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1 Activity goal

The purpose of this laboratory activity is to design and test a longitudinal state–space controller
for the two–wheeled balancing robot (also referred as “two–wheeled inverted pendulum robot”, or
“Segway–like robot”) available in laboratory. The controller is designed to simultaneously stabilize
the robot body to its upward vertical position, and the robot base to a desired longitudinal position
set-point. The design is performed by resorting to a simplified model of the robot dynamics, obtained
by assuming that the motion occurs along a straight line (i.e. the lateral or heading–angle dynamics
is ignored).

2 Analytical model of the balancing robot

A mathematical model for the longitudinal dynamics of the balancing robot is derived in this section.
The model is valid under the simplifying assumption that the robot moves along a straight line,
namely no lateral motion occurs (i.e. the heading–angle is constant).

2.1 Mechanical model

The two–wheeled balancing robot can be represented as a multi–body system that comprises the
following rigid bodies (see also Fig. 1):

• Wheels (left/right).

• DC gearmotor rotors (left/right).

• Robot body. It comprises the robot chassis (includes all the electronic boards and the motor
supporting brackets), the DC gearmotor stators (left/right) and the battery.

The following reference frames are introduced to describe the robot structure and configuration (see
also Fig. 1–4):

• Body frame. The frame is located on the wheels rotation axis, and is centered in the midpoint
between the two wheels. The frame is rigidly attached with the robot chassis. Its y–axis is
directed along the wheel rotation axis, and points toward the left wheel. The z–axis passes
through the body Center–of–Mass (CoM), and points toward it. The x–axis direction and
orientation is determined by the right–hand rule. The body frame is denoted with tbu.
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• Vehicle frame. The frame center and y–axis are the same as the body frame. However,
the frame is not rigidly attached with the robot body; instead, its z–axis is always oriented
oppositely to the acceleration of gravity. The x–axis direction and orientation is determined
by the right–hand rule. The vehicle frame is denoted with tvu.

• World (or earth) frame. Its pose (position and orientation) is ground–fixed, and coincides with
the initial pose of the vehicle frame. The world frame is denoted with tou.

• Wheel frames (left/right). Each frame is rigidly attached with the wheel body, and centered
on its CoM. The axes are initially aligned with those of the vehicle frame. The left and right
wheel frames are denoted with, respectively, tw, lu and tw, ru.

• Rotor frames (left/right). Each frame is rigidly attached with the rotor body, and centered on
its CoM. The axes are initially aligned with those of the vehicle frame. The left and right rotor
frames are denoted with, respectively, trot, lu and trot, ru.

The geometrical and inertial parameters of each body (and its possible subparts) are provided in
Tab. 1. Note that:

• The masses of the DC gearmotor rotor and stator are estimated as, respectively, the 35% and
65% of the whole motor mass (equal to mmot “ 215 g).

• The total mass of the robot body is computed as the sum of the chassis, battery and motor
stators masses, namely

mb “ mc ` mbatt ` 2mstat (1)

• The stator CoM position has been determined after noting (experimentally) that the motor
CoM is displaced by 6 mm off the geometrical center, in the direction of motor gearbox.

• The body CoM z–axis coordinate zbb in the body frame is determined as follows

zbb “
1
mb

´

mc z
b
c ` mbatt z

b
batt ` 2mstat z

b
stat

¯

(2)

The other two coordinates, are equal to zero because of geometrical symmetry reasons.

• The Moments–of–Inertia (MoI) of both the robot chassis and battery are determined by as-
suming that the bodies are solid parallelepipeds with uniform mass distribution. They are
computed with respect to a frame that is centered on the corresponding body CoM, and has
axes aligned with, respectively, the parallelepiped width, height and depth directions, namely:

Ixx “
m

12
`

w2 ` h2˘ , Iyy “
m

12
`

d2 ` h2˘ , Izz “
m

12
`

w2 ` d2˘ (3)

where w, h and d are the parallelepiped dimensions (width, height and depth), and m the body
mass.

• The MoI of both the wheel and DC gearmotor rotor/stator are determined by assuming that the
bodies are solid cylinders with uniform mass distribution. They are computed with respect to a
frame that is centered on the corresponding body CoM, and has axes aligned with, respectively,
the cylinder height and radial directions, namely:

Ixx “ Izz “
m

12
`

3r2 ` h2˘ , Iyy “
mr2

2 (4)
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Figure 1: Front view.
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‚ Robot body

Center–of–Mass coords wrt body frame tbu xbb, y
b
b, z

b
b 0, 0, 46.05 [mm]

Mass mb 1.06 [kg]
Principal Moments–of–Inertia Ib,xx, Ib,yy, Ib,zz 4.22, 2.20, 2.65 [gm2]

ë Robot chassis

Dimensions (width, height, depth) wc, hc, dc 160, 119, 80 [mm]
Center–of–Mass coords wrt body frame tbu xbc, y

b
c, z

b
c 0, 0, 80 [mm]

Mass mc 456 [g]
Principal Moments–of–Inertia Ic,xx, Ic,yy, Ic,zz 1.5, 0.78, 1.2 [gm2]

ë Battery

Dimensions (width, height, depth) wbatt, hbatt, dbatt 136, 26, 44 [mm]
Center–of–Mass coords wrt body frame tbu xbbatt, y

b
batt, z

b
batt 0, 0, 44 [mm]

Mass mbatt 320 [g]
Principal Moments–of–Inertia Ibatt,xx, Ibatt,yy, Ibatt,zz 0.51, 0.07, 0.06 [gm2]

ë DC gearmotor stator

Dimensions (height, radius) hstat, rstat 68.1, 17 [mm]
Center–of–Mass coords wrt body frame tbu xbstat, y

b
stat, z

b
stat 0, ˘52.1, ´7 [mm]

Mass mstat 139.75 [g]
Principal Moments–of–Inertia Istat,xx “ Istat,zz, Istat,yy 0.064, 0.02 [gm2]

‚ DC gearmotor rotor

Dimensions (height, radius) hrot, rrot 30.7, 15.3 [mm]
Center–of–Mass coords wrt body frame tbu xbrot, y

b
rot, z

b
rot 0, ˘42.7, ´7 [mm]

Mass mrot 75.25 [g]
Principal Moments–of–Inertia Irot,xx “ Irot,zz, Irot,yy 0.01, 0.009 [gm2]

‚ Wheels

Dimensions (height, radius) hw, rw 26, 34 [mm]
Center–of–Mass coords wrt body frame tbu xbw, y

b
w, z

b
w 0, ˘100, 0 [mm]

Mass mw 50 [g]
Principal Moments–of–Inertia Iw,xx “ Iw,zz, Iw,yy 0.017, 0.029 [gm2]

Table 1: Geometrical and inertial nominal parameters.
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where h and r are the cylinder dimensions (height and radius), and m the body mass.

• The MoI of the robot body are determined with respect to a reference frame (tb1u) centered
on the robot body CoM, and aligned with the body frame tbu. They are computed by resorting
to the Huygens–Steiner theorem (or parallel axis theorem), which states that the moment of
inertia I 1 of a body rotating about an axis z1 displaced from the body CoM by a distance d
is equal to I 1 “ I `md2, where I is the body moment of inertia with respect to an axis z
parallel to z1 and passing through the body CoM. It holds that:

Ib,xx “ Ic,xx ` mc pz
b
b ´ z

b
cq

2 ` Ibatt,xx ` mbatt pz
b
b ´ z

b
battq

2 ` ¨ ¨ ¨

¨ ¨ ¨ ` Istat,xx ` mstat

”

pybb ´ y
b
stat,rq

2 ` pzbb ´ z
b
stat,rq

2
ı

` ¨ ¨ ¨

¨ ¨ ¨ ` Istat,xx ` mstat

”

pybb ´ y
b
stat,lq

2 ` pzbb ´ z
b
stat,lq

2
ı

Ib,yy “ Ic,yy ` mc pz
b
b ´ z

b
cq

2 ` Ibatt,yy ` mbattpz
b
b ´ z

b
battq

2 ` ¨ ¨ ¨

¨ ¨ ¨ ` 2 Istat,yy ` 2mstat pz
b
b ´ z

b
statq

2

Ib,zz “ Ic,zz ` Ibatt,zz ` 2 Istat,zz ` 2mstat py
b
statq

2

(5)

To describe the robot configuration, the following set of generalized coordinates is introduced (see
also Fig. 4):

• robot position pov “ pxv, yv, zvq : coordinates of the vehicle frame origin with respect to the
world frame.

• robot tilt angle ϑ : pitch angle of the body frame with respect to the vehicle frame.

• wheels angles ϑl and ϑr : pitch angle of the wheel frame with respect to the vehicle frame.

Some additional coordinates are introduced to ease the derivation of the dynamical model:

• robot heading angle ψ : yaw angle of the vehicle frame with respect to the world frame.

• rotor angles ϑrot,l and ϑrot,r : pitch angle of the rotor frames with respect to the vehicle frame.

However, these latter coordinates are not independent variables. In fact, they are directly related
to the previously defined generalized coordinates because of the presence of the following kinematic
constraints:

• gearbox mechanical coupling : let

∆ϑl “ ϑl ´ ϑ , ∆ϑrot,l “ ϑrot,l ´ ϑ (6)

denote the angular displacements of the left wheel and rotor with respect to the body frame.
Since the motor stator is rigidly attached to the body frame, then ∆ϑrot,l and ∆ϑl are the
angles by which the rotor and the output shaft of the gearmotor rotate with respect to the
stator. The mechanical coupling due to the gearbox imposes that

∆ϑrot,l “ N ∆ϑl (7)

where N denotes the gearbox ratio. By replacing (7) within (6), it follows that:

ϑrot,l “ ϑ ` N pϑl ´ ϑq (8)
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A similar expression holds for the right rotor angle ϑrot,r.

• pure rolling and no side–slip wheel constraints: it is assumed that the velocity of the center
of the wheel is parallel to the wheel sagittal plane (no side–slip condition) and is proportional
to the wheel rotation velocity (pure rolling condition). It is immediate to verify that these
conditions imply that:

vl “ r 9ϑl , vr “ r 9ϑr , w 9ψ “ vr ´ vl (9)

where w “ 2|ybw| is the distance between the two wheel CoM, r is the wheel radius, and vl and
vr the left and right wheel velocities (parallel to the wheel sagittal plane, and hence orthogonal
to the wheels axle). From (9) it follows that:

9ψ “
r

w

´

9ϑr ´ 9ϑl

¯

ñ ψ “ ψp0q ` r

w
pϑr ´ ϑlq (10)

where ψp0q “ 0 because the vehicle and world frame are aligned at t “ 0.

