j
t =−γ(N , p, r)(d ji − ei j)

the above can be true only if di j =−d ji, i.e. if the objectives are cooperative. If the agents

are competing, i.e. di j 6=−d ji , after a transient the actuation will achieve a constant non-zero

value. In a plane, for example, this means our agents will reach a stationary speed moving

along a line.

Remark 1: A cooperative problem could become competitive for small variations or errors

of the tracking objectives. If di j = d ji±ε, with ε arbitrarily small, the system does not reach a

steady state. This pitfall can be easily overcome by introducing, for instance, an exponential

decay factor (operating on a suitable time-scale) that progressively discounts the feedback

action.

In the cooperation case, where the agents reach a final equilibrium, is easy to see that

the equilibrium depends on the initial position and on the weights of cost function (3.2), as

expected in a linear quadratic problem. As an example, consider two agents on a plane with

coordinates (x , y), and take into account just the x component of the state s; the system has

the following closed-loop dynamics:





x i
t+1

x j
t+1



=





1−α α

γ 1− γ









x i
t

x j
t



+





αdi j

γd ji





The constant term can be consider like a constant input vector that we can call c, so the state

follows this law:

x t = F t x0+
t−1
∑

k=0

F t−k−1c = F t x0+ di j





−α
γ





t−1
∑

k=0

F t−k−1,

26 Competition using Receding Horizon

because di j =−d ji . Matrix F matrix admits the limit:

lim
t→∞

F t = 1wT , where wT =





γ

α+γ
α
α+γ



 ,

and wT is the right eigenvector of matrix F ; this relation holds because F is a stochastic

matrix.

3.3 Absence of Limit Cycle

We compare again our two agents componentwise, since the state dynamics are not coupled.

Corollary 3.3.1. The unconstrained discrete-time linear system (3.1) controlled with the RHC

algorithm 3.1.1 does not admit oscillatory dynamics.

Proof. A discrete-time linear system admits a limit-cycle if and only if its eigenvalues are on

the unit circle. We rewrite the system to find expressions for the eigenvalues. We considering

a generic component x of the state vector s, substituting expression (3.10):





x i
t+1

x j
t+1



=





1−α α

γ 1− γ









x i
t

x j
t



+





αdi j

γd ji





We denote the above state matrix as F , and we can compute the characteristic polynomial of

the system:

∆F (z) = det(zI − F) = (z+α− 1)(z+ γ− 1)−αγ

= z2+ z(γ+α− 2) + (1−α− γ)

If we want the eigenvalues on the unit circle the following condition must hold:

∆F (z) = z2− 2 cos(ψ)z+ 1

3.4 Agents Final Position 27

We obtain that:






1= 1−α− γ

−2 cos(ψ) = γ+α− 2







α+ γ= 0

−2 cos(ψ) = γ+α− 2







α+ γ= 0

cos(ψ) = 1

The condition cos(ψ) = 1 holds if and only if there is a root in one, indeed if we evaluate the

characteristic polynomial in one, ∆F (1) = 0. So there is an eigenvalue in one and cannot

exist complex eigenvalues. For this reason there is the absence of limit-cycles.

3.4 Agents Final Position

In the unique case where the agents reach a fixed final position is easy to see that it depends

by the initial position and by the receding horizon weights. Considering just the x component

of the state s the system has the following closed-loop dynamics:





x i
t+1

x j
t+1



=





1−α α

γ 1− γ









x i
t

x j
t



+





αdi j

γd ji





The constant term can be consider like a constant input vector that we can call c, so the state

follows this law:

x t = F t x0+
t−1
∑

k=0

F t−k−1c = F t x0+ di j





−α
γ





t−1
∑

k=0

F t−k−1

Because di j = −d ji. We can see from the last equation the dependency from the initial

condition. Moreover the matrix admits this limit:

lim
t→∞

F t = 1wT

where wT =





γ

α+γ
α
α+γ





Where wT is the right eigenvector of the matrix F , and this relation holds because F is a

stochastic matrix.

28 Competition using Receding Horizon

3.5 Simulation Results

A set of two UGVs moving in R2 have been considered and we have been simulated a kind

of cops and robbers game. The first agent, that by now we call cop, has to catch the other

agent, that we call robber, so its objective vector dCR is equal to the vector 0[m]. Instead the

robber, to be considered safe, has to reach a certain threshold dRC that we consider equal to

the vector [0.75 0.75]T[m]. For each agents we consider a finite horizon N = 3 and we

try different combination of the P and R parameters. Initial conditions for the agents were

chosen to be consistent with our experimental tests.

The dynamic of the agents is given by this equation:





x i
t+1

y i
t+1



=





1 0

0 1









x i
t

y i
t



+





uix
t

u
iy
t





Our first test is run choosing PC = 0.1I2 and RC = 20I2 for the cop, and PR = 0.1Iw
and RR = 10I2 for the robber. The initial conditions are [2.71,−2.05]m for the cop and

[2.73,−1.51]m for the robber. As shown in Figure 3.1, the steady state distance reached

among the two agents is of 0.495m and as we could guess the robber take advantage of its

faster mobility.

