# Newton-Raphson consensus for distributed convex optimization

#### Luca Schenato

Department of Information Engineering - University of Padova, Italy URL: http://automatica.dei.unipd.it/people/schenato.html

June 15, 2013 – ECC Workshop on Distributed Optimization in Large Networks and its Applications



## Contributors



**Angelo Cenedese** University of Padova



**Gianluigi Pillonetto** University of Padova



Damiano Varagnolo KTH, Sweden



**Filippo Zanella** a-pole.com, sellf.com

## Structure of the presentation

- Centralized Newton-Raphson: an overview
- Distributed Newton-Raphson: the scalar scenario
- Distributed Newton-Raphson: convergence proof ideas
- Distributed Newton-Raphson: the multidimensional scenario
- Simulations
- Conclusions and references

## Centralized Newton-Raphson:

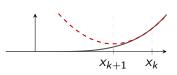
the rationale behind & properties

## Newton-Raphson: scalar case

Goal: find minimum of convex f(x)

Idea: approximate function f(x) with a parabola

$$\widehat{f}(x) = \frac{1}{2}a(x-b)^2 + c$$



Match slope and curvature at point  $x_n$ :

$$f(x_k) = \hat{f}(x_k) = \frac{1}{2}a(x_k - b)^2 + c \qquad a = f''(x_k)$$

$$f'(x_k) = \hat{f}'(x_k) = a(x_k - b) \qquad \Rightarrow b = x_k - \frac{f'(x_k)}{f''(x_k)}$$

$$f''(x_k) = \hat{f}''(x_k) = a \qquad c = *$$

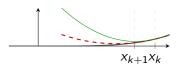
Jump to the minimum:

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

.

## Gradient Descent: scalar case

Idea: approximate function f(x) with a parabola with unitary curvature



$$\widehat{f}(x) = \frac{1}{2}(x-b)^2 + c$$

Match slope at  $x_k$ :

$$\begin{array}{ll}
f(x_k) = \hat{f}(x_k) = \frac{1}{2}(x_k - b)^2 + c \\
f'(x_k) = \hat{f}'(x_k) = x_k - b
\end{array} \Rightarrow \begin{array}{ll}
b = x_k - f'(x_k) \\
c = *$$

Jump to the minimum:

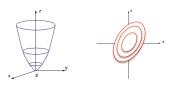
$$x_{k+1} = x_k - f'(x_k)$$

.

## Newton-Raphson: multivariable case

Idea: approximate function f(x) with a parabola

$$\widehat{f}(x) = \frac{1}{2}(x-b)^{T}A(x-b) + c,$$
  
$$b \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}$$



Match slope and curvature at point  $x_k$ :

$$\begin{array}{ll} \nabla f(x_k) = \nabla \widehat{f}(x_k) = A(x_k - b) \\ \nabla^2 f(x_k) = \nabla^2 \widehat{f}''(x_k) = A \end{array} \Rightarrow \begin{array}{ll} A = \nabla^2 f(x_k) \\ b = x_k - (\nabla^2 f(x_k))^{-1} \nabla f(x_k) \end{array}$$

Jump to the minimum:

$$x_{k+1} = x_k - (\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

## Gradient Descent: multivariable

Idea: approximate function f(x) with a parabola with unitary curvature

$$\widehat{f}(x) = \frac{1}{2} ||x - b||^2 + c$$
  
(A = I)





Match slope at  $x_k$ :

$$\nabla f(x_k) = \nabla \widehat{f}(x_k) = x_k - b$$

Jump to the minimum:

$$x_{k+1} = x_k - \nabla f(x_k)$$

## Jacobi: multivariable

Idea: approximate function f(x) with a parabola with parallel axes

$$\widehat{f}(x) = \frac{1}{2}(x-b)^{T}A(x-b) + c,$$

$$A = \operatorname{diag}\{a_{1}, \ldots, a_{n}\}$$





Match slope and axis curvature at  $x_k$ :

$$\nabla f(x_k) = \nabla \hat{f}(x_k) = A(x_k - b)$$
$$[\nabla^2 f(x_k)]_{ii} = a_i$$

