Applications of Consensus Algorithms to Wireless Sensor Networks

Luca Schenato (Univ. Padova)

Joint work w/

Alessandro Chiuso University of Padova

Sandro Zampieri University of Padova

Ruggero Carli UC Santa Barbara

Ph.D. Students:

Damiano Varagnolo
Simone Del Favero
Saverio Bolognani
University of Padova

Outline

- Motivations and target applications
- Overview of consensus algorithms
- Application of consensus to WSN:
 - Sensor calibration
 - Least-square parameter identification
 - Time-synchronization
- Open problems
 - Identification
 - Estimation
 - Control

Outline

- Motivations and target applications
- Overview of consensus algorithms
- Application of consensus to WSN:
 - Sensor calibration
 - Least-square parameter identification
 - Time-synchronization
- Open problems
 - Identification
 - Estimation
 - Control

DEPARTMENT OF INFORMATION ENGINEERING UNIVERSITY OF PADOVA NIVERSITY OF

Drive-by-wire systems

Swarm robotics

Smart structures: space telescope & satellites mesh

Wireless Sensor Networks

Internet and transportation Smart materials & MEMS: sheets of sensors and actuators

NCSs: physically distributed dynamical systems interconnected by a communication network

Wireless Sensor Actuator Networks (WSANs)

- Small devices
 - μController, Memory
 - Wireless radio
 - Sensors & Actuators
 - Batteries
- Inexpensive
- Multi-hop communication
- Programmable (micro-PC)

Applications: Smart Greenhouse

- Distributed estimation
- Distributed control
- Control under packet loss & random delay
- Sensor fusion
- Distributed time synchronization

Applications: ThermoEfficiency Labeling

- Building thermodynamics model identification
- Sensor selection for identification
- Optimal sensor placement

Applications: Distributed Localization&Tracking

- Indoor radio signal modeling
- Real-time localization
- Distributed tracking
- Coordination

DEPARTMENT OF PINFORMATION PROGRAMMENT PRO

Classical architecture: Centralized structure

DEPARTMENT OF PROPERTY OF PROP

Outline

- Motivations and target applications
- Overview of consensus algorithms
- Application of consensus to WSN:
 - Sensor calibration
 - Least-square parameter identification
 - Time-synchronization
- Open problems
 - Identification
 - Estimation
 - Control

The consensus problem

Main idea

 Having a set of agents to agree upon a certain value (usually global function) using only local information exchange (local interaction)

Also known as:

- Agreement problem (economics, signal processing, social networks)
- Gossip algorithms (CS & communications)
- Synchronization (statistical mechanics)
- Rendezvous (robotics)
- Suitable for (noisy) sensor networks

Main features

Distributed computation of general functions

$$\theta = f(x_1, \dots, x_N) = f\left(\frac{1}{N} \sum_{i=1}^N g_i(x_i)\right) \qquad \text{(ex. } \theta = \frac{1}{N} \sum_{i=1}^N x_i \text{ for } f = g = ident)$$

- Computational efficient (linear & asynchronous)
- Independent of graph topology
- Incremental (i.e. anytime)
- Robust to failure

- Convergence of Markov Chains (60's) and Parallel Computation Alg. (70's)
- John Tsitsiklis "Problems in Decentralized Decision Making and Computation", Ph.D thesis, MIT 1984
- A. Jadbabaie, J. Lin, and A. S. Morse "Coordination of groups of mobile autonomous agents using nearest neighbor rules", CDC' 02 (Axelby Best Paper Award TAC)
- Time-varying topologies (worst-case)
 - L. Moreau, "Consensus seeking in multi-agent systems using dynamically changing interaction topologies," IEEE, Transactions on Automatic Control, vol 50, No. 2, 2005
 - M. Cao, A. S. Morse, and B. D. O. Anderson. "Reaching a Consensus in a Dynamically Changing Environment: A Graphical Approach." SIAM Journal on Control and Optimization, Feb 2008