0 100 200 300−0.2

0

0.2

0.4

0.6

Time [s]

D
is

ta
nc

e
[m

]

Distance along x axis
Distance along y axis

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

0 s

0 s

93 s

93 s

186 s

186 s

279 s

279 s

372 s

372 s

x [m]

y
[m

]

Robber
Cop

Figure 3.1: Position of the two agents and distance between them. The RHC cost function parameters
are PC = 0.1I2,PR = 0.1I2, RC = 10I2 and RR = 20I2.

3.5 Simulation Results 29

In the second test the parameters are PC = 0.1Iw and RC = 10I2 for the cop and

PR = 0.1Iw and RR = 20I2 for the robber. The initial conditions are [2.70,−2.07]m for the

cop and [2.77,−1.58]m for the robber. The steady state distance reached among the two

agents is of [0.255]m and the results obtained is the opposite compared to the first test.

0 100 200 300−0.2

0

0.2

0.4

0.6

Time [s]
D

is
ta

nc
e

[m
]

Distance along x axis
Distance along y axis

1.6 1.8 2 2.2 2.4 2.6 2.8 3
−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

0 s

0 s

90 s

90 s

181 s

181 s

271 s

271 s

361 s

361 s

x [m]

y
[m

]

Robber
Cop

Figure 3.2: Position of the two agents and distance between them. Parameters are PC = 0.1I2,PR =
0.1I2, RC = 20I2 and RR = 10I2.

In the last competitive test we choose PC = PR = 0.5I2 and for RC = RR = 20I2. The

challenge between the two agents finish with a tie as we can see in Figure 3.3, because α = γ.

The distance between the agents is 0.375m, exactly half way for each the targets. The initial

conditions are [2.71,2.11]m for the cop and [2.89,1.63]m.

If the agents have coordinated tracking objectives (cooperative case), using the same

parameters of the last simulation we can see how the two agents reach a fixed position in

a finite time and the final positions depends by the initial conditions, that in this case are

[1.49,−1.05]m for the first agent and [2.79,−1.04]m. Results are shown in Figure 3.4.

30 Competition using Receding Horizon

1.6 1.8 2 2.2 2.4 2.6 2.8 3
−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

0 s

0 s

45 s

45 s

90 s

90 s

134 s

134 s

179 s

179 s

x [m]

y
[m

]

Robber
Cop

0 50 100 150−0.2

0

0.2

0.4

0.6

Time [s]

D
is

ta
nc

e
[m

]

Distance along x axis
Distance along y axis

Figure 3.3: Position of the two agents and distance between them. Parameters: PC = 0.5I2,PR = 0.5I2,
RC = 20I2 and RR = 20I2.

3.5 Simulation Results 31

1 1.2 1.4 1.6 1.8 2
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

0 s

0 s

35 s

35 s

69 s

69 s

104 s

104 s

138 s

138 s

x [m]

y
[m

]

Agent 1
Agent 2

0 50 100
0

0.5

1

1.5

2

Time [s]

D
is

ta
nc

e
Er

ro
r [

m
]

Error along x axis
Error along y axis

Figure 3.4: Position of the two agents and distance between them. The parameters used are
P1 = 0.5I2,P2 = 0.5I2, R1 = 20I2 and R2 = 20I2

32 Competition using Receding Horizon

3.6 Conclusion

We presented a simple RHC framework for a two-agent systems with competitive/cooperative

dynamics. Our main contributions are: 1) We find analytic solutions and establish the

possible dynamic outcomes within the system. 2) We experimentally (see next chapter) verify

our results with a LEGO robot kit, a versatile educational platform. Future research will

investigate the scalability of our results to larger teams of agents, and the inclusion of simple

estimators in the algorithms. For instance, each agent could build simple ARMA models

to predict the future moves of its neighbors or opponents, and use that information within

the finite-time RHC optimization; local predictions of other team members strategies has

been previously utilized in distributed RHC, but knowledge (rather than estimation) of other

agentsÕ models was assumed.

4
Robotic Platform and Experimental Results

The ME Group of the UCR has decided to develop an experimental platform for multiple

vehicle with the objective to test and compare different control algorithms for multi-agent

systems. In this chapter are explained the software and hardware setup of the experimental

platform, that can be used also for educational purposes, so it will be analysed all the details

and the source code can be find here [8]. In the first section there is a description of the

hardware and of the packages used, in the second is described the software architecture

that is divided in functional blocks. In the third are explained all the software details. In

the forth section there are the experimental results obtained and the comparison with the

simulations results. It is important highlight the limitations of the platform that are caused

by the technological limitations of the hardware used, starting from the LEGO NXT Brick, the

bluetooth connection and the webcam used.