Jump to the minimum:

$$x_{k+1} = x_k - \left(\operatorname{diag}(\nabla^2 f(x_k))\right)^{-1} \nabla f(x_k)$$

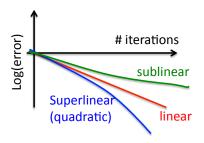
ç

## Centralized Newton-Raphson (NR): properties

- ullet if f is quadratic, then minimization is performed in 1 step
- Newton step is invariant w.r.t. affine changes of coordinates
- if  $f \in C^2$ , strongly convex, and Hessian is uniformly Lipschitz, i.e.,

$$\left\| \nabla^2 f(\mathbf{x}_1) - \nabla^2 f(\mathbf{x}_2) \right\|_2 \le L \|\mathbf{x}_1 - \mathbf{x}_2\|_2$$

then for  $x \approx x^*$  convergence rate is *quadratic* (super-linear, doubly exponential)



1(

## Centralized NR in practice

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \varepsilon (\nabla^2 f(\mathbf{x}_k))^{-1} \nabla f(\mathbf{x}_k)$$

- practical implementations perform line search, e.g.  $\varepsilon_k^* = \min_{\varepsilon} f(\mathbf{x}_{k+1})$ . For  $\varepsilon = 1$  could diverge if  $\mathbf{x}_0$  far away.
- ullet convergence follows two phases: first damped (linear convergence) then quadratic (optimal arepsilon pprox 1)
- computational burden to obtain  $\nabla^2 f(\mathbf{x})$  can be alleviated using *quasi*-Newton methods:

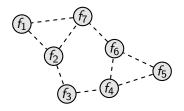
$$\Delta \mathbf{x} = -B_k^{-1} \nabla f(\mathbf{x}_k)$$

where  $B_k^{-1}$  is an estimate of the Hessian using  $\nabla f(\mathbf{x}_{k-1})$ 

## Distributed Newton-Raphson:

the scalar scenario

## Networked systems



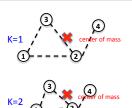
Assumption: neighbours cooperate to find the optimum of an additively separable cost:

$$f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x), \quad x^* = \operatorname{argmin}_x f(x)$$

## Average Consensus algorithm

Linear Distributed algorithm to compute averages:

$$x_i \in \mathbb{R}, x = \left[ egin{array}{c} x_1 \ x_2 \ dots \ x_N \end{array} 
ight], \mathbf{1} = \left[ egin{array}{c} 1 \ 1 \ dots \ 1 \end{array} 
ight]$$



Matrix *P* doubly stochastic, nonnegative, associated graph strongly connected

$$x(k+1) = Px(k)$$

$$\mathbf{1}^T P = \mathbf{1}^T, P \mathbf{1} = \mathbf{1}, P \ge 0, P^N > 0$$

$$P = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} & 0\\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4}\\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} & 0\\ 0 & \frac{1}{4} & 0 & \frac{3}{4} \end{bmatrix}, \Longrightarrow \begin{cases} \lim_{k \to \infty} x_i(k) = \frac{1}{N} \sum_{i=1}^{N} x_i(0), \ \forall i \\ \text{exponentially fast rate} = \text{esr}(P) \end{cases}$$

Center of mass preserved! Works also for time-varying P(k): e.g. gossip

## Naive application of Consensus: the wrong way !

Centralized Gradient Descent ( to simplify notation  $x_k = x, x_{k+1} = x^+$ ):

$$f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x) \Longrightarrow x^+ = x - \frac{1}{N} \sum_{i=1}^{N} f'_i(x)$$

Some notation:

$$x_i$$
: local copies of estimated minimum,  $\mathbf{x} = [x_1 \cdots x_n]^T$   
 $y_i$ : local copies of estimated global gradient,  $\mathbf{y} = [y_1 \cdots y_n]^T$ 

Naive Distributed Gradient Descent Algorithm:

- (1)  $y_i = f_i'(x_i)$  local gradient
- (2)  $\mathbf{y}^+ = P\mathbf{y}$  estimated global gradient via communication
- (3)  $x_i^+ = x_i y_i^+$  local descent step

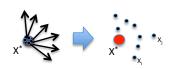
#### NOT WORKING!!