In this handout, the analysis is restricted to the longitudinal dynamics only, provided that the robot
moves along a straight line, i.e. the heading angle ψ is a constant. From (10), this is equivalent to
state that the two wheels angles ϑl and ϑr are always identical: in the following, γ will be used to
denote the common value of the two wheels angles. Without loss of generality, it can be assumed
that ψ “ 0, so that yv “ 0 and the motion remains confined on the xz–plane of the world frame
tou. On such plane, the robot dynamics is equivalent to that of a planar robot with a single wheel
and a single motor. With respect to the two–wheeled configuration, both the wheel/rotor inertial
parameters and the motor torque are doubled (note that in order to keep a straight motion, it is
required that the left and right motor torques are always identical). This planar model will be adopted
in the following for the derivation of the Equations–of–Motion (EoM) of the longitudinal dynamics.
To further simplify the analysis, it will be assumed that the robot moves on a horizontal flat surface
(i.e. the gravity vector is perpendicular to the ground surface), so that zv “ 0 and, because of the
pure rolling condition imposed to the wheels, xv “ rγ.

The Equations–of–Motion are derived by using a Lagrangian approach. This requires first to
obtain the kinematics equations for each body in the planar multi–body system. For such purpose,
the following notation is introduced:

• pba “
“

xba, z
b
a

‰T : position vector of point a, expressed with respect to frame tbu. If tbu is the
world frame tou, then the superscripts in the position coordinates will be omitted.

• rca,b “
”

xca,b, z
c
a,b

ıT
: displacement vector from point a to point b, expressed with respect to

frame tcu. It holds that:
rca,b “ pcb ´ pca (11)

• Rb
a : rotation matrix of frame tau with respect to frame tbu. If ϑ is the angle by which the

frame tau is rotated with respect to frame tbu, then the rotation matrix is equal to

Rb
a “

«

cosϑ sinϑ
´ sinϑ cosϑ

ff

(12)

The derivation of the kinematics equations for each body in the planar multi–body system is reported
below:
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• Robot body kinematics. Let pov “ rr γ, 0sT be the position of the vehicle frame with respect
to world frame, pbCb

“ r0, lsT with l fi zbb the position of the robot body CoM with respect
to the body frame, and

Ro
b “

«

cosϑ sinϑ
´ sinϑ cosϑ

ff

(13)

the rotation matrix of body frame with respect to world frame. Then, the position vector
poCb

“ rxCb
, zCb

sT of the robot body CoM Cb with respect to the world frame is equal to:

poCb
“ pov ` rov,Cb

“ pov ` Ro
b p

b
Cb
“

«

r γ ` l sinϑ
l cosϑ

ff

(14)

The linear velocity vector 9poCb
“ r 9xCb

, 9zCb
sT of the robot body CoM with respect to world

frame is therefore equal to:

9poCb
“ 9pov `

dRo
b

dt
pbCb

` Ro
b 9p

b
Cb
“

«

r 9γ ` l cosϑ 9ϑ

´ l sinϑ 9ϑ

ff

(15)

• Wheel kinematics. The position vector poCl
“ rxCw , zCw s

T of the single–wheel CoM Cw with
respect to the world frame is equal to

poCw
“ pov ` rov,Cw

“ pov “

«

r γ

0

ff

(16)

since rov,Cw
“ r0, 0sT . The linear velocity vector 9poCw

“ r 9xCw , 9zCw s
T is therefore equal to

9poCw
“ 9pov “

«

r 9γ

0

ff

(17)

• Rotor kinematics. Let pbCrot
“ r0, zbrotsT be the position of the single–rotor CoM Crot with

respect to the body frame. Then, the position vector poCrot
“ rxCrot , zCrots

T of the same CoM
with respect to world frame is equal to:

poCrot
“ pov ` rov,Crot

“ pov ` Ro
b p

b
Crot

“

«

r γ ` zbrot sinϑ
zbrot cosϑ

ff

(18)

The linear velocity vector 9poCrot
“ r 9xoCrot

, 9zoCrot
sT of the rotor CoM with respect to world frame

is therefore equal to:

9poCrot
“ 9pov `

dRo
b

dt
pbCrot

` Ro
b 9p

b
Crot,l

“

«

r 9γ ` zbrot cosϑ 9ϑ

´ zbrot sinϑ 9ϑ

ff

(19)

For the application of the Lagrangian approach, it is necessary to compute the Lagrangian function:

L “ T ´ U (20)

which depends on the kinetic energy T and potential energy U of the whole multi–body system. These
are in turn equal to the sum of the kinetic and potential energies of every single body composing the
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planar multi–body system, namely

T “ Tb ` Tw ` Trot and U “ Ub ` Uw ` Urot (21)

The derivation of every single kinetic and potential energy contributions is reported below:

• Robot body kinetic and potential energies. The kinetic energy of the robot body is equal to:

Tb “
1
2 mb

`

9poCb

˘T `
9poCb

˘

`
1
2 Ib,yy

9ϑ2

“
1
2 mb r

2 9γ2 `
1
2
`

Ib,yy `mb l
2˘ 9ϑ2 ` mb r l cosϑ 9γ 9ϑ

(22)

where both the translational kinetic energy of the CoM and the rotational kinetic energy of the
body with respect to its CoM have been taken into account. The potential energy is equal to:

Ub “ mb g zCb
“ mb g l cosϑ (23)

• Wheel kinetic and potential energies. The kinetic energy of the single–wheel is equal to:

Tw “
1
2 p2mwq

`

9poCw

˘T `
9poCw

˘

`
1
2 p2Iw,yyq 9γ

2

“
`

Iw,yy `mwr
2˘ 9γ2

(24)

The potential energy is instead equal to Uw “ p2mwq g zCw “ 0.

• Rotor kinetic and potential energies. Let ϑrot “ ϑ`N pγ ´ ϑq denote the angular position of
the single–rotor. Then, the kinetic energy is equal to:

Trot “
1
2 p2mrotq

`

9poCrot

˘T `
9poCrot

˘

`
1
2 p2Irot,yyq

9ϑ2
rot

“
`

N2Irot,yy `mrot r
2˘ 9γ2 `

”

p1´Nq2Irot,yy `mrotpz
b
rotq

2
ı

9ϑ2 ` ¨ ¨ ¨

¨ ¨ ¨ ` 2
”

Np1´NqIrot,yy ` mrot r z
b
rot cosϑ

ı

9γ 9ϑ

(25)

The potential energy is equal to:

Urot “ p2mrotq g zCrot “ p2mrotq g z
b
rot cosϑ (26)

The Lagrangian function is therefore equal to:

L “

„

Iw,yy ` N2 Irot,yy `

ˆ

1
2 mb ` mw ` mrot

˙

r2


9γ2 ` ¨ ¨ ¨

¨ ¨ ¨ `

„

1
2 Ib,yy ` p1´Nq2 Irot,yy `

1
2 mb l

2 ` mrotpz
b
rotq

2


9ϑ2 ` ¨ ¨ ¨

¨ ¨ ¨ `

”

2N p1´Nq Irot,yy `
´

mb l ` 2mrot z
b
rot

¯

r cosϑ
ı

9γ 9ϑ ´ ¨ ¨ ¨

¨ ¨ ¨ ´

´

mb l ` 2mrot z
b
rot

¯

g cosϑ

(27)
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Gearbox viscous friction coefficient (at output shaft) B 25ˆ 10´3 Nm/(rad/s)
Wheel viscous friction coefficient Bw 1.5ˆ 10´3 Nm/(rad/s)

Table 2: Viscous friction nominal parameters.

The Equations-of–Motion describing the longitudinal dynamics of the balancing robot are obtained
by evaluating the following Lagrange equations:

d

dt

BL
B 9γ

´
BL
Bγ

“ ξγ

d

dt

BL
B 9ϑ

´
BL
Bϑ

“ ξϑ

(28)

where ξγ and ξϑ are the generalized forces (torques) associated with the generalized coordinates γ
and ϑ. Each generalized force is determined by considering all the forces/torques, either external
(e.g. actuation forces/torques, external disturbances, etc.) and nonconservative (e.g. frictional
forces/torques), that perform a mechanical work on the corresponding generalized coordinate.
In the balancing robot example, the contributions to be considered are the motor torque τ generated
at the output shaft, and the two dominant viscous friction torques

τ 1f “ B p 9γ ´ 9ϑq and τ2f “ Bw 9γ (29)

The former is due to the gearmotor internal friction, and is proportional to the rotation speed of the
motor output shaft with respect to the stator. The latter is instead the viscous friction torque acting
on the rolling wheel, and is proportional to the wheel speed. By considering that these contributions
act identically on both the left and right sides, it follows that:

ξγ “ 2 τ ´ 2 τ 1f ´ 2 τ2f “ 2τ ´ 2 pB `Bwq 9γ ` 2B 9ϑ

ξϑ “ ´2τ ` 2τ 1f “ ´2τ ` 2B 9γ ´ 2B 9ϑ

(30)

The estimated values of the viscous friction coefficients B and Bw are reported in Tab. 2.
After replacing (27) and (30) within (28), the following equations–of–motion finally result for the
longitudinal dynamics:

“

2 Iw,yy ` 2N2 Irot,yy ` pmb ` 2mw ` 2mrotq r
2‰ :γ ` 2 pB `Bwq 9γ ` ¨ ¨ ¨

¨ ¨ ¨ `

”

2N p1´Nq Irot,yy `
´

mb l ` 2mrot z
b
rot

¯

r cosϑ
ı

:ϑ ´ 2B 9ϑ ´ ¨ ¨ ¨

¨ ¨ ¨ ´

´

mb l ` 2mrot z
b
rot

¯

r sinϑ 9ϑ2 ´ 2τ “ 0 (31)

”

2N p1´Nq Irot,yy `
´

mb l ` 2mrot z
b
rot

¯

r cosϑ
ı

:γ ´ 2B 9γ ` ¨ ¨ ¨

¨ ¨ ¨ `

”

Ib,yy ` 2 p1´Nq2 Irot,yy ` mb l
2 ` 2mrotpz

b
rotq

2
ı

:ϑ ` 2B 9ϑ ´ ¨ ¨ ¨

¨ ¨ ¨ ´

´

mb l ` 2mrot z
b
rot

¯

g sinϑ ` 2τ “ 0 (32)
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Let q “ rγ, ϑsT be the vector of the generalized variables. A compact matrix formulation of the
dynamical model (31)–(32) is:

Mpqq :q ` Cpq, 9qq 9q ` F v 9q ` gpqq “ τ (33)

where

Mpqq “

«

M11pqq M12pqq

M21pqq M22pqq

ff

, Cpq, 9qq “

«

C11pq, 9qq C12pq, 9qq

C21pq, 9qq C22pq, 9qq

ff

, F v “

«

Fv,11 Fv,12

Fv,21 Fv,22

ff

(34)
with

M11pqq “ 2 Iw,yy ` 2N2 Irot,yy ` pmb ` 2mw ` 2mrotq r
2

M12pqq “ M21pqq “ 2N p1´Nq Irot,yy `
´

mb l ` 2mrot z
b
rot

¯

r cosϑ

M22pqq “ Ib,yy ` 2 p1´Nq2 Irot,yy ` mb l
2 ` 2mrotpz

b
rotq

2

(35)

C11pq, 9qq “ C21pq, 9qq “ C22pq, 9qq “ 0

C12pq, 9qq “ ´

´

mb l ` 2mrot z
b
rot

¯

r sinϑ 9ϑ
(36)

Fv,11 “ 2pB `Bwq

Fv,12 “ Fv,21 “ ´2B

Fv,22 “ 2B

(37)

are, respectively, the inertia matrix, the matrix of centrifugal and Coriolis–related coefficients (so
that Cpq, 9qq 9q is the torque contribution due to the centrifugal and Coriolis accelerations), and the
matrix of viscous friction coefficients F v, while

gpqq “
”

0 , ´
`

mb l ` 2mrot z
b
rot

˘

g sinϑ
ıT

(38)

is the torque contribution due to gravity. The motor torque input is equal to τ “ r2τ, ´2τ sT .
The dynamical model (31)–(32) is nonlinear; for the design of the linear state–space balancing
controller, it has to be linearized about the unstable equilibrium configuration with the robot body in
steady upward vertical position. Consider the unstable equilibrium point P0 “ pq0, 9q0, :q0, τ 0q with
q0 “ rγ0, 0sT , 9q0 “ :q0 “ r0, 0sT and τ0 “ 0 (note that P0 is an equilibrium point for any choice of
γ0 P R). The linearization of (33) around P0 is given by:

fpP0q `
Bf pP0q

Bq
δq `

Bf pP0q

B 9q
δ 9q `

Bf pP0q

B:q
δ:q `

Bf pP0q

Bτ
δτ “ 0 (39)

where
f pq, 9q, :q, τq “ Mpqq :q ` Cpq, 9qq 9q ` F v 9q ` gpqq ´ τ (40)

and δq, δ 9q, δ:q and δτ denote small deviations around the equilibrium values specified in P0 (e.g.
δq “ q´q0). Note that f pP0q “ 0 in the Taylor’s expansion of f , since P0 is an equilibrium point.
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The evaluation of (39) yields the following linearized model:
“

2 Iw,yy ` 2N2 Irot,yy ` pmb ` 2mw ` 2mrotq r
2‰ :γ ` 2 pB `Bwq 9γ ` ¨ ¨ ¨

¨ ¨ ¨ `

”

2N p1´Nq Irot,yy `
´

mb l ` 2mrot z
b
rot

¯

r
ı

:ϑ ´ 2B 9ϑ ´ 2τ “ 0 (41)

”

2N p1´Nq Irot,yy `
´

mb l ` 2mrot z
b
rot

¯

r
ı

:γ ´ 2B 9γ ` ¨ ¨ ¨

¨ ¨ ¨ `

”

Ib,yy ` 2 p1´Nq2 Irot,yy ` mb l
2 ` 2mrotpz

b
rotq

2
ı

:ϑ ` 2B 9ϑ ´ ¨ ¨ ¨

¨ ¨ ¨ ´

´

mb l ` 2mrot z
b
rot

¯

g ϑ ` 2τ “ 0 (42)

where, with some abuse of notation, the variables γ, ϑ and τ have been reused (in place of δγ, δϑ
and δτ) to denote the small deviations around the equilibrium values. A compact matrix formulation
of (41)–(42) is:

M :q ` F v 9q ` Gq “ τ (43)

where

M “

«

M11 M12

M21 M22

ff

, G “

«

G11 G12

G21 G22

ff

(44)

with

M11 “ 2 Iw,yy ` 2N2 Irot,yy ` pmb ` 2mw ` 2mrotq r
2

M12 “ M21 “ 2N p1´Nq Irot,yy `
´

mb l ` 2mrot z
b
rot

¯

r

M22 “ Ib,yy ` 2 p1´Nq2 Irot,yy ` mb l
2 ` 2mrotpz

b
rotq

2

(45)

G11 “ G12 “ G21 “ 0

G22 “ ´

´

mb l ` 2mrot z
b
rot

¯

g
(46)

are the linearized versions around the equilibrium point P0 of the inertia matrixMpqq and the gravity
torque contribution gpqq.

The linear model (43) can be alternatively rewritten in state–space form as follows. Define the
vector of state variables as x “ rq, 9qsT “ rγ, ϑ, 9γ, 9ϑsT ; then, the resulting state–space model is:

9x “ Ax ` B u (47)

where

A “

«

02ˆ2 I2ˆ2

´M´1G ´M´1F v

ff

, B “

«

02ˆ2

M´1

ff «

1

´1

ff

(48)

and u “ 2 τ . Note that (47) has a scalar input; for the computation of the input matrix B in (48),
it has been used the fact that τ “ r1, ´1sT p2τq.
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2.2 Model of the actuation system

The electromechanical torque generated by each DC gearmotor at the output shaft is equal to:

τ “ N kt ia (49)

where ia is the armature current, and kt is the torque constant. The current ia satisfies the electrical
equation:

La
dia
dt

` Ra ia ` ke
d∆ϑrot
dt

“ ua (50)

where Ra and La are the resistance and inductance of the armature circuit, ke is the electric (back
electromotive force – BEMF) constant, ∆ϑrot “ ϑrot ´ ϑ is the angular displacement of the rotor
with respect to the stator, and ua is the supply voltage to the armature circuit. Note that the BEMF
is proportional to how fast the rotor spins with respect to the stator. Suppose that the electrical time
constant La{Ra is negligible (compared to the smallest mechanical time constant of the system):
then, the differential equation (50) reduces to the following algebraic relation

ia “
1
Ra

”

ua ´ keN p 9γ ´ 9ϑq
ı

(51)

where it has been used the fact that dp∆ϑrotq{dt “ Np 9γ´ 9ϑq. Correspondingly, the torque expression
(49) becomes:

τ “
Nkt
Ra

ua ´
N2ktke
Ra

´

9γ ´ 9ϑ
¯

(52)

Once the expression (52) is replaced within (33), the following nonlinear dynamical model results:

Mpqq :q ` Cpq, 9qq 9q ` F 1v 9q ` gpqq “ τ 1 (53)

where

F 1v “ F v `
2N2 kt ke

Ra

«

1 ´1
´1 1

ff

, τ 1 “
2N kt
Ra

«

1
´1

ff

ua (54)

Similarly, by replacing (52) within (43), the following linear dynamical model results:

M :q ` F 1v 9q ` Gq “ τ 1 (55)

where F 1v and τ 1 are defined as in (54). The corresponding state–space model is:

9x “ Ax ` B u (56)

with

A “

«

02ˆ2 I2ˆ2

´M´1G ´M´1F 1v

ff

, B “
2N kt
Ra

«

02ˆ2

M´1

ff «

1

´1

ff

(57)

and u “ ua. The nominal values of the DC gearmotor parameters are reported in Tab. 3.

University of Padova 13/42



Armature resistance Ra 2.4 W
Armature inductance La n.a. (neglected)
Electric (BEMF) constant ke 10.3ˆ 10´3 V s{rad
Torque constant km 5.2ˆ 10´3 Nm/A
Gearbox ratio N 30

Table 3: DC gearmotor nominal parameters.

2.3 Model of the inertial measurement system

The linear acceleration and angular velocity measurements provided by the inertial measurement
sensor (also referred as Motion Processing Unit – MPU) are referred to a reference frame tmpuu
whose origin is located on the sensor geometrical center Cmpu, and whose axes are aligned with those
of the body frame tbu. The coordinates of the sensor center with respect to the body frame are
reported in Tab. 4. The acceleration measurement is provided by the onboard accelerometer, and is
equal to the sum of the actual linear acceleration experienced by the robot body at the location of
the sensor center, and the gravity acceleration vector. Instead, the angular velocity measurement is
provided by the gyroscope, and it coincides with the actual angular velocity of the robot body.
To determine the expression of the accelerometer output as a function of the robot generalized
coordinates (and their derivatives), it is first necessary to determine the position vector of the sensor
center with respect to the world frame, and derive it twice to get the acceleration. Then, after adding
the gravity contribution, the result has to be reprojected on the sensor frame to get the actual sensor
output. Let pbCmpu

“ r0, zbmpusT be the position vector of the sensor center with respect to the body
frame. Then, the position vector poCmpu

“ rxCmpu , zCmpus
T of the sensor center with respect to the

world frame is equal to:

poCmpu
“ pov ` Ro

b p
b
Cmpu

“

«

r γ ` zbmpu sinϑ

zbmpu cosϑ

ff

(58)

The linear velocity and acceleration vectors are obtained by differentiation of the position vector, and
are equal to:

9poCmpu
“ 9pov `

dRo
b

dt
pbCmpu

` Ro
b 9p

b
Cmpu

“

«

r 9γ ` zbmpu cosϑ 9ϑ

´zbmpu sinϑ 9ϑ

ff

(59)

:poCmpu
“ :pov `

d2Ro
b

dt2
pbCmpu

` 2dR
o
b

dt
9pCmpu

` Ro
b :p

b
Cmpu

“

«

r :γ ` zbmpu p´ sinϑ 9ϑ2 ` cosϑ :ϑq

´zbmpu pcosϑ 9ϑ2 ` sinϑ :ϑq

ff

(60)

The accelerometer output ya “ rxmpua , zmpua sT is therefore equal to:

ya “ Rb
o

´

:poCmpu
` go

¯

(61)

where go “ r0, ´gsT is the gravity acceleration vector with respect to the world frame, and

Rb
o “

«

cosϑ ´ sinϑ
sinϑ cosϑ

ff

(62)
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Sensor center wrt body frame tbu xbmpu, y
b
mpu, z

b
mpu 0, 0, 13.5 [mm]

Table 4: Motion processing unit (MPU) geometrical parameters.

is the rotation matrix of the world frame tou with respect to the body frame tbu (note that Rb
o “

pRo
bq
´1, and pRo

bq
´1 “ pRo

bq
T because Ro

b is a rotation matrix). It finally holds that:

ya “

»