Randomized topologies

- S. Boyd, A. Ghosh, B. Prabhakar, D. Shah "Randomized Gossip Algorithms", TIT 2006
- F. Fagnani, S. Zampieri, "Randomized consensus algorithms over large scale networks", JSAC 08

Applications:

- Vehicle coordination: Jadbabaie, Francis's group, Tanner, ...
- Kalman Filtering: Olfati Saber-Murray, Alighanbari-How, Carli-Chiuso-Schenato-Zampieri
- Generalized means: Giarre', Cortes
- Time-synchronization: Solis-P.R. Kumar, Osvlado-Spagnolini, Carli-Chiuso-Schenato-Zampieri
- WSN sensor calibration and parameter identification: Bolognani-DelFavero-Schenato-Varagnolo

Consensus formulation

Network of

- N agents
- Communication graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$
- i-th node neighbors: $\mathcal{N}(i)$
- Every node stores a variable: node i stores x_i.

DEPARTMENT OF 2 Consensus formulation (cont')

Definition (Recursive Distributed Algorithm adapted to the graph G)

Any recursive algorithm where the i node's update law of depends only on the state of *i* and in its neighbors $j \in \mathcal{N}(i)$

$$x_i(t+1) = f(x_i(t), x_{j_1}(t), \dots x_{j_{N_i}}(t))$$

with $j_1, \dots, j_{N_i} \in \mathcal{N}(i)$

Consensus definition

Definition

A Recursive Distributed Algorithm adapted to the graph \mathcal{G} is said to asymptotically achieve consensus if

$$x_i(t) \to \alpha \quad \forall i \in \mathcal{N}$$

Definition

A Recursive Distributed Algorithm adapted to the graph G is said to asymptotically achieve average consensus if

$$x_i(t) \rightarrow \frac{1}{N} \sum_{i \in \mathcal{N}} x_i(0) \qquad \forall i \in \mathcal{N}$$

Linear consensus

$$x_i(t+1) = p_{ii}x_i(t) + \sum_{j \in \mathcal{N}(i)} p_{ij}x_j(t)$$

$$x(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_N(t) \end{bmatrix}$$
 $x(t+1) = P(t)x(t)$

Say \mathcal{G}_P Graph associated to P, $P_{i,j} \neq 0 \iff (i,j) \in \mathcal{E}_P$,

$$\mathcal{G}_P \subseteq \mathcal{G}$$
 $(\mathcal{N} \equiv \mathcal{N}_P, \quad \mathcal{E} \subseteq \mathcal{E}_P)$

A robotics example: the rendezvous problem

$$x_i(t+1) = x_i(t) + u_i(t) x_i(t+1) = p_{ii}x_i(t) + \sum_{j \in N(i)} p_{ij}x_j$$

Convex hull always shrinks.

If communication graph sufficiently connected, then shrinks to a point

Stochastic matrix

Definition (Stochastic Matrix)

If $P_{i,j} \geq 0$ and $\sum_{i} P_{i,j} = 1 \ \forall i$, than P is said to be stochastic

$$P\mathbb{1}=\mathbb{1} \qquad \mathbb{1}=\left[egin{array}{c} 1 \ 1 \ dots \ 1 \end{array}
ight]$$

Remark

If P is stochastic the linear algorithm can be written in both forms:

$$x_i(t+1) = p_{ii}x_i(t) + \sum_{j \in \mathcal{N}(i)} p_{ij}x_j(t)$$

 $x_i(t+1) = x_i(t) + \sum_{j \in \mathcal{N}(i)} p_{ij}(x_j(t) - x_i(t))$

Constant matrix P

Synchronous Communication:

At each time all nodes communicate according to the communication graph

$$P(t)=P$$
:

$$P = \begin{bmatrix} 3/6 & 1/6 & 1/6 & 1/6 & 0 & 0 \\ 1/6 & 3/6 & 1/6 & 0 & 0 & 1/6 \\ 1/6 & 1/6 & 3/6 & 0 & 1/6 & 0 \\ 1/6 & 0 & 0 & 3/6 & 1/6 & 1/6 \\ 0 & 0 & 1/6 & 1/6 & 4/6 & 0 \\ 0 & 1/6 & 0 & 1/6 & 0 & 4/6 \end{bmatrix}$$

Convergence results

Theorem

P(t) = P stochastic.