## Naive application of Consensus: the wrong way! (cont'd)

- (1)  $y_i = f_i'(x_i)$  local gradient
- (2)  $\mathbf{y}^+ = P\mathbf{y}$  estimated global gradient via communication
- (3)  $x_i^+ = x_i y_i^+$  local descent step

#### Why it does not work:

- even if  $x_i = x^* \ \forall i$ , unless  $P = \frac{1}{N} \mathbf{1} \mathbf{1}^T$  (complete graph), then the  $x_i^+$ 's s will spread around  $\implies x^*$  is not an asymptotic equilibrium point
- even if  $P = \frac{1}{N} \mathbf{1} \mathbf{1}^T$  (complete graph), unless  $x_i = x_j \forall i, j$ , then  $x_i^+ \neq x_j^+ \Longrightarrow$  they agree on a direction not on a point





## Back to Newton-Raphson intuition

Approximate each  $f_i(x)$  with a parabola

$$\hat{f}_i(x) = \frac{1}{2}a_i(x-b_i)^2 + c_i \Longrightarrow \hat{f}(x) = \frac{1}{N}\sum_{i=1}^n \left(\frac{1}{2}a_i(x-b_i)^2 + c_i\right) = \frac{1}{2}a(x-x^*)^2$$

Match slope and curvature at point  $x_i$ :

$$f'_{i}(x_{i}) = \widehat{f}'_{i}(x_{i}) = a_{i}(x_{i} - b_{i}) f''_{i}(x_{i}) = \widehat{f}''_{i}(x_{i}) = a_{i}$$
  $\Rightarrow a_{i} = f''_{i}(x_{i}) a_{i}b_{i} = f''_{i}(x_{i})x_{i} - f'_{i}(x_{i})$ 

Jump to the minimum of  $\hat{f}(x)$ :

$$x_{i}^{+} = x^{*} = \frac{\sum_{i=1}^{N} a_{i} b_{i}}{\sum_{i=1}^{N} a_{i}} = \frac{\frac{1}{N} \sum_{i=1}^{N} a_{i} b_{i}}{\frac{1}{N} \sum_{i=1}^{N} a_{i}} = \frac{\frac{1}{N} \sum_{i=1}^{N} f_{i}''(x_{i}) x_{i} - f_{i}'(x_{i})}{\frac{1}{N} \sum_{i=1}^{N} f_{i}''(x_{i})}$$

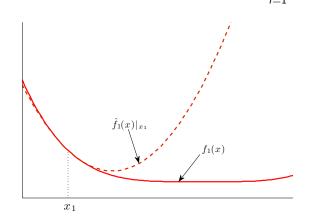
## Graphical interpretation

 $\bullet \ a_i = f_i''(x_i)$ 

$$\bullet \ a_ib_i=f_i''(x_i)x_i-f_i'(x_i)$$

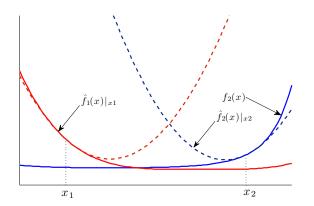
$$\Rightarrow$$

$$\Rightarrow \quad x^* = \frac{N \sum_{i=1}^{N} f_i''(x_i)}{\frac{1}{N} \sum_{i=1}^{N} f_i''(x_i)}$$



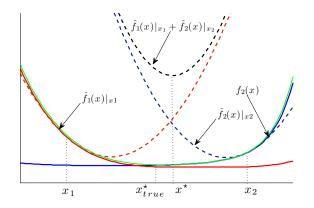
## Graphical interpretation

• 
$$a_i b_i = f_i''(x_i) x_i - f_i'(x_i)$$
  $\Rightarrow x^* = \frac{\frac{1}{N} \sum_{i=1}^N f_i''(x_i) x_i - f_i'(x_i)}{\frac{1}{N} \sum_{i=1}^N f_i''(x_i)}$ 