4.1 Experimental Setup

The hardware used in the experiment is the following:

1. 2 LEGO NXT Robots

2. 1 LEGO NXT Brick as Bluetooth Router

34 Robotic Platform and Experimental Results

3. Laptop MacBook Pro 13”

4. Webcam Microsoft LifeCam Studio

LEGO Robots

The robots were build using the LEGO Mindstorm NXT kit. The "brain" of the robot is the

NXT Intelligent Brick, it can take from up to four sensors, it can control up to three motors

with a RJ12 cable and it also has a usb connector for connect the Brick to the PC. It has a

32bit ARM7 processor, 256Kb of flash memory, 64Kb of RAM, 8-bit AVR micro-controller, the

bluetooth support and a speaker that plays sounds up to 8kHz. Power is supplied by 6 AA

batteries in the consumer version of the kit and by a Li-Ion rechargeable battery and charger

in the educational version. The intelligent brick has also a 100x60 monochrome LCD display

and four buttons. The kit provides also three servo motors with an incremental encoder, a

light sensor, a sound sensor, a touch sensor and an ultrasonic sensor. The model that we used

is a tank based on the MULTIBOT project and the building instructions for the base model

can be found here [17].

Figure 4.1: The LEGO robots used in the experiments.

4.2 Software Architecture 35

Bluetooth Router

In order to establish a communication between the computer and the robots, an Intelligent

Brick is used like Bluetooth router. The brick receives informations from the computer through

the usb port and forward the informations to the correct robot. A simple communication

protocol was implemented that is explained in the next section. More information about the

bluetooth routing can be found here [3].

Laptop and Software

The laptop used for the test is an Apple MacBook Pro 13”, m.y. late 2010, with a 2.4 GHz

Intel Core 2 Duo, 4 Gb of RAM DDR3. All the code that is executed on the laptop is written

in MATLAB, and the version used is the 2012a. For the model estimation is used the package

ar f i t that allows to compute quickly the least square problem in order to identify the robot

motion model. This package is written by Schneider Tapio of the Caltech and the library can

be found here [23]. To communicate with the NXT Brick using the usb port the RWTH free

Mindstorm NXT Toolbox is used [20].

Webcam

The wecabm used is a Microsoft LifeCam Studio that is a 1080p HD cam, with auto Focus,

High Precision Glass Element Lens, TrueColor technology and ClearFrame technology. It is

compatible with MATLAB, and the resolution used is just 800x600 for load reasons. The solid

and flexible standing is perfect to fix the cam to the ceiling of the platform room without

using any kind of adaptor.

4.2 Software Architecture

The software architecture copies the structure of a closed loop control system. In the picture

below the plant is represented by the robot, where the input is the angular speed of the

wheels and the output is the position in the Cartesian plane and the orientation respect to the

horizon (x-axis). The output is captured by a sensor, that in our case is the vision system with

the cam. This system provides us the measurements of the state of the agents with delays

and noise. In order to solve the vision problem we used some markers to understand where

are the robots and what are their orientations. The setpoints are generated with an algorithm

based on the theory developed in the last two chapters. Finally the control is transferred

from the computer to the robots using the bluetooth communication that is handled with a

custom script.

36 Robotic Platform and Experimental Results

Robot

Vision
System

Controller Communication
System

Reference
Trajectory +

Figure 4.2: Software Architecture.

The structure described above is just a logical structure of the control system, all the code

is organized in five functional blocks that now will be described. In the pictures below the

controller block receives as input the target to reach and produces as output the position

reached. Inside the controller block there are other two functional blocks, the first is the

vision system block that when is called returns the position of the agents, the second is the

communication block that receives as input all the actuation computed by the controller and

it forwards the information to the two agents thorough the bluetooth router in a transparent

way.

Vision
Block

Communication
Block

Controller

Reference Trajectory
Generator

Main

Figure 4.3: Software Functional Blocks.

4.3 Robot Model

The robots used in the experiment can be modelled like an uncycle because are tracked and

the two drive wheels are handled independently. This kind of model is also used for a lot of

vehicles in the industry or in the common life, an important characteristic of the unicycle

is that it can rotate around his axis (e.g. using only one motor), but is also subject to a

constraint: it can’t move on the direction parallel at its wheelbase. The state vector is formed

by three parameters: the (x,y) position and the orientation θ in respect with the x-axis. The

4.3 Robot Model 37

forward kinematics is regulated by the following non linear system:









ẋ

ẏ

θ̇









=









cos(θ) 0

sin(θ) 0

0 1













v

ω



 (4.1)

We need also to control the wheels speed of the robot so the link between the angular

speed of the wheels and the linear and angular speed of the robot is provided by the following

static system:




v

ω



=





r
2

r
2

r
d
− r

d









ωR

ωL



 (4.2)

Where r is the radius of the wheel with the track and d is the wheelbase length. For the

robots r is equal to 0.016m and d to 0.135m, so the matrix is invertible and we can find the

inverse relation.

This part of the control is usually implemented into the firmware of the vehicle with a PID

controller and in this way is possible control the linear and the angular speed of the robot

knowing the equation above.

It is also useful compute the inverse kinematics, but to do it is convenient introducing a

modified version of the forward kinematics, because we need the relationship between the

robot position and the angular speed of the wheels.









