Newton-Raphson consensus for distributed convex

optimization

Luca Schenato

Department of Information Engineering - University of Padova, ltaly
URL: http://automatica.dei.unipd.it/people/schenato.html

June 15, 2013 — ECC Workshop on Distributed Optimization in
Large Networks and its Applications

= DIPARTIMENTO
— DIINGEGNERIA
— DELLINFORMAZIONE

Contributors

R =
Angelo Cenedese
University of Padova

ENAE o

Damiano Varagnolo
KTH, Sweden

Gianluigi Pillonetto
University of Padova

Filippo Zanella
a-pole.com, sellf.com

Structure of the presentation

Centralized Newton-Raphson:
Distributed Newton-Raphson:
Distributed Newton-Raphson:
Distributed Newton-Raphson:

Simulations

Conclusions and references

an overview
the scalar scenario
convergence proof ideas

the multidimensional scenario

Centralized Newton-Raphson:
the rationale behind & properties

Newton-Raphson: scalar case

Goal: find minimum of

convex f(x)

Idea: approximate function [\\\

f(x) with a parabola e

~ 1 Xir1 X
f(x) = Ea(x — b2 +c

Match slope and curvature at point x,:

f(Xk) = f(Xk) = %a(xk _ b)2 +c 3= f‘/l(Xk)l
f'(xk) = C,(Xk) = a(xx — b) = b=xx— %
() = P() = 2 o

Gradient Descent: scalar case

Idea: approximate function

f(x) with a parabola with
unitary curvature [\x/
Xk+1Xk

Jump to the minimum:

X1 = xk — (%)

Newton-Raphson: multivariable case

Idea: approximate function f(x) with a

parabola
@

f(x) = (x — b)TA(x — b) +c,
beR" AcR™" e

Match slope and curvature at point x:

Vi(xe) = v?(fk) = Al —b) _ A= V2£(xi)
sz(Xk) = v2f”(Xk) =A b= xx— (sz(xk))_1Vf(xk)

Jump to the minimum:

X1 = xk — (V2F(x¢)) TV F (%)

Gradient Descent: multivariable

Idea: approximate function f(x) with a
parabola with unitary curvature

Fx) = Lx— b2 + b
(A=1) "

Match slope at x:
VF(xe) = VF(xc) = xx — b

Jump to the minimum:

Xkt1 = Xk — VF(xk)

Jacobi: multivariable

Idea: approximate function f(x) with a
parabola with parallel axes

4025_

f(x) = 3(x — b)TA(x — b) + c,
A = diag{ay,...,an} Y

Match slope and axis curvature at x:

Vi (xe) = VF(xc) = A(x — b)
[v2f(Xk)} i = a;

Jump to the minimum:

Xier1 = x — (diag(V2F(x))) T VF (%)

Centralized Newton-Raphson (NR): properties

e if f is quadratic, then minimization is performed in 1 step
@ Newton step is invariant w.r.t. affine changes of coordinates

e if f € C?, strongly convex, and Hessian is uniformly Lipschitz,
ie.,

|V2f(x1) = V2 (x2) |, < Lllxa = 2l
then for x =~ x* convergence rate is quadratic (super-linear,
doubly exponential)

A

iterations

S
>

1’}

Log(error)

sublinear

Superlinea

(quadratic) linear

1C

Centralized NR in practice

X1 = Xk — e(V2F(xk)) TV F(xk)
@ practical implementations perform line search, e.g.
e = min, f(X44+1). For e =1 could diverge if xo far away.

e convergence follows two phases: first damped (linear
convergence) then quadratic (optimal € ~ 1)

@ computational burden to obtain V2f(x) can be alleviated
using quasi-Newton methods:

Ax = —B 'V f(xy)

where B, ! is an estimate of the Hessian using Vf(xx_1)

11

Distributed Newton-Raphson:
the scalar scenario

12

Networked systems

Assumption: neighbours cooperate to find the optimum of an
additively separable cost:

N
f(x) = %Z fi(x), x* = argmin,f(x)
i=1

Average Consensus algorithm

Linear Distributed algorithm to compute averages:

JORNNNG|

X1 1 K=1 // \8 cender of mass

o 1 & ----0

xi € R)x = 1=
X.N 1 K=2 d@%jof mass
Matrix P doubly stochastic, nonnegative,
associated graph strongly connected @@@terofmass
K=3 @y

x(k + 1) = Px(k)

K=4 @ center of mass

1"P=1",P1=1,P>0,P" >0
1 1 1
PEi g -

p_| s 3 7 7| . limeexi(k)= g2z xi(0), Vi
1 10|’ exponentially fast rate=esr(P)
0o ; 0 32

Center of mass preserved | Works also for time-varying P(k): e.g. gossip

Naive application of Consensus: the wrong way !

Centralized Gradient Descent (to simplify notation
Xk = X, Xge1 = XT):

f(x) =

i

N
fi(X)=>x+:X—I:tI;f/(x)

1

1
N
Some notation:

x;: local copies of estimated minimum,x = [x; - - x,] "
yi: local copies of estimated global gradient,y = [y1---y,]"

Naive Distributed Gradient Descent Algorithm:

(1) yi="f(x) local gradient
(2) y*=Py estimated global gradient via communication

(3) x" =x —y' local descent step

NOT WORKING !!

1F

Naive application of Consensus: the wrong way ! (cont'd)

(1) yi=f(x) local gradient

(2) yt=Py estimated global gradient via communication
(3) x" =x; —y;" local descent step
Why it does not work:

e even if x; = x* Vi, unless P = 4117 (complete graph), then
the x,-+’s s will spread around = x* is not an asymptotic
equilibrium point

@ even if P = %IIT (complete graph), unless x; = x;Vi, j, then
x,-Jr #* xjJr = they agree on a direction not on a point

1€

Back to Newton-Raphson intuition

Approximate each f;(x) with a parabola

~ 1 ¥ — L1y (1, ,
) = L by — () =W (Bai (-8 v)
2 = 5a(x — x*)?
Match slope and curvature at point x;:
f/(xi) = 7/ (x) = ai(x — b)) o ar=1(x)
/() = £'(x)) = ai aibj = f'(xi)xi — f{(xi)
Jump to the minimum of f(x):
N L 1N
1! !
Zalbl Nzaibi Nz:f; (XI)XI f;(Xl)
X+ — x* = i — i=1 — i=1

Graphical interpretation

1 N
~) ' (xi)xi — £ (xi
e ajb; = f"(xi)xi — f/(x;) . N ; 7 ba)xi = 1i(xi)
- x= Sy
o a; = f'(x;) N > (i)

T1

1€

Graphical interpretation

Ty

1C

Graphical interpretation

x2

20

Centralized vs Distributed Newton-Raphson

Is the minimum of f(x) a good approximation of the true
minimum of f(x) ? Minimum of global f(x):

1N
2 17 (xi)xi = 1)
X+ — X* — i=1
1 1 N
~) ()
N3
Not clear, but if all points are the same, i.e. x; = x Vi, then
1N
N Z f;'/(X:) ,
| 1 ()
N Z fiH(Xl)

Intuition: If x; are close to each other, then x* is a good estimate
of the true minimum, therefore x* — x; is a good direction for x;.

Towards a consensus-based Newton-Raphson

Algorithm

@ initialise local variables:

o ¥i(0) := £ (xi(0))xi(0) — £/(xi(0))
o z(0) := £(xi(0))

@ run 2 average consensus (P doubly stochastic):
o y(k+1) = Py(k),
o z(k+1) = Pz(k)

yilk +1)

@ locally compute xj(k +1) = zi(k+1)

27

Towards a consensus-based Newton-Raphson

Algorithm
@ initialise local variables:
o ¥i(0) := £ (xi(0))xi(0) — £/(xi(0))
o z(0) := £(xi(0))
@ run 2 average consensus (P doubly stochastic):
o y(k+1) = Py(k),
o z(k+1) = Pz(k)