## Graphical interpretation

• 
$$a_i b_i = f_i''(x_i) x_i - f_i'(x_i)$$
  
•  $b_i = f_i''(x_i)$   
 $\Rightarrow x^* = \frac{\frac{1}{N} \sum_{i=1}^{N} f_i''(x_i) x_i - f_i'(x_i)}{\frac{1}{N} \sum_{i=1}^{N} f_i''(x_i)}$ 



## Centralized vs Distributed Newton-Raphson

Is the minimum of  $\widehat{f}(x)$  a good approximation of the true minimum of f(x)? Minimum of global  $\widehat{f}(x)$ :

$$x_i^+ = x^* = \frac{\frac{1}{N} \sum_{i=1}^N f_i''(x_i) x_i - f_i'(x_i)}{\frac{1}{N} \sum_{i=1}^N f_i''(x_i)}$$

Not clear, but if all points are the same, i.e.  $x_i = x \ \forall i$ , then:

$$x_i^+ = x^+ = x - \frac{\frac{1}{N} \sum_{i=1}^{N} f_i'(x_i)}{\frac{1}{N} \sum_{i=1}^{N} f_i''(x_i)} = x - \frac{f'(x)}{f''(x)}$$

**Intuition:** If  $x_i$  are close to each other, then  $x^*$  is a good estimate of the true minimum, therefore  $x^* - x_i$  is a good direction for  $x_i$ .

## Towards a consensus-based Newton-Raphson

### Algorithm

- initialise local variables:
  - $y_i(0) := f_i''(x_i(0))x_i(0) f_i'(x_i(0))$
  - $z_i(0) := f_i''(x_i(0))$
- 2 run 2 average consensus (P doubly stochastic):
  - y(k+1) = Py(k),
  - z(k+1) = Pz(k)

## Towards a consensus-based Newton-Raphson

### Algorithm

- initialise local variables:
  - $y_i(0) := f_i''(x_i(0))x_i(0) f_i'(x_i(0))$
  - $z_i(0) := f_i''(x_i(0))$
- 2 run 2 average consensus (P doubly stochastic):
  - y(k+1) = Py(k),
  - z(k+1) = Pz(k)

#### Problem:

All local estimate converge to consensus  $y_i(k) \to \bar{y}(0), z_i(k) \to \bar{z}(0)$  therefore also  $x_i(k) \to x^*(0)$ , but  $x^*(0)$  depends on initial condition. One could run K steps and then restart algorithm with  $y_i(0) \leftarrow f_i''(x_i(K))x_i(K) - f_i'(x_i(K)), \quad z_i(0) \leftarrow f_i''(K)$ : **too slow** 

## The (synchronous) consensus-based Newton-Raphson

#### Fixes:

- change initial condition of consensus step to track the changing x<sub>i</sub>
- move  $x_i$  slowly to let consensus variable  $(y_i, z_i)$  to converge

#### Algorithm

- define local variables:
  - $g_i(k) := f_i''(x_i(k))x_i(k) f_i'(x_i(k)), g_i(-1) = 0, y_i(0) = 0$
  - $h_i(k) := f_i''(x_i(k)), h_i(-1) = 0, z_i(0)$
- 2 run 2 average consensus (*P* doubly stochastic):
  - y(k+1) = Py(k) + g(k) g(k-1),
  - z(k+1) = Pz(k) + h(k) h(k-1)
- **3** locally compute  $x_i(k+1) = (1-\varepsilon)x_i(k) + \varepsilon \frac{y_i(k+1)}{z_i(k+1)}$