ẋ

ẏ

θ̇









=









cos(θ) 0

sin(θ) 0

0 1













r
2

r
2

r
d
− r

d









ωR

ωL





=









r
2

cos(θ) r
2
cos(θ)

r
2
sin(θ) r

2
sin(θ)

r
d

− r
d













ωR

ωL



= A





ωR

ωL





(4.3)

The pseudo-inverse of A is the matrix that provide the inverse kinematics equations:





ωR

ωL



= A†









ẋ

ẏ

θ̇









(4.4)

In order to control the robot is implemented a simple controller based on a P controller.

The idea is that given a final destination the robot has to reach it (supposing that is reachable).

The first action is an alignment of the robot in the direction of the target point, after this

action the robot starts with a fixed slow linear speed and the P controller adjusts the angular

38 Robotic Platform and Experimental Results

position in order to reach the destination.

4.4 Software details

In this section are analysed all the important details of the software, first of all is analysed

the firmware of the LEGO agents, after how the communication and vision blocks work.

NXT Firmware

The firmware, developed in NXC, is the core of the robot and handles the motion. The robot

receives a setpoint composed by the two wheels’ angular speed to follow. In the firmware are

also implemented two independent speed controllers for the two wheels based on a simple P.I.

controller with an antireset-windup that avoid the drift of the integral component. The two

motors are provided of two incremental encoders and the speed is obtained with a discrete

derive of the position.

The function responsible of the motion control is the function setSpeed() that is here below.

1 void setSpeed(int wl,int wr)
2 {
3 int speed1 ,speed2 ,err1 ,err2 ,u1,u2;
4 int Ki, Kp;
5

6 \\ Controller Gains
7 Ki = 10;
8 Kp = 30;
9

10 \\ Actual angular speed
11 getSpeed(speed1 ,speed2);
12

13 \\ Error computing
14 err1 = wl - speed1;
15 err2 = wr - speed2;
16

17 \\ Integral component + antireset wind -up
18 integ1 = integ1 + err1/Ki;
19 integ2 = integ2 + err2/Ki;
20

21 if(integ1 > 100)
22 integ1 = 100;

4.4 Software details 39

23 if(integ2 > 100)
24 integ2 = 100;
25 if(integ1 < -100)
26 integ1 = -100;
27 if(integ2 < -100)
28 integ2 = -100;
29

30 \\ Control Computing
31 u1 = integ1 + err1/Kp;
32 u2 = integ2 + err2/Kp;
33

34 \\ Actuation
35 OnFwd(OUT_A , u1);
36 OnFwd(OUT_B , u2);
37

38 }

From the function getSpeed() the algorithm receives the angular speed of the wheels and

with this information is implemented a PI control with an antireset windup. Could be useful

for debugging purposes shows the controller parameters information during the motion.

The function getSpeed() computes the angular speed of the two wheels simply reading the

position using the incremental encoder in two different time instant and making a discrete

derive. In order to avoid error in the speed could be useful reset the count of the encoder

before starting a speed reading. Here there is the code.

1 int getSpeed(int &wr ,int &wl)
2 {
3 int begin1 ,begin2 ,end1 ,end2;
4

5 \\ Reset of the encoder to avoid error in the count
6 ResetTachoCount(OUT_A);
7 ResetTachoCount(OUT_B);
8

9 \\ Encoder initial position
10 begin1 = MotorRotationCount(OUT_A);
11 begin2 = MotorRotationCount(OUT_B);
12

13 \\ Wait 500 ms
14 Wait (500);
15

16 \\ Encoder final position

40 Robotic Platform and Experimental Results

17 end1 = MotorRotationCount(OUT_A);
18 end2 = MotorRotationCount(OUT_B);
19

20 \\ Speed estimation
21 wr = (end1 -begin1)*2;
22 wl = (end2 -begin2)*2;
23

24 }

Communication Block

The communication between the computer and the LEGO robots is realized using a NXT brick

as Bluetooth Router. The computer sends the messages to the Router, via USB connection

using the library provided by the RWTH Toolbox, that forwards all the messages received

using the Bluetooth connection to the correct recipient. The maximum number of connections

that the NXT Brick is able to handle is three, if there is the necessity to control more than 3

agents another brick must be used. We call MASTER the NXT Brick that works as bluetooth

router and SLAVEs the agents.

Communication Protocol

In order to communicate correctly is necessary establish a simple protocol that allows at the

robots to understand the PC packets. The computer with Matlab sends the command using

strings and the syntax is this:

NA:OA1:RS1:LS1[.OA2:RS2:LS2.OA3:RS3:LS3]

Where the fields mean:

• NA: Number of Agents, it defines the number of agents involved in the communication.

This number must be between 1 and 3.

• OAi:Operation referred to agent i, can take the values G or S, the first stands for GO

and in this case the following two fields are mandatory, the second stands for STOP

and in this case the values of others two fields are ignored, but they must be filled.

• RSi: Right Wheel Speed referred to agent i, it is considered only if the operation is

equal G and it is the set point value for the left wheel angular speed of the robot, this

must be integer because the robot doesn’t support floating point numbers.