- If P such that $\mathcal{G}_P \subseteq \mathcal{G}$ is rooted then the algorithm achieves consensus
- If also P^T is stochastic (P doubly stochastic), then average consensus is achieved

eigenvalues of P:

$$\mathsf{P} = \begin{bmatrix} p_{1,1} & p_{1,2} & p_{1,3} & p_{1,4} & 0 & 0 \\ p_{2,1} & p_{2,2} & p_{2,3} & 0 & 0 & p_{2,6} \\ p_{3,1} & p_{3,2} & p_{3,3} & 0 & p_{3,5} & 0 \\ p_{4,1} & 0 & 0 & p_{4,4} & p_{4,5} & p_{4,6} \\ 0 & 0 & p_{5,4} & p_{5,3} & p_{5,5} & 0 \\ 0 & p_{6,2} & 0 & p_{6,4} & 0 & p_{6,6} \end{bmatrix}$$

 $P^t \xrightarrow{\lambda^t} \mathbb{1}\rho^T$, ρ is left eigenvector of 1 $\sum_i \rho_i = 1, \rho_i \ge 0, \quad (\rho_i > 0 \text{ if strong. conn.})$ $\rho = \frac{1}{N} \mathbb{1}$ if P doubly stochastic

Time varying P(t): broadcast

Broadcast:

At each time one node randomly wakes up and broadcasts its information to all its neighbors.

$$P(t) = \begin{bmatrix} 3/4 & 0 & 0 & 1/4 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1/4 & 3/4 & 0 \\ 0 & 0 & 0 & 1/4 & 0 & 3/4 \end{bmatrix}$$

Time varying P(t): symmetric gossip

Symmetric Gossip:

At each time one node randomly wakes up and chose randomly a its neighbor. Those two nodes exchange information

$$P(t) = \begin{bmatrix} 1/2 & 0 & 0 & 1/2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

ENGINEERING 2 Consensus strategies for WSN

Broadcast

- 1 message broadcasted, $|\mathcal{N}(i)|$ estimate updated
- Does not guarantee average consensus

Symmetric Gossip

- At least 3 messages exchanged, 2 estimate updated
- Guarantee average consensus

Convergence results: P=P(t) deterministic

Theorem

Suppose that $P_{ii}(t) > 0, \forall i, \forall t$ and that there exixts K such that $\mathcal{G}_{\ell} = \mathcal{G}_{P((\ell+1)K)} \cup \ldots \cup \mathcal{G}_{P(\ell K)}$ is rooted at some node j for all ℓ then

- the sequence $\{P(t)\}$ achieves consensus
- if also $P^T(t)$ are stochastic for all t, then the sequence $\{P(t)\}$ achieves average consensus

Remark:

Estimates of rate of convergence are very conservative (worst case)

L. Moreau, "Consensus seeking in multi-agent systems using dynamically changing interaction topologies," IEEE, Transactions on Automatic Control, vol 50, No. 2, 2005
M. Cao, A. S. Morse, and B. D. O. Anderson. "Reaching a Consensus in a Dynamically Changing Environment: A Graphical Approach." SIAM Journal on Control and Optimization, Feb 2008

Convergence results: P=P(t) randomized

Theorem

Suppose $\{P(t)\}$ is a sequence of i.i.d. stochastic random matrices. Suppose moreover $\mathcal{G}_{P(t)} \subseteq \mathcal{G} \ \forall t$ and call $\bar{P} = \mathbb{E}[P]$.