–

r :γ cosϑ ` zbmpu
:ϑ ` g sinϑ

r :γ sinϑ ´ zbmpu
9ϑ2 ´ g cosϑ

fi

fl (63)

The gyroscope output is simply the rate of change of the robot body tilt angle, namely:

yg “ 9ϑ (64)

3 Tilt estimation

The robot tilt angle ϑ can be estimated by using the data provided by the MPU. For such purpose,
consider first the expression of the accelerometer output (63). Assume that the robot body motion is
slow, so that the linear acceleration r:γ, the tangential acceleration zbmpu :ϑ and the centripetal accel-
eration zbmpu 9ϑ2 can all be regarded as negligible quantities. Under this hypothesis, the measurement
provided by the accelerometer is:

ya “

«

xmpua

zmpua

ff

«

«

g sinϑ
´g cosϑ

ff

(65)

which consists of the projection of the gravity acceleration vector onto the two sensor axes. Therefore,
the robot tilt angle can be estimated as follows:

ϑ̂a “ atan2 pxmpua , ´zmpua q (66)

where atan2 is the four–quadrant arctangent function, namely:

atan2py, xq “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

atan py{xq if x ą 0

atan py{xq ` π if x ă 0 and y ě 0

atan py{xq ´ π if x ă 0 and y ă 0

`π{2 if x “ 0 and y ą 0

´π{2 if x “ 0 and y ă 0

undefined if x “ 0 and y “ 0

(67)

There are two drawbacks of using the estimate (66). Firstly, the estimate is sensitive to the robot
body accelerations, and could be unreliable whenever the robot motion is not slow enough. Secondly,
the estimate is corrupted by the accelerometer output noise, which is rather large, especially at high
frequency. To overcome these issues, a different estimation method can be potentially exploited,
which simply consists of integrating the gyroscope output (64) to obtain the desired tilt angle
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estimate, namely:
ϑ̂g “ ϑ̂gp0q `

ż t

0
ygpτq dτ (68)

This estimate is certainly not affected by the robot body accelerations, and is also less noisy, since
the gyroscope output noise is filtered by the operation of integration. Unfortunately, to be effective,
the estimation procedure based on (68) requires to be properly initialized with the actual value of
the tilt angle, i.e. the initial condition should be chosen as ϑ̂gp0q “ ϑp0q . Moreover, the gyroscope
output is typically affected by both a bias (constant) and a drift (linear ramp) measurement error,
which cause that the integral in (68) to grow unbounded over time.

In practice, by noting that the accelerometer–based estimate ϑ̂a is more reliable at low frequency,
while the gyroscope–based estimate ϑ̂g is more reliable at high frequency, one can resort to a com-
plementary filtering approach for combining (“fusing”) them together, thus yielding a final estimate
ϑ̂ that is sufficiently accurate at every frequency. The approach can be briefly described as follows.
Let Hpsq be a low–pass filter with cut–off frequency ωc and unit DC gain, and H 1psq “ 1 ´Hpsq

its complementary filter, namely the high–pass filter such that Hpsq ` H 1psq “ 1. The low–pass
filter can be used to remove most of the high–frequency noise affecting the accelerometer–based
estimate ϑ̂a, while the high–pass filter can be used to remove the low–frequency drift affecting the
gyroscope–based estimate ϑ̂g. In this sense, the filtered estimates:

ϑ̂a,f “ Hpsq ϑ̂a , ϑ̂g,f “ r1´Hpsqs ϑ̂g (69)

can be regarded as two reliable estimates of the tilt angle ϑ, which are however valid on two disjoint
and complementary frequency ranges, namely the range r0, ωcq for the former, and rωc, `8q for the
latter. Consequently, their sum

ϑ̂ “ ϑ̂a,f ` ϑ̂g,f “ Hpsq ϑ̂a ` r1´Hpsqs ϑ̂g (70)

can be regarded as a reliable estimate of the tilt angle ϑ over the whole frequency range r0, `8q. The
choice of the order and cut–off frequency of the pair of complementary filters is necessarily obtained
as a trade–off between two conflicting requirements, namely the attenuation of the accelerometer
output noise at high frequency, and the rejection of the low frequency bias/drift due to the gyroscope.
In practice, such choice is performed by trial and error. The typical choices are:

• first–order complementary filters pair

Hpsq “
1

Tc s` 1 , 1´Hpsq “ Tc s

Tc s` 1 (71)

This is the simplest choice, and is mostly motivated by the desired to reduce the implementation
complexity of the complementary filters pair. However, note that the high–pass filter 1´Hpsq
is unable to effectively reject a bias or drift error that possibly affects the gyroscope output.
In fact, suppose that the gyroscope output is affected by the error

ỹg “ dg t ` bg (72)

where dg t and bg are, respectively, the drift and bias error components. Once integrated in
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(68), it gives rise to the position estimation error

ϑ̃g “
1
2 dg t

2 ` bg t (73)

The Laplace transform is
Θ̃gpsq “

dg
s3 `

bg
s2 (74)

At the output of the high–pass filter it holds that

Θ̃g,f psq “ r1 ´ Hpsqs Θ̃gpsq “
Tc dg

pTc s` 1q s2 `
Tc bg

pTc s` 1q s “ ¨ ¨ ¨

¨ ¨ ¨ “ ´
T 2
c dg
s

`
Tc dg
s2 `

T 3
c dg

Tc s` 1 `
Tc bg
s

´
T 2
c bg

Tc s` 1

(75)

where the last identity has been obtained by partial fraction expansion. For large values of the
time t, it is immediate to verify that:

θ̃g,f ptq « pTc dgq t `
`

Tc bg ´ T
2
c dg

˘

(76)

namely the filtered position estimation error contains both a drift and a bias component.
Therefore, an implementation based on (71) can be effectively used only when the gyroscope
bias and drift are both negligible.

• second–order complementary filters pair

Hpsq “
2Tc s` 1
pTc s` 1q2

, 1´Hpsq “ T 2
c s

2

pTc s` 1q2
(77)

In this case, the filtered version of the position estimation error (73)–(74) is

Θ̃g,f psq “ r1 ´ Hpsqs Θ̃gpsq “
T 2
c dg

pTc s` 1q2 s `
T 2
c bg

pTc s` 1q2 “ ¨ ¨ ¨

¨ ¨ ¨ “
T 2
c dg
s

´
T 3
c dg

Tc s` 1 ´
T 3
c dg

pTc s` 1q2 `
T 2
c bg

pTc s` 1q2

(78)

where the last identity has been obtained by partial fraction expansion. For large values of the
time t, it is immediate to verify that the filtered position estimation error is a constant:

θ̃g,f ptq « Tc dg (79)

In particular, the error is insensitive to the gyroscope bias. Therefore, the implementation
based on (71) is suitable for the cases where the gyroscope drift is negligible.

• third–order complementary filters pair

Hpsq “
3T 2

c s
2 ` 3Tc s` 1
pTc s` 1q3

, 1´Hpsq “ T 3
c s

3

pTc s` 1q3
(80)

In this case, the filtered version of the position estimation error (73)–(74) is

Θ̃g,f psq “ r1 ´ Hpsqs Θ̃gpsq “
T 3
c dg

pTc s` 1q3 `
T 3
c bg s

pTc s` 1q3 (81)
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For large values of the time t, it is immediate to verify that the filtered position estimation
error is equal to zero, i.e. θ̃g,f ptq « 0. In practice, with a third–order complementary filters
pair, the position estimation becomes insensitive to both the gyroscope bias and drift.

It is worth to point out here that complementary filtering is not the only method available for
obtaining a reasonably accurate estimate of the robot tilt angle from the measurements provided
by the MPU (accelerometer & gyroscope combo). An alternative approach, which is often used in
practice, consists of resorting to a state observer, such as a Kalman filter1. Although appealing, this
approach is however not considered in these notes.

4 State–space balance–and–position control

The balance–and–position control of the balancing robot is performed by resorting to conventional
state–space methods. In particular:

• both the balance–and–position controllers are designed in the discrete–time domain, after
discretizing the plant dynamics (56)–(57) with the exact discretization method (direct digital
design – see handout of laboratory activity 2).

• the nominal or robust tracking of constant longitudinal position set–points is achieved with the
state–space control schemes introduced in the handout of the laboratory activity 1 (obviously
adapted to the discrete–time case).

• the state feedback matrix (state feedback controller gain) of the balance/position state–space
controller is designed with the linear quadratic (LQ) optimal design techniques introduced in
the handout of laboratory activity 3 (obviously adapted to the discrete–time case).

1A nice tutorial paper on complementary and Kalman filtering techniques is: W. T. Higgins, “A Comparison of
Complementary and Kalman Filtering”, in IEEE Transactions on Aerospace and Electronic Systems, vol. AES-11, no.
3, pp. 321-325, May 1975.
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5 Laboratory assignments: numerical simulations

5.1 Simulink model of the balancing robot (longitudinal dynamics only)

1. Implement a Simulink model of the nonlinear electromechanical dynamics of the balancing
robot derived in Sec. 2.1 and 2.2 – see (53)–(54). A possible Simulink implementation is
shown in Fig. 5. It basically consists of rewriting (53) as follows:

:q “ M´1pqq
“

´Cpq, 9qq 9q ´ F 1v 9q ´ gpqq ` τ 1
‰

(82)

and then using the “chain of integrators” approach to derive an equivalent block diagram
representation of the (nonlinear) differential equation. The state–dependent matrices Mpqq,
Cpq, 9qq and gpqq can be implemented as shown in Fig. 5b–5d. In particular:

´ use the User–Defined FunctionsÑ Fcn block to implement the state–dependent elements
of the aforementioned matrices. For the state–independent (i.e. constant) elements, use
the Sources Ñ Constant block.

´ use the Signal Routing Ñ Mux block to combine the single matrix elements into matrix
columns.

´ use the Math Operations Ñ Matrix Concatenate block to form a single matrix by con-
catenation of its columns.

´ use theMath OperationsÑ Product block to multiply a matrix by a column vector. In the
block options, select Matrix among the Multiplication options: this instructs Simulink
to compute the “row–by–column” product, instead of the conventional “element–by–
element” product.

The torque input τ 1 can be obtained by multiplying the scalar input ua by the column vector
gain p2Nkt{Raq r1, ´1sT .

An alternative, more elegant Simulink implementation of the nonlinear dynamics (53)–(54)
consists of using the MATLAB S-Functions. A possible implementation based on S–Function
is reported in Appendix 7.1.

2. Implement a Simulink model of the Motion Processing Unit (MPU), according to the math-
ematical model derived in Sec. 2.3 – see (63)–(64). A possible Simulink implementation is
shown in Fig. 6. In particular:

´ use the User–Defined Functions Ñ Fcn block to compute the x and z axes components
of the accelerometer output vector (63).