4.4 Software details 41

• LSi: Left Wheel Speed referred to agent i, it is considered only if the operation is equal

G and it is the set point value for the left wheel angular speed of the robot, this must

be integer because the robot doesn’t support floating point numbers.

If we fill the first filed with one the following three fields are mandatory, otherwise if the first

filed is equal to 2 o 3 the following 6 or 9 fields are mandatory.

PC to MASTER Communication

In order to communicate with the Master from the PC using the USB connection is important

download and install the RWTH Toolbox for Matlab. The software written for Matlab is

based on four functions: BTconnect, BTdisconnect and BTmove. The first function establishes

the USB connection between the PC and the NXT Master Brick, the second handles the

disconnection and release the resources in a correct way.

The third function receives as input the number of robots to control, the linear speeds, the

angular speeds and the actions to take (the operations mentioned in the protocol explanation).

Using the inverse kinematic of the robot (the wheelbase and the radius of the robots are

known, equal and fixed for all the vehicles) the angular speeds of the wheels are computed

and the string command obtained filling the packet is forwarded to the blutooth router

through the usb connection.

1 function [] = BTmove(n_robot ,command ,lin_speed , ang_speed)
2

3 d = 0.135; % Wheelbase dimension
4 r = 0.016; % Wheel dimension
5

6 % Speed conversion deg -> rad
7 ang_speed = deg2rad(ang_speed);
8

9

10 % Compute the wheel angular speed from the linear and
11 % angular speed
12 cmd = sprintf(’%d’,n_robot);
13 for i=1: n_robot
14

15 w = [1/r d/(2*r) ; 1/r -d/(2*r)]*[lin_speed(i);
ang_speed(i)];

16 % wheel speed conversion rad -> deg
17 w = round(rad2deg(w));
18 cmd = strcat(cmd ,sprintf(’.%c:%d:%d’,command(i),w(1),

w(2)));

42 Robotic Platform and Experimental Results

19 end
20

21

22 % Create and send the message to the robot
23 NXT_MessageWrite(cmd ,0);
24

25 end

MASTER and SLAVE Firmware

The MASTER firmware waits packets from the computer and when it receives one, analyses

the first field that is the number of robots involved in the communication. So in according to

this number the firmware analyse the next fields and forward the submessages to the correct

agents.

The SLAVE firmware also waits for a packet and when it receives one, first analyses the

operation, if is "STOP" it waits for another action otherwise if is "GO" it proceeds to control

the wheels.

Here there are two flows diagram that describe how the firmwares work.

wait msg

extract N

forward packet/s

wait msg

OP==G

motor control

T

F

Figure 4.4: Logical Diagram of the NXT Firmware.

Vision Block

The vision software recognizes the position and the orientation of the agents. In order to

solve the task on each robot is placed a marker. The marker is a red rectangle with a small

blue square inlet. The software first of all searches the red objects in the image, it makes a

crop around the markers and looks for the blue squares. When it knows the center of the red

and blue squares it knows the position of the robot (the center of the red square) and the

orientation is given by the angle formed by the line that pass for the two given points and

4.4 Software details 43

the horizon. The area of the markers is used to recognize different agents. Here there is an

example of the marker.

The most important part in the vision software is the image filtering in order to use in the

Figure 4.5: Example of a marker.

best way the MATLAB function regionprops to find the interesting objects. At the beginning

the red component is subtracted to the gray scale frame in order to brought out the red parts.

To reduce the noise is used a median filtering. After this the image is converted from color to

a binary image and the threshold is computed by MATLAB using the function greythresth. As

last operation all the objects that count less 20 pixels are removed because can be considered

noise.

At this point calling the function regionprops the center of the markers and the box that

contains each of them are found. The last information can be used to crop the image around

the markers and repeating the filtering sequence, the blue squares that allow us to find the

orientation of the agents could be found.

The image sequences here shows how the image is filtered.

44 Robotic Platform and Experimental Results

Figure 4.6: Original
frame.

Figure 4.7: Frame af-
ter the median filter-

ing.

Figure 4.8: Frame
ready for the region-

props function.

4.5 Experimental Results

The tests performed are the same of the simulations. They are divided in two parts, the

first is the tracking with one or two agents and the second is the competitive (cooperative)

dynamic.

Tracking Tests

In the first test there is a single agent that tracks a circular trajectory, the parameters of the

receding horizon are R = 0.1I2, P = I2, N = 3 and the initial conditions are [2.70,−1.25]m .

The results obtained are really good because the tracking error is really small and also the

delay in knowing the circular trajectory is responsible of the the error.

The second tracking test is performed with two agents, the first tracks a fixed circular

trajectory, the second tracks the first agent with a distance of 0.375m. The parameters used

are for both the agents the same of the last test. he initial conditions are [1.49,−1.05]m for

the first and [1.94,−1.18]m for the second.