## Why h(k) - h(k-1) and not simply h(k)?

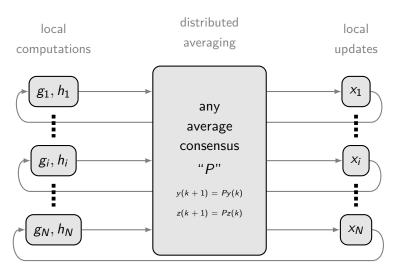
Plain average consensus would lead to integration, differently:

$$\mathbf{z}(k+1) = P\mathbf{z}(k) + \mathbf{h}(k) - \mathbf{h}(k-1) 
\mathbf{z}(0) = 0, \quad \mathbf{h}(-1) = 0 
\Downarrow 
\frac{1}{N} \sum_{i=1}^{N} z_i(k+1) = \frac{1}{N} \sum_{i=1}^{N} h_i(x_i(k)), \quad \forall k!$$

Therefore, if  $z_i(k) - z_j(k) \stackrel{k \to \infty}{\longrightarrow} 0$ , then

$$z_i(k+1) \longrightarrow \frac{1}{N} \sum_{i=1}^N h_i(x_i(k)) = \frac{1}{N} \sum_{i=1}^N f_i''(x_i(k)), \quad \forall i$$

## Block diagram representation



$$g_i(k) = f_i''(x_i(k))x_i(k) - f_i'(x_i(k))$$

$$h_i(k) = f_i''(x_i(k))$$

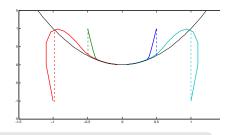
$$x_i(k+1) = (1-\varepsilon)x_i(k) + \varepsilon \frac{y_i(k+1)}{z_i(k+1)}$$

## Distributed Newton-Raphson: convergence proof ideas

## Singular Perturbation Theory: an example

#### Coupled dynamics:

$$\dot{x} = -xy^2$$
 slow dynamics  $\varepsilon \dot{y} = -y + x^2$  fast dynamics  $(\dot{y} = \frac{1}{2}(-y + x^2))$ 



#### Idea: decouple time scales

- freeze slow dynamics, i.e. x = constant
- find equilibrium points for fast dynamics, i.e.  $y = x^2$
- ullet verify if fast dynamics is asymptotically stable:  $\dot{y}=-y$  (OK)
- substitute equilibrium into slow dynamics and verify is systems is asymptotically stable,  $\dot{x}=-x^5$
- plus some other technical conditions  $\implies$  coupled system is asymptotically stable if  $\varepsilon$  sufficiently small

## Convergence based on Singular Perturbation Theory

#### Algorithm

$$\begin{cases} \mathbf{x}(0) = \mathbf{y}(0) = \mathbf{z}(0) = \mathbf{g}(\mathbf{x}(-1)) = \mathbf{h}(\mathbf{x}(-1)) = \mathbf{0} & \text{initialization} \\ \mathbf{y}(k+1) = P\mathbf{y}(k) + \mathbf{g}(\mathbf{x}(k)) - \mathbf{g}(\mathbf{x}(k-1)) & \text{fast dynamics} \\ \mathbf{z}(k+1) = P\mathbf{z}(k) + \mathbf{h}(\mathbf{x}(k)) - \mathbf{h}(\mathbf{x}(k-1)) & \\ x_i(k+1) = (1-\varepsilon)x_i(k) + \varepsilon \frac{y_i(k+1)}{z_i(k+1)} & \text{slow dynamics} \end{cases}$$

#### Proof sketch:

#### Fast dynamics

If 
$$\varepsilon \approx 0$$
, then  $\mathbf{x}(k+1) \approx \mathbf{x}(k) = \mathbf{x}$  (constant)  
 $\implies y_i(k+1) \to \frac{1}{N} \sum_{i=1}^N g_i(x_i) = \frac{1}{N} \sum_{i=1}^N f_i''(x_i)x_i - f_i'(x) = \bar{g}(\mathbf{x}), \ \forall i$   
 $\implies z_i(k+1) \to \frac{1}{N} \sum_{i=1}^N h_i(x_i) = \frac{1}{N} \sum_{i=1}^N f_i''(x_i) = \bar{h}(\mathbf{x}), \ \forall i$   
 $\bar{g}(\mathbf{x}), \bar{h}(\mathbf{x}) : \mathbb{R}^n \to \mathbb{R}$ 