, _ yilk+1)
© locally compute xj(k + 1) = zi(k +1)

Problem:

All local estimate converge to consensus y;(k) — ¥(0), zi(k) — z(0)
therefore also x;(k) — x*(0), but x*(0) depends on initial condition. One
could run K steps and then restart algorithm with

yi(0) £"((K)xi(K) — £(x(K)). 2(0) « £(K): too slow

27

The (synchronous) consensus-based Newton-Raphson

Fixes:
@ change initial condition of consensus step to track the
changing x;

@ move x; slowly to let consensus variable (y;, z;) to converge

v

Algorithm

@ define local variables:

o gi(k) = F(alk)x(k) — F0a(k), &(~1)=0, y(0)=0
o hi(k) = '(qk)), h(~1) =0, z(0)

@ run 2 average consensus (P doubly stochastic):

o y(k+1) = Py(k) + g(k) —g(k — 1),
o z(k+1) = Pz(k) + h(k) — h(k — 1)

i 1
@ locally compute xj(k + 1) = (1 — e)x;(k) + D)

273

Why h(k) — h(k — 1) and not simply h(k)?

Plain average consensus would lead to integration, differently:

z(k + 1) = Pz(k)+h(k) — h(k — 1)
z(0) =0, h(-1)=0
ll
LN zik+1) = L3N, hi(xi(k), vk

Therefore, if zj(k) — zj(k) K230, then
1N

Z//

l:l

zilk +1) — = Zh(x,k)—

24

Block diagram representation

distributed

local local
computations averaging updates
e N
5 By
any
- -
. average H
- -

consensus
C gl? hl HP”

y(k +1) = Py(k)

z(k + 1) = Pz(k)

(o) -,
. J

& c

hi(k) = £ (xi(k)) z(k+1)

gi(k) = £ Calk)x(k) = £ (k) xi(k+1) = (1—e)x(k) + LD

bl

Distributed Newton-Raphson:
convergence proof ideas

bl

Singul

Coupled dynamics:

ey
(v

ar Perturbation Theory: an example

= —xy? slow dynamics
= —y+x? fast dynamics
=~y +x%))

Idea: decouple time scales

freeze slow dynamics, i.e. x = constant

find equilibrium points for fast dynamics, i.e. y = x?
verify if fast dynamics is asymptotically stable: y = —y (OK)

substitute equilibrium into slow dynamics and verify is systems is
asymptotically stable, x = —x>

plus some other technical conditions = coupled system is
asymptotically stable if ¢ sufficiently small

Convergence based on Singular Perturbation Theory

Algorithm
x(0) = y(0) = z(0) = g(x(—1)) = h(x(—1)) = 0 initialization
y(k +1) = Py(k) + g(x(k)) — g(x(k — 1)) fast dynamics
z(k +1) = Pz(k) + h(x(k)) — h(x(k — 1))
xi(k+1) = (1 —e)xi(k) + 52%21:3 slow dynamici
Proof sketch:

Fast dynamics

If e = 0, then x(k + 1) ~ x(k) = x (constant)

= yilk+1) = § 3L gi(x) = § Tty £/ (xi)xi — {(x) =
g(x), Vi

= zi(k+1) = &SN, hi(x) = § SN, f(x) = h(x), Vi

) —
g(x),h(x) :R" = R

&

Convergence based on Singular Perturbation Theory

Fast dynamics

If e =0, then x(k + 1) ~ x(k) = x (constant)

— yi(k+1) = v v e ' (xi)xi — £ (x) = &(x), Vi
= zi(k+1) =~ N, f'(x;) = h(x), Vi

Slow dynamics: perturbed system

Insert equilibrium point of fast dynamics into slow dynamics:

, —(1-2)x 8(x(k))
xi(k+1)=(1—¢e)xi(k) +¢ Fix (k)),v

Same forcing term, therefore limy_,o Xi(k) — xj(k) = 0.