Competitive and Cooperative Dynamics Tests

For this tests we tried different values of the parameters in order to validate the results

obtained in the last chapter. We started using two agents with cooperative objective, the

distances between them is setted to 0.75m. The receding horizon parameters are fixed for

both the agents to P = 0.5I2 and R = 20I2. As we can see the agents reach a fixed final

4.5 Experimental Results 45

0.5 1 1.5 2 2.5
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0s

88s

175s

263s

351s

x [m]

y
[m

]

Agent

Figure 4.9: Tracking of a circular trajectory
using RHC with parameters R = 0.1I2 and

P = I2.

0 20 40 60 80 100
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time [s]

D
is

ta
nc

e
E

rr
or

 [m
]

Error along x axis
Error along y axis

Figure 4.10: Distance errors between the
two agents.

1 1.5 2 2.5

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0s

0s

118s

118s

236s

236s

353s

353s
471s

471s

x [m]

y
[m

]

Agent 1
Agent 2

Figure 4.11: Position of the two agents.

0 100 200 300 400
−0.2

0

0.2

0.4

0.6

0.8

Time [s]

D
is

ta
nc

e
E

rr
or

 [m
]

Error along x axis
Error along y axis

Figure 4.12: Tracking error of a circular tra-
jectory known with a one step delay.

46 Robotic Platform and Experimental Results

position (that depends by the initial conditions), and the distance error go to zero.

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

0 s

0 s

34 s

34 s
69 s

69 s

103 s

103 s

138 s

138 s

x [m]

y
[m

]

Agent 1
Agent 2

0 50 100
0

0.5

1

1.5

2

Time [s]

D
is

ta
nc

e
Er

ro
r [

m
]

Error along x axis
Error along y axis

Figure 4.13: Plot error of the component x of the state s. Parameters: P1 = 0.5I2,P2 = 0.5I2,
R1 = 20I2 and R2 = 20I2. A video of this experiment is available at [8], video m2.

The last three test are made with competitive dynamics. The objectives are changed to 0m

for the first agent and to 0.75m for the second. Using the same receding horizon parameters

of the last test we obtain that the distances between the agents is equal to 0.375m, that can

be considered a kind of tie. Otherwise changing the parameters to RC = 10I2, RR = 20I2, and

PC = PR = 0.1I2 we obtain that the first agent is an advantage, if we swap the R parameters

the results is the opposite.

So the experimental results confirm the theory and the simulations. The initial conditions

are the same of the simulations and the control horizon is still equal to three.

4.5 Experimental Results 47

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

0 s

0 s

93 s

93 s

186 s

186 s

279 s

279 s

372 s

372 s

x [m]

y
[m

]

0 s

0 s

93 s

93 s

186 s

186 s

279 s

279 s

372 s

372 s

Robber
Cop

0 100 200 300−0.2

0

0.2

0.4

0.6

Time [s]

D
is

ta
nc

e
[m

]

Distance along x axis
Distance along y axis

Figure 4.14: Plot error of the component x of the state s. The RHC cost function parameters are
PC = 0.1I2,PR = 0.1I2, RC = 10I2 and RR = 20I2.

1.6 1.8 2 2.2 2.4 2.6 2.8 3
−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

0 s

0 s

90 s

90 s

180 s

180 s

270 s

270 s

361 s

361 s

x [m]

y
[m

]

Robber
Cop

0 100 200 300−0.2

0

0.2

0.4

0.6

Time [s]

D
is

ta
nc

e
[m

]

Distance along x axis
Distance along y axis

Figure 4.15: Plot error of the component x of the state s. Parameters are PC = 0.1I2,PR = 0.1I2,
RC = 20I2 and RR = 10I2. A video of this experiment is available at the webpage [8], video m1.

48 Robotic Platform and Experimental Results

0 50 100 150−0.2

0

0.2

0.4

0.6

Time [s]

D
is

ta
nc

e
[m

]

Distance along x axis
Distance along y axis

1.6 1.8 2 2.2 2.4 2.6 2.8 3
−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

0 s

0 s

45 s

45 s

90 s

90 s

134 s

134 s

179 s

179 s

x [m]

y
[m

]

Robber
Cop

Figure 4.16: Plot error of the component x of the state s. Parameters: PC = 0.5I2,PR = 0.5I2,
RC = 20I2 and RR = 20I2.

5
Appendix A

Theorem 5.0.1. Let G and G+H non singular matrices where H is a matrix of rank one. Let

g = Tr(HG−1). Then g 6= 1 and

(G+H)−1 = G−1−
1

1+ g
G−1HG−1 (5.1)

Theorem 5.0.2. Define an = 0 if n< 0 and assume that a0 6= 0.Let

TN = (ar−s)
N
r,s=1, N = 1,2, . . .

be the family of lower triangular Toeplitz matrices generated by the formal power series

f (z) =
N
∑

n=0

anzn.

Calling gn the coefficients of the inverse of the Toeplitz matrix, they are equal to:

gn =
n
∑

k=1

(−1)kk!

ak+1
0

∑

k

1

k1 . . . kn!
ak1

1 . . . akn
n

where the
∑

k is over all partitions of k as a sum of non-negative integers k1 . . . kn such that

50 Appendix A

k1+ k2+ . . .+ kn = k and k1+ 2k2+ . . .+ nkn = n.