## Convergence based on Singular Perturbation Theory

#### Fast dynamics

If 
$$\varepsilon \approx 0$$
, then  $\mathbf{x}(k+1) \approx \mathbf{x}(k) = \mathbf{x}$  (constant)  
 $\implies y_i(k+1) = \frac{1}{N} \sum_{i=1}^N f_i''(x_i)x_i - f_i'(x) = \bar{g}(\mathbf{x}), \quad \forall i$   
 $\implies z_i(k+1) = \frac{1}{N} \sum_{i=1}^N f_i''(x_i) = \bar{h}(\mathbf{x}), \quad \forall i$ 

#### Slow dynamics: perturbed system

Insert equilibrium point of fast dynamics into slow dynamics:

$$x_i(k+1) = (1-\varepsilon)x_i(k) + \varepsilon \frac{\bar{g}(x(k))}{h(x(k))}, \forall i$$

Same forcing term, therefore  $\lim_{k\to\infty} x_i(k) - x_i(k) = 0$ .

## Convergence based on Singular Perturbation Theory

### Slow dynamics: perturbed system

Insert equilibrium point of fast dynamics into slow dynamics:

$$x_i(k+1) = (1-\varepsilon)x_i(k) + \varepsilon \frac{\overline{g}(\mathbf{x}(k))}{h(\mathbf{x}(k))}, \forall i$$

Same forcing term, therefore  $\lim_{k\to\infty} x_i(k) - x_j(k) = 0$ .

## Slow dynamics: unperturbed system

Assume 
$$x_i = x_j = \bar{x}$$
:
$$\bar{x}^+ = (1 - \varepsilon)\bar{x} + \varepsilon \frac{\bar{g}(\bar{x}1)}{h(\bar{x}1)}$$

$$= (1 - \varepsilon)\bar{x} + \varepsilon \frac{\frac{1}{N} \sum_{i=1}^{N} f_i''(\bar{x})\bar{x} - f_i'(\bar{x})}{\frac{1}{N} \sum_{i=1}^{N} f_i''(\bar{x})}$$

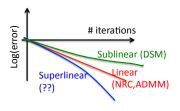
$$= (1 - \varepsilon)\bar{x} + \varepsilon \left(\bar{x} - \frac{\frac{1}{N} \sum_{i=1}^{N} f_i''(\bar{x})}{\frac{1}{N} \sum_{i=1}^{N} f_i''(\bar{x})}\right)$$

$$= \bar{x} - \varepsilon \frac{f'(\bar{x})}{f''(\bar{x})}$$

Centralized Newton-Raphson !!

### Formal results

- If  $f_i$  are quadratic  $\Longrightarrow$  Global exponential convergence with rate sr(P) for  $\varepsilon = 1$  for any connected graph
- If graph is complete ⇒ Centralized Newton-Raphson
- Under mild conditions  $(f_i \in C^3 \text{ and convex}) \Longrightarrow \textbf{\textit{Local}}$ **Exponential Stability** for  $0 < \varepsilon < \varepsilon_c$
- Under more restrictive conditions (global boundedness of  $\frac{f'\star f'''}{(f'')^2}$  and f'')  $\Longrightarrow$  **Global Exponential Stability** for  $0<\varepsilon<\varepsilon_{c}$
- Convergence is "only" linear due to consensus: need time to pass information around



3.

