

Current grid structure

- Households, buildings, factories are connected to a local grid via "dumb" meters
- Energy can be purchased from different suppliers (ENEL, Sorgenia, etc..)
- Ownership and maintenance of power lines are decoupled from energy vendors
- Each neighbors or group of consumers is connected through the lowvoltage residential grid via a point of common coupling (PCC)
- Most nodes are passive (consumers only).
- Few nodes are also producers, mainly PV. Energy vendors are required by law to buy all PV energy produced.
- No node is intelligent, i.e. no control is allowed at the node level.
- No energy storage is available in these local grids.

Future grid: Smart Micro-grid

Future grid: Smart Micro-grid (I)

- The power lines and physical infrastructure will not be changed.
- Many houses will be provided with green energy production (PV, wind, biomass) and energy storage.
- Some households, buildings, factories will remain connected to the micro grid via a "dumb" meter (non controllable nodes).
- Many dumb meters will be substituted by smart meters called energy gateways.
- PCC will be provided with an smart device called Utility Interface.

Future grid: Smart Micro-grid (I)

- Energy gateways are electronic devices capable of
 - Measure physical quantities (active/reactive power, voltage amplitude, relative phase, etc..)
 - Communicate with other energy gateways and with utility interface
 - Control of local power production/consumption/storage within the nodes
 - Optimize load balancing and other grid-wide objectives
- The Utility Interface is an electronic device capable of
 - Measure physical quantities (active/reactive power, voltage amplitude, relative phase, etc..)
 - Communicate with energy gateways of the micro grid and with utility interface units of other micro grids.
 - Coordinate (directly or indirectly) energy gateways to achieve grid-wide objectives
 - Forecast grid-wide energy demand and production

Future grid: Smart Micro-grid (III)

- Communication can occur via the power lines (PLC) or via traditional means (Ethernet, Internet, Wifi).
- The communication network topology does not necessarily coincide with the power network topology .

Scientific challenges & benefits

Challenge	Potential benetifs
Real-time sensing and sychronization	Coordinated and optimized grid management
Desing of standardized interfacing for EG and UI and interoperability	Plug&Play system structure for easing the deployment and tuning phase
On-line grid parameter identification and self-configuration	Adaptation to time-varying grid and units features
Distributed estimation and control	Scalability and Robustness to components failures
Grid-wide supply/demand energy forecasting	Better use of the grid and of the renewable energy sources
Grid Stability with inverter based sources	Islanded operation

Drivers of our project

- Provide a distributed market-based architecture for the control and management of the Smart Micro Grids providing a business model of the proposed system architecture
- Provide a distributed design paradigm so that Energy Gateways (EGs)
 are self-configurable, have automatic discovery of neighbors EGs, can
 identify local parameters of the smart-grid
- Provide a retrofitting strategy so that the physical power network does not need to be changed, but EGs can provide additional capabilities to optimize energy production/consumption both at the node level and at the grid-level
- Provide a design using off-the-shelf HW and SW(?) technology. The novelty will be totally in the ICT development
- Provide a standardized interface suitable to plug-and-play. In this way EGs can be produced, installed and managed by potentially different operators and energy vendors.

Project strengths

- Market-based design paradigm for a business oriented system architecture
- Distributed design paradigm for the control, estimation optimization and grid identification for a scalable system architecture
- Standard based design paradigm for a plug and play system architecture
- Off-the-shelf technology and retrofitting for increasing (strengthening?) the impact of the proposed system architecture

Utility Interface - functional diagram

Energy Storage

Three phase distribution infrastructure

Power Electronics

System Policies:

- Aggregator (enabling distributed customers Energy management & Demand Response)
- Managing Islanded Operation
- Ancillary Services to Grid
- In a mature Smart Grid scenario: key player to mediate between customers and market

I/O INTERFACE

Communication with μ-Grid and main utility

Concept idea: microgrid to appear as an 'ideal' programmable load