6
Appendix B

Theorem 6.0.3. Given the linear system















(N p+ r) (N − 1)p . . . p

(N − 1)p ((N − 1)p+ r) . . . p
... . . .

...

p p . . . (p+ r)





























α1

α2
...

αN















= p















N

N − 1
...

1















where N ∈ N and p, q ≥ R+ then α1 ≤ 1.

Proof. Using the Cramer’s rule:

α1 =

det















N p (N − 1)p . . . p

(N − 1)p (N − 1)p+ r . . . p
... . . .

...

p p . . . p+ r















det















N p+ r (N − 1)p . . . p

(N − 1)p ((N − 1)p+ r) . . . p
... . . .

...

p p . . . (p+ r)















=
A(N)
B(N)

52 Appendix B

Using the induction principle:

Base case: for N = 2

det(A(2)) = det





2p p

p p+ r



= p2+ 2pr

det(B(2)) = det





2p+ r 1

p p+ r



= p2+ 3pr + r2

So det(B(2))> det(A(2)).

Inductive Step: if det(B(N − 1))> det(A(N − 1)) hold then:

det(A(N)) = det















N p (N − 1)p . . . p

(N − 1)p (N − 1)p+ r . . . p
... . . .

...

p p . . . p+ r















= N p det(B(N − 1)) + c(N , p, r)

det(B(N)) = det















N p+ r (N − 1)p . . . p

(N − 1)p ((N − 1)p+ r) . . . p
... . . .

...

p p . . . (p+ r)















= (N p+r)det(B(N−1))+c(N , p, r)

So det(B(N))− det(A(N)) = r det(B(N − 1))≥ 0→ α1 ≤ 1.

7
Appendix C

Theorem 7.0.4. A second order real polynomial has all the roots on the unit circle if can be

written in this way:

f (x) = x2− 2 cos(ψ)x + 1

Where θ identify the angle of the roots.

Proof. We can write the second order polynomial with two roots in the unit circle in this

way:

f (x) = (x − θ − jω)(x − θ + jω) θ ,ω ∈ R

Where the condition θ2+ω2 = 1 holds because the roots are on the unit circle.

We also can define ψ like:

ψ=































arctan(ω
θ
) θ > 0

arctan(ω
θ
) +π ω≥ 0 θ < 0

arctan(ω
θ
)−π ω< 0 θ < 0

π
2

ω> 0 θ = 0

−π
2

ω< 0 θ = 0

Now we can rewrite the polynomial, remembering the Euler representation of a complex

54 Appendix C

number θ + jω= e jψ:

f (x) = x2− (θ − jω+ θ + jω)x + (θ2+ jθω− jθω+ω2)

= x2− (e jψ+ e− jψ)x + (θ2+ω2)

= x2− 2cos(ψ)x + 1

8
Acknowledgement

This project would not have been possible without the support of several people who, in one

way or another, contributed to its completion. I would like to express my gratitude to all

those people to give me the possibility to complete this thesis.

I am deeply indebted to my supervisor, Elisa Franco,for all her advices, her presence and

her guidance during all my time in Riverside. Elisa is an excellent teacher, a brilliant scientist

and a very educated and witty woman.

Thanks to my Italian supervisor, prof. Luca Schenato, for his unbelievable patience, for

answering to all my questions and doubts with the fastest and clearest answers.

I wish to acknowledge Alessandro Beghi that has given me the possibilities to go in

California at the UCR.

Thanks to my best classmates during my Bachelor and Master: Diego, Alberto, Daniele

and Diane. Especially for the patience when I was nervous or sad, and for always listening

my never-ending problems. Without them I would never reached these results.

Thanks to Robin, Yelena and Adam, they took care of my mental sanity when I was in

56 Acknowledgement

Riverside, I will never forget all the funny moments spent together.

I want to say thank you to my ARCADE mates: Marco, Fabio, Franz, Fren, Livia and

Gabriele for the incredible adventure. I am so happy that our friendship is not ended with

(or like?) the experiment, even if I guess that it cannot survive to another joke.

It is mandatory mention Simone. He has always been able to stand and support me with

patience and understanding. Without you everything would have been much more harder.

Last but not least, many thanks to my family: without their support, I should have never

been where I am now; thank you, for having always struggled to give me the best. In

particular I want to say thank you to my parents, Massimo and Giuliana, for all the advices,

to my sister Valentina for the patience to correct my bad english, to my uncle Mario for

the mail when I was in California and to my uncles Sergio and Marco for the nights spent

together playing guitar.

References

References 59

[1] Azevedo C., Poignet P., and Espiau B. Moving horizon control for biped robots

without reference trajectory. In Robotics and Automation, 2002. Proceedings. ICRA ’02.

IEEE International Conference on, 2002.

[2] Beck R., Richert F., Bollig A., Abel D., Saenger S., Neil K., Scholt T., and Noreikat

K.-E. Model predictive control of a parallel hybrid vehicle drivetrain. In Decision

and Control, 2005 and 2005 European Control Conference. CDC-ECC ’05. 44th IEEE

Conference on, 2005.