´ use a Discrete Ñ Zero–Order Hold block to sample the accelerometer and gyroscope
outputs with a sampling time equal to Ts (see line 4 in Listing 1), which corresponds to
the controller sampling time T “ 0.01 s.

´ the accelerometer outputs are in rgs units (1 g “ 9.81 m/s2). Therefore, use a ms22g

gain to convert the accelerometer outputs from rm/s2s to rgs units. On the other hand,
the gyroscope output is in rdeg{ss units, so that if the gyroscope input is expressed in
such units, no extra units conversion is required.

´ use a Sources Ñ Random Number block to model the normally (Gaussian) distributed
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Figure 5: Simulink model implementation details: electromechanical dynamics (implemented by
using the “chain of integrators” approach).
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noise affecting the accelerometer and gyroscope outputs. Use sens.mpu.acc.noisevar

and sens.mpu.gyro.noisevar (see lines 210 and 223 in Listing 1) as the noise variances
for, respectively, the accelerometer and gyroscope output noises, and Ts as the sampling
time.

´ use a Discontinuities Ñ Quantizer block to model the finite resolution of the accelerom-
eter and gyroscope outputs. Use sens.mpu.acc.LSB2g and sens.mpu.gyro.LSB2degs

(see line 207 and 219 of Listing 1) as the quantization steps for, respectively, the ac-
celerometer and gyroscope output quantizations.

3. Implement a Simulink model of the incremental encoder used to measure the motor shaft
position. A possible Simulink implementation is shown in Fig. 7. In particular:

´ the incremental encoder measures the angular displacement ∆ϑrot “ ϑrot ´ ϑ of the
rotor with respect to the stator (rigidly connected to the robot chassis). It holds that
∆ϑrot “ Npγ ´ ϑq, where γ ´ ϑ is the angular displacement of the wheel with respect
to robot body, and N is the gearbox ratio.

´ use a Discrete Ñ Zero–Order Hold block to sample the encoder output with a sampling
time equal to Ts.

´ use a Discontinuities Ñ Quantizer block to model the finite resolution of the encoder.
Use sens.enc.pulse2deg (see line 189 in Listing 1) as the quantization step (provided
that the rotor angular displacement ∆ϑrot is computed in rdegs units).

´ the encoder output is in “rpulsess” units. Therefore, use a sens.enc.deg2pulse gain
to convert the encoder output from rdegs to rpulsess units.

4. Implement a Simulink model of the motor voltage driver. A possible Simulink implementation
is shown in Fig. 8. In particular:

´ the PWM command to the voltage driver consists of a byte, plus a sign flag. Hence, the
voltage driver input can be considered as an integer number in the range r´255, 255s.
The maximum value corresponds to apply the maximum voltage to the motor armature,
which is equal to the battery nominal voltage, i.e. 11.1 V. Use a Discontinuities Ñ
Saturation block to limit the driver input to the the voltage range specified above. Use
˘drv.dutymax (see line 114 in Listing 1) as the saturation levels.

´ use a Math Operations Ñ Rounding Function to convert the driver input into an integer
number. Select fix as the rounding method.

´ the driver output is the voltage applied to the motor armature. Therefore, use a drv.duty2V

gain to convert the driver voltage command into a voltage signal in rVs units. Since the
driver output voltage can never exceed the battery nominal voltage, consider to insert a
saturation block to limit the driver output. Use ˘drv.Vbus (see line 110 in Listing 1) as
the saturation levels.

´ use a Discrete Ñ Zero–Order Hold block to hold the voltage command within each
sampling period (equal to Ts).

5. Combine all the models prepared in points 1–4, to form a Simulink model of the whole balancing
robot hardware equipment (i.e. electromechanical system + motor driver + sensors). A possible
Simulink implementation is shown in Fig. 9.
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Figure 6: Simulink model implementation details: MPU.
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Figure 8: Simulink model implementation details: voltage driver.
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Figure 9: Simulink model implementation details: overall balancing robot hardware equipment.

Listing 1: balrob_params.m
1 %% General parameters and conversion gains

2
3 % controller sampling time

4 Ts = 1é 2;

5
6 % gravity acc [m/s^2]

7 g = 9.81;

8
9 % conversion gains

10 rpm2rads = 2*pi/60; % [rpm] >́ [rad/s]

11 rads2rpm = 60/2/pi; % [rad/s] >́ [rpm]

12 rpm2degs = 360/60; % [rpm] >́ [deg/s]

13 degs2rpm = 60/360; % [deg/s] >́ [rpm]

14 deg2rad = pi/180; % [deg] >́ [rad]

15 rad2deg = 180/pi; % [rad] >́ [deg]

16 g2ms2 = g; % [acc_g] >́ [m/s^2]

17 ms22g = 1/g; % [m/s^2] >́ [acc_g]

18 ozin2Nm = 0.706é 2; % [oz*inch] >́ [N*m]

19
20 % robot initial condition

21 x0 =[ ...

22 0, ... % gam(0)

23 5*deg2rad, ... % th(0)

24 0, ... % dot_gam(0)

25 0]; % dot_th(0)

26
27 %% DC motor data

28
29 % motor id: brushed DC gearmotor Pololu 30:1 37Dx68L mm

30
31 % electromechanical params

32 mot.UN = 12; % nominal voltage

33 mot.taus = 110/30 * ozin2Nm; % stall torque @ nom voltage

34 mot.Is = 5; % stall current @ nom voltage

35 mot.w0 = 350 * 30 * rpm2rads; % nó load speed @ nom voltage

36 mot.I0 = 0.3; % nó load current @ nom voltage

37
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38 mot.R = mot.UN/mot.Is; % armature resistance

39 mot.L = NaN; % armature inductance

40 mot.Kt = mot.taus/mot.Is; % torque constant

41 mot.Ke = (mot.UN ´ mot.R*mot.I0)/(mot.w0); % bacḱ EMF constant

42 mot.eta = NaN; % motor efficiency

43 mot.PN = NaN; % nominal output power

44 mot.IN = NaN; % nominal current

45 mot.tauN = NaN; % nominal torque

46
47 % dimensions

48 mot.rot.h = 30.7é 3; % rotor height

49 mot.rot.r = 0.9 * 17é 3; % rotor radius

50
51 mot.stat.h = 68.1é 3; % stator height

52 mot.stat.r = 17é 3; % stator radius

53
54 % center of mass (CoM) position

55 mot.rot.xb = 0; % (left) rot CoM x́ pos in body frame

56 mot.rot.yb = 42.7é 3; % (left) rot CoM ý pos in body frame

57 mot.rot.zb = 7́é 3; % (left) rot CoM ź pos in body frame

58
59 mot.stat.xb = 0; % (left) stat CoM x́ pos in body frame

60 mot.stat.yb = 52.1é 3; % (left) stat CoM ý pos in body frame

61 mot.stat.zb = 7́é 3; % (left) stat CoM ź pos in body frame

62
63 % mass

64 mot.m = 0.215; % total motor mass

65 mot.rot.m = 0.35 * mot.m; % rotor mass

66 mot.stat.m = mot.m ´ mot.rot.m; % stator mass

67
68 % moment of inertias (MoI) wrt principal axes

69 mot.rot.Ixx = mot.rot.m/12 * (3*mot.rot.r^2 + mot.rot.h^2); % MoI along r dir

70 mot.rot.Iyy = mot.rot.m/2 * mot.rot.r^2; % MoI along h dim

71 mot.rot.Izz = mot.rot.Ixx; % MoI along r dir

72
73 mot.stat.Ixx = mot.stat.m/12 * (3*mot.stat.r^2 + mot.stat.h^2); % MoI along r dir

74 mot.stat.Iyy = mot.stat.m/2 * mot.stat.r^2; % MoI along h dir

75 mot.stat.Izz = mot.stat.Ixx; % MoI along r dir

76
77 % viscous friction coeff (motor side)

78 mot.B = mot.Kt*mot.I0/mot.w0;

79
80 %% Gearbox data

81
82 gbox.N = 30; % reduction ratio

83 gbox.B = 0.025; % viscous friction coeff (load side)

84
85 %% Battery data

86
87 % electrical data

88 batt.UN = 11.1; % nominal voltage

89
90 % dimensions

91 batt.w = 136é 3; % battery pack width

92 batt.h = 26é 3; % battery pack height

93 batt.d = 44é 3; % battery pack depth

94
95 % center of mass (CoM) position

96 batt.xb = 0; % CoM x́ pos in body frame

97 batt.yb = 0; % CoM ý pos in body frame

98 batt.zb = 44é 3; % CoM ź pos in body frame

99
100 % mass
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101 batt.m = 0.320;

102
103 % moment of inertias (MoI) wrt principal axes

104 batt.Ixx = batt.m/12 * (batt.w^2 + batt.h^2); % MoI along d dim

105 batt.Iyy = batt.m/12 * (batt.d^2 + batt.h^2); % MoI along w dim

106 batt.Izz = batt.m/12 * (batt.w^2 + batt.d^2); % MoI along h dim

107
108 %% H́ bridge PWM voltage driver data

109
110 drv.Vbus = batt.UN; % H́ bridge DC bus voltage

111 drv.pwm.bits = 8; % PWM resolution [bits]

112 drv.pwm.levels = 2^drv.pwm.bits; % PWM levels

113 drv.dutymax = drv.pwm.levelś 1; % max duty cycle code

114 drv.duty2V = drv.Vbus/drv.dutymax; % duty cycle code (0´255) to voltage

115 drv.V2duty = drv.dutymax/drv.Vbus; % voltage to duty cycle code (0´255)

116
117 %% Wheel data

118
119 % dimensions

120 wheel.h = 26é 3; % wheel height

121 wheel.r = 68e´3/2; % wheel radius

122
123 % center of mass (CoM) position

124 wheel.xb = 0; % (left) wheel CoM x́ pos in body frame

125 wheel.yb = 100é 3; % (left) wheel CoM ý pos in body frame

126 wheel.zb = 0; % (left) wheel CoM ź pos in body frame

127
128 % mass

129 wheel.m = 50é 3;

130
131 % moment of inertias (MoI) wrt principal axes

132 wheel.Ixx = wheel.m/12 * (3*wheel.r^2 + wheel.h^2); % MoI along r dim

133 wheel.Iyy = wheel.m/2 * wheel.r^2; % MoI along h dim

134 wheel.Izz = wheel.Ixx; % MoI along r dim

135
136 % viscous friction coeff

137 wheel.B = 0.0015;

138
139 %% Chassis data

140
141 % dimensions

142 chassis.w = 160é 3; % frame width

143 chassis.h = 119é 3; % frame height

144 chassis.d = 80é 3; % frame depth

145
146 % center of mass (CoM) position

147 chassis.xb = 0; % CoM x́ pos in body frame

148 chassis.yb = 0; % CoM x́ pos in body frame

149 chassis.zb = 80é 3; % CoM x́ pos in body frame

150
151 % mass

152 chassis.m = 0.456;

153
154 % moment of inertias (MoI) wrt principal axes

155 chassis.Ixx = chassis.m/12 * (chassis.w^2 + chassis.h^2); % MoI along d dim

156 chassis.Iyy = chassis.m/12 * (chassis.d^2 + chassis.h^2); % MoI along w dim

157 chassis.Izz = chassis.m/12 * (chassis.w^2 + chassis.d^2); % MoI along h dim

158
159 %% Body data

160
161 % mass

162 body.m = chassis.m + batt.m + 2*mot.stat.m;

163
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164 % center of mass (CoM) position

165 body.xb = 0; % CoM x́ pos in body frame

166 body.yb = 0; % CoM ý pos in body frame

167 body.zb = (1/body.m) * (chassis.m*chassis.zb + ... % CoM ź pos in body frame

168 batt.m*batt.zb + 2*mot.stat.m*mot.stat.zb);

169
170 % moment of inertias (MoI) wrt principal axes

171 body.Ixx = chassis.Ixx + chassis.m*(body.zb ´ chassis.zb)^2 + ... % MoI along d dim

172 batt.Ixx + batt.m*(body.zb ´ batt.zb)^2 + ...