## Distributed Newton-Raphson: the multivariable scenario

## The Multivariable consensus-based Newton-Raphson

#### Derivation of the algorithm

#### Algorithm

- define local variables:
  - $g_i(k) := \nabla^2 f_i(x_i(k)) x_i(k) \nabla f_i(x_i(k)), g_i(-1) = y_i(0) = 0, \in \mathbb{R}^n$
  - $H_i(k) := \nabla^2 f_i(x_i(k)), \ H_i(-1) = Z_i(0) = 0, \ \in \mathbb{R}^{n \times n}$
- 2 run 2 average consensus (P doubly stochastic):
  - y(k+1) = Py(k) + g(k) g(k-1)
  - Z(k+1) = PZ(k) + h(k) h(k-1)
- **3** locally compute  $x_i(k+1) = (1-\varepsilon)x_i(k) + \varepsilon Z_i(k+1)^{-1}y_i(k+1)$

Need to compute averages and inversions of matrices:

- $O(n^2)$  communication complexity & memory requirements
- $O(n^3)$  computational complexity

## Distributed Gradient Descent Revised

Approximate **each**  $f_i(x)$  with a parabola with **unitary curvature**:

$$\widehat{f}_{i}(x) = \frac{1}{2}(x - b_{i})^{2} + c_{i} \Longrightarrow \widehat{f}(x) = \frac{1}{N}\sum_{i=1}^{n} \left(\frac{1}{2}(x - b_{i})^{2} + c_{i}\right) = \frac{1}{2}(x - x^{*})^{2} + c$$

Match slope  $x_i$ :

$$f'_i(x_i) = \hat{f}'_i(x_i) = (x_i - b_i) \implies b_i = x_i - f'_i(x_i)$$

Jump to the minimum of  $\hat{f}(x)$ :

$$x_i^+ = x^* = \frac{1}{N} \sum_{i=1}^N b_i = \frac{1}{N} \sum_{i=1}^N x_i - f_i'(x_i)$$

## The (synchronous) consensus-based Gradient Descent

Derivation of the algorithm

### The correct algorithm

- define local variables:
  - $g_i(k) := x_i(k) f'_i(x_i(k)), g_i(-1) = 0, v_i(0) = 0$
- 2 run 1 average consensus (P doubly stochastic):
  - $\mathbf{y}(k+1) = P\mathbf{y}(k) + \mathbf{g}(k) \mathbf{g}(k-1)$ ,
- locally compute

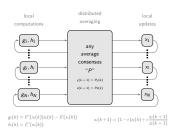
$$x_i(k+1) = (1-\varepsilon)x_i(k) + \varepsilon y_i(k+1)$$
  
=  $x_i(k) + \varepsilon (y_i(k+1) - x_i(k))$ 

#### The Naive Gradient Descent algorithm

- (1)  $y_i = f_i'(x_i)$  local gradient
- (2)  $\mathbf{y}^+ = P\mathbf{y}$  estimated global gradient via communication
- (3)  $x_i^+ = x_i y_i^+$  local descent step

#### **Extensions**

- Simplified Multivariable:
  - Distributed Gradient Descent: O(n) complexity, only  $\nabla f$  needed
  - Distributed Jacobi: O(n) complexity, only  $\nabla f, [\nabla^2 f]_{ii}$  needed
- Asynchronous: straightforward implementation. Some uniform persistency requirements for global convergence
- Flexible: by changing the consensus block can be adapted to different scenarios:
- Accelerated: diffusion-based consensus
- Broadcast communication: no need for symmetric gossip (ratio consensus)
- Directed Graphs
- Packet loss



### Distributed Newton-Raphson:

simulations

## Simulations: SVM Classification with synchronous NR

http://archive.ics.uci.edu/ml/datasets/Spambase

 $\chi \in \mathbb{R}^4$ : frequency of specific words,

 $y \in \{\text{spam, non-spam}\}$ 

 $(\mathbf{x},x_0)\in\mathbb{R}^5$ : separating hyperplane parameters

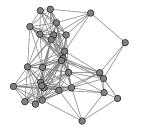
Connected graphs with 30 nodes

Local cost functions:

$$f_i(\mathbf{x}) := \sum_{j=1}^{30} \log \left( 1 + \exp \left( -y_j \left( \mathbf{\chi}_j^T \mathbf{x} + \mathbf{x}_0 \right) \right) \right) + \gamma \|\mathbf{x}\|_2^2.$$