- If G_{P̄} is rooted that consensus is achieved w.p.1
- If also $P(t)^T$ is stochastic for every t, then average consensus is achieved w.p.1

Remark:

It is not sufficient \bar{P} doubly stochastic to guarantee average consensus

$$x(t+1) = P(t)x(t) = P(t)P(t-1)\cdots P(0)x(0) = Q(t)x(0)$$
 $(Q(t) = P^t \text{ if } P(t) = P)$ $Q(t) \to \mathbb{1}\rho^T, \ \mathbb{E}[\rho] = \frac{1}{N}\mathbb{1}, \ Var(\rho) \sim \frac{1}{N}$

F. Fagnani, S. Zampieri, "Randomized consensus algorithms over large scale networks", IEEE Journal on Selected Areas in Communications, 2008

Generalized mean

$$x_i(t+1) = p_{ii}x_i(t) + \sum_{\mathcal{N}_i} p_{ij}x_j(t) \qquad x_i(t) \to \frac{1}{N} \sum_i x_i(0)$$

$$\theta = f(a_1, \dots, a_N) = f\left(\frac{1}{N} \sum_{i=1}^N g_i(a_i)\right)$$

$$x_i(0) = g_i(a)$$

$$\hat{\theta}_i(t) = f(x_i(t))$$

Geometric mean: $\theta = \sqrt[n]{\prod_i a_i} = \exp\left(\frac{1}{N} \sum_i \log(a_i)\right)$

$$x_i(0) = \log(a_i), \quad \hat{\theta}_i(t) = \exp(x(t)) \to \theta$$

Armonic mean:
$$\theta = \left(\frac{1}{N} \sum_{i} \frac{1}{a_i}\right)^{-1}$$

$$x_i(0) = \frac{1}{a_i}, \quad \hat{\theta}_i(t) = \frac{1}{x_i(t)} \to \theta$$

Quadratic mean:
$$\theta = \sqrt{\frac{1}{N} \sum_{i} a_i^2}$$

$$x_i(0) = a_i^2, \quad \hat{\theta}_i(t) = \sqrt{x_i(t)} \to \theta$$

- **D. Bauso, L. Giarre' and R. Pesenti,** "*Nonlinear protocols for Optimal Distributed Consensus in Networks of Dynamic Agents*", Systems and Control Letters, 2006
- **J. Cortés,** Distributed algorithms for reaching consensus on general functions, Automatica 44 (3) (2008), 726-737

Node counting

 $\hat{\theta}_i(t) = \frac{1}{x_i(t)} \to N$

$$x_i(t+1) = p_{ii}x_i(t) + \sum_{\mathcal{N}_i} p_{ij}x_j(t)$$
 $x_i(t) \to \frac{1}{N} \sum_i x_i(0)$

Outline

- Motivations and target applications
- Overview of consensus algorithms
- Application of consensus to WSN:
 - Sensor calibration
 - Least-square parameter identification
 - Time-synchronization
- Open problems
 - Identification
 - Estimation
 - Control

Localization with WSN

Localization with WSN

Each node

can measure the Radio Signal Strength Indicator, RSSI, i.e. the received signal power P_{rx} in dBm.

 $P_{rx}^{ij} = P_{tx}^{j} + \beta - 10\gamma \log_{10}(||x_i - x_j||) + f_{sf}(x_i, x_j) + v(t) + o_i$ Map Based

Transmi Most likely location that matches pow with pre-learned maps.

Range based

Triangulation (similarly to GPS)

Offset effect

Reception offset is particularly harmful for localization applications, Experiment inside a basketball court.[S 07]²

²[S 07] Courtesy of ST Microelectronics,

I. Solida, "Localization services for IEEE802.15.4/Zigbee devices.

Mobile node tracking (in Italian)", Master Thesis,

Department of information Engineering, University of Padua 2007

DEPARTMENT OF WSN sensor calibration

Ideally:

- Estimate o_i: ô_i
- Use \hat{o}_i to compensate the offset: $o_i - \hat{o}_i = 0$

What we propose is:

$$o_i - \hat{o}_i = \alpha$$
 $\alpha \cong 0$ equal for all nodes

All nodes overestimate or underestimate the distance similarly. The errors, in the triangulation process, cancel out partially.