173 2*mot.stat.Ixx + ...

174 2*mot.stat.m*(mot.stat.yb^2 + (body.zb ´ mot.stat.zb)^2);

175
176 body.Iyy = chassis.Iyy + chassis.m*(body.zb ´ chassis.zb)^2 + ... % MoI along w dim

177 batt.Iyy + batt.m*(body.zb ´ batt.zb)^2 + ...

178 2*mot.stat.Iyy + ...

179 2*mot.stat.m*(body.zb ´ mot.stat.zb)^2;

180
181 body.Izz = chassis.Izz + batt.Izz + ... % MoI along h dim

182 2*mot.stat.Izz + 2*mot.stat.m*mot.stat.yb^2;

183
184 %% Sensors data ´ Halĺ effect encoder

185
186 % Halĺ effect encoder

187 sens.enc.ppr = 16*4; % pulses per rotation at motor side (w/ quadrature decoding)

188 sens.enc.pulse2deg = 360/sens.enc.ppr;

189 sens.enc.pulse2rad = 2*pi/sens.enc.ppr;

190 sens.enc.deg2pulse = sens.enc.ppr/360;

191 sens.enc.rad2pulse = sens.enc.ppr/2/pi;

192
193 %% Sensors data ´ MPU6050 (accelerometer + gyro)

194
195 % center of mass (CoM) position

196 sens.mpu.xb = 0;

197 sens.mpu.yb = 0;

198 sens.mpu.zb = 13.5é 3;

199
200 % MPU6050 embedded accelerometer specs

201 sens.mpu.acc.bits = 16;

202 sens.mpu.acc.fs_g = 16; % fulĺ scale in "g" units

203 sens.mpu.acc.fs = sens.mpu.acc.fs_g * g2ms2; % fulĺ scale in [m/s^2]

204 sens.mpu.acc.g2LSB = floor(2^(sens.mpu.acc.bitś 1)/sens.mpu.acc.fs_g); % sensitivity [LSB/g]

205 sens.mpu.acc.ms22LSB = sens.mpu.acc.g2LSB * ms22g; % sensitvity [LSB/(m/s^2)]

206 sens.mpu.acc.LSB2g = sens.mpu.acc.fs_g/2^(sens.mpu.acc.bitś 1); % out quantization [g/LSB]

207 sens.mpu.acc.LSB2ms2 = sens.mpu.acc.LSB2g * g2ms2; % out quantization [ms2/LSB]

208 sens.mpu.acc.bw = 94; % out loẃ pass filter BW [Hz]

209 sens.mpu.acc.noisestd = 400é 6*sqrt(100); % output noise std [ǵ rms]

210 sens.mpu.acc.noisevar = sens.mpu.acc.noisestd^2; % output noise var [g^2]

211
212 % MPU6050 embdedded gyroscope specs

213 sens.mpu.gyro.bits = 16;

214 sens.mpu.gyro.fs_degs = 250; % full scale in [deg/s (dps)]

215 sens.mpu.gyro.fs = sens.mpu.gyro.fs_degs * deg2rad; % full scale in [rad/s]

216 sens.mpu.gyro.degs2LSB = floor(2^(sens.mpu.gyro.bitś 1)/sens.mpu.gyro.fs_degs); % sensitivity [LSB/degs]

217 sens.mpu.gyro.rads2LSB = sens.mpu.gyro.degs2LSB * rad2deg; % sensitivity [LSB/rads]

218 sens.mpu.gyro.LSB2degs = sens.mpu.gyro.fs_degs/2^(sens.mpu.gyro.bitś 1); % out quantization [degs/LSB]

219 sens.mpu.gyro.LSB2rads = sens.mpu.gyro.LSB2degs * deg2rad; % out quantization [rads/LSB]

220 sens.mpu.gyro.bw = 98; % out loẃ pass filter BW [Hz]

221 sens.mpu.gyro.noisestd = 5é 3*sqrt(100); % output noise std [degś rms]

222 sens.mpu.gyro.noisevar = sens.mpu.acc.noisestd ^2; % output noise var [degs^2]
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5.2 Balance–and–position state–space control using LQR methods

1. For the implementation of a state–space balance–and–position controller, it is first necessary
to estimate the robot state x “ rγ, ϑ, 9γ, 9ϑsT from the measurements provided by the onboard
sensors, namely the incremental encoder and the MPU (accelerometer and gyroscope). For
such purpose, consider to implement a “simple” state observer as follows:

´ for estimating the robot body tilt angle ϑ, use the complementary filtering approach
described in Sec. 3. Consider to use a pair of first–order complementary filters such as
(71). The filters must be discretized, since the whole control system operates in the
discrete–time domain. Say Hpzq the discrete equivalent of Hpsq, obtained with any
discretization method. From (70) it follows that

ϑ̂ “ Hpzq ϑ̂a ` r1´Hpzqs ϑ̂g “ ϑ̂g ` Hpzq pϑ̂a ´ ϑ̂gq (83)

where ϑ̂a is computed as specified in (66), and ϑ̂g by discrete–time integration of the
gyroscope output yg. A possible Simulink implementation of the complementary filtering
(83) is shown in Fig. 10a. A tentative value for the filter cut–off frequency fc “ 1{p2π Tcq
is 0.35 Hz.
Note: it is worth to notice here that if both Hpsq and the integrator in (68) are discretized
with the backward Euler discretization method, then the generic implementation (83) can
be further simplified as follows. The backward Euler discretization of Hpsq yields

Hpzq “
C

1´ p1´ Cq z´1 with C “
T

Tc ` T
(84)

where T denotes the sampling time. Hence, from (83) it follows that

ϑ̂ “
C

1´ p1´ Cq z´1 ϑ̂a `
p1´ Cq p1´ z´1q

1´ p1´ Cq z´1 ¨
T

1´ z´1 yg (85)

where it has been used the fact that ϑ̂g is obtained by integration of yg, using the
discrete–time integrator T {p1 ´ z´1q (backward Euler discretization of the continuous–
time integrator 1{s). In time domain, the expression (85) becomes

ϑ̂rks “ p1´ Cq ϑ̂rk ´ 1s ` C ϑ̂arks ` p1´ CqT ygrks

“ C ϑ̂arks ` p1´ Cq
´

ϑ̂rk ´ 1s ` T ygrks
¯

(86)

A possible Simulink implementation of the complementary filtering (86) is shown in
Fig. 10b.

´ for estimating the wheel angle γ, use the identity ∆ϑrot “ Npγ ´ ϑq to obtain the
estimate

γ̂ “ ∆ϑrot{N ` ϑ̂ (87)

where ∆ϑrot is the rotor angular displacement measured by the encoder. A possible
Simulink implementation of (87) is shown in Fig. 10c.
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Figure 10: Possible Simulink implementation of the “simple” state observer.

´ use a “real derivative” filter of the type

Hωpzq “
1´ z´N
N T

with N “ 3 (88)

to obtain the angular speeds estimates 9̂
ϑ and 9̂γ from ϑ̂ and γ̂.

2. Design a discrete–time state–space controller that simultaneously stabilizes the robot body to
its upward vertical position, and guarantees the nominal perfect tracking of a constant wheel
angle position set–point γ˚. For such purpose, consider first to discretize the continuous–
time plant model (56) with the exact discretization method, and sampling time equal to the
controller sampling time T “ 0.01 s; let

#

xrk ` 1s “ Φxrks ` Γurks
yrks “ H xrks

(89)

denote the discretized plant model. For the design of the tracking controller, the model output
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y has to be equal to the signal to track, namely the wheel angle position γ. Therefore, the
matrix H is chosen equal to H “ r1, 0, 0, 0s.

The discrete–time state–space control law has the following structure:

urks “ Nu rrks ´ K px̂rks ´Nx rrksq “ ´Kxrks ` pNu ` KNxq
looooooomooooooon

“Nr

rrks (90)

where r “ γ˚ is the wheel angle reference signal, and x is the state vector estimated with the
simple state observer designed in point 1. As explained in the handout of laboratory activity
2, the feedforward gains Nx and Nu are determined by solving the following set of linear
equations:

«

Φ´ I Γ
H 0

ff«

Nx

Nu

ff

“

«

0
1

ff

(91)

The feedback gain K can instead be computed with LQR methods, in order to minimise the
discrete–time quadratic cost function

J “
`8
ÿ

k“0
xT rksQxrks ` ρ r urks (92)

Select the cost weights Q and r according to the Bryson’s rule. At steady–state, it is desired
to have:

|γ ´ γ˚| ă π{36 p5 degq , |ϑ| ă π{360 p0.5 degq , |u| ă 1 V (93)

Therefore, according to the Bryson’s rule, the cost weights Q and r are selected as follows:

Q “ diag
"

1
γ̄2 ,

1
ϑ̄2 , 0, 0

*

, r “
1
ū2 (94)

where
γ̄ “ π{18 , ϑ̄ “ π{360 , ū “ 1 (95)

In the Q matrix, note that the weights of the two angular velocities 9γ and 9ϑ have been set
equal to zero. The extra weight ρ in (92) is used to adjust the relative weighting between the
state and input contributions to the total cost function value. Consider the following choices
for such weight:

ρ P t 500, 5000 u (96)

For the computation of the feedback matrix, use the routine dlqr of the Control System
Toolbox (CST).