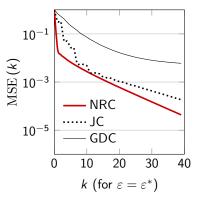






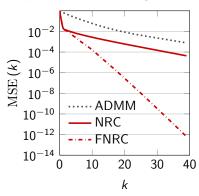
## Simulations: SVM Classification with synchronous NR

#### Consensus-based algorithms:



NRC=Newton-Raphson Consensus JC= Jacobi Consensus GDC = Gradient Descent Consensus

### Comparison with other algorithms



ADMM=Alternating Direction
Multipliers Method
NRC=Newton-Raphson Consensus
FNRC= Newton-Raphson with Fast
Consensus (diffusive)

## Simulations: Robust Regression with synchronous NR

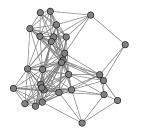
http://archive.ics.uci.edu/ml/datasets/Housing

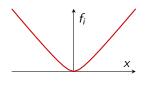
 $\chi \in \mathbb{R}^4$ : size, distance from downtown  $y \in \mathbb{R}$ , house price  $(\mathbf{x}, x_0) \in \mathbb{R}^5$ : parameters to be computed Connected graphs with 30 nodes Local cost functions:

$$f_i(\mathbf{x}) := \sum_{j=1}^{30} \frac{\left(y_j - \boldsymbol{\chi}_j^T \mathbf{x} - x_0\right)^2}{\left|y_j - \boldsymbol{\chi}_j^T \mathbf{x} - x_0\right| + \beta} + \gamma \left\|\mathbf{x}\right\|_2^2.$$



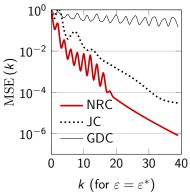






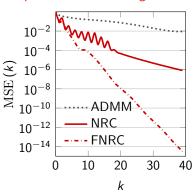
## Simulations: Robust Regression with synchronous NR

#### Consensus-based algorithms:



NRC=Newton-Raphson Consensus JC= Jacobi Consensus GDC = Gradient Descent Consensus

### Comparison with other algorithms



ADMM=Alternating Direction
Multipliers Method
NRC=Newton-Raphson Consensus
FNRC= Newton-Raphson with Fast
Consensus (diffusive)

## Conclusions and references

### Conclusions

#### Takeaway messages

- new distributed optimisation method
- it takes advantage of standard consensus algorithms (plug-and-play)
- its potentials are still mainly unexplored

#### Future work

- adaptive local stepsize  $\varepsilon_i(k)$
- non-differentiable cost functions
- quasi-Newton methods
- constraints
- distributed interior point methods
- extensive comparisons based on real data with ADMM&co

## Publications (1/2)

#### **Synchronous**



F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, L. Schenato (2011) Newton-Raphson consensus for distributed convex optimization IEEE Conference on Decision and Control (CDC'11)



F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, L. Schenato (2012) Multidimensional Newton-Raphson consensus for distrib. convex optimization American Control Conference (ACC'12)



D. Varagnolo, F. Zanella, A. Cenedese, G. Pillonetto, L. Schenato Newton-Raphson Consensus for Distributed Convex Optimization IEEE Transactions on Automatic Control (submitted)

## Publications (2/2)

#### Asynchronous



F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, L. Schenato (2012) Asynchronous Newton-Raphson Consensus for Distributed Convex Optimization 3rd IFAC Workshop on Distributed Estimation and Control in Networked Systems (NecSys'12)

#### Convergence rate



F. Zanella, D. Varagnolo, A. Cenedese, G. Pillonetto, L. Schenato (2012) The convergence rate of Newton-Raphson consensus optimization for quadratic cost functions

IEEE Conference on Decision and Control (CDC'12)

# Newton-Raphson consensus for distributed convex optimization

#### Luca Schenato

Department of Information Engineering - University of Padova, Italy URL: http://automatica.dei.unipd.it/people/schenato.html

June 15, 2013 – ECC Workshop on Distributed Optimization in Large Networks and its Applications