Calibration as consensus problem

Remark

If P is stochastic the linear algorithm can be written in both forms:

$$x_i(t+1) = p_{ii}x_i(t) + \sum_{j \in \mathcal{N}(i)} p_{ij}x_j(t)$$
 $x_i(t+1) = x_i(t) + \sum_{j \in \mathcal{N}(i)} p_{ij}(x_j(t) - x_i(t))$ $o_i - \hat{o}_i(t) = x(t)$

$$o_i - \hat{o}_i(t+1) = o_i(t) - \hat{o}_i(t) + \sum_{j \in \mathcal{N}_i} p_{ij} \left((o_i - \hat{o}_i(t)) - (o_j - \hat{o}_j(t)) \right)$$

$$\hat{o}_i(t+1) = \hat{o}_i(t) - \sum_{j \in \mathcal{N}_i} p_{ij} \left(P^{ij} - P^{ji} - \hat{o}_i(t) + \hat{o}_j(t) \right)$$

update equation

$$\hat{o}_i(t) \to o_i - \frac{1}{N} \sum_i o_i = o_i - \alpha \approx o_i$$

Steady state

Experimental Testbed

25 TMote-Sky nodes with Chipcon CC2420 RF Transceiver randomly placed inside a single conference room:

Network topology and nodes displacement:

Kept just the links that safely carried the 75% of the sent messages over them

Experimental results

Links divided in 2 categories:

- Training links (black)
- Validation links (gray)

Estimate time evolution

$$\Delta \bar{P}^{ij} = \bar{P}^{ij} - \bar{P}^{ji} = o_i - o_j$$

	Before	After
<0.5 dB	24%	56 %
<1	50%	88 %
>2dB	35%	0.6 %
Max	<6dB	<3.5dB

Effects of systematic errors when estimating distances

$$1dB \longmapsto \cong 2m \pm 0.28m$$
.

 $6dB \longmapsto$ uncertainty for 0.9m to 4.4m for an actual distance of 2m.

$$1dB \longmapsto \cong 10m \pm 1.4m$$
.

Parameter identification

Another important problem:

Accurately identify the wireless channel parameters β and γ .

In fact:

- Parameters extremely environment dependent
- $\gamma \in [1, 6]$
- Environment change hourly or daily

$$P_{rx}^{ij} = P_{tx}^{j} + \beta - 10\gamma \log_{10}(||x_i - x_j||) + f_{sf}(x_i, x_j) + v(t) + o_i$$

Modeling

Recall the Wireless Channel Model

For each link:
$$\underline{\bar{P}_{rx}^{ij} + \hat{o}_{i}} = \underbrace{[1 - 10 \log_{10}(d_{ij})]}_{a_{ij}^{T}} \underbrace{\begin{bmatrix} \beta \\ \gamma \end{bmatrix}}_{\theta} + w_{i}$$

Modeling (cont'd)

Each node

- knows its distance with its neighbor $d_{ij} \rightarrow a_{ij}$
- measures the strength of the message received form its neighbors

$$P_{ij} \rightarrow b_{ij}$$

Globally the network collected

M couples measure-regressors: $(a_1, b_1), \dots (a_M, b_M)$

For ease of notation, assume that Each node stores one couple measure-regressor.

| Least-square Identification

Globally, the sensor network collected

M couples measure-regressors: $(a_1, b_1), \ldots (a_M, b_M)$.