3. Validate the design of point 2 in simulation, using the Simulink model of the balancing robot
developed in Sec. 5.1. A possible Simulink implementation of the whole control system is
shown in Fig. 11. In the model of Fig. 11a, the state observer is implemented as described in
point 1. Test the controller in the following situations:

´ initial state xp0q “ r0, π{36, 0, 0sT (i.e. initial body tilt angle equal to ϑp0q “ 5 deg),
reference input equal to zero, and no load disturbance (i.e. disturbance entering at the
plant input).
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Figure 11: Possible Simulink implementation of the balance–and–position state–space control system
(for the nominal perfect tracking of constant position set–points).

This test is aimed to verify that the controller is capable of restoring the balance after
that the robot is released from a position off the upward vertical equilibrium.

´ initial state xp0q “ r0, 0, 0, 0sT , step reference input applied at t “ 0 with amplitude
γ˚ “ 0.1{r rad, where r is the wheel radius (this choice corresponds to a longitudinal
position displacement of 10 cm), and no load disturbance.
This test is aimed to verify that the controller guarantees perfect tracking of the constant
position set–point in the nominal case, when no external disturbances are present.

´ initial state and reference input as in the previous point, and a load disturbance of ampli-
tude 5.0{kdutyÑV « 115 (where kdutyÑV is the voltage driver input–to–output conver-
sion gain), applied at the voltage driver input at t “ 10 s. This is equivalent to a voltage
disturbance of 5 V applied at the motor input.
This test is aimed to verify that the controller is unable to guarantee the perfect tracking
of the constant position set–point when an external disturbance is present. In this case,
the disturbance is considered as an equivalent constant voltage disturbance entering at the
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plant input. Such disturbance could result from the application of a constant longitudinal
force to the robot, similarly to what happens when the robot is forced to climb an inclined
plane.

4. Repeat the design of point 3 by introducing the integral action in the controller, in order to
achieve robust tracking of constant wheel angle position set-points.

By introducing the integral action in (90), the control law becomes
$

&

%

xIrk ` 1s “ xIrks ` p yrks ´ rrks q

urks “ Nu rrks ´ K pxrks ´Nx rrksq ´KI xIrks
(97)

where xI is the integrator state variable2. After introducing the augmented state vector
xe “ rxI , xs

T of the augmented state system

Σe :
«

xIrk ` 1s
xrk ` 1s

ff

“

«

1 H

0 Φ

ff

looomooon

fi Φe

«

xIrks

xrks

ff

looomooon

fixe

`

«

0
Γ

ff

loomoon

fi Γe

urks ´

«

1
0

ff

rrks (98)

the control law (97) can be rewritten as follows:

urks “ ´Ke xerks ` pNu ` KNxq rrks “ ´Ke xerks ` Nr rrks (99)

The augmented state feedback matrix Ke “ rKI , Ks
T can be designed again by resorting to

LQR methods. Compared to the design of point 2, in this case the cost matrix Q contains
an extra weight q11 for the integrator state variable xI . This weight must be chosen different
from zero, otherwise the LQR cannot be designed. However, the weight cannot be chosen with
the Bryson’s rule, since there is no reasonable and immediate way to identify the maximum
deviation of the integrator state from its steady–state value. In practice, the weight q11 must
be chosen by trial and error. Two possible choices to consider for such weight are:

q11 P t0.1, 1u (100)

Choose the remaining weights as suggested in point 2.

A possible Simulink implementation of the control law (97) is shown in Fig. 12. In (97), note
that the integrator state xI consists of the discrete–time accumulation of the tracking error
erks “ yrks´rrks. Therefore, the Integrator method property of the Discrete–Time Integrator
block in Fig. 12 must be set as “Accumulation: Forward Euler” (i.e. the integrator has to be
implemented as a discrete–time forward Euler accumulator).

5. Validate the design of point 4 in simulation, using the Simulink model of the whole control
system prepared in point 3 (simply replace the controller block of Fig. 11 with that of Fig. 12).

Repeat the same tests of point 3. In particular, verify that the controller is capable of perfectly
tracking a constant position reference at steady state, even in presence of a constant load
disturbance.

2In (97), note that the tracking error is defined as erks “ yrks ´ rrks.
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Figure 12: Possible Simulink implementation of the state–space controller, for the balance control
and the robust perfect tracking of constant position set–points, using the integral action approach.

6 Laboratory assignments: experimental tests

1. Prepare a Simulink model for testing the balance–and–position controllers designed in Sec. 5.2
on the balancing robot available in laboratory. For such purpose, it is sufficient to proceed as
follows:

´ make a copy of the Simulink model prepared in point 3 of Sec. 5.2 for the numerical
simulations (see also Fig. 11).

´ replace the models of the balancing robot and the sensors (encoder and MPU) with the
blocks of the Balancing Robot Toolbox (BRT) that allow to interface with the robot
hardware.

´ configure the model parameters to enable the execution on the balancing robot micro–
controller unit (MCU), according to the details provided in the introductory guide to the
experimental setup (laboratory guide 2).
In particular, in the Hardware Implementation settings, select Arduino Mega 2560 as
the Hardware Board, and Automatically as the detection method for the Host–board
connection port. Regarding the Solver parameters, choose a Fixed–step discrete (no
continuous states) solver, and a sample time (fixed–step size) equal to T “ 0.01 s.

A possible implementation is shown in Fig. 13. In addition to the base controller, the proposed
implementation includes some extra “logic”, to enable the generation of the position reference
and the load disturbance via the two pushbuttons available on the robot. The logic operates
as follows:

´ the controller is enabled by pressing either the pushbutton 1 or 2.
This logic is implemented by using two BRT Ñ Utilities Ñ Up–Counter (with upper
bound) counters to detect when the pushbuttons are pressed for the first time. The
upper bounds of the two counters are both set equal to 1. The controller is enabled when
at least one counter output is equal to 1.
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Figure 13: Possible Simulink implementation of the balance–and–position controller to be uploaded
on the balancing robot MCU.
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Note that the two up–counters (with upper bound set to 1) behave as two set–reset (SR)
latches, with the S inputs driven by the two pushbuttons.

´ a constant reference signal is generated a certain amount of time after pressing the
pushbutton 1.
This logic is implemented by enabling a BRT Ñ Utilities Ñ Monostable block with the
output of the up–counter triggered by the push–button 1. In this way, a pulse of specified
duration is generated after pressing the pushbutton. Before this event, or after the pulse
expiration, the output of the monostable is equal to zero. Therefore, the condition for
enabling the generation of the position reference is that the pushbutton 1 has been pressed
(i.e. the output of the corresponding up–counter is equal to 1), and the output of the
monostable is not equal to 1.
Consider to set a pulse duration of at least 10 s in the monostable: this amount of
time should be sufficient for the robot to reach a stable vertical balance, before moving
according to the provided position reference.

´ a constant load disturbance is generated a certain amount of time after pressing the
pushbutton 2.
This logic is identical to that of the previous point (for enabling the generation of the
position reference), except for the pushbutton used.

Both the balance–and–position controller, and the reference/disturbance generator are enabled
blocks (use a Ports & SubsystemsÑ Enable to create a subsystem with an enable port). When
working with an enabled block, it is necessary to specify how to set its outputs when the block
is disabled. For each output, this can be done by setting the properties of the Sinks Ñ Out
port appropriately (double–click on the port block to access its parameters). In particular, the
Output when disabled option specifies to either hold or reset the output port value when the
block is disabled. If the held option is selected, then an initial output value has to be provided
(in the Initial output field). In the Simulink model of Fig. 13, the option reset is selected for
the outputs of both the controller and the reference/disturbance generator.

In the sensors interface implementation of Fig. 13b, note that the angular displacement ∆ϑrot
of the rotor with respect to the stator (in the the planar robot approximation) is obtained as
the average of the angular displacements ∆ϑrot,r and ∆ϑrot,l measured by the two encoders:

∆ϑrot “
∆ϑrot,r ` ∆ϑrot,l

2 (101)

Moreover, note that a Signal AttributesÑ Data Type Conversion has been used to convert the
outputs of the BRT Ñ Sensors Ñ Encoders and BRT Ñ Sensors Ñ MPU blocks from their
original data types (uint32 and single, respectively) to the double type (in the block settings,
select the option double in the Output data type drop–down list), which is the internal type
adopted for controller implementation. This choice guarantees the best numerical accuracy;
however, it is also demanding in terms of memory occupation and computational effort, which
are both scarce resources on a typical embedded system. The single floating point data type
could be an alternative option to consider in order to save space and computational resources.

2. Test the controller designed in point 2 of Sec. 5.2 on the balancing robot, using the model
prepared in point 1.
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For the tests, use a constant position reference equal to γ˚ “ 0.1{r rad, where r is the
wheel radius, which corresponds to a longitudinal position displacement of 10 cm, and a load
disturbance equal to ud “ 5.0{kdutyÑV « 115, where kdutyÑV is the PWM duty–cycle to
voltage conversion gain, which corresponds to a voltage disturbance of 5.0 V. The position
reference and/or the load disturbance should be enabled at least 10 s after turning the controller
on, to leave enough time to the robot to initially stabilize on the vertical position.

3. Test the controller designed in point 4 of Sec. 5.2 on the balancing robot, using the model
prepared in point 1.

For the tests, use the same position reference and load disturbance of the previous point 3.

4. (optional) From the experimental tests of points 2 and 3 it can be noticed that the balancing
robot has the tendency of drifting laterally, and in practice it never moves along a perfectly
straight line. This problem is caused by the fact that even if the two motors are driven by
the same voltage command, they do not necessarily move by the same angle, because of
unavoidable differences in the motor parameters, and the presence of friction and backlash in
the mechanical transmission (gearboxes).