Convergence based on Singular Perturbation Theory

Slow dynamics: perturbed system

Insert equilibrium point of fast dynamics into slow dynamics:

, —(1—2)x g(x(k))
xi(k+1) = (1 —e)xi(k) + £ Fx (k)),v

Same forcing term, therefore limy_,o Xj(k) — xj(k) = 0.

Slow dynamics: unperturbed system

Assume x; = X; = X:
st 2(x1)
Xt =(1-¢)x+¢t D),
NZI 1 IN(X X— f,(X)

l1—¢)x+e¢
=) NZ:lZ:N(X)
_ ! (x)
= 1—€x—|—s<x—"’ L)
(), _ N Z::l f'(x)

Centralized Newton-Raphson !!

20

Formal results

e If f; are quadratic —> Global exponential convergence
with rate sr(P) for ¢ = 1 for any connected graph

o If graph is complete —> Centralized Newton-Raphson

@ Under mild conditions (f; € C® and convex) = Local
Exponential Stability for 0 < ¢ < e,

@ Under more restrictive conditions (global boundedness of
% and ") = Global Exponential Stability for
O<e<ee

e Convergence is “only” linear due to consensus: need time

to pass information around

iterations

—

Sublinear (DSM)

Log(error)

21

Distributed Newton-Raphson:
the multivariable scenario

27

The Multivariable consensus-based Newton-Raphson

Derivation of the algorithm

Algorithm

@ define local variables:
o gi(k):=V2fi(xi(k))xi(k)=Vfi(xi(k)),gi(—1) = yi(0) = 0, R”
o Hi(k) := V?fi(xi(k)), Hi(—1)= Z(0)=0, €R™"

@ run 2 average consensus (P doubly stochastic):

o y(k+1)= Py(k) +g(k) —g(k—1)
o Z(k+1) = PZ(k) + h(k) —h(k — 1)

@ locally compute x;(k +1) = (1 — &)x;(k) + eZi(k + 1) tyi(k + 1)

o

Need to compute averages and inversions of matrices:

@ O(n?) communication complexity & memory requirements

e O(n3) computational complexity

Distributed Gradient Descent Revised

Approximate each f;(x) with a parabola with unitary curvature:

f, f —Llsn (L p\2 4
ﬁ(X) = } X — bi)2 +¢ = (X) 1NZ/_]_ (2 (X b) =+ C)
2 — §(X _X*)Z +c

Match slope x;:
fl(xi)=F(x)=(xi — b)) = bi=x—f(x)

Jump to the minimum of 7(x):

24

The (synchronous) consensus-based Gradient Descent

Derivation of the algorithm

The correct algorithm

@ define local variables:

o gi(k) = xi(k) — f/(xi(k)), &(-1)=0, yi(0)=0
@ run 1 average consensus (P doubly stochastic):

o y(k+1) = Py(k) + g(k) — g(k — 1),
© locally compute

xi(k+1) =(1—¢e)xi(k)+eyi(k+1)
= xi(k) + e (yi(k + 1) — xi(k))

The Naive Gradient Descent algorithm

(1) yi=f(x) local gradient
(2) yt =Py estimated global gradient via communication
(3) xi" =x —y' local descent step

Extensions

@ Simplified Multivariable:

o Distributed Gradient Descent: O(n) complexity, only Vf

needed

o Distributed Jacobi: O(n) complexity, only V£, [V2f]; needed

@ Asynchronous: straightforward implementation. Some uniform
persistency requirements for global convergence

@ Flexible: by changing the consensus block can be adapted to

different scenarios:

@ Accelerated: diffusion-based consensus

@ Broadcast communication: no need
for symmetric gossip (ratio consensus)

@ Directed Graphs

@ Packet loss

N

‘/

any
: average i
= consensus =
D) - el
- =B o
l 2k +1) = Pe(k) :
\'@N' iy @

—

2F

Distributed Newton-Raphson:
simulations

Simulations: SVM Classification with synchronous NR
http://archive.ics.uci.edu/ml/datasets/Spambase

x € R*: frequency of specific words,

y € {spam, non-spam}

(x,x0) € R5: separating hyperplane parameters
Connected graphs with 30 nodes

Local cost functions:

Spam Filters:

30
fi (x) = Z log (1+exp (—y; (0] x + x0)))—|—fy l1x|[3 .
=1

&

Simulations: SVM Classification with synchronous NR

Consensus-based algorithms:

k (for e =¢*)

NRC=Newton-Raphson Consensus

JC= Jacobi Consensus

GDC = Gradient Descent Consensus

Comparison with other algorithms

T T T
1072 e i
— 10_4 B : \\ - |
= 1076 :
€2 NN
wn 10—8 [2 |
= oo] ADMM “+ |
— NRC
107" L __FNRC "l
10—14 | | |

ADMM=AIlternating Direction
Multipliers Method
NRC=Newton-Raphson Consensus
FNRC= Newton-Raphson with Fast
Consensus (diffusive)

Simulations: Robust Regression with synchronous NR
http://archive.ics.uci.edu/ml/datasets/Housing

x € R*: size, distance from downtown

y € R, house price

(x,x0) € R5: parameters to be computed
Connected graphs with 30 nodes

Local cost functions:

fi (x) := i (v = x]x =)’
s j=1 i = X x = x| + 8

Housing Price
Predictors:

2
+ x5 -

AC

Simulations: Robust Regression with synchronous NR

Consensus-based algorithms:

40

100 . T T
1072 | 2
S
CL;J) 1074
= CNRONL e
...... ile
107° " —GDC
| | |
0 10 20 30
k (for e =¢*)

NRC=Newton-Raphson Consensus

JC= Jacobi Consensus

GDC = Gradient Descent Consensus

Comparison with other algorithms

T ETTT A e
A A
1074 - !
<106
2 108 |
2 10=10 | eeens ADMM ™ i
10-12 | —NRC]
s | == -FNRC
10~ |- \ ‘ : -
; 10 20 30 40
k

ADMM=AIlternating Direction
Multipliers Method
NRC=Newton-Raphson Consensus
FNRC= Newton-Raphson with Fast
Consensus (diffusive)

a1

Conclusions and references

Conclusions

Takeaway messages
@ new distributed optimisation method
@ it takes advantage of standard consensus algorithms
(plug-and-play)

@ its potentials are still mainly unexplored

Future work
@ adaptive local stepsize ¢;(k)
@ non-differentiable cost functions
@ quasi-Newton methods

constraints

distributed interior point methods

@ extensive comparisons based on real data with ADMM&co

A3

Publications (1/2)

Synchronous

[

[

F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, L. Schenato (2011)
Newton-Raphson consensus for distributed convex optimization
IEEE Conference on Decision and Control (CDC'11)

F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, L. Schenato (2012)
Multidimensional Newton-Raphson consensus for distrib. convex optimization
American Control Conference (ACC'12)

D. Varagnolo, F. Zanella, A. Cenedese, G. Pillonetto, L. Schenato
Newton-Raphson Consensus for Distributed Convex Optimization
IEEE Transactions on Automatic Control (submitted)

A4

Publications (2/2)

Asynchronous

@ F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, L. Schenato (2012)
Asynchronous Newton-Raphson Consensus for Distributed Convex Optimization
3rd IFAC Workshop on Distributed Estimation and Control in Networked
Systems (NecSys'12)

Convergence rate

@ F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, L. Schenato (2012)
The convergence rate of Newton-Raphson consensus optimization for quadratic
cost functions
IEEE Conference on Decision and Control (CDC’'12)

AR

Newton-Raphson consensus for distributed convex
optimization

Luca Schenato

Department of Information Engineering - University of Padova, Italy
URL: http://automatica.dei.unipd.it/people/schenato.html

June 15, 2013 — ECC Workshop on Distributed Optimization in
Large Networks and its Applications

o, & e,
2 & " 1y,
* Tz licensed under the Creative Commons BY-NC-SA 2.5 Italy License: @®©©‘

AF

http://creativecommons.org/licenses/by-nc-sa/2.5/it/deed.en