Let us call

$$A = [a_1, \dots, a_M]^T$$
 and $b = [b_1, \dots, b_M]$.
 $b = A\theta + w$

The least square estimate of θ ,

given the measurements b is

$$\hat{\theta} = \arg\min_{\theta} ||A\theta - b|| = (A^T A)^{-1} A^T b$$

DEPARTMENT OF ENGINEERING Consensus-based Identification

$$\hat{\theta} = \arg\min_{\theta} ||A\theta - b|| = (A^T A)^{-1} A^T b = (\frac{1}{N} \sum_{i \in \mathcal{N}} a_i a_i^T)^{-1} (\frac{1}{N} \sum_{i \in \mathcal{N}} a_i b_i)$$

DEPARTMENT OF PROPERTY OF PROP

Broadcast

- 1 message broadcasted, $|\mathcal{N}(i)|$ estimate updated
- Does not guarantee average consensus

Symmetric Gossip

- At least 3 messages exchanged, 2 estimate updated
- Guarantee average consensus

Experimental results

Residual: $\frac{1}{M}||A\hat{\theta} - b||^2$

Tracking results

Time synchronization in sensor networks

Clock characteristics & standard clock pair synch

- Offset: instantaneous time difference
- Skew: clock speed
 - Drift: derivative of clock speed

$$\tau_i = a_i t + b_i$$

- Offset synch: periodically remove offset with respect to reference clock
- Skew compensation: estimate relative speed with respect to reference clock

State-of-the-art

Tree-based sync

Cluster-based sync

Distributed

Modeling

MODEL: N clocks as discrete time integrators

$$x_i(t+1) = x_i(t) + d_i$$

 $d_i: skew \text{ (clock speed)}$

$$x_i(0) = \beta_i : initial offset$$

CONTROL: Assume that it is possible to control each clock by a local input $u_i(t)$:

$$x_i(t+1) = x_i(t) + d_i + u_i(t)$$

$$x(t+1) = x(t) + d + u(t)$$

GOAL: Clocks Synchronization

$$\lim_{t \to \infty} x_i(t) - x_j(t) = 0$$

$$\lim_{t \to \infty} y(t) = \lim_{t \to \infty} \left(I - \frac{1}{N} \mathbf{1} \mathbf{1}^T \right) x(t) = 0$$

CONTROL: Proportional controller

$$u_i(t) = -\sum_{j \in \mathcal{N}(i)} k_{ij}(x_j(t) - x_i(t))$$

$$u(t) = -Kx(t)$$

P-control

If K symmetric:

$$h = 1$$

$$\mathbf{h}=\mathbf{2},\dots,\mathbf{N}$$

PI-control

$$x(t+1) = x(t) + d + u(t)$$

$$w(t+1) = w(t) - \alpha K x(t)$$

$$u(t) = w(t) - K x(t)$$

$$\lim_{t \to \infty} y(t) = \lim_{t \to \infty} \left(I - \frac{1}{N} \mathbf{1} \mathbf{1}^T \right) x(t) +$$

If K symmetric:

$$h = 1$$

$$\mathbf{h}=\mathbf{2},\ldots,\mathbf{N}$$

C(z)-control

$$x(t+1) = x(t) + d + u(t)$$
$$u(t) = C(z)Kx(t)$$

$$\lim_{t \to \infty} y(t) = \lim_{t \to \infty} \left(I - \frac{1}{N} \mathbf{1} \mathbf{1}^T \right) x(t) + \frac{1}{N} \mathbf{1} \mathbf{1}^T \mathbf{1}^T$$

If K symmetric:

$$h = 1$$

$$\mathbf{h}=\mathbf{2},\ldots,\mathbf{N}$$

Parameter design (undirected graphs)

GOAL: fastest rate of convergence

$$\begin{bmatrix} x(t+1) \\ w(t+1) \end{bmatrix} = \begin{bmatrix} I - K & I \\ -\alpha K & I \end{bmatrix} \begin{bmatrix} x(t) \\ w(t) \end{bmatrix} + \begin{bmatrix} d \\ 0 \end{bmatrix}$$

Suboptimal design (no topology needed):

$$k_{ij} = -\frac{1}{\max(d_i, d_j) + 1}$$
 $i \neq j$, $\alpha = \frac{1}{2}$, where d_i is $\#$ of neighbors of node i .