To avoid the lateral drift motion, an extra controller for the robot heading angle (yaw angle)
ψ is required. The design of such controller is beyond the scope of this laboratory activity,
and will be addressed in a possible follow–up (i.e. “Combined longitudinal and heading–angle
state–space control of the balancing robot”). In the following, a simple implementation based
on a PI controller is presented, for the only purpose of illustrating how to test the longitudinal
controller under “more stable” working conditions. The proposed implementation is shown
in Fig. 14 and 15. It consists of controlling the two motors with the following two voltage
commands (for the right and left motors, respectively):

ur “ uΣ ` u∆ , ul “ uΣ ´ u∆ (102)

where uΣ is a “common–mode” command generated by the longitudinal controller, and u∆ a
“differential–mode” command generated by the heading angle (yaw) controller. The longitu-
dinal controller is the state–space controller designed in point 2 or 4 of Sec. 5.2. The heading
angle controller is instead a simple PI regulator, as shown in Fig. 14c. For the purpose of this
laboratory activity, the following proportional and integral gains can be used:

KP “ 3.3 , KI “ 0.7 (103)

The heading angle (yaw) ψ is estimated in the block of Fig. 15b by using the expression (10),
under the assumption that ψp0q “ 0, namely

ψ “
r

w
pϑr ´ ϑlq (104)

where ϑr and ϑl are the wheels angles derived from the encoders measurements. From (6)
and (7), these quantities are equal to:

ϑl “
∆ϑrot,l
N

` ϑ , ϑr “
∆ϑrot,r
N

` ϑ (105)
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where ∆ϑrot,l and ∆ϑrot,r are the measurements provided by the two encoders.

Instead, the variable γ is estimated by simply considering the average value of the two wheels
angles, namely

γ “
ϑr ` ϑl

2 (106)

Consider to repeat the experimental tests of points 2 and 3 with the controller configuration
proposed above.
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Figure 14: Possible Simulink implementation of a combined longitudinal and heading–angle controller
for the balancing robot.
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Figure 15: Possible Simulink implementation of a combined longitudinal and heading–angle controller
for the balancing robot (cont’d).

7 Appendix

7.1 Simulink implementation of the electromechanical dynamics with S–Functions

The nonlinear dynamical model (53)–(54) can be implemented in Simulink using a MATLAB S–
Function. Consult the Simulink documentation for the details regarding how to write a MATLAB
S–Function, using either the Level–1 or Level–2 API (Application Programming Interface).
A possible Level–2 MATLAB S–Function implementation is reported in Listing 2. The correspond-
ing block to be used in the Simulink model is the User–Defined Functions Ñ Level–2 MAT-
LAB S–Function block. The block has two parameters: the S–function name (required param-
eter) is the name of the MATLAB script containing the implementation of the S–function (i.e.
sfun_balrob_long_dyn.m), while Parameters (optional parameter) are the extra parameters to be
passed to the S–function (if required by the implementation). The Simulink model based on the
S–function of Listing 2 is shown in Fig. 16.
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Figure 16: Simulink model implementation details: electromechanical dynamics (implemented by
using a MATLAB S–Function).

Note that the S–function implementation specifies a block with 1 input (see line 11), 6 outputs
(see line 12), 4 continuous states (see line 15) and 5 parameters (see line 37). Accordingly, the S–
function block in the Simulink model is shown with 1 input (the armature voltage ua) and 6 outputs
(the vector of generalized variables q, and its first two time derivatives 9q and :q). The 5 expected
parameters are the vector of initial conditions x0 (see line 72), and the four data structures body,
mot, gbox and wheel (see lines 145–148). The 4 continuous–state variables are the generalized
variables in q, and their derivatives in 9q. The acceleration vector :q is computed by the function
get_acc (see lines 140–242) according to the expression derived in (82).

Listing 2: sfun_balrob_long_dyn.m
1 function sfun_balrob_long_dyn(block)

2
3 setup(block);

4
5 end %function

6
7
8 function setup(block)

9
10 % Register number of ports

11 block.NumInputPorts = 1;

12 block.NumOutputPorts = 2*3;

13
14 % Register number of continuous states

15 block.NumContStates = 2*2;

16
17 % Setup port properties to be inherited or dynamic

18 block.SetPreCompInpPortInfoToDynamic;

19 block.SetPreCompOutPortInfoToDynamic;

20
21 % Override input port properties

22 for k = 1:block.NumInputPorts,

23 block.InputPort(k).Dimensions = 1;

24 block.InputPort(k).DatatypeID = 0; % double

25 block.InputPort(k).Complexity = 'Real';

26 block.InputPort(k).DirectFeedthrough = false;

27 end;

28
29 % Override output port properties

30 for k = 1:block.NumOutputPorts,

31 block.OutputPort(k).Dimensions = 1;
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32 block.OutputPort(k).DatatypeID = 0; % double

33 block.OutputPort(k).Complexity = 'Real';

34 end;

35
36 % Register parameters

37 block.NumDialogPrms = 5;

38
39 % Register sample times

40 % [0 offset] : Continuous sample time

41 block.SampleTimes = [0 0];

42
43 % Specify the block simStateCompliance.

44 % 'DefaultSimState', < Same sim state as a built́ in block

45 block.SimStateCompliance = 'DefaultSimState';

46
47 % Register block methods

48 block.RegBlockMethod('Start', @Start);

49 block.RegBlockMethod('SetInputPortSamplingMode', @SetInputPortSamplingMode);

50 block.RegBlockMethod('Outputs', @Outputs); % Required

51 block.RegBlockMethod('Derivatives', @Derivatives);

52 block.RegBlockMethod('Terminate', @Terminate); % Required

53
54 for k = 1:block.NumOutputPorts,

55 block.OutputPort(k).SamplingMode = 0;

56 end;

57
58 end % setup

59
60
61 function SetInputPortSamplingMode(block, port, mode)

62
63 block.InputPort(port).SamplingMode = mode;

64
65 end % SetInputPortSamplingMode

66
67
68 function Start(block)

69
70 %% Get init state

71
72 x0 = block.DialogPrm(1).Data; % get init state

73
74 %% Set init state

75
76 block.ContStates.Data(1) = x0(1); % gam(0)

77 block.ContStates.Data(2) = x0(2); % th(0)

78
79 block.ContStates.Data(3) = x0(3); % dot_gam(0)

80 block.ContStates.Data(4) = x0(4); % dot_th(0)

81
82 end % Start

83
84
85 function Outputs(block)

86
87 %% Extract state components

88
89 gam = block.ContStates.Data(1);

90 th = block.ContStates.Data(2);

91
92 dot_gam = block.ContStates.Data(3);

93 dot_th = block.ContStates.Data(4);

94
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95 %% Get accelerations

96
97 [ddot_gam, ddot_th] = get_acc(block);

98
99 %% Set outputs

100
101 block.OutputPort(1).Data = gam;

102 block.OutputPort(2).Data = th;

103
104 block.OutputPort(3).Data = dot_gam;

105 block.OutputPort(4).Data = dot_th;

106
107 block.OutputPort(5).Data = ddot_gam;

108 block.OutputPort(6).Data = ddot_th;

109
110 end % Outputs

111
112
113 function Derivatives(block)

114
115 %% Extract state components

116
117 dot_gam = block.ContStates.Data(3);

118 dot_th = block.ContStates.Data(4);

119
120 %% Get accelerations

121
122 [ddot_gam, ddot_th] = get_acc(block);

123
124 %% Set state derivative

125
126 block.Derivatives.Data(1) = dot_gam;

127 block.Derivatives.Data(2) = dot_th;

128
129 block.Derivatives.Data(3) = ddot_gam;

130 block.Derivatives.Data(4) = ddot_th;

131
132 end % Derivatives

133
134
135 function Terminate(block)

136
137 end % Terminate

138
139
140 function [ddot_gam, ddot_th] = get_acc(block)

141
142 %% Get inputs and parameter structs

143
144 % parameters

145 body = block.DialogPrm(2).Data; % body data struct

146 mot = block.DialogPrm(3).Data; % mot data struct

147 gbox = block.DialogPrm(4).Data; % gbox data struct

148 wheel = block.DialogPrm(5).Data; % wheel data struct

149
150 % input voltages

151 ua = block.InputPort(1).Data; % armature voltage (right/left motor)

152
153 %% Extract state components

154
155 th = block.ContStates.Data(2);

156 dot_gam = block.ContStates.Data(3);

157 dot_th = block.ContStates.Data(4);
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158
159 %% Extract params

160
161 % body params

162 l = body.zb;

163 mb = body.m;

164 Ibyy = body.Iyy;

165
166 % wheel params

167 w = 2*wheel.yb;

168 r = wheel.r;

169 mw = wheel.m;

170 Iwyy = wheel.Iyy;

171
172 % (motor) rotor params

173 zbrot = mot.rot.zb;

174 mrot = mot.rot.m;

175 Irotyy = mot.rot.Iyy;

176
177 % gear ratio

178 n = gbox.N;

179
180 % friction params

181 bw = wheel.B; % wheel viscous fric coeff

182 bm = mot.B; % motor viscous fric coeff (motor side)

183 bg = gbox.B; % gbox viscous fric coeff (load side)

184 b = n^2*bm+bg; % motor+gbox viscous fric coeff (load side)

185
186 % gravity acc

187 g = 9.81;

188
189 %% Get motor torques

190
191 % bacḱ EMFs

192 ue = mot.Ke * n*(dot_gaḿ dot_th);

193
194 % motor torque (single motor)

195 tau = n*mot.Kt * (uá ue)/mot.R;

196
197 %% Evaluate accelerations of generalised coords

198
199 % inertia matrix

200 MM = zeros(2,2);

201
202 MM(1,1) = 2*Iwyy + 2*Irotyy*n^2 + (mb + 2*(mrot+mw))*r^2;

203 MM(1,2) = 2*(1́ n)*n*Irotyy + r*(l*mb + 2*mrot*zbrot)*cos(th);

204
205 MM(2,1) = MM(1,2);

206 MM(2,2) = Ibyy + 2*(1́ n)^2*Irotyy + mb*l^2 + 2*mrot*zbrot^2;

207
208 % Coriolis + centrifugal terms matrix

209 CC = zeros(2,2);

210
211 CC(1,1) = 0;

212 CC(2,1) = 0;

213
214 CC(2,2) = 0;

215 CC(1,2) = ŕ*(mb*l + 2*mrot*zbrot)*sin(th)*dot_th;

216
217 % viscous friction matrix

218 Fv = zeros(2,2);

219
220 Fv(1,1) = 2*(b+bw);
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221 Fv(1,2) = ´2*b;

222
223 Fv(2,1) = Fv(1,2);

224 Fv(2,2) = 2*b;

225
226 % gravity loading

227 GG = zeros(2,1);

228 GG(2) = ǵ*(mb*l + 2*mrot*zbrot)*sin(th);

229
230 % generalized actuator forces

231 TT = zeros(2,1);

232 TT(1) = 2*tau;

233 TT(2) = ´2*tau;

234
235 % get accelerations of generalised coords (q = [gam, th].')

236 dotq = [dot_gam, dot_th].';

237 ddotq = MM \ (TT ´ CC*dotq ´ Fv*dotq ´ GG);

238
239 ddot_gam = ddotq(1);

240 ddot_th = ddotq(2);

241
242 end % get_acc
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