[3] Benedettelli D. Matlab bluetooth router, 2009. URL http://robotics.
benedettelli.com/BT_router.htm.

[4] Borrelli F., Bemporad A., Fodor M., and Hrovat D. An mpc/hybrid system approach

to traction control. Control Systems Technology, IEEE Transactions on, may 2006.

[5] Borri A., Bopardikar S. D., Hespanha J. P., and Benedetto M. D. D. Hide and seek

with directional sensing. CoRR, 2011.

[6] Camacho E. F. and Bordons C., editors. Model predictive control. Springer-Verlag,

1999.

[7] Camponogara E., Jia D., Krogh B., and Talukdar S. Distributed model predictive

control. Control Systems, IEEE, feb 2002.

[8] Carron A. Lego platform. Technical report, UCR, 2012.

http://competitivedyanamics.altervista.org.

[9] Clarke D. W., Mohtadi C., and Tuffs P. S. Generalized predictive control - part i. the

basic algorithm. Automatica, 1987.

[10] Cutler C. and Ramakar B. Dynamic matrix control. Proceedings of the Joint Automatic

Control Conference, San Francisco, 1980.

[11] Dunbar W. and Murray R. Distributed receding horizon control for multi-vehicle

formation stabilization. Automatica, 42(4):549–558, 2006.

[12] Dunbar W. B. and Desa S. Distributed model predictive control for dynamic supply

chain management, 2005.

[13] Franco E., Parisini T., and Polycarpou M. Design and stability analysis of cooperative

receding–horizon control of linear discrete–time agents. International Journal on Robust

and Nonlinear Control, 17:982–1001, 2007.

http://robotics.benedettelli.com/BT_router.htm
http://robotics.benedettelli.com/BT_router.htm

60

[14] Franz R., Milam M., and Hauser J. Applied receding horizon control of the caltech

ducted fan. In American Control Conference, 2002. Proceedings of the 2002, 2002.

[15] Hespanha J., Kim H. J., and Sastry S. Multiple-agent probabilistic pursuit-evasion

games. In Decision and Control, 1999. Proceedings of the 38th IEEE Conference on, 1999.

[16] Miller K. S. On the inverse of the sum of matrices. Mathematics Magazine, 1981.

[17] Projects N. Multi-bot. URL http://www.nxtprograms.com/NXT2/multi-bot/
index.html.

[18] R. R. Bitmead M. G. and Wertz V. Adaptive optimal control: The thinking man’s gpc.

[19] Richalet J., Rault A., Testud J., and Papon J. Model predictive heuristic control:

Applications to industrial processes. Automatica, 1978.

[20] RWTH . Mindstorm nxt toolbox, 2012. URL http://www.mindstorms.
rwth-aachen.de/.

[21] Shimizu T., Igakura T., Ishibashi R., and Kojima A. A modeling of pedestrian behav-

ior based on hybrid systems approach; an analysis on the direction of confluence. In

SICE Annual Conference (SICE), 2011 Proceedings of, 2011.

[22] Skogestad S. Control structure design for complete chemical plants. Computers and

Chemical Engineering, 2004.

[23] Tapio S. Arfit: Multivariate autoregressive model fitting, 2001. URL http://www.
gps.caltech.edu/~tapio/arfit/.

[24] Trench W. F. Inverses of lower triangular toeplitz matrices. 1960.

[25] Vidal R., Shakernia O., Kim H., Shim D., and Sastry S. Probabilistic pursuit-evasion

games: theory, implementation, and experimental evaluation. Robotics and Automation,

IEEE Transactions on, 2002.

http://www.nxtprograms.com/NXT2/multi-bot/index.html
http://www.nxtprograms.com/NXT2/multi-bot/index.html
http://www.mindstorms.rwth-aachen.de/
http://www.mindstorms.rwth-aachen.de/
http://www.gps.caltech.edu/~tapio/arfit/
http://www.gps.caltech.edu/~tapio/arfit/

	Abstract
	Introduction
	Tracking with Receding Horizon
	Problem Formulation
	Autoregressive Model Estimation
	Trajectory Prediction
	Trajectory Representation
	Cost Function
	Tracking stability
	Tracking Performances with unit delay
	Simulation Results
	Parameter Estimation
	Prediction Analysis
	Tracking without delays
	Tracking with unit delay
	Tracking with Two Agents

	Conclusion

	Competition using Receding Horizon
	Problem Formulation
	Steady State Behaviour
	Absence of Limit Cycle
	Agents Final Position
	Simulation Results
	Conclusion

	Robotic Platform and Experimental Results
	Experimental Setup
	LEGO Robots
	Bluetooth Router
	Laptop and Software
	Webcam

	Software Architecture
	Robot Model
	Software details
	NXT Firmware
	Communication Block
	Communication Protocol
	PC to MASTER Communication
	MASTER and SLAVE Firmware

	Vision Block

	Experimental Results
	Tracking Tests
	Competitive and Cooperative Dynamics Tests

	Appendix A
	Appendix B
	Appendix C
	Acknowledgement

	References