Optimal design: almost convex problem (SDP + 1D non-convex search)

Model w/ noise

$$u_i(t) = -\sum_{j \in \mathcal{N}(i)} k_{ij}(x_j(t) - x_i(t))$$

white measurement noise white process noise

$$\begin{bmatrix} x(t+1) \\ w(t+1) \end{bmatrix} = \begin{bmatrix} I - K & I \\ -\alpha K & I \end{bmatrix} \begin{bmatrix} x(t) \\ w(t) \end{bmatrix} + \begin{bmatrix} -K \\ -\alpha K \end{bmatrix} v(t) + \begin{bmatrix} d \\ 0 \end{bmatrix} + \begin{bmatrix} I \\ 0 \end{bmatrix} n(t)$$

GOAL: smallest steady state mean square error: $J(K, \alpha) = \frac{1}{N} E[||y(\infty)||^2]$

Suboptimal design still OK

$$k_{ij} = \frac{1}{\max(d_i, d_j) + 1}$$
, $\alpha = \frac{1}{2}$, where d_i is # of neighbors of node i.

 Optimal design: almost convex problem (Semidefinite programming in K+ 1D non-convex search in ff)

Simulations

Model parameters based on experimental data from real WSN and pseudo-synchronous implementation

Outline

- Motivations and target applications
- Overview of consensus algorithms
- Application of consensus to WSN:
 - Sensor calibration
 - Least-square parameter identification
 - Time-synchronization
- Open problems
 - Identification
 - Estimation
 - Control

DEPARTMENT OF ENGINEERING Consensus applications

Which problem can be casted as a consensus problem?

- Kalman filtering
- unbiased broadcast communication

Consensus algorithms == optimization tool

Identification: DEPARTMENT OF INFORMATION ENGINEERING UNIVERSITY OF PADOVA ENGINEERING UNIVERSITY OF PADOVA ENGINEERING STRUCTURED SYSTEMS

 $x \sim \mathcal{N}(0, \Sigma), \quad \Sigma^{-1} \text{ is sparse (graph model)}$

Communication graph

- Σ only partially known and noisy $\Rightarrow \Sigma^{-1}$ is full.
- communication graph \neq correlation graph
- weak correlation, i.e. Σ^{-1} full w/ some small entries \Rightarrow Graph identifiability
- what if dynamics also, i.e. $x_{t+1} = Ax_t + w_t$?
- if a node dies, i.e. remove row-column from Σ , how to compute Σ^{-1} ?
- how to do model reduction preserving graph structure?
- is consensus relevant?

Carlos Carvalho " Structure and Sparsity in High-Dimensional Multivariate Analysis", Ph.D. Theis, Duke Univ., 2007 A. P. Dempster, Covariance Selection, Biometrics, Vol. 28, No. 1, Special Multivariate Issue (Mar., 1972), pp. 157-175

| Non-parametric estimation

Identification/Estimation of infinite dimensional space $f: \mathbb{R}^n \to \mathbb{R}$.

Centralized learning: $\hat{f}(\cdot) = \sum_{n=1}^{N} \alpha_n \Phi(x_n, \cdot)$

Totally decentralized learning: $\hat{f}_i(\cdot) = \sum_{n=1}^{N_i} \alpha_n^i \Phi(x_n, \cdot), \quad \mathbf{N_i} << \mathbf{N}$

What to exchange?

- all $(x_i, f(x_i))$ of neighbors?
- most informative $(x_i, f(x_i))$ of neighbors?
- smoothed observation of neighbors $(x_i, \hat{f}_i(x_i))$
- virtual observations $\hat{f}(\hat{x}_i, \hat{f}_i(\hat{x}_i))$

Soft Hierarchical Control

Time synchronization example:

 P_{dist} symmetric: slow convergence but robust

 P_{hier} asymmetric: fast convergence but fragile to node failure

$$P_{soft} = \alpha P_{dist} + (1 - \alpha) P_{hier},$$

optimal α depends on failure rate

A&Q

THANK YOU